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The jet wiping process is a cost-effective coating technique that uses impinging gas jets
to control the thickness of a liquid layer dragged along a moving strip. This process
is fundamental in various coating industries (mainly in hot-dip galvanizing) and is
characterized by an unstable interaction between the gas jet and the liquid film that
results in wavy final coating films. To understand the dynamics of the wave formation,
we extend classic laminar boundary layer models for falling films to the jet wiping
problem, including the self-similar integral boundary layer and the weighted integral
boundary layer models. Moreover, we propose a transition and turbulence model to
explore modelling extensions to larger Reynolds numbers and to analyse the impact
of the modelling strategy on the liquid film dynamics. The validity of the long-wave
formulation was first analysed on a simpler problem, consisting of a liquid film falling
over an upward-moving wall, using volume of fluid simulations. This validation proved the
robustness of the integral formulation in conditions that are well outside their theoretical
limits of validity. Finally, the three models were used to study the response of the liquid
coat to harmonic and non-harmonic oscillations and pulsations in the impinging jet.
The impact of these disturbances on the average coating thickness and wave amplitude
is analysed, and the range of dimensionless frequencies yielding maximum disturbance
amplification is presented.
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1. Introduction

Integral boundary layer models for falling liquid films have been extensively used to study
flow configurations that are encountered in many coating, chemical, heat and mass transfer
processes. These models, also referred to as low-dimensional models, reduce the number
of variables governing the problem by eliminating the velocity and pressure fields from
the full set of Navier–Stokes equations, thus describing the dynamics of the liquid film as
a function of thickness and flow rate. From the pioneering two-dimensional formulations
proposed by Kapitza (1948a,b), Shkadov (1971) and extended by Ruyer-Quil & Manneville
(2000), to the three-dimensional models firstly proposed by Demekhin & Shkadov (1985)
and extended by Scheid, Ruyer-Quil & Manneville (2006), the literature on the topic is
vast and discussed in various monographs (Alekseenko, Nakoryakov & Pokusaev 1994;
Chang & Demekhin 2002; Kalliadasis et al. 2012) and reviews (Chang & Demekhin 1996;
Craster & Matar 2009; Ruyer-Quil et al. 2014).

The capability of low-dimensional models to describe the dynamics of the liquid
interface has been largely demonstrated for the fundamental case of a gravity-driven
isothermal film (Alekseenko, Nakoryakov & Pokusaev 1985; Ruyer-Quil & Manneville
2000, 2002; Scheid et al. 2006), for which many experimental (Liu & Gollub 1994; Liu,
Schneider & Gollub 1995; Alekseenko, Markovich & Shtork 1996; Nosoko et al. 1996;
Tihon et al. 2006; Dietze, Al-Sibai & Kneer 2009; Mendez, Scheid & Buchlin 2017b) and
numerical (Salamon, Armstrong & Brown 1994; Gao, Morley & Dhir 2003; Nosoko &
Miyara 2004; Dietze, Leefken & Kneer 2008; Malamataris & Balakotaiah 2008; Meza
& Balakotaiah 2008; Doro & Aidun 2013; Dietze et al. 2014) investigations have been
carried out. Because of their minor computational cost, if compared with full simulations,
and because of the analytic insights they enable, these models have been largely used in
more complex configurations. These include, among others, liquid films in the presence of
interface shear stress (Frank 2006, 2008; Gatapova & Kabov 2008; Vellingiri et al. 2013;
Samanta 2014; Lavalle et al. 2017), for which the linear stability analysis based on the full
Orr–Sommerfeld equations is presented by Lavalle et al. (2019).

Moreover, despite the restrictive hypotheses in their derivation, low-order formulations
have been successfully validated with experimental and numerical data in operating
conditions that are well outside their theoretical range of validity (Denner et al. 2018).
This has made integral model reliable tools to explore complex phenomena such as the
origin of capillary ripples (Dietze 2016), the onset of circulating waves and flow reversal
in inclined liquid films (Rohlfs & Scheid 2014; Rohlfs, Pischke & Scheid 2017), the
effect of co-flowing turbulent gas on the interface dynamics (Vellingiri et al. 2013) or
the formulation of active feedback flow control methods to suppress interface instabilities
(Thompson, Tseluiko & Papageorgiou 2015; Thompson et al. 2016; Tomlin et al. 2019).

This work extends the classical integral boundary layer models for liquid films to a flow
configuration for which these have never been used: the jet wiping process. This process
consists in using an impinging gas jet to control the thickness of a coating film on a vertical
moving substrate, and it is characterized by an unstable dynamics (Mendez et al. 2017a),
recently investigated experimentally by Gosset, Mendez & Buchlin (2019) and Mendez,
Gosset & Buchlin (2019). In particular, it has been shown that instabilities on the gas
jet can propagate to the impinged liquid and produce a non-uniform coating distribution
referred to as undulation. Although several working hypotheses have been proposed, the
mechanisms through which unsteadiness in the jet propagates to the liquid film are still not
fully understood and are explored in this work.

The modelling of this configuration presents two distinctive features that have not
been considered in the liquid film modelling literature: (1) the upward motion of the
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Dynamics of the jet wiping process via integral models

vertical substrate and (2) the simultaneous presence of time-dependent sources of shear
stress and pressure gradient. Simplified theoretical modelling of the jet wiping have been
proposed by Thornton & Graff (1976), Tuck (1983), Tuck & Vanden-Broeck (1984),
Tu & Ellen (1986), Ellen & Tu (1984), and Buchlin (1997); experimental and numerical
validations have been provided by Lacanette et al. (2006) and Gosset & Buchlin (2007).
These first formulations aimed at describing the mean thickness distribution of the liquid
film under the action of the pressure gradient and the shear stress produced by the jet
impingement, and, thus, at predicting the final coating thickness as a function of all the
operating parameters.

The first works discussing the stability of the problem have been presented by Ellen
& Tu (1983) and Tuck (1983). The first presented a linear stability analysis; the second
discussed the possible evolution of kinematic waves on the liquid coat. Since then, most of
the investigations on the process have been based on high fidelity numerical simulations,
combining large eddy simulation (LES) of the gas jet with volume of fluid (VOF) treatment
of the liquid film (Myrillas et al. 2009, 2013; Eßl et al. 2017; Pfeiler et al. 2017; Aniszewski
et al. 2019). While these simulations can potentially provide a complete picture of the
unstable interaction between the jet and the gas flow, their computational cost remains
prohibitively large for analysing configurations of industrial interest, as discussed by
Aniszewski et al. (2019).

A theoretical analysis of the stability of the process has been proposed by Hocking
et al. (2010), who used a quasi-steady formulation to study the evolution of liquid
film disturbances. Hocking and coworkers concluded that the coating film is neutrally
stable and incapable of producing the undulation patterns observed in the wiping lines
without the presence of disturbances produced by the gas jet. Using the same quasi-steady
formulation, Johnstone et al. (2019) investigated the response of the liquid coat to a set
of possible unsteady behaviour of the impinging jet. The formulation presented in these
works neglects the role of inertia in the liquid film, disregarding the nonlinear contribution
of advection.

In this work the extension of more advanced integral models to the jet wiping process
is used to study the dynamic response of the liquid film to various disturbances on the gas
jet. These include localized perturbation, simulated by pulsation of the wiping actuators,
and various kinds of harmonic and non-harmonic oscillations. The general form of these
models is presented in § 2, while §§ 3 and 4 provide the details of the laminar and
turbulent models. Appendix A provides complementary material for the full derivation
of the models.

Among the laminar models in § 3, this work covers the zero-order (ZO) formulation
of the jet wiping, the extension of the integral boundary layer (IBL) model from
Kapitza–Shkadov (Shkadov 1971; Shkadov & Beloglazkin 2017) and the extension of the
weighted integral boundary layer (WIBL) from Ruyer-Quil and Manneville (Ruyer-Quil &
Manneville 2000, 2002). The proposed transition and turbulence model in § 4 combines
ideas from mixing length formulation (van Driest 1956; King 1966; Geshev 2014) and
shallow water formulations (James et al. 2019; De Vita et al. 2020).

Section 5 reviews the implementation of the wiping actuators in the models. Section 6
presents the numerical methods, including the finite volume (FV) solver implemented
to validate the integral models (in § 6.1) and the direct numerical simulations using
OpenFoam (in § 6.2) that were implemented to set-up simple validation test cases. The
results are presented in § 7, including the numerical validation (§ 7.1), the relative weight
of all the forces governing the process (§ 7.2) and the frequency response of the coating
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Figure 1. Schematic of the jet wiping process: a nozzle with an opening d and a stagnation pressure ΔPN
releases a jet flow at a distance Z from a dip-coated substrate moving at a speed Up. The impingement produces
a wiping meniscus (region WR). This forces a run-back film to flow backward (region RB) and leaves a thinner
liquid film downstream (region FC) before solidification takes place.

film (§ 7.3). Finally, the impact of the modelling strategy on the identified wave formation
mechanisms is discussed in § 7.4. Conclusions and perspectives are presented in § 8.

2. The integral formulation for the jet wiping

The jet wiping process is represented schematically in figure 1. A liquid film is dragged
along a vertical plate moving upward at a constant velocity Up and is impinged upon by
a gas jet. The configuration is assumed two dimensional, with incompressible liquid flow
bounded by the plate at y = 0, and the dynamic liquid interface at y = h(x, t).

The origin x = 0 is located at the nozzle axis, and the streamwise coordinate x is oriented
in the direction of gravity and counter to the substrate velocity. The impinging jet flow
produces a pressure pg(x, t) and a shear stress distribution τg(x, t) that identify three areas,
qualitatively pictured in figure 1 on the right. In the wiping region (indicated as WR),
the pressure gradient imposed by the gas jet forces part of the liquid to reverse direction
resulting in a wiping meniscus. The falling liquid forms the run-back flow in the region
x → ∞ (indicated as RB); the remaining liquid evolves upward in the final coating region
x → −∞ (indicated as FC).

In a one-way coupling formulation, it is assumed that the presence of the liquid film does
not influence the gas jet. This assumption has been extensively validated for the prediction
of the averaged final coating thickness (Lacanette et al. 2006; Gosset & Buchlin 2007), but
it is certainly not able to simulate the complex interaction between the two flows analysed
by Gosset et al. (2019) and Mendez et al. (2019). In this work, this formulation is used
to de-couple the dynamics of the liquid from the one of the gas jet and to analyse the
liquid film frequency response and possible mechanisms of undulation formation. We thus
assume that both the pressure and the shear stress produced by the jet solely depend on the
nozzle gauge stagnation pressure ΔPN , the nozzle opening d, its discharge coefficient Cd
and the standoff distance Z. This dependency is described in § 5.

All the integral models investigated in this work rely on the Navier–Stokes equation
and the related boundary conditions in the ‘long-wave’ formulation. This formulation
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Reference quantity Definition Expression

[h] (νl [u]/g)1/2 (νlUp/g)1/2

[x] [h]/ε (νlUp/g)1/2 Ca−1/3

[u] Up Up
[v] εUp Up Ca1/3

[p] ρl g [x] (μl ρl g Up)
1/2 Ca−1/3

[τ ] μl [u]/[h] (μl ρl g Up)
1/2

[t] [x]/[u] (νl/Upg)1/2Ca−1/3

Table 1. Reference quantities for the Shkadov-like scaling, for which ε = Ca1/3, with Ca = μlUp/σ the
capillary number.

is derived by scaling the cross-streamwise direction with a reference length [h], which
is much smaller than the streamwise reference length [x]. Appendix A summarizes this
derivation and presents the rationale behind the choice of the reference quantities used
to scale the problem. For conciseness, these reference quantities are listed in table 1,
and the focus is here kept on the derivation of the various integral models. In what follows,
dimensionless variables scaled with respect to the quantities in table 1 are indicated with
a hat (e.g. ĥ = h/[h]).

In the long-wave formulation of the problem, the dimensionless continuity and
momentum equations in the x and the y directions reduce to the boundary layer equations:

∂x̂û + ∂ŷv̂ = 0, (2.1a)

εRe(∂t̂ û + û∂x̂û + v̂∂ŷû) = −∂x̂p̂l + ∂ŷŷû + 1, (2.1b)

0 = ∂ŷp̂l. (2.1c)

Here p̂l is the pressure in the liquid, û and v̂ are the streamwise and cross-stream velocity
components, ε = [h]/[x] = Ca1/3 is the film parameter, with Ca = μlUp/σ the capillary
number and Re = [u][h]/νl = (U3

p/gνl)
1/2 the global Reynolds number of the process, to

be distinguished from other Reynolds numbers that will be introduced later.
Since the proposed scaling laws hold for ε � 1, the long-wave formulation presented

in this work is valid for Ca1/3 � 1. This generally occurs in galvanizing conditions,
where typically μl ≈ 0.003 Pa s, σ ≈ 0.8 N m−1 and Up = 1−2 m s−1 and, hence, Ca ≈
0.004−0.008. The formulation proposed in this work is also valid for the experimental
conditions encountered in the Essor laboratory (see Buchlin 1997) developed at the von
Karman Institute (VKI), operating with water (μl ≈ 0.001 Pa s, σ ≈ 0.07 N m−1 at
Up = 0.2−2 m s−1, i.e. Ca = 0.003−0.03). On the other hand, the experiment recently
conducted in the VKI Ondule laboratory (Gosset et al. 2019; Mendez et al. 2019) using
dipropilene glycole (μl ≈ 0.1 Pa s, σ ≈ 0.03 N m−1 at Up = 0.2−0.4 m s−1, i.e. Ca ≈
0.6−1.3) requires a different scaling strategy. While the previous experimental work of
the authors has focused on the dynamics of very viscous flows (see also Mendez et al.
2017b), this work focuses on the low Ca limit, in which surface tension plays a more
important role.

The kinematic boundary conditions at the wall and at the gas–liquid interface set:{
v̂ = (û, v̂) = (−1, 0) in ŷ = 0,

v̂ = ∂t̂h + û∂x̂ĥ in ŷ = ĥ.
(2.2)
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The dynamic boundary conditions (see (A3) and (A9)) at the interface simplify to

p̂l|ĥ = p̂g(x̂, t̂) − ∂x̂x̂ĥ in ŷ = ĥ, (2.3a)

∂yû|ĥ = τ̂g(x̂, t̂) in ŷ = ĥ. (2.3b)

All integral models reduce the modelling complexity by rendering the problem one
dimensional. Integrating (2.1a)–(2.1c) across the film thickness using Leibniz integral rule
together with the boundary conditions (2.3a) and (2.3b) gives

∂t̂ ĥ + ∂x̂q̂ = 0, (2.4a)

εRe(∂t̂ q̂ + ∂x̂F) = ĥ(1 − ∂x̂p̂g + ∂x̂x̂x̂ĥ) + Δτ̂ , (2.4b)

where q̂ is the volumetric flow rate per unit width, and

F =
∫ ĥ

0
û2 dŷ and Δτ̂ ≡ τ̂g − τ̂w = τ̂g − ∂ŷû|ŷ=0 (2.5a,b)

are the advection and the shear stress terms, respectively, with τ̂w the wall shear stress.
To determine the functional forms of these (and, thus, to close integral models), some
assumptions on the velocity profile are required.

