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We consider the segregation of spheres of equal size and different density flowing
over an inclined plane, theoretically and computationally by means of distinct element
method (DEM) simulations. In the first part of the work, we study the settling of
a single higher-density particle in the flow of otherwise identical particles. We show
that the motion of the high-density tracer particle can be understood in terms of the
buoyancy and drag forces acting on it. The buoyancy force is given by Archimedes
principle, with an effective volume associated with the particle, which depends upon
the local packing fraction, φ. The buoyancy arises primarily from normal forces acting
on the particle, and tangential forces have a negligible contribution. The drag force on
a sphere of diameter d sinking with a velocity v in a granular medium of apparent
viscosity η is given by a modified Stokes law, Fd = cπηdv. The coefficient (c) is found
to decrease with packing fraction. In the second part of the work, we consider the
case of binary granular mixtures of particles of the same size but differing in density.
A continuum model for segregation is presented, based on the single-particle results.
The number fraction profile for the heavy particles at equilibrium is obtained in terms
of the effective temperature, defined by a fluctuation–dissipation relation. The model
predicts the equilibrium number fraction profiles at different inclination angles and for
different mass ratios of the particles, which match the DEM results very well. Finally,
a complete model for the theoretical prediction of the flow and number fraction
profiles for a mixture of particles of different density is presented, which combines the
segregation model with a model for the rheology of mixtures. The model predictions
agree quite well with the simulation results.

Key words: complex fluids, granular media, low-Reynolds-number flows

1. Introduction
The flow of granular materials is encountered in many geophysical situations and

industrial applications (Duran 2000). Granular mixtures typically exhibit segregation,
i.e. de-mixing while flowing (Drahun & Bridgwater 1983; Dolgunin & Ukolov 1995;
Hirshfeld & Rapaport 1997; Khakhar, McCarthy & Ottino 1997, 1999; Dolgunin,
Kudy & Ukolov 1998; Ottino & Khakhar 2000; Rapaport 2002; Khakhar, Orpe &
Hajra 2003; Jain, Ottino & Lueptow 2005; Cisar, Umbanhowar & Ottino 2006) or
when energized by vibration (Thomas 2000; Hsiau & Chen 2002; Felix & Thomas
2004; Yang 2006; Lim 2010; Tai, Hsiau & Kruelle 2010). This phenomenon is not
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desirable in many industrial processes where proper mixing of the constituents is very
important for product and process quality. Segregation in avalanches affects the total
runout length as well as the formation of levees (Gray & Thornton 2005; Phillips
et al. 2006; Linares-Guerrero, Goujon & Zenit 2007; Johnson et al. 2012). Thus, an
understanding of segregation phenomena is of considerable importance. Segregation
of granular mixtures may occur due to differences in one or more of the properties
of the grains, such as size (Thomas 2000; Felix & Thomas 2004; Gray & Thornton
2005; Schröter et al. 2006; Godoy et al. 2008; Chung, Liaw & Ju 2009; Wiederseiner
et al. 2011; Marks, Rognon & Einav 2012), density (Khakhar et al. 1997, 2003; Shi
et al. 2007; Sanfratello & Fukushima 2008; Sarkar & Khakhar 2008), shape (Pollard &
Henein 1989), inelasticity (Brito et al. 2008; Brito & Soto 2009), or surface roughness
and friction (Srebro & Levine 2003; Ulrich, Schröter & Swinney 2007). However,
the two most effective drivers of particle segregation are size differences and density
differences. Though there are a few studies dealing with the coupled effect of size and
density (Hill et al. 1999; Jain et al. 2005; Hajra & Khakhar 2011), typically the effects
of these two properties are considered independently to gain a better understanding
of the segregation process. We consider the case of segregation solely due to density
differences and present a brief review of previous related studies below.

Experiments (Hsiau & Chen 2002; Yang 2006; Tai et al. 2010) as well as
simulations (Yang 2006) for vibrated beds show that heavy particles, while starting
from a completely segregated state, concentrate near the centres of convection rolls
of the system. Mixtures with a larger density ratio are segregated more completely
and the granular temperature of the heavy particles is found to be higher than that of
the light particles. Shi et al. (2007) in their experimental study of vibrated mixtures
found that the light particles tend to rise to the top, forming a pure layer, and the
segregation order parameter, defined as the ratio of the height of the pure top layer
to the height of the bed, is dependent only on the density ratio of the particles. Even
horizontal vibrations of a bed with a bumpy bottom have been shown to cause density
segregation as in the case of vertical vibrations (Lim 2010).

Rotating cylinder studies of particles of different density show the formation of
a core region of high-density particles with the light particles concentrating at the
periphery (Ristow 1994; Khakhar et al. 1997, 2003; Cisar et al. 2006; Pereira
et al. 2011). Khakhar et al. (1997) have studied the radial segregation of binary
mixtures of particles of different density using experiments and simulations along
with a continuum theory based on a species balance equation in the flowing layer by
balancing the convective flow (due to rotation) with diffusion and segregation fluxes.
Recently Pereira et al. (2011) have investigated the assumptions of this theory in
detail, using distinct element method (DEM) simulations, which were shown to be
in good agreement with experimental results. Khakhar et al. (1999) used transport
equations from the kinetic theory of mixtures for a mixture of nearly elastic smooth
particles to analyse density segregation. They found very good agreement between
theory and simulations for flow over an inclined plane for the case of frictionless
particles. However, for the case of frictional particles, a good match between theory
and simulations was obtained only if temperature was used as a fitting parameter. The
value of the fitted temperature was found to be an order of magnitude higher than the
granular temperature.

