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On the flow of buoyant fluid injected
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We study the dispersal of a plume of incompressible buoyant fluid injected into a
confined sloping aquifer which has an outflow at a single fault which may be up-dip
(up-slope) or down-dip (down-slope) from the point of injection. We develop a long-
time asymptotic solution for the motion of the injected fluid. We show that for the
case in which the outflow fault is up-dip from the point of injection, there is a critical
injection rate above which the injected fluid floods the full depth of the aquifer, and
we show that for the case in which the outflow fault is down-dip from the point of
injection, there is a critical injection rate below which all injected fluid initially flows
up-dip. Our analysis leads to expressions for the lateral extent of the injected fluid as
a function of time, and we consider the implications of the model for the dispersal of
supercritical carbon dioxide injected into deep saline aquifers. The work also indicates
that the geometry of the system may have a significant effect on (i) the total volume
of carbon dioxide which it is possible to sequester in a faulted aquifer and (ii) the
interpretation of the dispersed position of any injected tracers.

Key words: convection in porous media, gravity currents, Hele–Shaw flows

1. Introduction
There is growing interest in the process of carbon dioxide capture and storage, also

known as carbon sequestration, for its potential role in the mitigation of anthropogenic
climate change. Numerous studies have been carried out to explore the physical
processes which control the migration of plumes of carbon dioxide (CO2) injected
into aquifers (e.g. Pruess et al. 2003; Obi & Blunt 2006; Neufeld, Vella & Huppert
2009). One of the key objectives of such modelling is to quantify the mechanisms and
time scales associated with the possible migration of CO2 back to man’s environment.

When CO2 is injected into a deep saline aquifer, it has the form of a supercritical
fluid which is much less dense and less viscous than the water it displaces (Pruess
et al. 2003; IPCC 2005), and will therefore tend to flow along the upper boundary
of the aquifer as a buoyant gravity current. Many studies have focused on such
buoyancy-driven flow of CO2 through subsurface aquifers bounded by impermeable
or low-permeability layers (Hesse, Tchelepi & Orr 2006; Nordbotten & Celia 2006;
Vella & Huppert 2006; Hesse, Orr & Tchelepi 2008; Neufeld & Huppert 2009).
Following injection, the plumes of CO2 which develop are strongly influenced by the
geometry of the aquifer, including structural traps, by capillary trapping of CO2 at the
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tail of the flow (Juanes et al. 2006), and by the dissolution of CO2 into the formation
water as the advancing plume displaces this water (Lyle, Huppert & Hallworth 2005;
Nordbotten & Celia 2006; Bickle et al. 2007; Hesse et al. 2008; Farcas & Woods 2009).
Trapped CO2 may then gradually react with the rock matrix to become geologically
sequestered (IPCC 2005).

However, if there are any pre-existing wells in the subsurface, or indeed if the
casing or cement around any injection well fails, then these may act as conduits for
the buoyant CO2 to rise upwards through the geological strata, increasing the risk
that some CO2 returns to man’s environment (Nordbotten, Celia & Bachu 2004;
Nordbotten et al. 2005, 2009). Somewhat analogously, if the seal rock bounding an
aquifer becomes fractured, it may allow some of the injected CO2 to migrate upwards
through the geological strata (Pritchard, Woods & Hogg 2001), leading to both
vertical and lateral transport of the CO2 plume. Since water and CO2 are partially
miscible, some of the CO2 may still be trapped at depth (Hesse et al. 2008), but
the remainder may be able to rise through the fracture system, towards the surface
(Pritchard 2007; Farcas & Woods 2009; Woods & Farcas 2009).

If the aquifer is of relatively large vertical extent compared with the depth of the
CO2 current, the motion of the original fluid in the aquifer is of secondary importance
to the flow (Barenblatt 1996; Hesse et al. 2008). In general, however, as the injected
CO2 displaces the original formation water, a two-layer flow results (Mitchell &
Woods 2006; Nordbotten & Celia 2006; Hesse et al. 2008). In such a case, the aquifer
is said to be ‘confined’.

The fluid displaced by CO2 injected into a confined aquifer may spread into the far
field, eventually being accommodated by some large-scale deformation of the aquifer
and confining rock (Class et al. 2009; Gasda, Nordbotten & Celia 2009), or it may be
driven out of the aquifer through faults, rising to regions higher in the geological strata.
If the flow is driven from the aquifer through a fault, two situations may exist depend-
ing on whether the fault is located up-dip or down-dip of the injection well (figure 1).
These situations form the topic of this paper. The two most similar recent studies are
Hesse et al. (2008), who consider an instantaneous finite release of buoyant fluid in the
same geometry as the present paper, and Nordbotten & Celia (2006), who consider a
maintained flux of injected fluid for a horizontal confined aquifer in a radial geometry.

A governing equation for a sharp-interface displacement in a confined, inclined
aquifer in a two-dimensional geometry is developed by Bear (1988, § 9.5.5), whose
approach we follow closely. The governing equation (3.6) is precisely a non-
dimensionalised form of equation (9.5.64) of Bear (1988) with constant flux, and
our governing equations ((3.7), (4.3) and (4.4)) are similarly derived. In a confined
aquifer with an open end either up-dip or down-dip (that is, either up-slope or down-
slope) from the injection site, there will be a net flow towards the open boundary
from the injection well, but only a zero-flux exchange flow in the closed side of the
layer. The governing equations differ depending on whether or not there is a net flux.

The key contribution of the present paper lies in providing new analytical solutions
for the late-time behaviour of these systems and recognising the importance of
different flux conditions in the far field on the flow of the fluids. We will seek to
identify a series of different flow regimes and their dependence on the dimensionless
injection rate and on the viscosity ratio of the injected to the original fluid. We discuss
the implications of the results for modelling the dispersal of buoyant plumes of low
viscosity fluid injected into faulted deep saline aquifers.