In this work we assume that the velocity profile is the superposition of three terms:

û(x̂, ŷ, t̂) = ûF(x̂, ŷ, t̂) + ûC(x̂, ŷ, t̂) + ûP = ûF(x̂, ŷ, t̂) + τ̂g(x̂, t̂)ŷ − 1. (2.6)

The term ûF accounts for the contributions of gravity, viscous stresses, surface tension and
the pressure gradient. The term ûC = τ̂gŷ accounts for the shear stress produced at the gas
liquid interface, while ûP = −1 accounts for the motion of the substrate. This kinematic
decomposition satisfies the boundary conditions if ûF = 0 at ŷ = 0 and ∂ŷûF = 0 at ŷ = ĥ.
For later convenience, it is interesting to identify the reference velocity and the associated
Reynolds number for each of the three contributions. The flow rate per unit width can be
split accordingly as

q̂ ≡
∫ ĥ

0
û dŷ = q̂F + q̂C + q̂P = q̂F + 1

2
τ̂gĥ2 − ĥ, (2.7)

from which the associated local (i.e. function of x̂) Reynolds numbers are

ReF = qF

ν
= |q̂F|Re; Reτ = 1

2
ĥ2|τ̂g|Re; Reh = ĥRe. (2.8a–c)

It is worth noting that the term q̂F corresponds to a falling film flow in the absence of
the other terms, but it can eventually lead to a negative contribution q̂F < 0 in a strongly
dominated shear stress flow (if ĥ2|τ̂g| � |q̂F|), as is the case in the run-back flow region
(more about this in § 4.1). The models developed in the following sections only differ in
the treatment of this term.
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3. Laminar film models

The term ûF in (2.6) is decomposed in a series of basis functions as

ûF =
N∑

j=0

aj(x̂, t̂)fj

(
ŷ

ĥ(x̂, t̂)

)
, (3.1)

where a0 is of O(1) and aj with j > 0 are corrections of O(ε). Following Ruyer-Quil &
Manneville (2000, 2002) and Ruyer-Quil et al. (2014), the basis functions fj are taken as

fj = ȳ j+1 − j + 1
j + 2

ȳ j+2, (3.2)

where ȳ = ŷ/ĥ(x, t) is the reduced coordinate. This choice was introduced for falling liquid
films, imposing that each basis function satisfies the boundary conditions. This enables
reduced-order models based on Galerkin projections (Kalliadasis et al. 2012). The flow
rate per unit width, highlighting the contributions in (2.7), becomes

q̂F ≡
∫ ĥ

0
ûF dŷ =

N∑
j=0

2
(j + 2)(j + 3)

aj. (3.3)

In all the laminar models presented in this work, valid at O(ε), only the first term ( j = 0)
contributes to the advection term F , since this is multiplied by ε in (2.4). The advection
term, using (2.6) and (3.1), reads as

F̂ ≡
∫ ĥ

0
û2 dŷ = 1

3
τ̂ 2

g ĥ3 + 5
12

τ̂ga0ĥ2 − τ̂gh2 + 2
15

ha2
0 − 2

3
a0ĥ + ĥ. (3.4)

The shear stress contribution is solely linked to the first coefficient a0 regardless of the
number of terms included in the expansion of the velocity profile. The shear stress term,
using (2.6) and (3.1), reads as

Δτ̂ ≡ τ̂g − ∂ŷû|ŷ=0 = −τ̂wF = −a0

ĥ
, (3.5)

where τ̂wF is the wall shear stress produced by the ûF portion of the velocity profile.
Before presenting the derivation of the complete WIBL model at O(ε), it is worth

introducing the ZO formulation and the IBL formulation.

3.1. Zero-order (inertialess) formulation
This model is based on two assumptions. First, only the first j = 0 term of the velocity
profile is relevant, that is, N = 0 in (3.1). Second, the inertial effects can be neglected,
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that is, εRe ∼ 0: the left-hand side of (2.4b) vanishes. The velocity profile is parabolic, i.e.

û = a0(x̂, t̂)

[(
ŷ

ĥ

)
− 1

2

(
ŷ

ĥ

)2
]

+ τ̂gŷ − 1, (3.6)

and the coefficient a0 can be derived from the flow rate definition

q̂ ≡
∫ ĥ

0
û dŷ = a0ĥ

3
+ ĥ2τ̂g

2
− ĥ → a0 = 3q̂F

ĥ
= 3q̂

ĥ
− 3

2
ĥτ̂g + 3. (3.7)

Using (3.7) in (3.5), the shear stress term becomes

Δτ̂ ≡ −τ̂wF = 3
2
τ̂g − 3q̂

ĥ2
− 3

ĥ
. (3.8)

Introducing this into (2.4b), and recalling that the left-hand side is set to zero, the flow
rate is

q̂ = ĥ3

3
(1 − ∂x̂p̂g + ∂x̂x̂x̂ĥ) + 1

2
τ̂gĥ2 − ĥ. (3.9)

Introducing (3.9) in (2.4a) yields a single equation governing the film dynamics:

∂t̂ ĥ + ∂x̂

[
ĥ3

3
(1 − ∂x̂p̂g + ∂x̂x̂x̂ĥ) + 1

2
τ̂gĥ2 − ĥ

]
= 0. (3.10)

This ZO model has been widely used in the literature of the jet wiping for linear stability
analysis (Tuck 1983; Tu & Ellen 1986; Gosset 2007) or sensitivity studies similar to those
performed in this work: Hocking et al. (2010) used this formulation to study the evolution
of liquid disturbances for an ideally stationary jet; Johnstone et al. (2019) used it to study
the response of the liquid film to an oscillating jet.

Since this work focuses on more advanced formulations, the time-dependent simulation
of the ZO model is not investigated further. It is nevertheless interesting to use this model
to illustrate the basic features of a steady-state solution and the propagation of small flow
disturbances, for which one could expect inertia to play a negligible role. In steady-state
conditions (∂t̂ ĥ = −∂x̂q̂ = 0), and by neglecting the contribution of the surface tension
term ∂x̂x̂x̂ĥ = 0 (which is known to have little influence on the final thickness in case of
strong wiping, as shown by Tuck & Vanden-Broeck (1984), Yoneda (1993) and Buchlin
(1997)), (3.9) reduces to a cubic polynomial in ĥ.

At each location x̂ (hence given ∂x̂p̂g(x̂), τ̂g(x̂)), and for a given flow rate q̂ < 0, this
polynomial admits a negative solution (of no interest) and two positive solutions ĥ+(x̂) and
ĥ−(x̂). These branches of the positive solution give the liquid thickness in the final coating
region ĥ−(x̂) → hf for x̂ → −∞ and the run-back region ĥ+(x̂) → hR for x̂ → ∞. The
admissible flow rate q̂ can thus be computed by imposing that the two branches of solutions
meet (see Tuck & Vanden-Broeck 1984; Hocking et al. 2010) at a critical point x̂ = x̂c to
form a continuous thickness profile:

ĥ(x̂) =
{

ĥ+(x̂) for x̂ ≤ x̂c,

ĥ−(x̂) for x̂ > x̂c.
(3.11)

A simple estimation of the final thickness can be obtained under the assumption that
the system operates in optimal conditions (that is, ∂ĥq̂ = 0), assuming that the maximum
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0.5

0.5 1.0 1.5 2.0
0

–0.5

–1.0

q̂

qˆ(h∗)

ĥf ĥR ĥ

Figure 2. Flow rate versus thickness relations for a film flowing along a vertical moving wall, assuming that
∂x̂p̂g = τ̂g = 0 in (3.9) and neglecting the surface ∂x̂x̂x̂ĥ. For a given flow rate q̂(h∗) < 0, the thin and thick
solutions are approximations of ĥf = limx̂→+∞ ĥ(x̂) and ĥR = limx̂→−∞ ĥ(x̂), respectively. Using h∗ from
(3.13) yields the 0-D knife model of the wiping process.

pressure gradient and shear stress act at the same location x̂∗. From (3.9), this gives

∂ĥq̂(ĥ∗) = ĥ∗2(1 − ∂x̂p̂∗
g) + τ̂ ∗

g ĥ∗ − 1 = 0, (3.12)

and, thus, the film thickness in this location is

ĥ∗ =
−τ̂ ∗

g +
√

τ̂ ∗2
g + 4(1 − ∂x̂p̂∗

g)

2(1 − ∂x̂p̂∗
g)

. (3.13)

It is worth noting that the downward orientation of the x̂ axis in this work is opposite to
the one used in the jet wiping literature (Tuck & Vanden-Broeck 1984; Gosset & Buchlin
2007; Hocking et al. 2010), but in line with the falling liquid film literature (Kalliadasis
et al. 2012; Ruyer-Quil et al. 2014). The wiping thus occurs in a region in which ∂x̂p̂∗

g < 0
and τ̂ ∗

g > 0. Introducing this value of the film thickness in (3.9), taking ∂x̂p̂g = ∂x̂p̂∗
g

and τ̂g = τ̂ ∗
g , allows for estimating the withdrawn flow rate q(ĥ∗). The final coating

thickness ĥf can thus be estimated using again (3.9) in the far-field conditions (where τ̂g =
∂x̂p̂g = 0). This approach, known as the zero-dimensional (0-D) knife model, was
proposed by Buchlin (1997) and validated on several numerical and experimental works
(Lacanette et al. 2006; Gosset & Buchlin 2007).

The polynomial in the far-field condition is shown in figure 2 (see also Snoeijer et al.
2008). For a wiping condition yielding q̂(h∗) = −0.1, the corresponding final thickness
(ĥf ) and run-back flow thickness (ĥR) are shown. At the lowest limit of the flow rate (q̂ =
−2/3), only one solution is admissible for the film thickness (corresponding to ĥ = 1 in
the chosen scaling). This corresponds to the well-known limit for the drag-out problem
(Deryagin & Levi 1964; Rio & Boulogne 2017) in the gravity dominated regime.

Equation (3.10) allows for important considerations on the propagation of small
disturbances on a flat film over an upward-moving substrate. Neglecting the surface tension
contribution, this equation simplifies to

∂t̂ ĥ + (ĥ2 − 1)∂x̂ĥ = 0, (3.14)

that is, a standard kinematic wave equation (Whitham 1999): disturbances on a film
ĥ < 1 (that is, in the final coat) propagate at a negative velocity (that is, upward) while
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disturbances on a film ĥ > 1 (that is, in the run-back flow) propagate at a positive velocity
(that is, downward).

3.2. Integral boundary layer formulation
As for the ZO model, this formulation considers only the first term in the velocity profile
(3.6), but it does not assume that the left-hand side of (2.4b) vanishes. Using (3.6) with
the coefficient a0 from (3.7), the advection term F in (2.5a,b) yields

F = ĥ3τ̂ 2
g

120
+ ĥq̂τ̂g

20
+ ĥ2τ̂g

20
+ 6q̂2

5ĥ
+ 2q̂

5
+ ĥ

5
. (3.15)

The shear stress term remains the same as that in (3.8). The resulting model is an extension
to the jet wiping process of the classical self-similar integral models proposed by Haar
(1965), Shkadov (1971) and Shkadov & Beloglazkin (2017). To the best of the authors’
knowledge, this integral model has never been used in the analysis of the jet wiping
process.

3.3. Weighted integral boundary layer model
The full expansion in (3.1) is now considered, taking up to N = 4 terms. This number can
be derived based on the order of magnitude analysis (see Kalliadasis et al. 2012, § 6.6).
The method of weighted residuals to derive the coefficients A = {a0, a1, a2, a3, a4} in
(3.1) for a falling liquid film was proposed by Ruyer-Quil & Manneville (2002). Denoting
the momentum equation (2.1c) as an operator M(û) = 0, it is possible to construct
the residuals Rj from the projections Rj = 〈wj,M(

∑
j ajfj(ŷ))〉, with 〈·, ·〉 denoting the

continuous inner product over the space of possible solutions u ∈ S and wj a set of
weight functions. Setting all residuals to Rj = 0 leads to a system of equations for the
aj coefficients.

For the modelling of a film falling along a fixed wall and passive atmosphere, Kalliadasis
et al. (2012) compare various weighted residual methods, differing by choice of weight
functions wj. Their comparison shows that all methods converge, if four wj are taken –
Kalliadasis et al. (2012) also show that some methods converge ‘faster’ than others: for
instance, the Galerkin approach with wj = fj converges with only one residual, while a
collocation approach, with wj = δj, with δj a set of equally spaced Dirac functions, requires
four residuals – to a model that can be derived following a polynomial matching procedure
that involves neither weights nor residuals.

We here solely focus on this second approach, although this requires considerably more
algebra, for two reasons. First, because this allows us to derive an explicit equation for
the coefficients aj, while this is not needed in the weighted residual approach. Second,
because this approach does not depend on the choice of the wj and allows a discussion on
convergence to be avoided. Nevertheless, we still refer to the resulting model as WIBL, in
line with the literature on falling liquid films.

Introducing the expansion of the velocity profile (3.1) in the momentum equation (2.1b)
yields a polynomial in the reduced coordinate ȳ:

P
(

x, t, ȳ = y
h

)
=

N∑
j=0

Pj(A, x, t)ȳ j = 0. (3.16)

Because this polynomial must be identically null, all the functions Pj(A, x, t) must be null.
Moreover, we note that the viscous term on the right-hand side of (2.1b) decreases the
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Dynamics of the jet wiping process via integral models

degree of the polynomials by two while the left-hand side increases it by two. Therefore,
only the N = 0 should be introduced on the left-hand side, and up to N = 4 terms should
be introduced on the right-hand side, recalling that a0 ∼ O(1) and ai ∼ O(ε)∀ i ∈ [1, 4].
The resulting polynomial in (3.16) is thus of order four.