The results of Khakhar et al. (1999), discussed above, indicate the existence of
another temperature more appropriate for dense granular flows. Theoretical (Berthier,
Barrat & Kurchan 2000) and experimental (Song, Wang & Makse 2005) studies as
well as simulations (Barrat & Berthier 2000; Berthier & Barrat 2002) have shown that
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such an effective temperature can be defined by means of a fluctuation dissipation
relation. Mehta & Edwards (1989) established the connection between segregation
and compactivity, which has an equivalence to the effective temperature, as shown
by Kurchan (2000) and Makse & Kurchan (2002). However, experimental evidence
for the description of granular segregation in terms of the effective temperature for
mixtures of particles of different density was provided only recently by Sarkar &
Khakhar (2008). The authors follow an effective medium approach and provide an
expression for a segregation flux. Balancing the segregation flux with the diffusional
flux, an expression for the equilibrium number fraction profile of the heavy particles is
given in terms of an effective temperature. An important component of this approach
is the estimation of the drag force on a sedimenting particle.

Most studies of the drag force and mobility of spherical beads in a granular medium
relate to large beads in static systems that are confined (Zhou, Advani & Wetzel 2005;
Candelier & Dauchot 2009, 2010; Takehara, Fujimoto & Okumura 2010) or free to
dilate (Wieghardt 1975; Zik, Stavans & Rabin 1992; Albert et al. 1999; Chehata, Zenit
& Wassgren 2003; Pica Ciamarra et al. 2004; Geng & Behringer 2005). The drag
force is found to be independent of the velocity (Albert et al. 1999; Zhou, Advani
& Wetzel 2004, 2007; Costantino et al. 2011) for low velocities of the bead. Careful
measurements, however, show a logarithmic dependence of the drag force on the
velocity, for low velocities (Geng & Behringer 2005; Caballero-Robledo & Clement
2009; Candelier & Dauchot 2009, 2010). A linear variation of the drag force is found
at higher speeds (Zik et al. 1992; Candelier & Dauchot 2009, 2010). Candelier &
Dauchot (2009, 2010) found that motion of the bead in the medium causes reduction
in the solids fraction in the vicinity of the particle.

The drag force on a particle in flowing granular materials has been studied to a
lesser extent. The motion of tracer particles in slowly sheared annular systems was
studied by Song et al. (2005). It was found that the drag force varies linearly with the
speed even for low velocities. A quadratic dependence of the drag force on velocity
was observed in simulations of dilute flows (Wassgren et al. 2003) and for horizontal
dragging in confined two-dimensional (2D) systems at high velocities (Takehara et al.
2010). Considering the sedimentation of a single higher-mass but equal-size particle in
a gravity-driven granular flow over an inclined plane, we have recently shown (Tripathi
& Khakhar 2011a) that the drag force on a heavy particle in a flowing granular
medium is given by a modified Stokes law.

Four primary approaches have been used to model granular segregation, most studies
focusing on mixtures of different-size particles: kinetic sieving (Savage & Lun 1988),
kinetic theory (Jenkins & Mancini 1989), single-particle motion (Khakhar et al. 1997)
and partial stresses (Gray & Thornton 2005). Marks et al. (2012) have recently used
DEM simulations to study the approach based on partial stresses. The current work
uses the approach based on the motion of single particles.

Segregation results in changes in the local rheology and consequently the flow. The
segregation flux also depends on the local rheology. Thus, the flow and segregation
are coupled, and a complete description requires a rheological model for mixtures.
We have recently proposed an extension of the viscoplastic model of Jop, Forterre &
Pouliquen (2006) to the case of mixtures, which describes, quite well, the rheology of
mixtures differing in both size and density (Tripathi & Khakhar 2011b).

In this work, we present a continuum model for flow and segregation of granular
mixtures of equal-size particles with different densities. The model is based on a
theory for the motion of a single particle in a dense flow, the assumptions of which are
validated by comparison to results at a particle scale from DEM simulations of dense
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FIGURE 1. A typical snapshot of a mixture of particles flowing over an inclined plane at
an inclination θ . A five-diameter wide slice of the system is shown. Dark grey spheres
correspond to heavy particles and light grey spheres correspond to light particles. Black
particles are the base, formed by taking a slice of thickness 1.2d from a random close-packed
configuration of spheres of diameter d. The coordinate system used is shown along with the
direction of gravity, g.

granular flow on an inclined plane. The simulation method is described in § 2. The
model formulation is presented in § 3 and results are presented in § 4. In that section,
comparisons of model predictions to DEM simulations are done stage-wise. In the
first part (§ 4.1), results for the motion of single particles are presented and compared
to theory. In the second part (§ 4.2), the segregation model predictions are compared
to DEM simulation results for mixtures; and in the third part (§ 4.3), the predictions
of the combined segregation and flow model are compared to DEM simulations. The
conclusions of the work are given in § 5.

2. Simulation methodology
We simulate slightly inelastic frictional spheres of diameter d flowing on a bumpy

inclined surface, schematically depicted in figure 1. The simulation box is chosen to
be 20d × 20d long and wide in the x and z directions. The layer height in the y
direction is H = 25d for mixtures and H = 20d for the tracer particle study. We use
periodic boundary conditions in the flow (x) and the neutral (z) directions to simulate
an infinitely long and wide chute without end or sidewall effects. The base is made
rough by taking a slice of 1.2d thickness from a random close-packed configuration
of spheres of size d. At the start of the simulation, the flowing particles are arranged
with their centres on a cubic lattice with side 1.1d, so that no two particles are
in contact. Particles are given random initial velocities. The chute angle is kept
sufficiently high (θ = 30◦) for an initial period so that particles accelerate and gain
energy. The inclination is then reduced to the desired value and the flow is allowed to
achieve steady state.