We note that, for simplicity, our analysis assumes incompressible flow, following
the original approach of Bear (1988), and more recently Hesse et al. (2008), Pritchard
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Figure 1. Diagram of the two modelled situations. (a) Confined aquifer with a permeable
fault up-dip from the injection well. This situation is considered in § 3. (b) Confined aquifer
with a permeable fault down-dip from the injection well. This situation is considered in § 4.

(2007) and Vella & Huppert (2006). We also neglect cross-slope motion, as is
appropriate for a long horizontal well. The analysis is applicable for times after
the current has spread far from the injection well, when the assumption that the flow
is parallel to the base of the layer may therefore be applied. In the present work, we
consider the evolution of the plume from such time as this assumption becomes valid
until such time as the leading edge reaches a fault.

2. The model
We will briefly recount the development of a two-dimensional sharp-interface model

for the flow of a buoyant fluid displacing an in situ fluid in a confined inclined aquifer,
in a two-dimensional geometry, following Bear (1988, § 9.5). A discussion of the value
of sharp-interface models for providing insight into key physics has been given by
Woods & Norris (2010).

Consider the migration of a plume of buoyant fluid supplied from an injection well
at the point x = 0 at a rate QI m2 s−1 per unit distance cross-slope into a confined
aquifer of depth H , lateral extent L � H and inclination θ to the horizontal. We
assume that the fluids are incompressible, that there is a sharp interface between the
fluids, and that the motion is governed by Darcy’s law.

The modelled layer is illustrated in figure 2. Note that x is the spatial coordinate
in the up-dip direction, and z is the position above the base of the layer, measured
perpendicularly to x (i.e. at an angle θ to the vertical). Let the buoyant current,
occupying the region h(x, t) <z <H , have viscosity µ1 and density ρ1. Let the in situ
fluid, occupying the region 0<z <h(x, t), have viscosity µ2 and density ρ2 = ρ1 + �ρ.
As the flow spreads laterally over a distance much greater than the thickness of the
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Figure 2. Diagram of the modelled layer.

layer, the pressure in the z-direction becomes approximately hydrostatic, with the flow
being dominantly parallel to the upper and lower boundaries of the layer. Away from
the point of injection and from the leaking fault, the pressure variation is therefore
given by

p(x, z, t) = p0(x, t) − ρ2gz cos θ (2.1)

for 0 <z <h, and

p(x, z, t) = p0(x, t) − �ρgh cos θ − ρ1gz cos θ (2.2)

for z > h, where p0(x, t) is the pressure on the lower boundary of the permeable layer.
Darcy’s law then leads to the relations

u1 = − k

µ1

(
∂p0

∂x
− �ρg cos θ

∂h

∂x
+ ρ1g sin θ

)
, (2.3)

u2 = − k

µ2

(
∂p0

∂x
+ ρ2g sin θ

)
, (2.4)

where u1, u2 are the transport velocities of the injectate and the in situ fluid,
respectively, in the up-dip sense.

To complete the model for the flow, we require some conditions for mass
conservation, and these depend on whether the permeable fault is located up-dip
or down-dip from the injection point.

3. Permeable fault located up-dip from the injection well, in x > 0

In this section, we consider the case in which the up-dip fault is permeable, and all
fluid displaced by the injected fluid escapes through this fault. The total flux up-dip
from the injection point is then QI , while the net flux in the down-dip half-space is
zero. Therefore, for an incompressible flow, by conservation of mass, in the region
up-dip from the source x > 0,

QI = (H − h)u1 + hu2, (3.1)

while in the region x < 0,

(H − h)u1 + hu2 = 0. (3.2)
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On the flow of buoyant fluid injected into a confined, inclined aquifer 113

Finally, conservation of mass for the in situ fluid gives

φ
∂h

∂t
= − ∂

∂x
(hu2), (3.3)

where φ is the porosity of the layer, presumed constant in space and time. By
combining these equations and introducing the scalings

τ = t/ts =
�ρgk sin θ

µ1φH
t, ξ =

x

H
, ĥ =

h

H
, (3.4)

and the dimensionless parameters

V =
µ1

µ2

, Λ =
QIµ1

�ρgkH sin θ
, (3.5)

one finds that the current depth is given by the relation

∂ĥ

∂τ
= V

∂

∂ξ

⎛
⎜⎜⎜⎝

ĥ(1 − ĥ)

(
1 + cot θ

∂ĥ

∂ξ

)
− Λĥ

1 − ĥ(1 − V )

⎞
⎟⎟⎟⎠ (3.6)

for the region x > 0, and by

∂ĥ

∂τ
= V

∂

∂ξ

⎛
⎜⎜⎜⎝

ĥ(1 − ĥ)

(
1 + cot θ

∂ĥ

∂ξ

)
1 − ĥ(1 − V )

⎞
⎟⎟⎟⎠ (3.7)

for x < 0.
The choice of scalings (3.4) has the advantage that φΛ is the flux of the non-

dimensionalised system:

φΛ = QI

ts

H 2
. (3.8)

This allows us to interpret Λ as a proxy for the injection flux QI . The other
dimensionless parameter V is the ratio of the viscosity of the injected fluid to that of
the in situ fluid (the inverse of the mobility ratio).

The parameter Λ may alternatively be interpreted as a densimetric Froude number,
being the ratio of the speed associated with the injection flux QI/H to the x -
component of the velocity associated with the buoyant slumping of the injected
fluid, �ρgk sin θ/µ1. However, it should be noted that if a change in the value of Λ is
considered to arise from a change in a dimensional parameter other than QI , there will
be an associated change in the scaling of t . Thus, a direct comparison between results
for different values of Λ is only informative if the different values of Λ are considered
to be associated with different injection fluxes QI for an otherwise identical system.