Setting all of its coefficients to zero leads to a system of five equations of the form

[Pj(A, x, t)]4
0 = 0 → ΓA = G, (3.17)

where the system matrix reads as

Γ = 1
h2

⎛
⎜⎜⎜⎝

1 −2 0 0 0
0 4 −6 0 0
0 0 9 −12 0
0 0 0 16 −20
0 0 0 0 25

⎞
⎟⎟⎟⎠ , (3.18)

and the vector G = {G0, G1, G2, G3, G4} is shown in table 5 of appendix B. The solution
of the system leads to the full expression of the coefficient, given in table 6 of appendix B.
All the coefficients, except a0, are then introduced in (3.3) to identify the link between a0
– thus, the wall shear stress term in (3.5) – and the flow rate. The resulting expression,
following the classical notation from asymptotic expansions (Howison 2005), is of the
form

q̂ = q̂(0)(a0, ĥ) + εRe q(1)(ĥ, a0, ∂t̂a0, ∂x̂a0, ∂x̂ĥ, ∂t̂ ĥ), (3.19)

having considered only the functional dependency on the unknown variables. This
expression can be used to compute a0 following the same notation:

a0 = a(0)
0 (q̂, ĥ) + εRe a(1)

0 (ĥ, a0, ∂t̂a0, ∂x̂a0, ∂x̂ĥ, ∂t̂ ĥ). (3.20)

Both expressions (3.19) and (3.20) are shown in table 7 of appendix B in their
complete forms ((B11) and (B12), respectively). As expected, the first-order term recovers
the coefficient from the leading-order model in (3.7), while the other represents O(ε)

corrections. At this stage, the coefficient a0 is still implicitly defined. However, if Re �
1/ε, the asymptotic expansion framework allows for substituting a0 ≈ a(0)

0 + O(ε) in a(1)
0

and neglecting higher-order terms, as done in (3.19) and (3.20). The resulting shear stress
is

Δτ = 3
2
τg − 3q

h2 − 3
h

+ εRe

(
−19h3τg∂xτg

3360
− 17hq∂xτg

560
− 3h2∂xτg

560
− h2∂tτg

40

− hτg∂xq
56

− 18q∂xq
35h

− 4∂xq
35

− ∂tq
5

− h2τg
2∂xh

112
− qτg∂xh

280
− 3hτg∂xh

140

+12q2∂xh
35h2 + 6q∂xh

35h
+ ∂xh

35

)
. (3.21)

The WIBL model for the jet wiping problem is obtained by introducing (3.21) and (3.15)
into (2.4a) and (2.4b). Observe that the O(1) terms in (3.21) are those in the IBL model.
Among the fourteen O(ε) terms, it is worth noticing the one involving the partial time
derivative of the flow rate (the eighth term). For computational purposes, it is convenient
moving this term on the left-hand side of (2.4b), resulting in a coefficient β = 6/5 on the
term ∂tq̂ (see § 6).
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4. The transition and turbulent boundary layer

A falling liquid film is laminar for Reynolds numbers below ≈ 100, and it is turbulent
above ≈ 400 (Ishigai et al. 1972; Alekseenko et al. 1994; Karimi & Kawaji 1999). The
intermediate range is the transition region, and cannot be described solely in terms of
Reynolds number. Laminar integral boundary layer models have been proved successful
(see Denner et al. 2018 for cases up to Re ≈ 80) well above their theoretical range
of validity (which sets Re ∼ O(1)), while much higher Reynolds numbers, like those
considered in this work, might need a different treatment.

A classic theoretical formulation for turbulent liquid films is based on mixing length
theory (van Driest 1956; King 1966; Geshev 2014) and a Reynolds-averaged formulation
of the velocity field in which the effect of turbulence is modelled by an additional eddy
viscosity. This formulation is based on the statistically stationary assumption and is of
difficult extension to the integral formulation of interest to this work. A different approach
is commonly encountered in the literature of shallow water flows (see James et al. 2019),
in which the most celebrated empiricism consists in introducing a correlation for the wall
shear stress (see also Katopodes 2018), and a shape factor for the velocity profile. As
these allow for keeping the integral nature of the model formulation, a similar approach is
pursued in this work.

The transition and turbulent boundary layer (TTBL) model for the jet wiping problem
proposed in this work makes no pretension of completeness; on the contrary, it offers a
first attempt to analyse the possible impact of turbulence on the response of the coating
thickness. Following the same self-similarity argument supporting the IBL model, the
proposed model extends the IBL model to a turbulent liquid film. A similar extension of
the WIBL for a falling liquid film, using the mixing length formulation, is presented by
Mukhopadhyay, Chhay & Ruyer-Quil (2017). The proposed closures for the wall shear
stress and the advection terms are described in §§4.1 and 4.2, respectively.

4.1. Closure for the wall shear stress
Following the shallow water literature, the wall friction is modelled in terms of a friction
coefficient Cf that is a function of the (local) Reynolds number. In the jet wiping problem,
where the liquid streamwise velocity component is composed of the terms in (2.6), one
must first establish which of the Reynolds numbers in (2.8a–c) controls the transition
to turbulence and the flow regime. Moreover, since the thickness of the liquid film
varies significantly between the final coating region (ĥ � 1) and the run-back flow region
(ĥ ∼ 1), different regimes (laminar, transition, fully turbulent) can be expected in different
regions. We begin by introducing the skin friction coefficient in the laminar models. From
(3.6) and (3.7), the wall shear stress reads as

∂ŷû|ŷ=0 = 3q̂F

ĥ2
+ τ̂g = τ̂wF(q̂F) + τ̂g. (4.1)

Introducing the skin friction coefficient based on the mean velocity q̂F/ĥ, we obtain the
dimensional and dimensionless friction terms τ̂wF,

τwF = 1
2
ρ

qF|qF|
h2 Cf ⇐⇒ τ̂wF = 1

2
Re

q̂F|q̂F|
ĥ2

Cf , (4.2)

having used the reference quantities in table 1. Comparing (4.1) and (4.2), the skin friction
coefficient in laminar conditions is Cf = 6/ReF.
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Dynamics of the jet wiping process via integral models

To extend the model to turbulent films, while allowing for recovering (4.1) in laminar
films, two constraints should be considered. The first concerns the sign of τwF, which is
given by q̂F in laminar conditions. It is worth noting that in the run-back flow region, as
later discussed in the example in figure 16, this quantity is usually negative (i.e. directed
upward) since the dominant role of the (positive) shear stress term yields

q̂F = q̂ − 1
2 τ̂gĥ2 + ĥ < 0 since 1

2 τ̂gĥ2 > q̂ + ĥ. (4.3)

In order to avoid discontinuities in the shear stress in the transition regions, we postulate
that the sign of τ̂wF remains dictated by q̂F also in turbulent conditions. The second
constraint is to ensure a smooth transition in τwF as the flow passes a certain critical
Reynolds number. This can be easily ensured if both the mean velocity in the definition of
Cf and the correlations for Cf are solely functions of q̂F.

The TTBL proposed in this work is based on the simplest modelling solution respecting
these two constraints. First, we keep (4.2) also in turbulent conditions. Second, we adapt
the skin friction in the presence of turbulence to a correlation of the form Cf ≈ aReb

F, with
b ≈ −1/4, as encountered in seminal works on turbulent lubrication (Elrod & Ng 1967;
Hirs 1973) and turbulent boundary layer theory (Schlichting & Gersten 2000). Assuming
that the transition occurs at Re∗, the correlation allowing for a continuous transition is

Cf =
⎧⎨
⎩

6/ReF, ReF < Re∗,(
6Re−3/4

∗
)

Re−0.25
F , ReF > Re∗,

(4.4)

where the critical Reynolds number here is taken as Re∗ = 100. Equations (4.2) and (4.4)
can be used for computing the shear stress term Δτ̂ in (2.4b).

An alternative formulation could consist in defining the friction coefficient from a
reference velocity q̂T/h, with q̂T = q̂F + 1/2τ̂gĥ2, i.e. including both the first two flow rate
contributions in (2.8a–c). In this case, ensuring the aforementioned constraints become
more challenging and require the introduction of appropriate blending functions.

4.2. Closures for the advection term
As for the laminar case, the closure of the advection term in (2.5a,b) requires some
assumptions on the velocity profile within the film. Self-similar profiles such as the
one-seventh-power law have been borrowed from boundary layer theory in the liquid film
literature and have shown reasonably good agreement in the prediction of film thickness
(Alekseenko et al. 1994). More sophisticated eddy viscosity models have been used to
analyse phenomena such as gas absorption or heat transfer (Mudawwar & El-Masri 1986;
Riazi 1996) or the impact of the interface shear stress (Geshev 2014).

Turbulence increases the momentum diffusion, flattening the velocity profile with
respect to the laminar profile. This has an impact on the advection term, and possibly
on the response of the film thickness. To analyse this impact, we here consider the velocity
profile of the falling film portion ûF (see 2.6) as composed of two contributions, i.e.

ûF(x̂, ŷ, t̂) = ûL + ûT = aL(x̂, t̂)

[(
ŷ

ĥ

)
− 1

2

(
ŷ

ĥ

)2
]

+ aT(x̂, t̂)
[(

ŷ

ĥ
− 1

)nT

+ 1
]

,

(4.5)

where nT is an integer and odd number. By definition, the turbulent contribution, weighed
by the coefficient aT , satisfies the boundary conditions for the ûF term and reproduces
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boundary layers of different thicknesses with a flat profile above it. The combination of the
two terms in (4.5) allows for representing various kinds of departure from the parabolic
assumption. The coefficients aL and aT are constrained by the wall shear stress (obtained
from (4.2) and (4.4)) and the mass conservation:

τ̂wF = ∂ŷûF|ŷ=0 → τ̂wFĥ = aL + nTaT ,

q̂F =
∫ ĥ

0
ûF dŷ → q̂F = 1

3
aLĥ +

(
nT

nT + 1

)
aTĥ.

⎫⎪⎬
⎪⎭ (4.6)

The solution of the resulting linear system of equations gives

aL = ĥτ̂wFnT

(nT + 1)cT
− nTq̂F

ĥcT
,

aT = − ĥτ̂wF

3cT
+ q̂F

ĥcT
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.7)

where cT = (2nT − n2
T)/(3nT + 3). The model is closed for a given nT . Regardless of the

choice of nT , this model recovers the IBL formulation in laminar conditions, for which
τ̂wF = 3q̂F/ĥ2, as this leads to aT = 0.

While the link between film thickness and flow rate requires the complete numerical
analysis of the TTBL model, a first estimation of the range of validity of the model can
be inferred from a simple physical constraint: the maximum velocity in (4.5) should be
reached at the interface and no other extremes should occur within the liquid film:

ĥ∂ŷûF = aL

(
1 − ŷ

ĥ

)
+ aTnT

(
ŷ

ĥ
− 1

)nT−1

≥ 0 ∀ ŷ ≤ ĥ. (4.8)

Solving the inequality for any given set of coefficients aL, aT allows for computing the
range of validity of the model for a given nT . This range is shown in figure 3(a) for nT = 21.
For each combination of coefficients, it is possible to compute the shape factor of the
corresponding profile, defined as

Υ = ĥ
q̂

∫ ĥ

0
û2 dŷ. (4.9)

This parameter ranges from 1.2 in laminar conditions to ≈ 1 in case of a flat velocity
profile. Using (4.4) and (4.7), it is then possible to analyse how the shape factor changes
as a function of ReF for a given nT , as well as the maximum ReF tolerated by the model
within its range of validity. This is shown in figure 3(b) for nT = {7, 15, 21}.

Figure 3(c) compares the velocity profiles (normalized to have unitary mean) for nT =
{7, 15, 21} with the parabolic assumption at ReF = 354, i.e. the maximum admissible
value for nT = 7. The same comparison is shown in figure 3(d) at ReF = 930, the
maximum admissible value for nT = 15, and in figure 3(e) at ReF = 1414, the maximum
admissible value for nT = 21.

For the purposes of this work, we limit our analysis of the impact of nT on the liquid
film modelling to the definition of the upper limit within which such a model is valid. In
what follows, a value of nT = 21 is considered. At the maximum Reynolds number, the
resulting velocity profile features a boundary layer of approximately ĥ/5. Compared with
the measurements in turbulent falling films (e.g. Mudawar & Houpt 1993), this estimation
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Figure 3. (a) Range of admissible pairs (aL, aT ) for a velocity profile in (4.5). (b) Shape factor (4.9) of the
velocity profile in (4.5) as a function of the local Reynolds number ReF for nT = 7, 15, 21. For each coefficient,
the maximum admissible ReF is reported. Plots (c–e) show examples of normalized velocity profiles for the
three models at the ReF indicated in each plot, together with the parabolic profile assumed in the IBL model.

appears extreme, but well in line with the primary purpose of testing the impact of high
turbulence in some portions of the falling film. Nevertheless, it is worth noting that such
an extreme is not reached in any of the investigated test cases, among which the highest
falling film Reynolds number, in the run-back flow region, is ReF ≈ 600.

The advection term for the TTBL model, considering nT = 21, is computed by
introducing (4.5) in (2.6) and in the definitions (2.5a,b):

F̂ =
∫ ĥ

0
û2 dŷ = 1

3
ĥ3τ̂ 2

g + 252
253

aTĥ2τ̂g + 5
12

aLĥ2τ̂g − ĥ2τ̂g + 441
473

a2
T ĥ

+ 175
264

aLaT ĥ − 21
11

aTĥ + 2
15

a2
Lĥ − 2

3
aLĥ + ĥ. (4.10)

This term is closed using (4.7) with (4.3) and (4.2).

5. The wiping actuators

Following classical modelling strategies of the jet wiping process, the action of the gas
jet is modelled via the pressure gradient and the shear stress produced on the liquid
film. These two quantities, referred to as wiping actuators, are modelled via experimental
correlations for gas jet impinging on a flat (dry) plate (Beltaos 1976; Tu & Wood 1996;
Elsaadawy et al. 2007a; Gosset 2007), with minor adaptations to account for their time
dependency, and under the assumption that the dynamics of the liquid film has no influence
on their evolution.
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Using the reference scales in table 1, the wiping actuators are of the form

∂x̂p̂g = ∂x̂[Pg(t)fp(x̃(t))/(ρl g)], (5.1a)

τ̂g = Tg(t)fτ (x̃(t))/(
√

μl ρl g Up), (5.1b)

where x̃ denotes a time-dependent axis accounting for the possible oscillation of the jet,
as described at the end of this section. The functions fp and fτ have range ∈ [−1, 1] so
that the maximum values from these quantities are defined by the scalars Pg(t) and Tg(t).
Following the empirical correlation by Tu & Wood (1996), the pressure distribution for a
gas jet impinging on a flat wall is

fp(ξ) = exp(−0.693ξ2) + 0.01895|ξ |
1 + (ξ − 1.67489)2 , (5.2)

where ξ = x/b is a dimensionless coordinate, with the parameter b controlling the
spreading of the distribution. A qualitative plot of the pressure distribution is shown in
figure 1 on the right, with a red dashed line.

As proposed by Beltaos (1976), for a stand-off distance Z/d > 5, this parameter can
be computed as b = 0.125 Z. The maximum pressure Pg, for a statistically stationary
impinging jet, can be computed as Pg = 6.5Pdd/Z, where Pd = Cd ΔPN is the dynamic
pressure at the nozzle outlet and Cd is the discharge coefficient taking into account the
losses due to friction and separation phenomena in the nozzle chamber. This parameter
depends on the nozzle design and is taken as Cd = 0.8 in this work. Considering the
reference quantities in table 1, the role of the pressure gradient in the wiping capabilities
of the jet is well described by the dimensionless group

Πg ≡ Pdd
ρlgZ2 = Cd

ΔPNd
ρlgZ2 , (5.3)

hereinafter referred to as the wiping number. This number compares the maximum
pressure gradient produced by the gas (∼ CdΔPNd/Z2) with the reference (hydrostatic)
pressure gradient in the liquid film (ρlg).

The distribution of shear stress at the gas–liquid interface is computed following the
numerical correlation proposed by Elsaadawy et al. (2007b). For ξ ≥ 0, this reads as

fτ =
{

erf (0.41ξ) + 0.54ξ exp(−0.22ξ3), ξ ≤ 1.73,

1.115 − 0.24 ln(ξ), ξ > 1.73.
(5.4)

For ξ < 0, this distribution is mirrored such that fτ (ξ) = −fτ (−ξ). A qualitative plot of
the shear stress distribution is shown in figure 1, with a dash–dotted blue line.