For the tracer particle study, 16 particles, well separated from each other, in a slab
of thickness d at a distance y from the base are selected from a layer of light particles
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of mass mL. The mass of these selected tracer particles is increased to a higher value
mH . The sinking velocities and the normal and tangential forces acting on the tracer
particles in the y direction are noted at each step for a duration of time t = 2 (d/g)1/2

after discarding the data for an initial time 2 (d/g)1/2, to avoid the effect of sudden
change of mass of the tracer particles. For the case of mixtures, heavy particles (mass
mH) are placed initially in the upper half of the layer, while the light particles (mass
mL) are in the bottom half.

We follow a simulation method identical to that used by Tripathi & Khakhar
(2011b) and model the individual particles as deformable soft spheres. A linear
spring-and-dashpot type force scheme with static friction (Coulomb yield criterion)
is employed in our simulations, which is identical to the L3 model of Silbert et al.
(2001). The normal and tangential forces are calculated as the sum of an elastic
spring force, which depends upon the deformation during a contact, and a viscous
dashpot force, which depends upon the relative velocity of the contacting particles.
Equations of motion for all the particles are integrated using a velocity-Verlet scheme
with time step approximately equal to 1/50 of the binary collision time between two
light particles for the values of parameters used in our simulations. The details of the
simulation method can be found elsewhere (Tripathi & Khakhar 2011b).

The normal restitution coefficient is en = 0.88 and the tangential restitution
coefficient et = 1. The value of the friction coefficient between the particles is
µp = 0.5. The stiffness of the particles in the normal direction is kn = 2 × 105 mLg/d
and that in the tangential direction is kt = 2kn/7. Measurements are taken only after
the system has reached steady state, characterized by a constant kinetic energy and
a time-invariant number fraction profile of heavy particles, in the case of mixtures.
Results at steady state are obtained by calculating the properties of interest for 10
runs of 25 time units and averaging over four such sets. The time to reach steady
state in the latter case when the initial condition has the heavy particles on top is
∼3000 (d/g)1/2, due to the slow diffusion.

3. Theory
3.1. Single particle motion

Following Tripathi & Khakhar (2011a), we analyse the behaviour of a heavy tracer
particle in a medium of light particles, which represents the simplest case of
segregation due to density differences. We use an effective medium approach and
assume the heavy tracer particle to be immersed in a continuum of density ρm = φρL

(figure 2), where φ is the local packing fraction and ρL is the density of the light
particles. The force on the tracer particle is

FH = mHgy − Fb, (3.1)

where gy = −g cos θ is the y component of the acceleration due to gravity and Fb is
the buoyancy force exerted on the tracer particle by the granular medium. We use
Archimedes principle to calculate the buoyancy force on the tracer particle, given by
the weight of the fluid displaced by the tracer particle (Tripathi & Khakhar 2011a). To
account for the presence of voids in the vicinity of the tracer particle, we assume that
the tracer particle displaces a larger volume (shown as a dotted circle in figure 2) of
the medium than its own volume, so that Fb = ρLVEgy, where VE is the volume of the
displaced medium.

The net force on the heavy tracer particle in the medium is

FH = mHgy − φρLVEgy. (3.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

60
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.603


648 A. Tripathi and D. V. Khakhar

(b)(a)

mHgymHgy

VE

Fb

FIGURE 2. Schematic view of the system. (a) A heavy particle of mass mH in a medium of
light particles of mass mL. (b) An effective medium view showing the buoyancy force Fb on
the heavy particle of effective volume VE.

The effective volume of a tracer particle VE can be easily calculated as follows. For
the case when the mass of the tracer particle is the same as that of the other particles,
i.e. mH = mL = ρLV , there should be no net force on the tracer particle, i.e. FH = 0,
giving

VE = V/φ, (3.3)

where V is the volume of the particle. Using this expression for VE, the buoyancy
force on the tracer particle in a granular medium of particles of mass mL is

Fb = mLgy, (3.4)

and the net force on the heavy tracer particle is

FH = (mH − mL)gy. (3.5)

The effective volume accounts for the presence of voids around a tracer particle in
the granular medium with each particle carrying some free volume with it. When the
volumes of all the particles are equal, as in the present case, equation (3.3) shows that
the effective volumes of all the particles are equal and every particle carries the same
free volume with it. For the limiting case when the ratio of the volumes of the large
to small particles is very large, the free volume carried by the large particle becomes
vanishingly small, and the effective volume of the large particle becomes equal to the
particle volume. In this limit, the usual Archimedes law is recovered.

The net force acting on the particle is in the negative y direction and causes the
tracer particle to sink in the layer. The downward motion of the tracer particle is
opposed by the viscous drag offered by the layer. In analogy to the Stokes drag force
on a settling sphere in a fluid, we assume that the viscous drag force on the tracer
particle is proportional to the viscosity (η) and settling velocity (v), i.e.