Expanding (3.6) and (3.7), we obtain a pair of nonlinear advection–diffusion
equations:

∂ĥ

∂τ
+ f±(ĥ)

∂ĥ

∂ξ
− V cot θ

∂

∂ξ

(
ĥ(1 − ĥ)

1 − ĥ(1 − V )

∂ĥ

∂ξ

)
= 0, (3.9)
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114 I. Gunn and A. W. Woods

where

f+(ĥ) = −V

(
(1 − V )ĥ2 − 2ĥ + 1 − Λ

(1 − ĥ(1 − V ))2

)
(3.10)

describes the advective behaviour for ξ > 0, and

f−(ĥ) = −V

(
(1 − V )ĥ2 − 2ĥ + 1

(1 − ĥ(1 − V ))2

)
(3.11)

describes the advective behaviour in ξ < 0.
The advection term f+(ĥ) contains a component (Λ in the numerator of (3.10))

corresponding to flow driven by injection, and another component (the other terms
in the numerator of (3.10)) corresponding to flow driven by the up-dip (x -axis)
component of gravity. It is the advective term due to injection that distinguishes
the governing equation for ξ > 0 from that for ξ < 0: the advection term f−(ĥ) has
an identical gravitational term to that in (3.10), but lacks the component due to
injection, as there is no net flux in ξ < 0. The diffusion term in (3.9) corresponds to
buoyant spreading of the injected fluid against the upper boundary, driven by the
z-axis component of the gravitational force, and this is the same in ξ > 0 as in ξ < 0.

We can gain some insight into the expected behaviours of this system at long times
by neglecting the diffusion term in (3.9), and considering the characteristics of the
advection equations

∂ĥ

∂τ
+ f±(ĥ)

∂ĥ

∂ξ
= 0. (3.12)

The predictions made using this method will be compared with numerical integrations
of the full governing equations (3.6) and (3.7) in § 3.1. Note, though, that at early
times when cot θ(∂ĥ/∂ξ ) > 1, the force due to the z-component of buoyancy is large
compared with the other driving forces, and the flow will be controlled by the diffusive
term, not by advection (cf. Huppert & Woods 1995).

Equations (3.12) have characteristic lines

ξ = f±(ĥ0)τ. (3.13)

Consider first the characteristics for the ξ < 0 half-space. Note that f−(ĥ) is negative
for ĥ < [1/(1 +

√
V )], so one might conjecture that a shock arises propagating into

the down-dip half-space. However, the total flux associated with this shock is

flux = −φ

∫ 1

ĥbase

f−(ĥ) dĥ = −φV
ĥbase(1 − ĥbase)

1 − ĥbase(1 − V )
, (3.14)

which is zero for ĥbase =0 and negative for any higher value of ĥbase , where the shock
extends between ĥbase and 1. Therefore, the shock has zero or negative flux associated
with it, and therefore no such shock propagates. Instead, we expect that there is no
flux of injected fluid into the down-dip half-space, after the initial transient behaviour
associated with the ∂ĥ/∂ξ term in (3.7), which establishes a static equilibrium in ξ < 0,
given by the steady state solution of (3.7),

dĥ

dξ
= − tan θ. (3.15)

This equation describes a horizontal interface, as one would expect for a buoyant
fluid overlying a denser fluid in a region of zero flow.
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On the flow of buoyant fluid injected into a confined, inclined aquifer 115

Consider now the characteristics for the ξ > 0 half-space. Note that f+(ĥ) is positive

for sufficiently large values of ĥ, so characteristics for these values of ĥ will tend to
propagate up-dip. The gradient of f+(ĥ) is

f ′
+(ĥ) = 2V

(
Λ(1 − V ) + V

(1 − ĥ(1 − V ))3

)
. (3.16)

This is always positive if V < 1 or if Λ < [V/(V − 1)]. Therefore, if V < 1, or if V > 1
and Λ is sufficiently small, characteristics associated with higher values of ĥ will tend
to propagate up-dip faster than those with lower values of ĥ. For these cases, we may
therefore expect a smooth front stretching into ξ > 0 with lateral extent in proportion
to τ . Indeed, there is a closed-form similarity solution as a function of the variable
η = ξ/τ :

ĥ =
1

1 − V

⎛
⎜⎝1 −

√√√√1 − η − V (Λ − 1)

η +
V

1 − V

⎞
⎟⎠. (3.17)

Equation (3.17) is an exact solution of the advection equation (3.12). The full governing
equation (3.6) will tend to this solution as τ increases and the diffusion term becomes
less important.

There are two possibilities for the range for which (3.17) is valid. If the injection
flux is sufficiently large, then behind the similarity front, the injected fluid floods the
layer from base ĥ = 0 to top ĥ = 1, and (3.17) then describes the front of this current
at all heights 0 < ĥ < 1. On the other hand, if there is insufficient flux of injected fluid
to flood the entire height of the layer, then the current of injected fluid behind the
front will flow only through heights ĥp < ĥ < 1 for some ĥp > 0, and (3.17) will hold

only for those values of ĥ.
Now, the flux associated with all the characteristic curves for ξ > 0 above a given

height ĥp is given by

flux = φ

∫ 1

ĥp

f+(ĥ) dĥ. (3.18)

By setting this flux equal to the total flux of injected fluid, φΛ, we can determine the
depth 1 − ĥp taken by the current when the initial transient behaviour has concluded
and all injected flux flows into ξ > 0. Setting the flux equal to φΛ in (3.18) gives the
condition

ĥp(1 − ĥp) − Λĥp = 0, (3.19)

and therefore either ĥp =1 − Λ or ĥp = 0. Hence, we expect that for slow injection
rates Λ < 1, the injected fluid flows into the region ξ > 0 only above the height

ĥp = 1 − Λ. (3.20)

There is then a region behind the similarity front in which the injected fluid flows
as a current of constant depth 1 − ĥp = Λ parallel to the base of the layer, and the

nose of this current is described by (3.17) for ĥp < ĥ < 1. On the other hand, if Λ > 1,
we expect the injected fluid to flow into the region ξ > 0 at all heights from 0 to 1,
completely flooding the layer. Equation (3.17) is then valid for all heights 0 < ĥ < 1.
In either of these two cases for which (3.17) describes the front of the current, the
location of the leading edge of the current can be calculated by substituting ĥ =1
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Layer does not flood
Similarity front
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Similarity front
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Sharp front
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Figure 3. Above Λ= 1, the injected fluid floods the layer to its base. If the injected fluid is
more viscous than the in situ fluid, then above Λ= V/(V − 1) a sharp front forms. Values of
V relevant to CO2 sequestration scenarios are approximately 0.05–0.25.