For a sufficiently high Reynolds number in the jet flow, like those considered in this
work, the maximum shear stress is computed as Tg = Cτ Pd d/Z, with Cτ = 0.067 (Tu &
Wood 1996). Considering the reference shear stress in table 1, the role of the shear stress
in the wiping capabilities of the jet is measured by the dimensionless group

Tg ≡ Tg

Z
√

ρlgμlUp
= CdCτ

ΔPNd
Z
√

ρlgμlUp
, (5.5)

hereinafter referred to as the shear number. This number compares the maximum shear
stress produced by the gas flow (∼ Cτ Pdd/Z) with the reference shear stress in the liquid
film (μlUp/[h]).
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Figure 4. Example of two oscillatory waveforms for the jet perturbation: (a) harmonic oscillation;
(b) upward-biased (θ < 0) oscillation. The oscillation biased downward (θ > 0) is simply flipped along the x̂
axis. The third case (c) is that of a jet pulsation.

It is worth noting that in the case of wiping of very viscous liquids (such as, e.g. mineral
oils or paint) the importance of this number decreases considerably. More information on
the scaling laws of the jet wiping process and the typical operating conditions encountered
in various industrial processes is presented in Gosset et al. (2019).

The use of correlations for gas jet impinging on dry surfaces has been validated in
various studies (see Lacanette et al. 2006). While the validity of such simplification
in time-dependent conditions is certainly questionable, it is important to recall that the
modelling of the shear stress produced by an impinging jet on a dry surface is still subject
to extensive investigation, and large discrepancies exist in the correlation proposed by
various authors. For more details, the reader is referred to Ritcey, McDermid & Ziada
(2017).

Finally, concerning the time dependency of the actuators, two possibilities are
considered in this work: pulsations and oscillations. In the case of pulsations, the
amplitude of the actuators Pg(t) and Tg(t) are set as harmonics with a mean value equal
to the correlations in steady-state conditions and an amplitude of 30 %. In the case of
oscillations, the amplitudes are left stationary and equal to the correlations previously
proposed, while the streamwise variable is taken as x̃(t) = x − Z tan(W(θ(t))), where
θ(t) is the angle of the oscillation with respect to the horizontal, taken as θ > 0 for a
jet deflected upstream (on the run-back flow side), and W(θ(t)) is a possible waveform of
the oscillation.

Three waveforms are considered. The first is a harmonic oscillation W(θ(t)) =
θA sin(2π ft), with f the perturbation frequency. The others are non-harmonic oscillations
biased upstream or downstream. These are constructed by smoothing a square wave signal,
which is symmetric around the mean but has a different duration of the positive/negative
cycles. In the investigated test cases, a biased oscillation spends 80 % of its period
upward or downward. The spatio-temporal evolution of the pressure gradient for an
example of each of these oscillatory modes is shown in figure 4. Figures 4(a) and 4(b)
show a harmonic and an upward-biased oscillation, while figure 4(c) shows a pulsating
perturbation.

These time-dependent jet perturbations were designed to mimic different oscillatory
modes in the impinging jet flow. Jet flow oscillations in the wiping process are
experimentally investigated in Mendez et al. (2019), while a similar oscillatory mechanism
was analysed in Mendez, Scelzo & Buchlin (2018) on a deformable interface reproducing
both fixed and moving surfaces. While it is now known that jet oscillations are coupled
to the interface instability, this work aimed at analysing the response of the liquid film
to possible jet disturbances, such as oscillations and pulsations, disregarding coupling
effects.
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6. Numerical methods

6.1. One-dimensional solver for integral models
We here introduce the numerical methods to solve the set of equations (2.4). This is a
system of hyperbolic partial differential equations (PDEs) that can be written in the general
form

∂tV (x, t) + ∂xF (x, V ) = S(x, t, V ), (6.1)

with V the state vector of the problem, F the conservative flux and S the source term.
In both the IBL and WIBL models, the state vector is V = [h, q]T , the flux term is F =
[q,Fβ] and the source term is

S =
[

0
(ĥ + ĥ∂x̂x̂x̂ĥ − ĥ∂x̂p̂g) + Δτ̂

]
β

εRe
, (6.2)

where the coefficient β = 6/5 is introduced only for the WIBL and is β = 1 otherwise.
This coefficient is introduced to account for the contribution ∂tq̂/5 which appears in the
shear stress term Δτ (see (B13) in appendix B).

The system of PDEs in (6.1) has been extensively treated in the literature of
non-homogeneous shallow water (SW) equations (in which the source term typically
accounts for bed topography) and a wide range of suitable finite volume (FV) schemes for
their numerical analysis, as described in various textbooks (Toro 2001; LeVeque 2002).
Among these, two major classes can be distinguished in the literature: methods based on
the (approximated) solutions of the Riemann problem (arising from Godunov’s scheme)
and methods based on centred fluxes (arising from the Lax–Friedrich scheme). The first
class of methods is better suited to handle strong gradients, such as hydraulic jumps, while
the second has the advantage of a much lower computational cost (Kurganov & Liu 2012;
Hernandez-Duenas & Beljadid 2016). Because the investigated simulations do not produce
shocks within the space and time domain of interest, this work focused on the second class
of methods.

Centred schemes are usually used with a certain amount of artificial viscosity (see
Mattsson & Rider 2014; Ginting & Mundani 2018 and references therein), which can
be introduced by a suitable combination of low-order schemes and high-order schemes.
This combination is achieved using flux limiters (LeVeque 2002) to blend a high-order
scheme (e.g. Lax Wendroff) in regions where the solution is sufficiently smooth with
a low-order scheme (e.g. Upwind or Lax Friedrich) in regions of strong gradients.
This approach combines the advantages of the two options: first-order schemes prevent
numerical oscillations (dispersion) at the cost of excessively smoothing the solution, while
the reverse is true for high-order methods.

A standard FV formulation using explicit methods with three-point stencil in
conservative form discretizes (6.1) as

V k+1
i = V k

i − Δt
Δx

[F+ − F−] + ΔtSk
i , (6.3)

where F+ = F (V k
i , V k

i+1) and F− = F (V k
i , V k

i−1) are the fluxes on the right and the left
boundaries of each cell. In a flux limiting scheme, these are

F i = F H
i + (F L

i − F H
i )φi, (6.4)

where φi is the flux limiting function, F H is the flux calculated from a high-order scheme
and F L is the flux calculated from a low-order scheme.
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In this work we select the two-step Lax–Friedrich scheme (LxF in Shampine 2005b)
as a low-order flux F L and Richtmyer’s two-step variant of the Lax–Wendroff method as
high-order flux F H . An efficient implementation of both schemes in Matlab is provided
by Shampine (2005a), and this work proposed a minor modification to combine the two.
These schemes are described in appendix C.

The chosen limiter function is the classical min-mod:

φi = max(0, min(1, θi)). (6.5)

Here θi = (hi − hi−1)/(hi+1 − hi) is the smoothness parameter based on the liquid film
thickness as it is customary also in SW problems (e.g. Zhou et al. 2001).

The proposed strategy allows for avoiding the calculation of the Jacobian and its
eigenmode decomposition, and is therefore computationally cost effective. On the other
hand, the numerical diffusion added by the low-order scheme results in the smoothing of
the waves in the liquid film. This smoothing becomes more evident as the waves move
away from the wiping point from which they originate.

An example of a mesh independency study is shown in figure 5 for an
instantaneous thickness and flow rate profile and four different meshes with nx =
{1940, 2909, 3879, 4848} mesh points. These are computed by setting the number of mesh
points nP within the half-width b of the Gaussian pressure distribution at the wall from
(5.2), so that Δx̂ = b/([x]nP) in dimensionless form. The simulations shown are computed
with nP = {20, 30, 40, 50}, hence ensuring a reasonable accuracy in the calculation of the
pressure gradient.

The effect of numerical diffusion, as the number of mesh points is reduced, is evident
in figure 5. However, as the focus of this work is placed on the response of the liquid film
within a relatively short distance from the introduced perturbation, this is not considered
as a limitation.

In all the simulations of this work, the boundary conditions are set as non-reflecting
open boundaries while the initial solution is taken from the simplified one-dimensional
formulation. The simulation is run until a fully periodic response is produced in the film
before the data for post processing is acquired. The time step is taken by setting Δt =
0.4Δx, i.e. assuming a Courant–Friedrichs–Lewy (CFL) number equal to uw Δt/Δx = 0.8
for waves travelling at uw ≈ 2, that is, twice the substrate speed. Such an estimation
revealed to be rather conservative.

6.2. Direct numerical simulations and validation of the long-wave formulation
Before considering the jet wiping problem, we analyse the validity of long-wave
formulations on a much simpler test case, namely the flow of a wavy liquid film over
an upward-moving substrate. This configuration is relevant to describe the dynamics of
the final coating much more downstream the wiping region, where the pressure gradient
and the shear stress produced by the impinging gas jet vanish.

Although this test case is too simple for complete validation of the models, which is out
of the scope of this work, we here focus on the validity of the long-wave formulation of the
jet wiping problem at large Reynolds numbers. Moreover, we analyse the validity of the
proposed Shkadov-like scaling by considering two liquids with largely different properties
operating at the same dimensionless thickness ĥ and rescaled Reynolds number δ = εRe.
The liquids considered are water and zinc.

The validation has been carried out using direct numerical simulations of the two-phase
flow using the VOF method, in which the gas–liquid interface is tracked on a fixed grid.
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Figure 5. Grid dependency analysis on the film thickness (left) and the flow rate (right). In the zoomed region
far downstream of the wiping point (Zoom 2), the effect of numerical diffusion makes the convergence harder
than in the wiping region (see Zoom 1). The simulations are carried out with ΔPN = 30 kPa, θA = 30◦,
Z = 15 mm, d = 1.5 mm, Up = 3 m s−1, νg = 1.5 × 10−5 m2 s−1, using zinc as a working fluid.

Surface tension is accounted for through the continuum surface force method (Brackbill,
Kothe & Zemach 1992), in which the surface force due to capillarity is converted into a
volume force that acts across the interface thickness. The computational domain is shown
in figure 6(a) along with the required boundary conditions. The liquid film has a mean
(and initial) thickness ho.

The computational domain is rectangular, with a dimensionless length Lx = 8400ho for
water and Lx = 12300ho for zinc in the streamwise direction, whereas Ly = 7.8ho for water
and Ly = 7.5ho for zinc in the cross-stream direction. A perturbation of the film flow rate
is introduced at the inlet of the domain via a pulsation of the film velocity (as in Doro &
Aidun 2013). At the liquid inlet (with thickness held constant and equal to ho), the film
velocity profile is prescribed as

û(x̂ = 0, ŷ) = [ŷ(1
2 ŷ − ĥo) + 1][1 + qA sin(2π f̂ t̂)], (6.6)

where f̂ = f [t] is the dimensionless oscillation frequency, t̂ is the dimensionless time, and
assuming that the x axis points out in the same direction as the substrate velocity UP. The
corresponding flow rate per unit width is therefore

q̂ = [ 1
3 ĥ3 − ĥ][1 + qA sin(2π f̂ t̂)]. (6.7)

For these computations, the interFoam solver of the finite volume code OpenFoam
is used. This solver has been extensively validated in the computational fluid dynamics
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Figure 6. (a) Schematic of the flow configuration used for validation purposes using the OpenFoam solver
InterFoam: flow domain and zoom on the near-wall mesh. (b) Snapshot of the thickness evolution for the four
meshes in table 2.

literature (Deshpande, Anumolu & Trujillo 2012) and in various studies on falling liquid
films (e.g. Gao et al. 2003; Doro & Aidun 2013; Dietze et al. 2014) as well as co-current
and counter-current gas–liquid flows (Dietze & Ruyer-Quil 2013). The solver assumes
incompressible and isothermal flow and features an interfacial compression flux term that
activates at the interface to mitigate the effects of numerical smearing of the gas–liquid
boundary.

The liquid volume fraction α is fixed at the inlet, together with a Neumann condition
for pressure. On the inlet boundary located in the gas phase (x0 = 0, ho ≤ y ≤ 7.8ho) and
on the right-hand side of the gas boundary (y = 7.8ho, 0 ≤ x ≤ Lx), α is fixed to 0, with a
zero derivative for the velocity and a fixed total pressure. At the wall (y = 0, 0 ≤ x ≤ Lx),
a no-slip condition is prescribed (û(ŷ = 0) = 1), with a zero flux for α and a fixed pressure
condition. At the outlet, a zero gradient is set for both the velocity and the liquid volume
fraction. The flow field is initialized with the nominal thickness ho. The velocity profile
within the liquid is initially parabolic (t̂ = 0 in (6.6)) while the velocity is set to 0 in the
gas phase. In agreement with (3.14), we consider cases with ĥ � 1 such that the waves
propagate upstream, which is in the direction of the substrate motion.

The simulations are carried out using a second-order backward Euler scheme in
time for the transient term, and second-order discretization schemes for the convective
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Mesh number Δx/ho Δy/ho

M1 0.110 0.022
M2 0.156 0.031
M3 0.235 0.047
M4 0.391 0.078

Table 2. Mesh densities for the sensitivity study.

ĥo (−)

ho
(μm) f̂o (−)

ρl
(kg m−3)

σ

(N m−1)

ν × 10−6

m2 s−1 f (Hz)
Up

(m s−1) Re (−) Ca (−)

δ = ε

Re (−)

Water 0.2 63.9 0.05 998.2 0.073 1 37.4 1 319 0.0137 76.3
Zinc 0.2 42.7 0.05 6500 0.78 0.45 37.4 1 478 0.0037 73.9

Table 3. Physical parameters and operating conditions of the two test cases used for validation purposes.

(van Leer scheme for the α transport equation), diffusive and pressure terms. The coupling
between pressure and velocity is solved using a standard PISO algorithm. The time step
was set adaptatively, based on a maximum value of 0.3 for the global CFL number in the α

equation. This leads to time steps of the order of 4.5 × 10−6 s with water and 2.7 × 10−6 s
with zinc.

In order to evaluate the influence of mesh density on the results, simulations are
performed on four different grids with an increasing mesh density (see table 2): the
streamwise cell size Δx is varied between 0.11ho and 0.39ho, and the cross-stream cell
size Δy between 0.022 and 0.078ho. For these tests, water was used as the working fluid,
and the length of the domain was reduced to save computational time (Lx = 1500ho). The
substrate speed is fixed to 1 m s−1. The results in figure 6(b) show that the selected mesh
densities are sufficient to capture the sinusoidal waves that form shortly after the inlet, and
that beyond the density of mesh M2, the thickness profiles are almost insensitive to the
size of the cells. The meshes used in the validation process have cell sizes of the order
of Δx = 0.23ho and Δy = 0.046ho, resulting in grids of 3.3 million for the test case with
water and 4.6 million for the one with zinc.