Fd = cπηdv, (3.6)

c being a constant. At steady state, the net force on the tracer particle is balanced by
the viscous drag force, i.e. FH =−Fd, and using (3.5) and (3.6), we have

(mH − mL)gy =−cπηvd. (3.7)

Thus, at steady state, the theory predicts a linear relationship between the net force on
the particle (left-hand side of the preceding equation) and ηv.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

60
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.603


Density segregation in a dense granular flow 649

3.2. Constitutive equations for density segregation
We next extend our analysis to mixtures composed of particles differing in density
following the approach of Sarkar & Khakhar (2008). The density ρm of the effective
medium surrounding a heavy particle is now given by

ρm = φ[ fρH + (1− f )ρL], (3.8)

where ρH = mH/V is the density of heavy particles and f = nH/n is the number
fraction of heavy particles, nH being the number density of heavy particles and n the
total number density. The buoyancy force acting on the heavy tracer particle, given as
the weight of the displaced liquid, is then

Fb = ρmVEgy, (3.9)

which upon simplification using (3.3) and (3.8) becomes

Fb = [ fmH + (1− f )mL]gy. (3.10)

The net force on a heavy particle in the mixture is given by (3.1), which simplifies to

FH = (1− f )(mH − mL)gy. (3.11)

In the above formulation, the only difference from the case of a single particle is the
lower buoyancy due to the presence of heavy particles in the surrounding medium. At
steady state, the sedimenting particle achieves a terminal velocity and FH = Fd, which
yields the segregation velocity of the heavy particle as

vH = FH

ξH
, (3.12)

where ξH = cπηd is the friction coefficient, i.e. the inverse of the mobility (Berthier &
Barrat 2002). We assume here that the Stokes law coefficient, c, is the same as for
the tracer system. Since the Reynolds number is small, inertial effects are negligible
and the mass of the particles should be unimportant in determining the drag force. For
equal-size particles we note that the mobilities of the heavy and light particles are the
same (ξH = ξL). Based on the segregation velocity obtained above, the segregation flux
is given by

jH = nH(vH − vm), (3.13)

where vm = fvH + (1− f )vL is the number average velocity in the y direction generated
due to the segregation flux and vL = FL/ξL is the segregation velocity of the light
particles, with

FL = f (mL − mH)gy. (3.14)

From the definitions of vH and vL we get vm = 0, and the expression for the
segregation flux becomes

jH = nf (1− f )
(mH − mL)gy

ξH
. (3.15)

Note that the segregation flux (3.15) becomes zero in the case when the masses of the
two species are equal (mH = mL) or when only one of the species is present (f = 0
or f = 1), as expected. A similar dependence on the composition has been found in
a number of previous works for size segregation (Dolgunin & Ukolov 1995; Gray
& Chugunov 2006; Marks et al. 2012) and for density segregation (Khakhar et al.
1997, 1999; Sarkar & Khakhar 2008).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

60
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.603


650 A. Tripathi and D. V. Khakhar

We define an effective temperature using a fluctuation dissipation relation, the
Einstein relation, as (Berthier & Barrat 2002; Song et al. 2005)

TE = DHξH, (3.16)

where DH is the self-diffusivity of the heavy particles. The definition is based on an
analogy with fluids for which the fluctuation dissipation relation is valid. Song et al.
(2005) showed by means of experiments that the relation is also valid for a sheared
packed bed of particles. In the present case, a minimal requirement for the validity
of the concept is that the effective temperatures of the heavy and light particles are
the same, which requires that DH = DL, where DL is the self-diffusivity of the light
particles. For diffusion over large length scales, the self-diffusivity in dense granular
flows has been found to be dependent on particle diameter but independent of the mass
of the particles (Sarkar & Khakhar 2008). Thus, DH = DL; this further implies that the
self-diffusivities of the particles are equal to the binary diffusivity of the particles in
the mixture (D).

Substituting for the effective temperature in (3.15), we obtain

jH = nf (1− f )D
(mH − mL)gy

TE
. (3.17)

The stress balance in the y direction yields

dP

dy
= ρmgy, (3.18)

where P is pressure. Upon substitution of the above equation into (3.17) we obtain

jH = nf (1− f )D
(mH − mL)

ρmTE

dP

dy
. (3.19)

Thus the segregation in the present case is a consequence of the pressure gradient in
the flow. Equation (3.19) is identical to the expression obtained from kinetic theory
(Khakhar et al. 1999), but with TE replaced by the granular temperature. The diffusion
flux is given by

jD =−nD
df

dy
, (3.20)

where D is the binary diffusivity of the particles. The constitutive equations given
above can be used along with a transport equation of the form

∂(nf )

∂t
=− ∂

∂y
( jH + jD), (3.21)

to obtain the time-dependent concentration profile of the heavy particles, f (y, t).
We note that it is straightforward to generalize the above equations to the 3D case.

In this case, the different values of diffusivities in the three directions need to be taken
into account.

3.3. Flow and segregation in a layer at steady state
As discussed in § 1, the segregation and the rheology of the mixture are coupled
in a complex way. For a complete description of the flow, the momentum balance
equations must be solved along with the segregation model and the rheological model.
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Mass mL
Length d
Time (d/g)1/2

Force mLg

TABLE 1. Definition of characteristic quantities used to make the variables dimensionless.

We consider the steady-state case here for the flow and segregation in the layer. At
equilibrium, (3.21) yields,

jH + jD = 0, (3.22)

assuming the base to be impenetrable. Using (3.17) and (3.20) in the above equation
and rearranging gives the following equation for the equilibrium number fraction
profile:

1
f (1− f )

df

dy
=− (mH − mL)g cos θ

TE
. (3.23)

Equation (3.23) indicates that the equilibrium profile depends only on the net force
on a heavy particle and the effective temperature: a higher net force or a lower
temperature will give a sharper profile and thus a greater extent of segregation.

Estimation of the effective temperature requires the viscosity (η) and the diffusivity
(D). An expression for the viscosity is given below. For the diffusivity, we use the
following scaling proposed by Savage (1993) for shear flows:

D= bγ̇ d2, (3.24)

where γ̇ is the shear rate and b is a constant. Experimental measurements (Hajra &
Khakhar 2005; Sarkar & Khakhar 2008) have shown the scaling to be valid for dense
granular flows. We obtain the coefficient b from DEM simulations in § 4.2.