into (3.17), giving

ηfront = 1 +
Λ

V
. (3.21)

This speed is the speed of the characteristic associated with ĥ = 1, i.e. f+(1).
Consider now the case in which

V > 1 and Λ >
V

V − 1
, (3.22)

for which (3.17) is not a solution. In this case, (3.16) gives a negative value for f ′
+(ĥ),

so characteristics associated with smaller values of ĥ will tend to propagate up-dip
faster than characteristics associated with higher values of ĥ, and we would expect
a shock front to form. Note, though, that the diffusion term in (3.9) which we have
been neglecting would tend to smooth out the shock front somewhat; indeed, (3.9)
admits a solution in the form of a steady travelling wave ĥ ≡ ĥ(ζ+ ≡ ξ − Λτ ) with
constant gradient

dĥ

dζ+

=

(
Λ − Λ

V
− 1

)
tan θ, (3.23)

which is finite. Note that in this regime (3.22), since Λ > 1, the flux of the injected fluid
floods the layer, flowing at all heights. Therefore, at long times, volume conservation
gives the asymptotic location of the front in the similarity coordinate as

ηshock = Λ, (3.24)

cf. (3.21). The possible behaviours of the system as a function of the controlling
parameters Λ and V are illustrated in the regime diagram figure 3.

The equation for the leading edge of the front (3.21) gives us insight into the
dependence of the flow on the parameters Λ, V even within a given regime. For an
injected fluid of smaller viscosity, corresponding to a smaller value of V , we expect
the current to spread more rapidly along the upper boundary of the domain. The
current depth at the source will have the same value (1 − ĥp = Λ if we are in the
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Λ < 1 regime), but the current will thin more rapidly for the case with the smaller
value of V , so that total volume is conserved. In contrast, for a larger value of Λ,
the current is deeper at the source and the nose advances more quickly – the current
becomes both deeper and longer, because more fluid is being injected.

This result could have important implications for the fraction of the injected fluid
which may ultimately be trapped by capillary retention in a layer once the injection
has terminated, with less fluid being retained by capillary effects for a thinner current
(cf. Hesse et al. 2008; Farcas & Woods 2009). Deeper sites for storage will have higher
density and viscosity of CO2, corresponding to higher values of Λ and V , and so
these results suggest that plumes in such sites will form thicker currents with more
CO2 trapping, and which will take longer to break through to the leaking fault.

3.1. Numerical calculations

Our analytical predictions have been checked by numerical integration of the
governing equations (3.6) and (3.7). The equations were integrated using a Crank–
Nicolson scheme (Press et al. 1992), with the boundary condition at the injection well
ξ = 0 being that the depth of the current is continuous,

h(0+) = h(0−). (3.25)

Initially, the inflow is partitioned equally between the up-dip (ξ > 0) and down-dip
(ξ < 0) half-spaces, as suggested by the limit of (3.6) and (3.7) at t = 0 and near the
injection point ξ = 0. Subsequently, the partitioning of the injected flux between the
up-dip and down-dip domains evolves in order to ensure that (3.25) is satisfied.

At each time step, a partitioning of QI into Qup-dip and Qdown-dip is postulated.

A value for ĥ(0) is then calculated from the partitioning as follows. For the up-dip
half-space, we combine

Qup-dip = (H − h(0))u1(0) (3.26)

and

QI − Qup-dip = h(0)u2(0) (3.27)

with (2.3) and (2.4) to give a boundary value for ∂ĥ/∂ξ as a function of the postulated
values of ĥ(0) and Qup-dip . An equivalent condition is made for the down-dip half-
space. An iterative relaxation method is used in each half-space to find a pair of
values for ĥ(0) and ∂ĥ/∂ξ for the next time step which satisfy (2.3), (2.4), (3.26) and
(3.27) or the equivalent for the down-dip half-space. If the values of ĥ(0) obtained
by this process for each half-space agree within an error, this solution is taken as
the solution for the next time step; if not, then a new partitioning is postulated by
interval bisection and the process is repeated.

In this calculation, it is possible that points near the nose or base of the front
overshoot ĥ = 1 or ĥ = 0, taking values ĥ > 1 or ĥ < 0. Therefore, after the solution
for each new time step is calculated, we set the value of ĥ to 1 or 0 respectively
wherever it has taken a value greater than 1 or less than 0. This is the only special
treatment given to the points ĥ = 0 and ĥ = 1; as expected from (3.23) and (4.23), we
find in the numerics that the gradient of ĥ does not become infinite at these points.
We have tested our numerical results for robustness, finding that halving the space
and time steps gives the same result, and in particular we have sufficient resolution
to fully resolve the adjustment of the flow to zero depth at the nose.

Note that it is only through the boundary condition at the origin that the
partitioning of the injected flux has an effect on the solution. The governing equations
(3.6) and (3.7) have no dependence on the partitioning of the flux.
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Figure 4. Evolution of an example current. In (a), we show variation of the current depth ĥ
as a function of the position ξ at times τ = 25, 100, 200, 400 and 600. Parameter values used
are Λ= 0.5, V = 0.2 and θ = 9◦. Note the horizontal and vertical axes are of different scales.
In (b), we show, as a function of the non-dimensionalised time τ , the fraction of the injected
flux running upslope R (solid line) and the thickness of the current at the point of injection,

1 − ĥ(0) (dotted line marked with X at times corresponding to the first three profiles of a).
(c) A detailed view of (a) in the region near the injection well, showing the adjustment to the
steady-state horizontal interface in ξ < 0 and base-parallel interface in ξ > 0. Note that in (c),
the profiles for times τ = 200 and onwards are indistinguishable – the steady state has been
reached to within the limits of numerical accuracy. (d ) The profiles are shown as a function of
the similarity variable η, with the solution (3.17) for comparison. Convergence to the similarity
solution is rapid in the region towards the nose of the current, but slower towards the source.
The development of the parallel-flow region behind the similarity front can be seen.