7. Results

7.1. Validation test cases
The physical parameters and the operating conditions for the two simplified cases with
water and zinc are recalled in table 3. Both test consider a dimensionless liquid thickness
of ho/[h] = 0.2, perturbed at the inlet with a flow rate pulsation with amplitude qA = 0.2
and dimensionless frequency f̂ = 0.05. The substrate velocity is taken as Up = 1 m s−1

for both cases. These two liquids differ by one order of magnitude in surface tension and
almost an order of magnitude in density and dynamic viscosity. However, their kinematic
viscosity is comparable, resulting in similar time scales (cf. table 1), and similar rescaled
Reynolds number δ = εRe.

An instantaneous thickness profile is shown in figure 7(a) for both cases, comparing the
IBL, WIBL and OpenFoam simulations. Since ReF ≈ 95 in zinc and ReF ≈ 65 in water,
the TTBL recovers the IBL model and its results are not shown. The thickness profiles
are perfectly overlapping, demonstrating the validity of the integral formulation and the
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Figure 7. (a) Instantaneous thickness profile for the liquid film thickness of the liquid zinc (left) and the water
(right) test cases. (b) Comparison of the velocity profiles extracted from the zinc simulations in the OpenFoam
(OF) and IBL/WIBL simulations. The profiles are extracted from the wave maxima (location 1) and wave
minima (location 2) in (a).

Zinc (δ = 74.2, f̂ = 0.05) Water (δ = 76.5, f̂ = 0.05)

IBL/WIBL OF IBL/WIBL OF

q̂min −0.158 −0.155 −0.159 −0.153
q̂max −0.240 −0.238 −0.239 −0.234
ĥmin 0.159 0.156 0.160 0.158
ĥmax 0.245 0.244 0.244 0.242
λ̂ 18.9 18.7 18.8 18.6

Table 4. Summary of the results in terms of flow rate and thickness maxima/minima (subscript min/max) and
wavelength (λ̂) for the IBL/WIBL models and the OpenFoam (OF) simulation.

numerical methods, as well as the capability of the long-wave formulation to model the
flow.

Table 4 collects all results in terms of flow rate and thickness maxima and minima, while
figure 7(b) shows the velocity profile underneath a maximum (1) and a minimum (2) of the
film waves in the simulations with zinc. The location in which the profiles are recomputed
is indicated in figure 7(a). For both IBL and WIBL, these profiles are reconstructed
from the results of the simulation (ĥ, q̂). In the IBL model this is a straightforward
implementation of (3.6); in the case of the WIBL model this involves all the relations
in table 6 with (3.1) and (2.6). For the WIBL model, reconstructing the velocity profile is
an ill-posed problem, since the closure of the model (i.e. the expression for Δτ̂ in (B13))
assumes that δ � 1 while in this case δ ∼ 75. Nevertheless, in these simple examples,
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the Δτ (1) term is small enough to let the WIBL converge on the IBL despite the large δ,
and the reconstructed profile reflects this perfect convergence. As later discussed in § 7.4,
this does not happen for the jet wiping configurations at higher Reynolds numbers, as the
higher-order corrections of the velocity profile become more important than the zeroth
order.

Finally, it is worth highlighting excellent agreement between the integral models and the
direct numerical simulation calculations, which reveals parabolic velocity profiles. This
result shows the important effect of the substrate motion as compared with the classic
falling film problem, where the departure from the parabolic profile occurs at a much
lower Reynolds number than the values considered here (see Denner et al. 2018).

7.2. The relative contribution of forces
This section focuses on the relative importance of all the terms in the integral momentum
formulation (2.4b) as the wiping strength (as measured by the wiping number Πg) is
increased. The WIBL and TTBL models are considered. As in the previous section, both
liquid zinc and water are analysed as working fluids.

The liquid properties are the same as the previous section, as listed in table 3. In the case
of zinc, the wiping conditions are taken to be representative of an industrial galvanizing
line, with a nozzle having an opening of d = 1.5 mm and stand-off distance Z = 15 mm.
The substrate velocities Up = {1, 2, 3} m s−1, corresponding to Re = {478, 1352, 2483}
and δ = {74, 263, 554}, are considered and, for each of these, the pressure in the nozzle is
varied in the range ΔPN = [3, 40] kPa. This leads to wiping numbers in the range Πg =
[0.7, 2.9] and a shear stress number in the range Tg = [5, 70].

In the case of water, the nozzle parameters Z and d are the same as for the zinc
cases. The substrate velocity is reduced to Up = {0.2, 0.3, 0.4} m s−1, corresponding
to Re = {28, 52, 80} δ = {4, 8.4, 14.3}, and the nozzle pressure decreased down to the
range ΔPN = [0.7, 1.5] kPa. This leads to much lower wiping numbers, in the range
Πg = [0.3, 0.8], but a comparable shear stress number, in the range Tg = [30, 80]. The
simulated wiping conditions fall within the operational range of the Essor VKI facility
(Buchlin 1997).

In all the investigated configurations, the harmonic oscillations of the jet have an
amplitude of θA = 10◦. It is worth noting that in the Shkadov scaling, this leads to different
amplitudes of the oscillations along the streamwise direction (x̂) as the jet stand-off
distance is the same while the streamwise length scale is not.

Three dimensionless frequencies are considered, i.e. f̂ = {0, 0.055, 0.16}. The zero
frequency simulates the process in steady-state conditions, yet accounting for the role of
inertia and surface tension. Several preliminary tests in this configuration confirm that the
flow is absolutely stable, meaning that initial disturbances in the film move away from
the domain (towards x̂ → ∞ if the disturbance is located in the run-back flow; towards
x̂ → −∞ otherwise) leaving the steady-state solution unvaried. The highest frequency
f̂ = 0.16, as further discussed in § 7.3, is damped by the liquid film and results in no
appreciable undulation. On the contrary, the frequency f̂ = 0.055 is in the range of
maximum receptivity of the liquid film and produces the largest waves.

The time-averaged coating thickness downstream of the wiping is shown in figure 8 for
both liquids. The left column refers to the wiping conditions in zinc, and the right column
to the wiping conditions in water. From top to bottom, the velocity of the substrate is
increased, and the corresponding rescaled Reynolds number δ = εRe is indicated. Each
figure compares the prediction of the ZO model presented in § 3.1. This comparison is
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Figure 8. Time-averaged thickness in the final coating film for three rescaled Reynolds numbers (indicated
in each plot) and various oscillation frequencies ( f̂ = {0, 0.055, 0.16}). The black dashed line and the red
continuous line correspond to the prediction from the zero order, the first taking into account the contribution
of the shear stress, the second setting the shear stress to zero. Black markers refer to simulations using the
WIBL model; white markers refer to simulations using the TTBL model.

made with (black dashed lines) and without (continuous red line) the shear stress in
the model. The results of the ZO models are well described by power laws of the form
aΠb

g , reported in the figures.
In the presence of shear stress, the power correlation changes slightly with the

substrate speed, while this remains unaltered if the shear stress is removed. This result
is in remarkable agreement with the experimental correlations presented in previous
experimental works (Gosset et al. 2019; Mendez et al. 2019). It is interesting to observe
that these experimental works were carried out on a much more viscous mineral oil,
producing similar wiping numbers (in the range Πg = [0.1, 0.8]) but much lower shear
stress numbers (in the range Tg = [1, 8]). This highlights the role of the shear stress in the
wiping process for liquids with low kinematic viscosity such as zinc or water and confirms
the experimental observation that the wiping of highly viscous liquids is mostly governed
by the dimensionless group Πg.
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Concerning the role of the substrate speed on the mean film, the ZO model predicts
a negligible impact in all the test cases, while the WIBL and TTBL models reveal a
discrepancy that becomes more important at lower wiping numbers and large Reynolds
numbers. Overall, the WIBL and TTBL models are in good agreement in all the
simulations analysed (at small Reynolds numbers, these are indistinguishable). The results
from these models at f̂ = 0 (trends with square markers) show that surface tension and
advection produce a significant departure from the wiping curve obtained by the simplified
model at Πg → 0 while the agreement is asymptotically reached at Πg → ∞.

It is worth noting that the cases with jet oscillation yield a higher mean coating thickness
regardless of the oscillation frequencies. This result is particularly interesting if one
considers that the case at f̂ = 0.16 yields no undulation in the final coat as later discussed
in § 7.3. Yet, the mean thickness increases, as if the oscillation spreads momentum and
results in an effective distribution that is closer to the time-averaged profiles. A similar
phenomenon is also observed by Lunz & Howell (2018), who studied the response of a
liquid film to an oscillatory pressure source and discussed the calculation of the effective
pressure.

Focusing on the wiping cases with zinc, figure 9 presents several instantaneous profiles
for six representative test cases taken from the results in figure 8. These include the lowest
(Re = 478) and the largest (Re = 2483) Reynolds numbers and the three perturbation
frequencies, keeping the wiping number at Πg = 1.856. In each of the six panels, the
first plot compares the instantaneous dimensionless film thickness profiles for WIBL and
TTBL models. The second plot compares the advection terms ∂xF profiles for both models
while the third collects the contributions to the wall shear stress. The term Δτ̂ (0) is the ZO
term from the WIBL, which is the one in the IBL model. The term Δτ̂ (1) is the first-order
contribution that distinguishes the WIBL from the IBL. Finally, the term Δτ̂T is the wall
shear stress term from the TTBL model.

As expected, no differences are observed between the three models at the lowest Re,
except for the cases at the highest perturbation frequency f̂ = 0.16. At Re = 478, the wall
shear stress terms have a larger contribution to the liquid film dynamics, especially in the
proximity of the wiping region. In this condition, the first-order term Δτ (1) appears to
have a negligible contribution; hence, the WIBL model corresponds almost everywhere
to the IBL model (not shown). In the case at Re = 2483, the contribution of this term
increases but remains less important than the advection term, which mostly dominates
the dynamics of the liquid waves. The TTBL model departs from the laminar models in
the run-back flow region, while no appreciable difference is observed in the final coating
region as this is characterized by ReF < 100. This further highlights the convective nature
of the problem with two opposite characteristic lines: the dynamics in the final coating film
appears to be insensitive to the dynamics of the run-back flow region. Finally, in terms of
the frequency response of the liquid coat, the three models reveal that the perturbation
frequency of f̂ = 0.16 is too high to generate any appreciable wave in the final coat. The
influence of the modelling strategy on the harmonic response of the flow is discussed in
§ 7.4; the next section focuses on the harmonic response of the film considering only the
WIBL model.

7.3. The frequency response of the liquid film
This section focuses on the frequency response of the liquid film subject to different
kinds of jet perturbation, producing pressure gradient evolutions of the form described
in figure 4. For a wiping number Πg = 1.2 and rescaled Reynolds number δ = 554,
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Figure 9. Results from the simulations of the jet wiping in galvanizing conditions using the WIBL and TTBL
models for Πg = 1.856, two Reynolds numbers (Re = 478 on the left column and Re = 2483 on the right) and
three oscillation frequencies ( f̂ = {0, 0.055, 0.16}) along the rows. In each panel the first plot from the left
shows an instantaneous film thickness, the second and the third the corresponding advection and shear stress
terms, respectively.
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Figure 10. Contour maps of the coating thickness h̃(x̂, t̂), zero-mean shifted in time, as a function of
dimensionless space and time. Four kinds of jet perturbation are considered: harmonic oscillations (first row),
upward-biased (second row) and downward-biased (third row) oscillations and jet pulsations (fourth row). The
perturbation frequencies are taken as f̂ = 0.02 (first column), f̂ = 0.05 (second column) and f̂ = 0.08 (third
column). All cases refer to galvanizing conditions with Πg = 1.2 and δ = 554.
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figure 10 shows several contour maps of the mean-centred thickness h̃ = ĥ(x̂, t̂) − h̄(x̂),
obtained by subtracting the temporal average h̄(x̂) = (1/T)

∫ T
0 ĥ(x̂, t̂)dt̂, with T the

dominant wave period. Four jet perturbations are considered, namely three oscillations
(harmonic, upward biased and downward biased) and a harmonic jet pulsation (cf.
figure 4). For each of these, the frequencies considered are f̂ = {0.02, 0.05, 0.08}.
For the jet oscillation test cases, a white dashed line indicates the evolution of the
impingement point, i.e. the region of maximum pressure and zero gas shear stress at the
interface.

The liquid film response to harmonic oscillation (first row of figure 10) is discussed
first. At f̂ = 0.02, the coating thickness is characterized by wave peaks of h̃ ≈ 0.1.
The characteristic lines tracing the propagation of the waves clearly show that these
originate below the average impact point, at x̂ ≈ −1, that is, in the region normally
belonging to the run-back flow. Within the range x̂ ∈ [−2, 2], spanned by the jet during
the oscillation, regions of liquid film accumulation (h̃ > 0) and depletion (h̃ < 0) alternate
harmonically as the coating film follows the jet oscillation. Within the region intersected
by the jet oscillation, the propagation speed of the coating waves is not constant and
strongly influenced by the displacement of pressure gradient and shear stress. Outside
this region, the wave propagation speed remains constant and approximately equal to
the substrate speed for x̂ > 2. The liquid meniscus follows the displacement of the
wiping region and the contour map of the mean-shifted thickness h̃ is almost symmetric
along x̂ = 0.

This is not the case at higher frequencies ( f̂ = 0.05 and f̂ = 0.08), in which the
disturbances in the run-back flow appear comparatively much lower and the waveform
of the liquid changes significantly. To better analyse the difference in the wave formation
mechanism, we consider the response of the liquid film thickness ĥ∗(t̂) in the impact point
x̂∗(t̂), defined as the point in which the gas pressure is maximum. Figures 11(a) and 11(b)
show, respectively, the evolution of ĥ∗(t̂) as a function of the dimensionless time, scaled
by the wave period, and its phase portrait with x̂∗(t̂), describing the oscillation of the
impact point. For plotting purposes, the curves in figure 11(a) are shifted to have matching
wave peaks, while the phase portraits are constructed by mean shifting both signals and
normalizing with respect to their peak-to-peak amplitude.

At the frequency of f̂ = 0.02, the film thickness at the impact point remains almost
sinusoidal and has a constant phase delay of approximately π/4. This phase delay is due to
the response time of the liquid film as the jet moves towards the run-back flow, encounters
a region of higher thickness, and imposes a thickness reduction. At f̂ = 0.05 and f̂ =
0.08, the response h∗(t) is no longer sinusoidal and the film does not have enough time
to allow for the wiping: during the ascending phase of the jet oscillation (denoted as A
in figure 11a), a portion of un-wiped liquid is dragged from the run-back flow region and
pushed towards the final coating region, from which it continues its upwards evolution at
the speed of the substrate. As a result, the wave peak reached in the case of f̂ = 0.05 is
about 20 times higher than in the case of f̂ = 0.02. These results confirm the existence of
the mechanisms for the wave formation originally postulated in the previous experimental
investigation by the authors (Mendez et al. 2019) and which hereinafter is referred to as
mechanism A.

The non-harmonic cases in the second and third rows of figure 10 show that both
the shape and the maximum amplitude of the resulting waves are strongly influenced
by the waveform of the jet oscillation. Nevertheless, the key observation from the
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Figure 11. Plots (a) and (c) show the film thickness at the impact point ĥ∗(t̂) as a function of the period
normalized time for three dimensionless frequencies, considering jet oscillations (a) and jet pulsations (c).
Plots (b) and (d) show the phase portrait linking ĥ∗(t̂) to the jet disturbance: this is the time varying location of
the impact x̂∗(t̂) in case of an oscillation (in b) and the time varying maxima max(∂x̂p̂g ) in case of a pulsation
(in d).

harmonic case applies: the characteristic lines through which the waves evolve (both
towards the run-back flow and towards the final coating film) originate below the mean
wiping point.