All the variables are non-dimensionalized using the characteristic mass, length, time
and force given in table 1. Equations (3.4)–(3.7) in dimensionless form become

F̄b = cos θ, (3.25)
F̄H = (m̄H − 1) cos θ, (3.26)

F̄d = cπη̄v̄, (3.27)
(m̄H − 1) cos θ = cπη̄v̄. (3.28)

Similarly (3.23) in dimensionless form is given as

1
f (1− f )

df

dȳ
=− (m̄H − 1) cos θ

T̄E
, (3.29)

where

T̄E = cπη̄D̄, (3.30)

with

D̄= b ¯̇γ . (3.31)

In what follows, all the quantities reported are dimensionless and we omit the
overbars.
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For a steady flow over an inclined plane at an inclination θ , the balance and
constitutive equations in dimensionless form are given below, following Tripathi &
Khakhar (2011b). The shear stress τxy and the pressure P are given by

τxy =−sin θ
∫ H

y
φρmix dy, (3.32)

P= cos θ(1− a tan θ)
∫ H

y
φρmix dy, (3.33)

where ρmix is the local average density and a is a parameter that accounts for the
anisotropy of the stress tensor due to non-zero normal stress differences (Tripathi &
Khakhar 2011b). The packing fraction φ and local density ρmix are given by

φ = φmax − (φmax − φmin)I, (3.34)

ρmix = fmH + (1− f )

V
, (3.35)

where φmax and φmin are parameters of the model and I is the inertial number given as

I = γ̇√
P/ρmix

, (3.36)

where γ̇ = |dvx/dy| is the shear rate. The shear stress and the pressure are related as

|τxy| = µ(I)P, (3.37)

where µ(I) is the effective friction coefficient given as

µ(I)= µs + µm − µs

I0/I + 1
, (3.38)

with µs, µm and I0 being parameters of the model. The viscosity is defined as

η = µP/γ̇ = |τxy|/γ̇ . (3.39)

From (3.32) and (3.33), the effective friction coefficient at any inclination θ is

µ= tan θ
1− a tan θ

. (3.40)

Equations (3.38) and (3.40) can be combined to obtain the inertial number I as

I = I0

(
µ− µs

µm − µ
)
. (3.41)

Using (3.36), the shear rate γ̇ is given by

γ̇ = I

√
P

ρmix
, (3.42)

and the velocity profile vx(y) is obtained by integrating the shear rate as

vx(y)= vx0 +
∫ y

0
γ̇ dy, (3.43)

where vx0 is the slip velocity at the base. For a rough base vx0 = 0. The parameters of
the mixture rheological model were obtained previously by fitting to DEM simulation
results (Tripathi & Khakhar 2011b) and are given in table 2.
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FIGURE 3. (a) Velocity, (b) solids fraction, (c) shear stress, (d) shear rate and (e) viscosity
for light particles flowing in the granular layer at different inclination angles.

φmax φmax I0 µs µm a

0.59 0.44 0.434 tan(20.16) tan(37.65) 2/30

TABLE 2. Values of the rheological model parameters (Tripathi & Khakhar 2011b).

This completes the formulation of the model for the flow and segregation of a
granular mixture of equal-size and different-density particles on a rough inclined plane.
All parameters of the model (b, and those in table 2) are independently estimated and
there are no fitting parameters.

4. Results and discussion
We first present results for the motion of a single heavy particle in flowing light

particles (§ 4.1), followed by an analysis of density segregation of mixtures (§ 4.2), in
terms of the model given in § 3. Predictions of the flow profiles combining the model
for mixture rheology and the model for segregation are presented in § 4.3.

4.1. Single-particle motion
Figure 3 shows the flow profiles in the base system: a layer of light particles flowing
over an inclined plane for different inclination angles. The results are similar to those
reported earlier Tripathi & Khakhar (2011a) and are shown here for completeness.
The shear rate, dvx/dy, is calculated as the numerical derivative of the velocity profile
vx(y) and the viscosity η is calculated as η = |τxy|/(dvx/dy). The viscosity of the layer
increases with depth but the solids volume fraction (φ) is nearly constant over most
of the depth. Increasing the inclination angle causes an increase in the shear rate
and a decrease in the solids fraction and viscosity as shown in figure 3. Thus the
inclined plane system serves as a viscous granular fluid, the viscosity of which can be
controlled by changing the inclination angle.

The total force acting on a particle due to all the other particles in its vicinity is
given in table 3 for different inclination angles for the case of no heavy particles. The
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θ (deg.) Fb/ cos θ Fn/ cos θ Ft/ cos θ

23 0.99± 0.01 0.97± 0.05 0.02± 0.04
25 1.04± 0.05 1.02± 0.07 0.02± 0.04
27 1.04± 0.06 0.99± 0.06 0.05± 0.04
29 1.01± 0.03 0.98± 0.05 0.03± 0.02

TABLE 3. Normal (Fn) and tangential (Ft) contributions to the buoyancy force at different
inclination angles.