We now provide illustrative figures showing the numerical prediction of the
evolution of an example current for each of the three regimes illustrated in figure 3.
Our first example, figure 4, illustrates the case of slow injection, Λ < 1. Figure 4(a)
shows the evolution of the depth of the current ĥ as a function of position along the
layer for the case Λ = 0.5, V = 0.2. As the current deepens, it also spreads both up-dip
and down-dip. However, although the aspect ratio of the numerical plot is distorted
(the horizontal scale is much greater than the vertical scale), we find that down-dip of
the source, the interface becomes progressively more horizontal (see (3.15)). Figure 4(b)
shows how the source flux is partitioned between the up-dip and down-dip components
of the flow. The fraction of the flow which runs up-dip increases rapidly until all
the flow runs up-dip, and the down-dip part of the current reaches an equilibrium
shape. Eventually, the flow reaches the maximum depth 1 − ĥp =Λ at the source, and
subsequently all the flow runs up-dip. The current then develops a growing region of
constant depth up-dip from the source, with an adjustment zone to the leading edge
of the current at ĥ =1.
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Figure 5. Evolution of the flow for the case Λ= 10, V =0.2. Here ĥ is plotted as a function
of ξ (a) and the similarity variable η (b), for the times τ = 25, 100 and 200. In (a), like figure
4(a), it is illustrated that down-dip of the point of injection, the injected fluid rapidly forms
a stationary interface with the original fluid. The line in the region ξ < 0 corresponds to the
horizontal interface on the down-dip side of the current. In (b), like figure 4(d ), the convergence
to the similarity solution (3.17) in ξ > 0 is illustrated.
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Figure 6. Evolution of the flow for the case Λ= 10, V = 1.25. Here ĥ is plotted as a function
of ξ (a) and the similarity variable η (b), for the times τ = 25, 100 and 200, as for figure 5.
In (a, b), we show the advancing front of constant gradient and the location of the front at
η = Λ, respectively.

It now remains to provide illustrative numerical examples of the two types of
current which may occur for fast injection rates, Λ > 1. When Λ > 1, the current
deepens until it eventually makes contact with the lower boundary of the domain.
Figure 5 illustrates the development of the current for the case Λ = 10, V = 0.2. In
figure 5(a), it may be seen that up-dip from the injection point, the front of the current
spreads and advances towards the permeable fracture; down-dip from the injection
point, the interface between the fluids becomes horizontal (3.15). In figure 5(b), we
have re-plotted these numerical solutions as a function of the variable η = ξ/τ , and,
as seen in figure 4(d ) for the case Λ < 1, the numerical solution converges to the
fixed profile (3.17), which now intersects both the upper and lower boundaries of the
aquifer. Note that when Λ > 1, the position of the nose of the current is still given by
(3.21), provided either V < 1 or Λ < [V /(V − 1)].

For completeness, we conclude this section by showing a case where V > 1 and
Λ > [V /(V − 1)], and the flow is therefore viscosity-stabilised and piston-like, with a
shock forming in the advection equation (3.12). Figure 6 shows the evolution of the
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current for the case Λ =10, V = 1.25. It should be noted that flows with V > 1 are
not applicable to CO2 sequestration scenarios.

4. Permeable fault located down-dip from the injection well, in x < 0

We now consider the complementary case in which all outflow from the layer
occurs through a fault zone down-dip from the point of injection. In this case, it
becomes possible for the flow to spread both up-dip, driven by the buoyancy forces,
and down-dip towards the outflow fracture, driven by the applied pressure gradient
from the injection well. The flow may be described using the same model as in § 3,
but now the mass conservation equations become (cf. (3.1) and (3.2)):

(H − h)u1 + hu2 = 0, x > 0, (4.1)

(H − h)u1 + hu2 = −QI, x < 0. (4.2)

This results in the governing equations

∂ĥ

∂τ
= V

∂

∂ξ

⎛
⎜⎜⎜⎝

ĥ(1 − ĥ)

(
1 + cot θ

∂ĥ

∂ξ

)
1 − ĥ(1 − V )

⎞
⎟⎟⎟⎠ (4.3)

in ξ > 0, and

∂ĥ

∂τ
= V

∂

∂ξ

⎛
⎜⎜⎜⎝

(1 − ĥ)ĥ

(
1 + cot θ

∂ĥ

∂ξ

)
+ Λĥ

1 − ĥ(1 − V )

⎞
⎟⎟⎟⎠ (4.4)

in ξ < 0, where the same scalings have been used as in § 3 (see (3.4) and (3.5)). Note
that (4.3) is identical to (3.7), and (4.4) is equivalent to (3.6) with the transformation
Λ → −Λ. Again, as in § 3, by expanding these equations we can express the model as
a pair of nonlinear advection–diffusion equations:

∂ĥ

∂τ
+ g±(ĥ)

∂ĥ

∂ξ
− V cot θ

∂

∂ξ

(
ĥ(1 − ĥ)

1 − ĥ(1 − V )

∂ĥ

∂ξ

)
= 0, (4.5)

where

g+(ĥ) = −V

(
(1 − V )ĥ2 − 2ĥ + 1

(1 − ĥ(1 − V ))2

)
(4.6)

describes the advective behaviour in ξ > 0, and

g−(ĥ) = −V

(
(1 − V )ĥ2 − 2ĥ + 1 + Λ

(1 − ĥ(1 − V ))2

)
(4.7)

describes the advective behaviour in ξ < 0. As in § 3, we neglect the diffusion terms
and attempt to gain insight into the system by considering the characteristics of the
advection equations

∂ĥ

∂τ
+ g±(ĥ)

∂ĥ

∂ξ
= 0. (4.8)
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As before, predictions made using this method will be compared with numerical
integrations of the full governing equations (in this case (4.3) and (4.4)).