It is now instructive to consider the pulsating test cases in the last row of figure 10. In
this case, as the impingement point is fixed in time, the waves originate at the wiping line
x̂ = 0 and move at a constant speed in both downward and upward directions. Figures 11(c)
and 11(d) show, respectively, the time evolution of the thickness at the impact point and
its phase portrait with the maximum pressure gradient during the jet pulsation. The same
plotting adjustments of figure 11(a,b) in terms of shifting and normalization are adopted.
Regardless of the pulsation frequency considered, the thickness at the impinging point
remains overall sinusoidal, with the phase delay converging towards π/2, which is a
perfect quadrature. This second mechanism of wave formation is herein referred to as
mechanism B.

To conclude this section, figure 12 collects the frequency response of the film coating
in both the final coating region and the run-back flow region for the four perturbations
considered and for four combinations of wiping number Πg and rescaled Reynolds
number δ. All the test cases refer to galvanizing conditions, and the selected pairs
(Πg,δ) are indicated in the legend. For each of the wiping conditions, the plot shows the
dependency of the wave amplitude, measured in terms of the standard deviation hσ to
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Figure 12. Amplitude of the coating waves in terms of hσ /h̄ as a function of the dimensionless perturbation
frequency for four wiping conditions, indicated in the legend, and for the four jet perturbations previously
considered. The curves on the left column are computed in the final coating region (at x̂ = −15) while the
curves on the right are computed in the run-back flow region (at x̂ = 15). All the tests refer to galvanizing
conditions.

average h̄ ratio, over the dimensionless frequency. For the final coating film, these curves
are computed at a location x̂ = −15 while x̂ = 15 is considered for the run-back flow.

As expected from the previous analysis of the contour maps, the amplitude of the coating
waves in the case of an oscillating jet (mechanism A) is significantly larger than in the case
of a pulsating jet (mechanism B). Moreover, while mechanism A shows a region of strong
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Figure 13. Same as in figure 12 but considering the wiping of water instead of liquid zinc, and harmonic
oscillations only.

receptivity in the range of dimensionless frequencies f̂ = [0.03−0.08], the liquid film
behaves as a low pass filter with respect to mechanism B. Regardless of the mechanism,
no coating waves can be expected for perturbations at f̂ > 0.2.

By comparing the modulation curves for the two regions of the coating flow, the lower
portion of the receptivity band, (say f̂ ≈ [0.03−0.05]) appears of significant interest. This
range of frequency is also strongly present in the run-back flow, while the second portion
(say f̂ ≈ [0.05–0.08]) is more attenuated. In the coupling mechanism described in previous
studies (Pfeiler et al. 2017; Mendez et al. 2017b, 2019), the jet oscillation is sustained by
the waves in the run-back coating flow. These waves appear to be the major cause of the
unstable interaction between the two flows.

Concerning the range of possible frequencies, it is interesting to report that f̂ = 0.05
– at which maximum amplitude of the coating waves can be expected – corresponds
to wavelengths of the order of λ = 25–35 mm depending on the wiping conditions.
This range is in agreement with undulation defects observed in several galvanizing lines
(Pfeiler et al. 2017). Moreover, the results show that the undulation amplitude produced
by an oscillating jet (mechanism A) increases at larger substrate speeds – a fact also in
line with industrial observations – while it remains rather insensitive for a pulsating jet
(mechanisms B).

As to the role of the wiping number, its impact on the coating wave amplitude is a
more difficult interpretation, especially if one considers that the wiping of liquids with
low kinematic viscosity such as liquid zinc or water is also strongly influenced by the
shear stress, as shown in figures 8. While increasing the wiping number results in a
thicker run-back flow, the main role of the shear stress is that of smoothing the wiping
meniscus and, thus, the transition from the final coating film to the run-back flow. The
smoother this meniscus is, the smaller the thickness gradient encountered by the jet during
oscillation, and, hence, the lower the impact of mechanism A. These results also show that
the interaction between the gas and the liquid film is strongly influenced by the waveform
of a possible jet oscillation: while the receptivity range of the film remains unaffected,
the amplitude of the undulation is significantly larger in a harmonic oscillation than in
non-harmonic oscillations.

Finally, it is interesting to compare the dimensionless modulation function obtained
in the galvanizing conditions with those obtained for the wiping of water. Only the
response to harmonic oscillation is considered, and shown in figure 13 for four wiping
conditions. Despite the largely different dimensionless numbers controlling the process,
the maximum undulation amplitude in the final coating film is produced in a similar range
of dimensionless frequencies f̂ = [0.03−0.08] – i.e. the band dominated by mechanism A.
Given the largely different properties of the two liquids, these results show that the
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Figure 14. Same plot as the first row of figure 12, considering the two extreme cases Πg = 1.2, δ = 554
(largest response, filled markers) and Πg = 2.3, δ = 74 (smallest response, empty markers) comparing the
results from the IBL, WIBL and TTBL models.

Shkadov-like scaling well describes the physical phenomena governing the maximum
receptivity of the liquid film.

7.4. The influence of the modelling strategy
It is finally of interest to analyse the impact of the modelling strategy on the results
previously obtained by comparing the IBL, WIBL and TTBL models. We here consider
the response of the liquid film to harmonic jet oscillations in galvanizing conditions.
Figure 14 compares the frequency response from the three models on the two extreme cases
from the first row of figure 12: these are Πg = 1.2 and δ = 554 (largest response, filled
markers) and Πg = 2.3, δ = 74 (smallest response, empty markers). The impact of the
model becomes more pronounced as larger waves are considered, with the TTBL model
predicting significantly larger waves both in the final coating film and in the run-back flow.
It is nevertheless interesting to observe that the range of maximum receptivity of the liquid
film remains unvaried, with the three curves showing the same qualitative behaviour.

Figure 15 shows five snapshots of the film thickness computed by the three models,
together with the instantaneous pressure gradient profile, for two test cases with oscillation
frequency f̂ = 0.04 (on the top) and f̂ = 0.06 (on the bottom) and wiping at Πg = 1.2
and δ = 553. These yield the largest waves in the final coating film mostly originated by
mechanism A described in the previous section.

The sequence of five snapshots captures one period of this mechanism, starting from its
most downward position (first column). In the second column, the effect of the wiping is
visible while the snapshot in the third column captures the formation of the wave in the
final coat, as a local minimum of thickness is dragged upward. In the snapshots of the
fourth and fifth columns, the jet is in its descending phase, impinging on a much thicker
film, and mechanism A begins its next period.

It is interesting to observe that these waves become strongly asymmetric soon after
their formation, with a steeper gradient on their tail. This asymmetry changes as the wave
evolves downstream under the action of the shear stress, which imparts higher advection
velocity to regions of higher thickness. While the differences between the laminar models
are minor, the turbulence model leads to largely different shapes of the waves in the final
coating film. Since in this region the TTBL model recovers the IBL, this difference is
linked to the discrepancy in the prediction of the thickness of the run-back flow, where the
TTBL yields a much thicker film.

Focusing on the influence of the turbulent modelling, figure 16 further analyses the test
case with f̂ = 0.04 in the upper row of figure 15. The first plot on the left shows the
maxima, minima and mean distribution of the term q̂FRe, the absolute value of which
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Figure 15. Sequence of snapshots for test cases with Πg = 1.2 and δ = 554 and an harmonic oscillation of the
impinging jet at f̂ = 0.04 (top) and f̂ = 0.06 (bottom). Each snapshot plots the film thickness for IBL (dashed
black line), WIBL (continuous blue line) and TTBL (dotted red line), together with the pressure gradient
imposed by the impinging jet (light blue dotted line). The thickness axis is on the top of each plot; the pressure
gradient axis is on the bottom. The time step is indicated in each plot. Animations of both cases are provided
as supplementary movies 1 and 2, available at https://doi.org/10.1017/jfm.2020.1075.
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Figure 16. The plots on the left shows the minima, mean and maximum distribution for the flow rate
contributions q̂F and 1

2 ĥ2τ̂g, multiplied by the global Reynolds number Re: the absolute value of these quantities
leads to the Reynolds numbers in (2.8a–c). The plots on the right show the velocity profiles from the IBL and
TTBL under wave peaks in the locations x̂ = −50, −15, 15.

controls the transition to turbulence. This term is negligible from x̂ > 15, suggesting that
a laminar model is appropriate to simulate the final coating flow. On the other hand, this
term is large in the run-back flow and, most importantly, negative: as described by (4.3),
this is a consequence of the large and positive contribution of the shear stress (1/2ĥ2τ̂gRe),
depicted in the figure on the right. Mechanism A for the wave formation propagates the
discrepancy in the run-back flow towards the final coat.

Finally, the plots on the right of figure 16 show three instantaneous velocity profiles
extracted on a wave peak located at x̂ = {−50, −15, 15} for both the IBL and TTBL
models. Far from the impact point, in the final coating, the velocity profile appears almost
linear due to the thin thickness of the layer. Close to the impact point, in the run-back
flow region, the velocity profile appears almost linear due to the strong influence of the
gas shear stress, although the discrepancy between the two models increases. Finally, it is
worth reporting that in this condition, the rescaled Reynolds number is too high to allow
for reconstructing the velocity profile in the WIBL model as its first-order corrections,
designed for δ � 1, become non-physical. In particular, at large δ, the coefficients aj
with j > 0 in table 6 lead to extremely large contributions to the velocity profile. It
appears thus surprising that the predicted film response is still closely matching the
IBL, as the inconsistency in the large aj’s is somewhat mitigated by the shear stress
term in (B12). To conclude, the mechanisms for wave formation revealed in this work,
and their range of maximum receptivity are qualitatively independent of the models
implemented.

8. Conclusions

We have presented an extension of classical low-dimensional models for falling
liquid films to the jet wiping problem, tailoring accordingly the Shkadov-like scaling.
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This process consists of using an impinging gas jet to control the thickness of a liquid
film on a moving substrate and is characterized by an unstable interaction between the gas
and the liquid film that limits the achievable coating uniformity.

The investigated integral models allow for simulating this complex interaction in
industrially relevant conditions with minor computational costs and, thus, enable insights
on the process dynamics that would otherwise not be possible using high fidelity
simulations. The proposed models extend the modelling strategies commonly used in
falling liquid films to a more complex scenario that includes the motion of the substrate
and the presence of an imposed pressure gradient and shear stress distribution – in this
work simulating an unstable impinging jet. The extended models, the self-similar IBL
and WIBL models, were extensively described and framed along with the classic ZO
formulation encountered in the literature of the jet wiping process. Moreover, an extension
of the IBL model, referred to as the TTBL model, has been proposed to account for the
impact of turbulence in the liquid film response.

The numerical implementation of these models has been successfully validated via
direct numerical simulations using the VOF method in OpenFoam, considering the
simplified test case of a pulsating liquid film evolving along with a moving interface.
These models were then used to study the response of the liquid film to various kinds
of perturbation in the jet flow, including harmonic and non-harmonic oscillations and
pulsations. The analysis of the relative influence of all the terms in the equations reveals
that the nonlinear advection term dominates over a wide range of wiping conditions and
frequencies of the perturbation. Moreover, by analysing the wiping process in galvanizing
conditions (using zinc) and in laboratory conditions (using water), it is shown that
the Shkadov-like scaling reveals an interesting similarity of the frequency response of
the liquid coat. In the simplest case of a film flowing over an upward-moving surface, the
similarity between the two configurations applies to the entire film evolution.

Two main mechanisms for the formation of waves in the coating film downstream of
the wiping region were identified. The first mechanism, referred to as mechanism A, is
inherently linked to the presence of a wiping meniscus and to the fact that, during its
oscillation, the jet drives liquid upwards from the thicker region below the wiping point.
The amplitude and shape of the coating waves produced by this mechanism were shown
to be linked to the waveform of the jet oscillation. The second mechanism, referred to as
mechanism B, is related to the local variation of the pressure gradient and shear stress,
as a result of unsteadiness in the jet flow. The dimensionless transfer function for both
mechanisms has been presented, and the region of highest receptivity of the film has
been identified. In particular, while the liquid film behaves as a low pass filter against
mechanisms B, a region of strong receptivity to mechanism A is found both upstream and
downstream of the wiping point in the range of dimensionless frequencies f̂ = 0.03–0.05.
In galvanizing conditions, these correspond to wavelengths in the range λ = 25–35 mm,
in good agreement with industrial observations.

Finally, the comparison between the IBL and WIBL methods shows good qualitative
agreement at the highest wiping numbers Πg, highest rescaled Reynolds number δ and
highest perturbation frequency f̂ . On the other hand, the TTBL method predicts a much
larger thickness in the run-back flow. As mechanism A is triggered, this results in different
wave shapes in the final coating. Nevertheless, these discrepancies do not alter the
main results concerning the mechanisms on the undulation formation nor their range of
large receptivity of the liquid film over the investigated wiping conditions. Although the
interaction between the liquid film and impinging jet flow is characterized by coupling
phenomena that do not fit in the simplified one-way coupling framework, the mechanisms
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revealed by this study certainly play an essential role in the stability of the jet wiping
process.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1075.
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Appendix A. From Navier–Stokes equations to (1)

The long-wave formulation is based on the assumption that the streamwise reference
scale [x] is [x] � [h] and, thus, a film parameter ε = [h]/[x] � 1 allows ordering of
the importance of all the terms. The continuity equation, under the assumption of
incompressibility, can be scaled as

{
Up

[x]

}
∂x̂û +

{
εUp

[h]

}
∂ŷv̂ = 0, (A1)

and, thus, yields (2.1a) provided that [v] = ε[u] = εUp, having taken [u] = Up. Taking
[t] = [x]/Up, the momentum equation in the streamwise coordinate can be scaled as

{
U2

p

[x]

}
(∂t̂ û + û∂x̂û + v̂∂ŷû) = −

{
[p]

ρl[x]

}
∂x̂p̂l +

{
νl

Up

[x]2

}
∂x̂x̂û +

{
νl

Up

[h]2

}
∂ŷŷû + g.