µp Fb/ cos θ Fn/ cos θ Ft/ cos θ

0.5 1.04± 0.05 1.02± 0.07 0.02± 0.04
1.0 1.01± 0.01 1.00± 0.01 0.02± 0.01
2.0 1.02± 0.02 1.00± 0.02 0.02± 0.01

TABLE 4. Normal (Fn) and tangential (Ft) contributions to the buoyancy force for different
values of friction coefficient µp at an inclination of θ = 25◦.

force is obtained as a time average of the instantaneous forces acting on the particle,
and the computations yield an upward force acting in the y direction, corresponding
to the force of buoyancy, Fb. The force (Fb) is well predicted by (3.25) for the
different inclination angles, validating the granular buoyancy hypothesis. In the case of
fluids, buoyancy is entirely due to pressure. In granular fluids, however, tangential
stresses due to frictional forces may also contribute to the buoyancy force. We
report the contribution of normal (Fn) and tangential (Ft) forces to the buoyancy
force on the light particles for different inclination angles in table 3. As is evident,
the tangential force is negligibly small for all the cases and the buoyancy force is
entirely due to the normal forces, in the case of granular fluids as well. This indicates
symmetry about the xz plane in the y component of the shear stress at the scale of
a particle. Table 4 shows the normal and tangential forces on the particles for larger
values of the friction coefficient µp for a granular layer flowing at an inclination
θ = 25◦. The contribution of tangential forces to buoyancy is negligible in these cases
as well.

We consider next the sedimentation of a single heavy particle in this granular fluid,
which is analogous to the Stokes experiment in a fluid. Equation (3.28) suggests a
linear variation of ηv with (mH − 1) cos θ . We investigate this assumption in figure 4
for different inclination angles (θ = 22◦–29◦) of the layer and different masses of
the tracer particle (mH = 2–20). Since the viscosity of the layer is not constant and
varies with height y, tracer particles are initiated at four different positions in the layer
(y = 6, 10, 14 and 18). The viscosity at any particular inclination angle changes by
a factor of 2 for the different positions considered. The linear variation observed in
figure 4 at each inclination establishes the validity of (3.7). For lower inclinations
(θ = 22◦–23◦), data points are shown only for y = 10 and y = 14. The data for y = 6
and y= 18 also show a linear variation but with significantly different slopes and large
error bars. At the lower angles, the volume fraction increases and the height of the
layer reduces; further, the packing fraction approaches the critical packing fraction for
jamming near the base. Boundary effects thus become significant for y= 6 and y= 18
and these data are omitted.
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FIGURE 4. Variation of dimensionless drag force on the tracer particle, (mH − 1) cos θ , with
ηv for different inclinations. Tracer particles of different masses ranging from mH = 2 to
mH = 20 are used and the initial depth of the particles (y) is varied. Symbols are the data
points, and lines are the fits to the data with their slopes indicated as cπ.

Figure 5 shows the variation of the Stokes law coefficient, c, obtained from the
slopes of the fitted lines (figure 4) with solids fraction, φ; c decreases with the solids
fraction. For the range of packing fractions studied here, the value of c is close to
the value observed for a Newtonian fluid, i.e. c = 3. The Reynolds number, defined
as Re = ρmv/η, for all the cases considered is small and the maximum value of the
Reynolds number obtained is Re = 0.185. Thus the influence of the inertial forces is
small compared to the viscous forces.

4.2. Segregation of mixtures
We consider, in this section, a comparison of theoretical predictions of the segregation
constitutive equation (3.29) to computational results for mixtures. In the comparison,
the values of the viscosity and diffusivity computed from the DEM simulations
are used. As a consequence, the segregation model can be tested in isolation,
independently of the models for flow and diffusion.
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FIGURE 5. Variation of the Stokes law coefficient c (cf. (3.6)) with packing fraction φ from
the data given in figure 4.
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FIGURE 6. (a) Velocity, (b) number fraction of heavy particles, (c) solids fraction, (d) shear
stress, (e) shear rate and (f ) viscosity of a mixture of 50 % heavy and 50 % light particles (by
volume) at different inclination angles for a mass ratio, mH = 3.

Figure 6 shows the velocity (vx), solids fraction (φ) and number fraction of heavy
particles (f ) of mixtures for different inclination angles for mixtures of 50 % heavy and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

60
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.603


Density segregation in a dense granular flow 657
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FIGURE 7. Variation of the mean square displacement of heavy particles with time at
different y positions in the layer. The results are for a 50 : 50 by volume mixture of heavy
and light particles with mH = 3, for an inclination angle θ = 25◦.

50 % light particles with mass ratio mH = 3. The results presented are similar to those
in Tripathi & Khakhar (2011b) and are presented here for completeness. The velocity
increases and the solids fraction decreases with the inclination angle. The velocities
of the light (lines) and heavy (symbols) particles are equal. The solids fraction φ is
constant over depth, except near the base and the free surface, as in the case of a pure
layer of light particles. Figure 6(c) shows that f = 0 in the upper part of the layer
and f = 1 in the lower part of the layer. This indicates complete segregation of the
particles, with a pure layer of heavy particles near the base and a pure layer of light
particles near the free surface. The thickness of the mixed region increases with the
inclination angle, indicating greater mixing for the faster flows. The shear stress (τxy)
shows a linear variation in each of the regions rich in one of the species (figure 6d).
The slope in the lower region is higher due to the higher bulk density (φρH) of the
pure layer of heavy particles. The shear rate also shows a near linear variation in the
pure layers (figure 6e) with a sharp reduction in the mixed region due to the sharp
increase in the viscosity in that region (figure 6f ).

Figure 7 shows the variation of mean square displacement 〈(y− y0)
2〉 of the heavy

particles with time t for different positions in the layer. The diffusive motion of
particles in the y direction is evident by the linear variation of the mean square
displacement with time, and the diffusivity is calculated as half of the slope of the line.
The diffusivities of the light and heavy particles at any y position are obtained in this
manner and are shown in figure 8 for different inclination angles. The diffusivity of
the heavy particles (DH) is equal to that of the light particles (DL), except at higher
inclination angles (lower packing fractions). This again indicates that inertial effects
are small. The diffusivity is nearly constant in the upper part of the layer and increases
with depth. The reduction in the diffusivity near the base is due to the confining effect
of the boundary and has been observed previously as well (Dufresne et al. 2000; Lin,
Yu & Rice 2000; Tripathi & Khakhar 2010).