Equations (4.8) have characteristic lines

ξ = g±(ĥ0)τ. (4.9)

Let us consider first the characteristics for the ξ > 0 half-space. Note that g+(ĥ) is
positive for h > [1/(1 +

√
V )], and

g′
+(ĥ) =

2V 2

(1 − ĥ(1 − V ))3
(4.10)

is positive always. Therefore, characteristics associated with higher values of ĥ are
swept up-dip faster than those associated with lower values of ĥ, and we expect a
smooth front stretching up-dip in proportion to τ . In contrast with the case in § 3,
we do not expect to find a shock front for the up-dip flowing current, even if V > 1.
Following § 3, we note that the nose of the flow ahead of the parallel flow region is
described by a similarity solution (equivalent to (3.17)), with the form

ĥ =
1

1 − V

⎛
⎜⎝1 −

√√√√1 − η + V

η +
V

1 − V

⎞
⎟⎠. (4.11)

There are two possibilities for the range for which (4.11) is valid. If the injection
flux is above a critical value, defined to be φΛC , then injectate flows into ξ > 0 at
all heights [1/(1 +

√
V )] < ĥ < 1, and (4.11) then describes the flow everywhere from

the origin ξ = 0 to the nose of the flow ĥ = 1. However, if the injection flux is not
sufficiently large, φΛ <φΛC , then injectate flows into ξ > 0 only above some height
ĥp+ > [1/(1 +

√
V )], and (4.11) then describes the flow only at the front of a current

of constant depth 1 − ĥp+. In contrast with the case for § 3, it is not possible for the

injected fluid to flood the layer and flow at all heights 0< ĥ < 1, because g+(ĥ) is

negative for ĥ < [1/(1 +
√

V )].
The flux associated with all up-dip propagating characteristics above height ĥp+ is

given by

flux = φ

∫ 1

ĥp+

g+(ĥ) dĥ. (4.12)

If all injected flux φΛ flows up-dip, then by setting flux= φΛ in this equation, we
obtain the implicit expression for ĥp+,

Λ =
V ĥp+(1 − ĥp+)

1 − ĥp+(1 − V )
, (4.13)

with explicit solution

ĥp+ =
1

2

⎛
⎝1 − Λ

V
(V − 1) +

√(
Λ

V
(V − 1) − 1

)2

− 4
Λ

V

⎞
⎠. (4.14)

By equating (4.14) and (4.11), we can calculate the location η = ηS , at which the zone
of uniform depth merges into the similarity solution associated with the nose region
(i.e. the point where ĥ(η) = ĥp+), and calculate the critical value Λ =ΛC associated
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with ηS =0:

ΛC =
V

(1 +
√

V )2
. (4.15)

The solution (4.11) identifies that the leading edge of the flow in ξ > 0, ĥ = 1, is
located at

ηfront = 1, (4.16)

which is independent of both Λ and V , in contrast with the case in the previous
section (3.21). Equation (4.16) is valid for all positive Λ and V .

In the case Λ =ΛC , the solution for the up-dip flow follows the similarity solution
(4.11) everywhere in η > 0. If Λ > ΛC , the remaining fraction of the flow with flux
φ(Λ − ΛC) must flow into ξ < 0 and advance down-dip towards the outflow; we now
consider this case. First, note that if the injected fluid is flowing into ξ > 0, then
it cannot flow into ξ < 0 at all heights 0< ĥ < 1, because the in situ fluid which is
displaced by the injected fluid in ξ > 0 also flows into the region ξ < 0. We therefore
expect to find a current of constant depth 1 − ĥp− < 1 in ξ < 0, with either a smooth
decrease to zero depth at the nose or a shock front.

If the flux of injectate migrating into the region ξ < 0 is φ(Λ − ΛC), then the height
of the parallel constant-depth flow in ξ < 0 associated with that flux may be calculated
as

Λ − ΛC = −
∫ 1

ĥp−

g−(ĥ) dĥ. (4.17)

This gives the implicit expression

ΛC

V
=

ĥp−(1 − ĥp−) + Λĥp−

1 − ĥp−(1 − V )
, (4.18)

which has explicit solution

ĥp− =
1

2

⎛
⎝Λ + 1 +

1 − V

(1 +
√

V )2
−

√(
Λ + 1 +

1 − V

(1 +
√

V )2

)2

− 4

(1 +
√

V )2

⎞
⎠. (4.19)

Figure 7 shows the variation of the depth of ĥp− as a function of the viscosity ratio
V for several values of Λ. As the viscosity of the injected fluid increases, the depth of
the current of injected fluid migrating down-dip increases.

Let us now consider the front of the down-dip current. Note that

g′
−(ĥ) = −V

(
Λ(1 − V ) − V

(1 − ĥ(1 − V ))3

)
, (4.20)

and therefore for V < 1, g′
−(ĥ) is always negative if

Λ >
V

1 − V
= ΛN, (4.21)

and always positive otherwise. Therefore, we expect a smooth similarity front in the
down-dip direction if Λ > ΛN , and a shock front otherwise. In fact, the advection
equation for ξ < 0 admits a closed-form similarity solution in terms of the similarity
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Figure 7. Depth 1 − ĥp− of the parallel-flow part of the current down-dip of the point of
injection as a function of V for the cases Λ= 0.06, 0.1, 0.14, 0.18, 0.22 and 0.26. Smaller values
of Λ correspond to smaller depths. If Λ> 0.25 then Λ > ΛC for all V in 0 < V < 1, but the
curves for smaller values of Λ terminate at the dashed line, indicating the depth associated
with ΛC(V ).

variable η = ξ/τ , given by

ĥ =
1

1 − V

⎛
⎜⎝1 −

√√√√1 − η + V (1 + Λ)

η +
V

1 − V

⎞
⎟⎠. (4.22)

Requiring the solution to satisfy (∂ĥ/∂ξ ) < 0, to describe the leading edge of the
down-dip flow, leads to the recovery of the condition (4.21) for V < 1.