(A2)

Multiplying both sides by [h]2/νUp, taking the reference pressures [p], thickness [h]
from table 1 and neglecting terms of O(ε2) yields (2.1b). The same procedure on the
momentum equation along the cross-stream direction y leads to (2.1c). The kinematic
boundary conditions (2.2) can be obtained scaling by εUp, while the full force balance
at the interface scales as

(p̂l − p̂g){ρlg[x]} − 2μln · El · n − 2
[h]σl

[x]2 κ̂ = 0 in y = h, (A3)

where the second term accounts for the viscous term in the normal direction and involves
the normal unit vector n = (−∂xh, 1)T/

√
1 + (∂xh)2 and the symmetric part of the rate

of deformation tensor El = 1/2 (∇v + ∇vT), with ∇v = (u, v) the velocity field; the
third term accounts for the surface tension, involving the mean curvature κ̂ = −1/2 ∇ · n̂.
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Expanding the viscous term in (A3) yields

n · El · n = (∂yu + ∂xv)∂xh − ∂yv − ∂xu(∂xh)2

1 + (∂xh)2 in y = h. (A4)

Scaling this expression and neglecting terms in O(ε2), the contribution of normal
viscous stresses reads as

2μl
Up

[h]
n̂ · Êl · n̂ = 2μl

Up

[h]
ε(∂ŷv̂ − ∂x̂ĥ∂ŷû) in ŷ = ĥ. (A5)

Introducing this result in (A3), observing that at O(ε) the dimensionless curvature
becomes κ̂ = 1/2 ∂x̂x̂ĥ and dividing by the reference pressure [p] = ρ g [x] gives

(p̂l − p̂g) − ε2n̂ · Êl · n̂ + ε3 l2c
[h]2 ∂x̂x̂ĥ = 0 in ŷ = ĥ, (A6)

where lc = √
σ/ρ g is the capillary length. It is from this equation that the choice of the

streamwise length scale [x] – hence, the film parameter ε – is taken. Following the scaling
approach proposed by Shkadov (1971), this choice is made such that the surface tension
contribution remains of leading order. Therefore,

ε =
(

[h2]
l2c

)1/3

=
(

μUp

σ

)1/3

= Ca1/3. (A7)

By construction, then, the contribution of elongational viscosity is neglected and (A3)
reduces to (2.3a). This approximation is valid for Ca1/3 � 1 and the weight of the viscous
term becomes Ca2/3. Finally, concerning the force balance in the tangential direction, the
full equation reads as

n · (2μlEl) · t = τg|h, in y = h, (A8)

where t = (1, ∂xh)T/
√

1 + (∂xh)2 is the tangential unit vector. Expanding the matrix
multiplication and dividing the result by Up/[h], the scaled form of this equation becomes

(1 − ε2(∂x̂ĥ)2)(ε2∂x̂v̂ + ∂ŷû) + 2ε2∂x̂ĥ(∂ŷv̂ − ∂x̂û) = τ̂g in ŷ = ĥ, (A9)

having introduced the reference shear stress [τ ] = μ[u]/[h]. To the leading order O(ε),
this equation simplifies to (2.3b).

Appendix B. Details of the WIBL model derivation

After introducing the velocity profile (3.1), the fourth-order polynomial in ȳ = y/h in
(3.16) is obtained. Setting all the coefficients of the polynomial to zero the linear system
in (3.17) is derived. The vector components on the right-hand side of (3.17), denoted as
G = {G0, . . . , G4}, are shown in table 5. Observe that all the variables in this and in the
following tables are dimensionless and the ‘̂ ’ is dropped to ease the notation. Moreover,
the derivation is carried out with an arbitrary scaling of the strip velocity, such that
u( y = 0) = −γ . This allows us to retrieve the model for the jet wiping if γ = 1 and the
classical models for falling liquid films if γ = 0.

Setting all the coefficients Gi equal to zero, the solution of the system in (3.17) yields
the coefficients of the expansion A = {a0, . . . a4} in table 6. These have a functional
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G0 = ∂xxxh − ∂xpg + 1 (B1)

G1 = εRe
[

a0∂th
h

− ∂ta0 − h∂tτg + γ

(
h∂xτg − a0∂xh

h
+ ∂xa0

)]
(B2)

G2 = εRe

[
−h2τg∂xτg

2
− a0h∂xτg

2
+ a0τg∂xh

2
+ a2

0∂xh
2h

− a0∂th
h

+ ∂ta0

2

hτg∂xa0

2
− a0∂xa0

2
+ γ

(
a0∂xh

h
− ∂xa0

2

)]
(B3)

G3 = εRe

(
−2a0τg∂xh

3
− 2a2

0∂xh
3h

+ hτg∂xa0

3
+ a0∂xa0

3

)
(B4)

G4 = εRe

(
a2

0∂xh
6h

− a0∂xa0

12

)
(B5)

Table 5. Vector components G = {G0, . . . , G4} for the system in (3.17).

a0 = h2(1 + ∂xxxh − ∂xpg) + εRe

[
−h4τg∂xτg

6
− a0h3∂xτg

6
− h3∂tτg

2
− h2∂ta0

3

+ a2
0h∂xh
30

+ a0h∂th
6

− h3τg∂xa0

12
− a0h2∂xa0

10
+ γ

(
h2∂xa0

3
+ h3∂xτg

2
− a0h∂xh

6

)]
(B6)

a1 = εRe

[
−h4τg∂xτg

12
− a0h3∂xτg

12
− h3∂tτg

4
+ a2

0h∂xh
60

− h2∂ta0

6
− h3τg∂xa0

24

+a0h∂th
12

− a0h2∂xa0

20
+ γ

(
h2∂xa0

6
+ h3∂xτg

4
− a0h∂xh

12

)]
(B7)

a2 = εRe

[
−h4τg∂xτg

18
− a0h3∂xτg

18
+ a2

0h∂xh
90

+ h2∂ta0

18
− a0h∂th

9
− h3τg∂xa0

36

− a0h2∂xa0

30
+ γ

(
a0h∂xh

9
− h2∂xa0

18

)]
(B8)

a3 = εRe

(
− τga0h2∂xh

24
− a2

0h∂xh
30

+ τgh3∂xa0

48
+ a0h2∂xa0

60

)
(B9)

a4 = εRe

(
a2

0h∂xh
150

− a0h2∂xa0

300

)
(B10)

Table 6. Full solution for the coefficients A = {a0, . . . a4} in (3.1), obtained as vector A = Γ −1G in (3.17).

dependency on a0 for all the terms weighted by the rescaled Reynolds number δ = εRe.
Observe that in the falling film case, with γ = 0 and ∂xpg = τg = 0, the equations in
tables 5 and 6 recovers (6.43) and (6.44) in Kalliadasis et al. 2012.

The coefficients in table 6 are introduced in the contribution q̂F of the flow rate (3.3),
obtaining (B11) from table 7. From this, the first coefficient a0 is isolated in (B12).
Introducing this expression in the shear stress term (3.5) gives the results in (B13), having
introduced a0 = 3q/h − 3/2hτg + 3γ + O(ε) inside the parentheses and truncating all the
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q = h2τg

2
+ a0h

3
− γ h + εRe

[
−7h5τg∂xτg

360
− 7a0h4∂xτg

360
− h4∂tτg

24
− h3∂ta0

45

+ a0
2h2∂xh
504

+ a0h2∂th
360

− h4τg∂xa0

120
− 3a0h3∂xa0

280
− a0h3τg∂xh

360

+ γ

(
h3∂xa0

45
− a0h2∂xh

360
+ h4∂xτg

24

)]
(B11)

a0 = 3q
h

− 3
2

hτg + 3γ + εRe

[
7h4τg∂xτg

120
+ 7a0h3∂xτg

120
+ h3∂tτg

8
+ h2∂ta0

15

+ a0h2τg∂xh
120

− a2
0h∂xh
168

− a0h∂th
120

+ h3τg∂xa0

40
+ 9a0h2∂xa0

280

+ γ

(
a0h∂xh

120
− h2∂xa0

15
− h3∂xτg

8

)]
(B12)

Δτ = 3
2
τg − 3q

h2 − 3γ

h
+ εRe

[
−19h3τg∂xτg

3360
− 17hq∂xτg

560
− h2∂tτg

40
+ 12q2∂xh

35h2

− hτg∂xq
56

− 18q∂xq
35h

− ∂tq
5

− h2τg
2∂xh

112
− qτg∂xh

280

+γ

(
6q∂xh
35h

− 4∂xq
35

− 3hτg∂xh
140

− 3h2∂xτg

560
+ γ

∂xh
35

)]
(B13)

Table 7. Full expression for q using the coefficients A = {a0, . . . a4} in table 6 in (3.3), together with the
resulting expression of a0 and the final result on the shear stress term Δτ for the WIBL model of the jet wiping
process.

terms in O(ε2). Equation (B13) (which, for γ = 1, is (3.21)) can be finally introduced in
(2.4b) to close the WIBL model.

To retrieve the WIBL model for a falling liquid film (see Kalliadasis et al. 2012, (6.51)),
it suffices to introduce γ = 0 and ∂xpg = τg = 0 in (B12) and observe that in this case
the advection term in (3.15) simplifies to F = 6q2/(5h). Then, (2.4b) becomes (6.51) in
Kalliadasis et al. (2012).

Appendix C. Implemented numerical schemes

The high-order fluxes F H are derived from the two-step Lax–Wendroff scheme while the
low-order fluxes F L are taken from the two-step Lax–Friedrich scheme. The flux terms in
the high-order scheme are

F H =
⎧⎨
⎩

F+ = F (V k
i , V k

i+1) = F (V k+1/2
i+1/2 ),

F− = F (V k
i , V k

i−1) = F (V k+1/2
i−1/2 ).

(C1)

The flux terms in the lower-order scheme adds diffusive terms and reads as

F L =

⎧⎪⎨
⎪⎩

F+ = F (V k
i , V k

i+1) = 1
2

F (V k+1/2
i+1/2 ) + Δx

2Δt
(V k+1/2

i+1/2 − V k
i ),

F− = F (V k
i , V k

i−1) = 1
2

F (V k+1/2
i−1/2 ) + Δx

2Δt
(V k

i − V k+1/2
i−1/2 ).

(C2)
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Both schemes use the midpoint solutions in time:

V k+1/2
i−1/2 = 1

2
(V k

i + V k
i−1) + Δt

2Δx
[F (V k

i ) − F (V k
i−1)] + 1

2
ΔtSk

i+1/2, (C3a)

V k+1/2
i−1/2 = 1

2
(V k

i − V k
i−1) + Δt

2Δx
[F(V k

i ) − F (V k
i−1)] + 1

2
ΔtSk

i−1/2. (C3b)

REFERENCES

ALEKSEENKO, S.V., MARKOVICH, D.M. & SHTORK, S.I. 1996 Wave flow of rivulets on the outer surface
of an inclined cylinder. Phys. Fluids 8 (12), 3288–3299.

ALEKSEENKO, S.V., NAKORYAKOV, V.E. & POKUSAEV, B.G. 1985 Wave formation on vertical falling liquid
films. Intl J. Multiphase Flow 11 (5), 607–627.

ALEKSEENKO, S.V., NAKORYAKOV, V.E. & POKUSAEV, B.G. 1994 Wave Flow of Liquid Films. Begell
House.

ANISZEWSKI, W., ZALESKI, S., POPINET, S. & SAADE, Y. 2019 Planar jet stripping of liquid coatings:
numerical studies. Preprint.

BELTAOS, S. 1976 Oblique impingement of plane turbulent jets. J. Hydraul. Div. ASCE 102, 1177–1191.
BRACKBILL, J.U, KOTHE, D.B. & ZEMACH, C. 1992 A continuum method for modeling surface tension.

J. Comput. Phys. 100 (2), 335–354.
BUCHLIN, J.M. 1997 Modelling of gas jet wiping. In Thin Liquid Films and Coating Processes, VKI Lecture

Series. von Karman Institute for Fluid Dynamics.
CHANG, H.-C. & DEMEKHIN, E.A. 1996 Solitary wave formation and dynamics on falling films. In Advances

in Applied Mechanics, pp. 1–58. Elsevier.
CHANG, H.-H. & DEMEKHIN, E.A. 2002 Complex Wave Dynamics on Thin Films. Elsevier Science.
CRASTER, R.V. & MATAR, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3),

1131–1198.
DE VITA, F., LAGRÉE, P.-Y., CHIBBARO, S. & POPINET, S. 2020 Beyond shallow water: appraisal of a

numerical approach to hydraulic jumps based upon the boundary layer theory. Eur. J. Mech. (B/Fluids)
79, 233–246.

DEMEKHIN, E.A. & SHKADOV, V.Y. 1985 Three-dimensional waves in a liquid flowing down a wall. Fluid
Dyn. 19 (5), 689–695.

DENNER, F., CHAROGIANNIS, A., PRADAS, M., MARKIDES, C.N., VAN WACHEM, B.G.M. &
KALLIADASIS, S. 2018 Solitary waves on falling liquid films in the inertia-dominated regime. J. Fluid
Mech. 837, 491–519.

DERYAGIN, S.M. & LEVI, B.M. 1964 Film Coating Theory. The Focal Press.
DESHPANDE, S.S., ANUMOLU, L. & TRUJILLO, M.F. 2012 Evaluating the performance of the two-phase

flow solver interFoam. Comput. Sci. Disc. 5 (1), 014016.
DIETZE, G.F. 2016 On the Kapitza instability and the generation of capillary waves. J. Fluid Mech.

789, 368–401.
DIETZE, G.F., AL-SIBAI, F. & KNEER, R. 2009 Experimental study of flow separation in laminar falling

liquid films. J. Fluid Mech. 637, 73–104.
DIETZE, G.F., LEEFKEN, A. & KNEER, R. 2008 Investigation of the backflow phenomenon in falling liquid

films. J. Fluid Mech. 595, 435–459.
DIETZE, G.F., ROHLFS, W., NÄHRICH, K., KNEER, R. & SCHEID, B. 2014 Three-dimensional flow

structures in laminar falling liquid films. J. Fluid Mech. 743, 75–123.
DIETZE, G.F. & RUYER-QUIL, C. 2013 Wavy liquid films in interaction with a confined laminar gas flow.

J. Fluid Mech. 722, 348–393.
DORO, E.O. & AIDUN, C.K. 2013 Interfacial waves and the dynamics of backflow in falling liquid films.

J. Fluid Mech. 726, 261–284.
VAN DRIEST, E.R. 1956 On turbulent flow near a wall. J. Aeronaut. Sci. 23 (11), 1007–1011.
ELLEN, C.H. & TU, C.V. 1983 An analysis of jet stripping of molten metallic coatings. In Eighth Australasian

Fluid Mechanics Conference.
ELLEN, C.H. & TU, C.V. 1984 An analysis of jet stripping of liquid coatings. J. Fluids Engng 106 (4),

399–404.
ELROD, H.G. & NG, C.W. 1967 A theory for turbulent fluid films and its application to bearings. Trans. ASME

J. Lubr. Technol. 89 (3), 346–362.

911 A47-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1075


M.A. Mendez and others

ELSAADAWY, E.A., HANUMANTH, G.S., BALTHAZAAR, A.K.S., MCDERMID, J.R., HRYMAK, A.N. &
FORBES, J.F. 2007a Coating weight model for the continuous hot-dip galvanizing process. Metall. Trans.
B 38B, 413–424.

ELSAADAWY, E.A., HANUMANTH, G.S., BALTHAZAAR, A.K.S., MCDERMID, J.R., HRYMAK, A.N. &
FORBES, J.F. 2007b Coating weight model for the continuous hot-dip galvanizing process. Metall. Trans.
B 38 (3), 413–424.

ESSL, W., PFEILER, C., REISS, G., ECKER, W., RIENER, C.K. & ANGELI, G. 2017 LES-VOF simulation
and POD analysis of the gas-jet wiping process in continuous galvanizing lines. Steel Res. Intl 89 (2),
1700362.