Figure 9 shows the variation of the effective temperature with depth in the layer and
a comparison of the effective temperature with the kinetic temperature. The effective
temperature is calculated as TE = cπηD, using the values of c obtained from the
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FIGURE 8. Variation of self-diffusivity (D) with depth (y) for a 50 : 50 by volume mixture
of heavy and light particles with mass ratio mH = 3 for different inclination angles. Open
symbols represent the self-diffusivity of light particles DL and filled symbols represent the
self-diffusivity of heavy particles DH .
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FIGURE 9. Effective temperature profiles (TE(y)) for different inclination angles for a 50 : 50
by volume mixture of heavy and light particles with mass ratio mH = 3. The effective
temperature is calculated from TE = cπηD using the parameter c from tracer particle studies
and the DEM simulation values of η and D for the mixture. The experimental data of Sarkar
& Khakhar (2008) (Expt) are also shown for comparison. Inset: comparison of the kinetic
granular temperature TK (filled symbols) and effective temperature TE.

tracer particle study and the average diffusivity D of the particles, calculated as the
weighted mean of the diffusivities, i.e. D= fDH + (1− f )DL. The variation of effective
temperature with height is shown in figure 9 for different inclination angles. The
effective temperature of the layer increases with depth and shows a dip near the base
(figure 9). The granular temperature, defined as

TK = 1
2 [ fmHu2

H + (1− f )mLu2
L], (4.1)
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FIGURE 10. (a) Number fraction of heavy particles, (b) viscosity and (c) diffusivity for a
mixture of 50 % heavy and 50 % light particles (by volume) at θ = 25◦ for different mass
ratios (mH).

where uH and uL are the root mean square (r.m.s.) fluctuation velocities of the heavy
and light particles, respectively, is compared to the effective temperature in the inset of
figure 9. The qualitative behaviour of the effective temperature is the same as that of
the granular temperature except near the free surface. The kinetic granular temperature
changes by an order of magnitude in the range of the inclination angles considered.
The effective temperature, however, changes only by a factor of 2. We further note that
the effective temperature TE is larger than the granular temperature TK by one to two
orders of magnitude. The effective temperature of the layer increases with increasing
inclination angle.

The effective temperature obtained experimentally by Sarkar & Khakhar (2008) also
shows a similar qualitative behaviour as in the present case. The reduction in the
effective temperature near the base, as observed in the present case, however, is absent
due to the presence of an erodible base. A comparison of the present data with those
of Sarkar & Khakhar (2008) is shown in figure 9. There is good agreement between
the two for TE < 2; however, there is a deviation at higher effective temperatures. The
differences are due to the different boundary conditions at the base in the two cases.

Figure 10 shows the number fraction, viscosity and diffusivity for different mass
ratios mH = 1.5, 2 and 3 of heavy and light particles at a particular inclination angle
θ = 25◦. The number fraction of the heavy particles f increases near the base and
decreases near the free surface with increasing mass ratio. Thus, the segregation of
the mixture becomes more pronounced with increasing mass difference, and complete
segregation near the free surface and the base is observed for mH = 2 and 3. However,
for the smallest mass ratio considered here, the segregation near the base is not
complete, and heavy and light particles are partially mixed throughout the layer. The
viscosity of the layer increases with the mass ratio owing to the increase in the bulk
density. The diffusivity of the particles, however, is almost equal for all the mass ratios
considered here. The effective temperature of the mixture increases with increasing
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FIGURE 11. Effective temperature profiles (TE(y)) for different mass ratios (mH) for a
50 : 50 by volume mixture of heavy and light particles for inclination θ = 25◦. The effective
temperature is calculated from TE = cπηD using the parameter c from tracer particle studies
and the DEM simulation values of η and D for the mixture. Inset: comparison of the kinetic
granular temperature TK and effective temperature TE.
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FIGURE 12. Variation of diffusivity with the shear rate γ̇ = dvx/dy for a 50 : 50 mixture
(by volume) at inclination angle θ = 25◦. Open symbols correspond to the self-diffusivity
of light particles and filled symbols correspond to the self-diffusivity of heavy particles.
Circles denote to mass ratio mH = 3, squares a mass ratio mH = 2, and triangles a mass ratio
mH = 1.5. The fitted line has a slope of 0.041.

mass ratio (figure 11) owing to the larger viscosity. As in the previous case, the
effective temperature (TE) is one to two orders of magnitude higher than the kinetic
granular temperature (TK) as shown in figure 11 (inset).

Figure 12 shows the variation of the diffusivity of heavy and light particles with the
shear rate. Data near the free surface and the base are omitted. The diffusivity shows a
linear variation with the shear rate. Figure 12 shows that the dimensionless diffusivity
can be modelled as D= bγ̇ , as noted above (equation (3.31)). A linear least-squares fit
to the data (straight line in figure 12) gives b= 0.041 from the slope of the fitted line.
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FIGURE 13. Comparison of the theoretical prediction (lines) of density segregation using
(3.23) with simulation data (symbols) for different inclination angles for a 50 : 50 mixture (by
volume) with mass ratio mH = 3.

The variation of [ f (1− f )]−1 df /dy with 1/TE for different inclination angles θ is
shown in figure 13 for a mass ratio mH = 3. Figure 14 shows a similar graph for
different mass ratios of heavy and light particles at an inclination angle θ = 25◦.
The predictions of (3.23) are represented as straight lines and the simulation results
are represented with symbols. The theoretical predictions are in good agreement with
the simulation results for different inclination angles and for different mass ratios
of heavy and light particles. There are no fitted parameters. Deviations from the
theoretical predictions are observed in the tail of the data (figures 13 and 14), which
corresponds to the region where the number fraction of heavy particles is very small.
The comparisons in figures 13 and 14 validate the segregation model.