For the case ΛC <Λ<ΛN , where the advection equation has a shock solution, the
full equation (4.4) has a steady-wave solution of the form ĥ ≡ ĥ(ζ− ≡ ξ + Λτ ) with
constant gradient

dĥ

dζ−
=

(
Λ

V
− Λ − 1

)
tan θ, (4.23)

which is finite. The possible behaviours of the system as determined by the controlling
parameters Λ and V are illustrated in figure 8.

The model implies that injection of a low viscosity, buoyant fluid can produce a
viscous fingering-type front in the down-dip direction (against buoyancy) if the injected
fluid is injected sufficiently rapidly or has sufficiently small viscosity compared with
the original formation fluid. The existence of the intermediate regime in which the
descending front of the injected fluid is a sharp shock front (as in figure 10), which
develops for small viscosity contrast or slow injection, is reminiscent of the buoyancy-
controlled stabilisation of a descending front of buoyant but less viscous fluid when
it moves with sufficiently low interface speed (see e.g. Phillips 1991, p. 163).

4.1. Numerical calculations

We have presented analytical calculations which predict three regimes for flow in the
case of a down-dip leaking fault. These regimes, and the values of the controlling
parameters giving rise to them, are illustrated in figure 8. For small values of Λ,
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Figure 8. Maximum value of Λ for which all injected fluid flows up-dip ΛC and the value of
Λ above which a similarity front forms down-dip, ΛN .

Λ < ΛC , the injected fluid all tends to flow up-dip, the buoyancy effect being dominant.
Behind the similarity front in ξ > 0, the injected fluid flows as a current of constant
depth. For intermediate values of Λ, ΛC < Λ < ΛN , some injected fluid flows up-dip
and some down-dip, with a sharp interface at the leading edge of the down-dip flow.
Behind this sharp interface in ξ < 0, the injected fluid flows as a current of constant
depth. For large values of Λ, Λ > ΛN , injected fluid flows up-dip and down-dip, with
a smooth adjustment of the current depth to zero at the advancing front of both
currents. Behind the similarity solution in ξ < 0, the injected fluid flows as a current
of constant depth. We will now provide illustrative figures showing the numerical
evolution of an example current for each of these three regimes.

In the case of slow injection, although at early times the injected fluid spreads both
up-dip and down-dip, it asymptotes to a flow in which all injected fluid migrates
up-dip while a steady current profile develops in ξ < 0, given by the static solution of
(4.4) with ∂ĥ/∂τ = 0. All flow down-dip then consists of the original formation fluid.
In the region near the injection well, up-dip from the source, the flow has a region of
constant depth, where the base of the current is parallel to the base of the layer, and
the flow depth then adjusts to zero in a nose region ahead of this. Figure 9 shows the
evolution of an example current in this regime.

If Λ > ΛC , then more fluid is injected into the layer than can flow up-dip under
buoyancy. The flow in ξ > 0 is everywhere described by the similarity solution (4.11)
and the position of the nose of the flow in ξ > 0 is given by (4.16); there is no
parallel-flow region in ξ > 0. The excess flux φ(Λ − ΛC) flows down-dip, in a layer of
constant depth. The evolution of an example current for the regime ΛC <Λ<ΛN is
shown in figure 10. The up-dip similarity solution is well established by time τ = 250,
although the down-dip current is still some way from establishing the constant-depth
zone by that time.

The evolution of an example current in the regime Λ > ΛN is illustrated in figure 11.
Further numerical calculations show that the depths of the parallel-flow regions of
the three regimes agree very well with the analytical predictions (4.14) and (4.19).
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Figure 9. Evolution of the flow for the case Λ= 0.075, V = 0.2. Here ĥ is plotted as a function
of ξ (a) and the similarity variable η (b), for the times τ = 12.5, 25, 37.5, 50, 75, 100, 150, 200
and 250. In (a), it is illustrated that down-dip of the point of injection, the injected fluid rapidly
forms a stationary interface with the original fluid. In (b), the convergence to the similarity
solution (4.11) of the leading edge of the up-dip current is shown, with a parallel-flow region
behind the front.
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Figure 10. Evolution of the flow for the case Λ= 0.2, V = 0.2. Here ĥ is plotted as a function
of ξ (a) and the similarity variable η (b), for the times τ = 12.5, 25, 37.5, 50, 75, 100, 150, 200
and 250. In (b), we illustrate the convergence to the similarity solution (4.11) in x > 0.

5. Discussion and application
We have analysed the motion of a maintained release of buoyant fluid as it spreads

through a confined aquifer, noting that we have made a number of simplifying
assumptions (in particular, we neglect compressibility). The modelling has identified
some of the key controls on the motion of the current, including the roles of buoyancy,
of the mobility ratio and of the rate of injection, an increase in any of which tends
to accelerate the migration of the fluid along the layer. Depending on the location
of the leaking fault, and on the values of the dimensionless controlling parameters
Λ and V , the system will exhibit one of the six possible flow regimes illustrated in
figure 12.

The analysis presented in this paper is important for describing currents for which
Λ < 10; for values Λ � 10, the ratio of injection speed to the x -component of
buoyancy is large, and the effects of slope are negligible, though fingering may
still occur. Using the definition of Λ (3.5), one can easily calculate whether Λ < 10
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Figure 11. Evolution of the flow for the case Λ= 0.5, V = 0.2. Here ĥ is plotted as a function
of ξ (a) and the similarity variable η (b), for the times τ = 12.5, 25, 37.5, 50, 75, 100, 150, 200
and 250. Profiles from earlier times are closer to the origin in (a), and may be distinguished as
being less deep in −0.5 <η < 0 in (b), as convergence to parallel flow is slower than convergence
to the similarity fronts. In (b), the convergence to the similarity solution (4.11) in x > 0 and
the similarity solution (4.22) in x < 0 is shown.