FRANK, A.M. 2006 Shear driven solitary waves on a liquid film. Phys. Rev. E 74 (6), 065301.
FRANK, A.M. 2008 Numerical simulation of gas driven waves in a liquid film. Phys. Fluids 20 (12), 122102.
GAO, D., MORLEY, N.B. & DHIR, V. 2003 Numerical simulation of wavy falling film flow using VOF

method. J. Comput. Phys. 192 (2), 624–642.
GATAPOVA, E.Y. & KABOV, O.A. 2008 Shear-driven flows of locally heated liquid films. Intl J. Heat Mass

Transfer 51 (19–20), 4797–4810.
GESHEV, P.I. 2014 A simple model for calculating the thickness of a turbulent liquid film moved by gravity

and gas flow. Thermophys. Aeromech. 21 (5), 553–560.
GINTING, B.M. & MUNDANI, R.-P. 2018 Artificial viscosity technique: a Riemann-solver-free method for

2D urban flood modelling on complex topography. In Advances in Hydroinformatics, pp. 51–74. Springer.
GOSSET, A. 2007 Study of the interaction between a gas flow and a liquid film entrained by a moving surface.

PhD thesis, Université Libre de Bruxelles- von Karman Institute for Fluid Dynamics.
GOSSET, A. & BUCHLIN, J.-M. 2007 Jet wiping in hot-dip galvanization. J. Fluids Engng 129 (4), 466.
GOSSET, A., MENDEZ, M.A. & BUCHLIN, J.-M. 2019 An experimental analysis of the stability of the jet

wiping process: part I – characterization of the coating uniformity. Exp. Therm. Fluid Sci. 103, 51–65.
HAAR, D.T. 1965 Wave flow of thin layers of a viscous fluid. In Collected Papers of P.L. Kapitza, pp. 662–709.

Elsevier.
HERNANDEZ-DUENAS, G. & BELJADID, A. 2016 A central-upwind scheme with artificial viscosity for

shallow-water flows in channels. Adv. Water Resour. 96, 323–338.
HIRS, G.G. 1973 A bulk-flow theory for turbulence in lubricant films. Trans. ASME J. Lubr. Technol. 95 (2),

137–145.
HOCKING, G.C., SWEATMAN, W.L., FITT, A.D. & BREWARD, C. 2010 Deformations during jet-stripping

in the galvanizing process. J. Engng Maths 70 (1–3), 297–306.
HOWISON, S. 2005 Practical Applied Mathematics. Cambridge University Press.
ISHIGAI, S., NAKANISI, S., KOIZUMI, T. & OYABU, Z. 1972 Hydrodynamics and heat transfer of vertical

falling liquid films: part 1, classification of flow regimes. Bull. JSME 15 (83), 594–602.
JAMES, F., LAGRÉE, P.-Y., LE, M.H. & LEGRAND, M. 2019 Towards a new friction model for shallow water

equations through an interactive viscous layer. ESAIM: Proc. 53 (1), 269–299.
JOHNSTONE, A.D., KOSASIH, B., PHAN, L.Q., DIXON, A. & RENSHAW, W. 2019 Coating film profiles

generated by fluctuating location of the wiping pressure and shear stress. ISIJ Intl 59 (2), 319–325.
KALLIADASIS, S., RUYER-QUIL, C., SCHEID, B. & VELARDE, M.G. 2012 Falling Liquid Films.

Springer.
KAPITZA, P.L. 1948a Wave flow of thin layers of a viscous fluid: II. Fluid flow in the presence of continuous

gas flow and heat transfer. In Collected Papers of P.L. Kapitza (ed. D. Ter Haar), vol. II. Pergamon.
KAPITZA, P.L. 1948b Wave flow of thin layers of viscous fluid: I. Free flow. In Collected Papers of P.L. Kapitza

(ed. D. Ter Haar), vol. II. Pergamon.
KARIMI, G. & KAWAJI, M. 1999 Flow characteristics and circulatory motion in wavy falling films with and

without counter-current gas flow. Intl J. Multiphase Flow 25 (6), 1305–1319.
KATOPODES, N.D. 2018 Free-Surface Flow: Shallow Water Dynamics. Butterworth-Heinemann.
KING, C.J. 1966 Turbulent liquid phase mass transfer at free gas-liquid interface. Ind. Engng Chem. Res. 5 (1),

1–8.
KURGANOV, A. & LIU, Y. 2012 New adaptive artificial viscosity method for hyperbolic systems of

conservation laws. J. Comput. Phys. 231 (24), 8114–8132.
LACANETTE, D., GOSSET, A., VINCENT, S., BUCHLIN, J.-M. & ARQUIS, É. 2006 Macroscopic analysis of

gas-jet wiping: numerical simulation and experimental approach. Phys. Fluids 18 (4), 042103.
LAVALLE, G., LI, Y., MERGUI, S., GRENIER, N. & DIETZE, G.F. 2019 Suppression of the Kapitza instability

in confined falling liquid films. J. Fluid Mech. 860, 608–639.
LAVALLE, G., VILA, J.-P., LUCQUIAUD, M. & VALLURI, P. 2017 Ultraefficient reduced model for

countercurrent two-layer flows. Phys. Rev. Fluids 2 (1), 014001.
LEVEQUE, R.J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge University Press.

911 A47-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1075


Dynamics of the jet wiping process via integral models

LIU, J. & GOLLUB, J.P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6 (5), 1702–1712.
LIU, J., SCHNEIDER, J.B. & GOLLUB, J.P. 1995 Three-dimensional instabilities of film flows. Phys. Fluids

7 (1), 55–67.
LUNZ, D. & HOWELL, P.D. 2018 Dynamics of a thin film driven by a moving pressure source. Phys. Rev.

Fluids 3 (11), 114801.
MALAMATARIS, N.A. & BALAKOTAIAH, V. 2008 Flow structure underneath the large amplitude waves of a

vertically falling film. AIChE J. 54 (7), 1725–1740.
MATTSSON, A.E. & RIDER, W.J. 2014 Artificial viscosity: back to the basics. Intl J. Numer. Meth. Fluids

77 (7), 400–417.
MENDEZ, M.A., GOSSET, A. & BUCHLIN, J.-M. 2019 Experimental analysis of the stability of the jet wiping

process, part II: multiscale modal analysis of the gas jet-liquid film interaction. Exp. Therm. Fluid Sci.
106, 48–67.

MENDEZ, M.A., GOSSET, A., MYRILLAS, K. & BUCHLIN, J. -M. 2017a Numerical modal analysis of the
jet wiping instability. In European Coating Symposium 2017.

MENDEZ, M.A., SCELZO, M.T. & BUCHLIN, J. -M. 2018 Multiscale modal analysis of an oscillating
impinging gas jet. Exp. Therm. Fluid Sci. 91, 256–276.

MENDEZ, M.A., SCHEID, B. & BUCHLIN, J.-M. 2017b Low Kapitza falling liquid films. Chem. Engng Sci.
170, 122–138.

MEZA, C.E. & BALAKOTAIAH, V. 2008 Modeling and experimental studies of large amplitude waves on
vertically falling films. Chem. Engng Sci. 63 (19), 4704–4734.

MUDAWAR, I. & HOUPT, R.A. 1993 Mass and momentum transport in smooth falling liquid films laminarized
at relatively high Reynolds numbers. Intl J. Heat Mass Transfer 36 (14), 3437–3448.

MUDAWWAR, I.A. & EL-MASRI, M.A. 1986 Momentum and heat transfer across freely-falling turbulent
liquid films. Intl J. Multiphase Flow 12 (5), 771–790.

MUKHOPADHYAY, S., CHHAY, M. & RUYER-QUIL, C. 2017 Modelling transitional falling liquid films. In
23éme Congrés Français de Mécanique.

MYRILLAS, K., GOSSET, A., RAMBAUD, P. & BUCHLIN, J.M. 2009 CFD simulation of gas-jet wiping
process. Eur. Phys. J.-Spec. Top. 166 (1), 93–97.

MYRILLAS, K., RAMBAUD, P., MATAIGNE, J.-M., GARDIN, P., VINCENT, S. & BUCHLIN, J.-M. 2013
Numerical modeling of gas-jet wiping process. Chem. Engng Process. 68, 26–31.

NOSOKO, T. & MIYARA, A. 2004 The evolution and subsequent dynamics of waves on a vertically falling
liquid film. Phys. Fluids 16 (4), 1118–1126.

NOSOKO, T., YOSHIMURA, P.N., NAGATA, T. & OYAKAWA, K. 1996 Characteristics of two-dimensional
waves on a falling liquid film. Chem. Engng Sci. 51 (5), 725–732.

PFEILER, C., ESSL, W., REISS, G., RIENER, C.K., ANGELI, G. & KHARICHA, A. 2017 Investigation of
the gas-jet wiping process - two-phase large eddy simulations elucidate impingement dynamics and wave
formation on zinc coatings. Steel Res. Intl 88 (9), 1600507.

RIAZI, M.R. 1996 Modeling of gas absorption into turbulent films with chemical reaction. Gas Sep. Purif.
10 (1), 41–46.

RIO, E. & BOULOGNE, F. 2017 Withdrawing a solid from a bath: how much liquid is coated? Adv. Colloid
Interface Sci. 247, 100–114.

RITCEY, A., MCDERMID, J.R. & ZIADA, S. 2017 The maximum skin friction and flow field of a planar
impinging gas jet. J. Fluids Engng 139 (10), 101204.

ROHLFS, W., PISCHKE, P. & SCHEID, B. 2017 Hydrodynamic waves in films flowing under an inclined plane.
Phys. Rev. Fluids 2 (4), 044003.

ROHLFS, W. & SCHEID, B. 2014 Phase diagram for the onset of circulating waves and flow reversal in inclined
falling films. J. Fluid Mech. 763, 322–351.

RUYER-QUIL, C., KOFMAN, N., CHASSEUR, D. & MERGUI, S. 2014 Dynamics of falling liquid films. Eur.
Phys. J. E 37 (4), 30.

RUYER-QUIL, C. & MANNEVILLE, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J.
B 15 (2), 357–369.

RUYER-QUIL, C. & MANNEVILLE, P. 2002 Further accuracy and convergence results on the modeling of
flows down inclined planes by weighted-residual approximations. Phys. Fluids 14 (1), 170–183.

SALAMON, T.R., ARMSTRONG, R.C. & BROWN, R.A. 1994 Traveling waves on vertical films: numerical
analysis using the finite element method. Phys. Fluids 6 (6), 2202–2220.

SAMANTA, A. 2014 Shear-imposed falling film. J. Fluid Mech. 753, 131–149.
SCHEID, B., RUYER-QUIL, C. & MANNEVILLE, P. 2006 Wave patterns in film flows: modelling and

three-dimensional waves. J. Fluid Mech. 562, 183.
SCHLICHTING, H. & GERSTEN, K. 2000 Boundary-Layer Theory. Springer.

911 A47-43

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1075


M.A. Mendez and others

SHAMPINE, L.F. 2005a Solving hyperbolic PDEs in MATLAB. Appl. Numer. Anal. Comput. Maths 2 (3),
346–358.

SHAMPINE, L.F. 2005b Two-step Lax–Friedrichs method. Appl. Maths Lett. 18 (10), 1134–1136.
SHKADOV, V.Y. 1971 Wave-flow theory for a thin viscous liquid layer. Fluid Dyn. 3 (2), 12–15.
SHKADOV, V.Y. & BELOGLAZKIN, A.N. 2017 Integral boundary layer relations in the theory of wave flows

for capillary liquid films. Moscow Univ. Mech. Bull. 72 (6), 133–144.
SNOEIJER, J.H., ZIEGLER, J., ANDREOTTI, B., FERMIGIER, M. & EGGERS, J. 2008 Thick films of viscous

fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100 (24), 244502.
THOMPSON, A.B., GOMES, S.N., PAVLIOTIS, G.A. & PAPAGEORGIOU, D.T. 2016 Stabilising falling liquid

film flows using feedback control. Phys. Fluids 28 (1), 012107.
THOMPSON, A.B., TSELUIKO, D. & PAPAGEORGIOU, D.T. 2015 Falling liquid films with blowing and

suction. J. Fluid Mech. 787, 292–330.
THORNTON, J.A. & GRAFF, H.F. 1976 An analytical description of the jet finishing process for hot-dip

metallic coatings on strip. Metall. Mater. Trans. B 7 (4), 607–618.
TIHON, J., SERIFI, K., ARGYRIADI, K. & BONTOZOGLOU, V. 2006 Solitary waves on inclined films: their

characteristics and the effects on wall shear stress. Exp. Fluids 41 (1), 79–89.
TOMLIN, R.J., GOMES, S.N., PAVLIOTIS, G.A. & PAPAGEORGIOU, D.T. 2019 Optimal control of thin liquid

films and transverse mode effects. SIAM J. Appl. Dyn. Syst. 18 (1), 117–149.
TORO, E.F. 2001 Shock-Capturing Methods for Free-Surface. John Wiley & Sons.
TU, C.V. & ELLEN, C.H. 1986 Stability of liquid coating in the jet stripping process. In 9th Australasian Fluid

Mechanics Conference.
TU, C.V. & WOOD, D.H. 1996 Wall pressure and shear stress measurements beneath an impinging jet. Exp.

Therm. Fluid Sci. 13 (4), 364–373.
TUCK, E.O. 1983 Continuous coating with gravity and jet stripping. Phys. Fluids 26 (9), 2352.
TUCK, E.O. & VANDEN-BROECK, J.-M. 1984 Influence of surface tension on jet-stripped continuous coating

of sheet materials. AIChE J. 30 (5), 808–811.
VELLINGIRI, R., TSELUIKO, D., SAVVA, N. & KALLIADASIS, S. 2013 Dynamics of a liquid film sheared by

a co-flowing turbulent gas. Intl J. Multiphase Flow 56, 93–104.
WHITHAM, G.B. 1999 Linear and Nonlinear Waves. John Wiley & Sons.
YONEDA, H. 1993 Analysis of air-knife coating. PhD thesis, University of Minnesota, Minneapolis, MN.
ZHOU, J.G., CAUSON, D.M., MINGHAM, C.G. & INGRAM, D.M. 2001 The surface gradient method for the

treatment of source terms in the shallow-water equations. J. Comput. Phys. 168 (1), 1–25.

911 A47-44

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1075

	1 Introduction
	2 The integral formulation for the jet wiping
	3 Laminar film models
	3.1 Zero-order (inertialess) formulation
	3.2 Integral boundary layer formulation
	3.3 Weighted integral boundary layer model

	4 The transition and turbulent boundary layer
	4.1 Closure for the wall shear stress
	4.2 Closures for the advection term

	5 The wiping actuators
	6 Numerical methods
	6.1 One-dimensional solver for integral models
	6.2 Direct numerical simulations and validation of the long-wave formulation

	7 Results
	7.1 Validation test cases
	7.2 The relative contribution of forces
	7.3 The frequency response of the liquid film
	7.4 The influence of the modelling strategy

	8 Conclusions
	A Appendix A. From Navier--Stokes equations to (1)
	B Appendix B. Details of the WIBL model derivation
	C Appendix C. Implemented numerical schemes
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