(i)

(iii)

(ii)

(iv)

(v)

(vi)

Figure 12. Possible flow regimes. Cases (i)–(iii) correspond to an injection well down-dip from
the permeable fault, and the values of the controlling parameters for which each of these cases
arises are illustrated in figure 3. Cases (iv)–(vi) correspond to an injection well up-dip from the
permeable fault, and the values of the controlling parameters for which each of these cases
arises are illustrated in figure 8. Cases (i) and (iv) correspond to lower injection rates and
cases (ii), (iii), (vi) correspond to higher injection rates. Case (v) corresponds to an injection
rate intermediate between that of case (iv) and case (vi). Case (iii) can occur only if the injected
fluid is more viscous than the in situ fluid.

for a given layer. Let us consider what range of values of Λ may be physical: if
the total injected flux, through a horizontal injection well 103 m long, is between
10−2 and 10−1 m3 s−1 (IPCC 2005), an effective 2D injection flux of 10−5–10−4 m2 s−1

would develop. Taking viscosity to be ∼10−4 Pa s, permeability to be between 10−12 m2

(as in the case of the Sleipner field, Bickle et al. 2007) and 10−14 m2 (as in the case of
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the In Salah reservoir, Cavanagh & Ringrose 2010), �ρ of the order of 102 kg m−3,
g = 10 m s−2, 10 m< H < 100 m and 0.01 < sin θ < 0.1, we find that Λ may take
values from 0.1 to 104, with the lower limit corresponding to high-permeability deep
aquifers with a long horizontal well.

The case in which the permeable fault is down-dip from the injection point is
particularly interesting. With low injection rates, injected CO2 will initially flow up-
dip, and may (after the current has reached the non-permeable up-dip fault) flood
the layer up-dip. As a result, there may be a large spatial decorrelation between
the location of the leak and the locations initially flooded by CO2. Any tracers
injected to monitor the flow may also initially spread a great distance from both the
injection point and the leaking fault. The geometry of the system may have important
implications for the total volume of the layer which it is possible to flood with CO2,
and hence the volume of water in the layer which is available for dissolution of the
CO2 (Bachu & Adams 2003), and also the mass of CO2 which may be trapped in the
layer as residual CO2 following the injection phase (Juanes et al. 2006; Hesse et al.
2008).

Although the modelling in this paper is simplified, it has the benefit of producing
analytical results with which the sensitivity of the flow to different parameters may
be tested. A key result is our prediction of the location of the advancing nose of
the current as a function of time. For the case of an up-dip permeable fault, putting
(3.21) in dimensional terms, this is given by

x =

(
�ρgk sin θ

φµ1

+
µ2

µ1

QI

φH

)
t =

�ρgk sin θ

φµ1

(
1 +

Λ

V

)
t, (5.1)

where Λ = QIµ1/�ρgkH sin θ and V = µ1/µ2, as defined in § 3. In contrast, in the
case of a down-dip permeable fault, the position of the up-dip leading edge is, from
(4.16),

x =
�ρgk sin θ

φµ1

t, (5.2)

and if Λ > ΛC there is also a down-dip flow. These predictions are valid for times
t � (µ1φH/�ρgk sin θ ).

We infer that, owing to the influence of the mobility ratio 1/V = µ2/µ1, in the case of
an up-dip leaking fault, the up-dip leading edge may advance considerably faster than
in the case of a down-dip leaking fault. Figure 13 compares the speeds and distances
travelled for example cases. The rates of advance of the leading edges are plotted in
figure 13(a) as a function of permeability k for (i) the case of a down-dip leaking
fault and (ii)–(iv) three example cases with an up-dip leaking fault. Figure 13(a)
shows that for a given permeability, the flow runs up-dip more rapidly in the case of
an up-dip leaking fault, as can be seen from (5.1) and (5.2). However, points A and B
on the figure, which correspond to currents with the same up-dip speed, illustrate the
potential challenge of interpreting measurements of the location of the nose of the
flow, such as may be obtained, for example, from a seismic survey which is able to
detect changes in the fluid within the rock (see e.g. Bickle et al. 2007). In particular,
if a current is running up-dip with a given speed, the positions of points A and B on
their respective curves show how this may be interpreted as either a low-permeability
formation with an up-dip leaking fault, or a higher permeability formation with a
down-dip leaking fault. As the speed of the nose increases, the difference between the
permeabilities associated with these two interpretations decreases.
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Figure 13. For four example cases: (a) shows the rate of advance of the up-dip front of the
current as a function of permeability. For the same four cases, (b) shows the position of the
nose of the up-dip current as a function of time, for the permeability k = 1 × 10−13 m2. The
four cases are: (i) a leaking down-dip fault; then the cases of a leaking up-dip fault for values
(ii) Q =10−6 m2 s−1, H = 100 m; (iii) Q = 10−6 m2 s−1, H = 10 m; and (iv) Q = 10−5 m2 s−1,
H =10 m. Parameter values used are µ1 = 2 × 10−5 Pa s, µ2 = 9 × 10−4 Pa s, �ρ = 250 kg m−3,
g = 9.81 m s−2, sin θ = 0.2, φ = 0.2.

More generally, the results of the present paper illustrate the potentially significant
implications of the flux conditions at the lateral boundaries in controlling the evolution
of porous flows.

Several simplifications merit further attention in subsequent studies. For example,
the model could be extended to account for compressibility of the fluids, as the effects
of compressibility may become progressively more important for systems in which the
distance between the injection well and the far-field fault is increasingly very large.
Other extensions could be to consider some of the three-dimensional dynamics and
also some of the two-phase flow effects associated with the immiscibility of water and
CO2 (Pruess et al. 2003; Hesse et al. 2008), heterogeneity of the rock and dissolution
of CO2 in the formation water and other possible reactive effects (cf. Bear 1988;
Pruess et al. 2003; Nordbotten & Celia 2006).

Our research was supported by NERC and by BP plc. through the BP Institute.
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