4.3. Theoretical prediction of flow profiles using the rheology and segregation models
We consider next the combined flow and segregation model. An iterative procedure is
required for solution of the governing equations, as described below.
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FIGURE 14. Comparison of the theoretical prediction (lines) of density segregation using
(3.23) with simulation data (symbols) for different mass ratios for a 50 : 50 mixture (by
volume) at inclination angle θ = 25◦.

The dimensionless effective temperature can then be written as TE = bcπ|τxy| using
η = |τxy|/γ̇ from (3.39) and substituting for D from (3.31). Equation (3.29) thus
reduces to

df

dy

1
f (1− f )

=− (mH − 1) cos θ
bcπ|τxy| = −k(y). (4.2)

Equation (4.2) is integrated to obtain the number fraction f of heavy particles as

f = α exp(− ∫ k(y) dy)

1+ α exp(− ∫ k(y) dy)
, (4.3)

where the constant α is obtained using the condition that the total fraction of heavy
particles in the mixture (fT) is specified, i.e.

1
H

∫ H

0
f dy= fT . (4.4)

The inclination angle (θ ), the mass ratio of heavy particles (mH), the total number
fraction of heavy particles (fT) and the depth of the layer (H) are the system
parameters, which are the known inputs for the model. In addition, the rheological
parameters given in table 2 and b= 0.041 are used.
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Step 1: Calculate µ(I) using (3.40)
Step 2: Calculate I using (3.41)
Step 3: Calculate φ using (3.34)
Step 4: Calculate ρmix using (3.35)
Step 5: Calculate τxy and P using (3.32) and (3.33)
Step 6: Calculate fnew using (4.3)
Step 7: while (|fnew − f |> ε1)

f = fnew
Repeat Step 4–Step 6

endwhile
Step 8: while (| ∫ H

0 f dy/H − fT |> ε2)
α = α +1α
Repeat Step 4–Step 7

endwhile
Step 9: Calculate γ̇ using (3.42)
Step 10: Calculate vx(y) using (3.43)

TABLE 5. Algorithm for calculating mixture flow properties.

The algorithm for computation of the flow profiles is summarized in table 5. For a
given value of α, the profile f (y) is obtained by successive over-relaxation (Step 7 in
table 5). The value of α is increased in small increments and the process is repeated
until the overall fraction is equal to the specified value (fT) as given in Step 8. The
initial guess for f is taken to be f (y) = fT , i.e. a homogeneous distribution of heavy
particles across the layer. The above algorithm is insensitive to the initial guess for
f (y) and converges for all the cases provided the increment 1α is chosen to be small
enough. We use α = 1 as the initial guess, increment 1α = 0.1, and the computational
error limits are taken as ε1 = 0.001 and ε2 = 0.01.

The calculated profiles of inertial number I, packing fraction φ, number fraction
of heavy particles f , shear stress τxy, shear rate γ̇ and velocity vx(y) are shown in
figure 15 for different inclination angles for 50 % heavy particle (mH = 3) mixture.
Figures 16 and 17 show the flow profiles for different mass ratios and different
compositions of the mixture. The theoretical predictions match very well with the
simulation results for all the cases. The complex nature of the shear rate for different
compositions and mass ratios is well captured by the theory and is in good agreement
with the simulation results. Note also that the extent of segregation of the heavy
particles f (y) for all the cases is very well described by the theory.

5. Conclusions
We presented a detailed study of granular segregation in binary mixtures of equal-

size particles of different density, in a dense gravity-driven flow on a rough inclined
plane. Results of numerical simulations using DEM for the motion of a single high-
density particle in the flow were analysed using a continuum theory. The buoyancy
force was found to be given by Archimedes principle, with the effective volume of
the particle, which takes into account excluded-volume effects, given by VE = V/φ.
The drag force was found to be given by a modified Stokes law (Fd = cπηvd), with
the coefficient (c) reducing with increasing solids volume fraction (φ). The buoyancy
force on the particle was shown to be primarily due to normal forces, with a negligible
contribution from tangential forces.
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FIGURE 15. Comparison of the theoretical prediction (lines) with simulation results
(symbols) for different inclination angles of 50 % heavy (mH = 3) particle mixtures.

DEM results were presented for binary mixtures for equal-diameter and different-
mass particles flowing on a rough inclined plane for different inclination angles,
concentrations and mass ratios. In all cases, the system exhibited significant
segregation, with heavy particles sinking into the lower region of the layer and the
light particles rising into the upper region, with a mixed interface region in between.
The mean velocities of the heavy and light particles in the mixture at any given
depth were found to be equal and there was no slip between the species. The self-
diffusivities of the heavy and light particles at any given depth were also found to be
equal to each other and thus the same as the binary diffusivity. The diffusivities were
found to vary linearly with shear rate.

With increase in inclination angle, the packing fraction reduced from φ = 0.58 to
φ = 0.5, resulting in an increase in the mean velocity and diffusivity but a decrease
in the viscosity. The thickness of the mixed zone increased with angle. Increasing
the mass ratio did not affect the packing fraction of the layer and the diffusivity
of the particles. However, the extent of segregation increased with increasing mass
ratio, leading to nearly complete segregation of light particles near the free surface
and complete segregation of heavy particles near the base for mH > 2. The effective
temperature increased with the inclination angle and the mass ratio of the particles and
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FIGURE 16. Comparison of the theoretical prediction (lines) with simulation results
(symbols) for 50 % heavy particle mixture for different mass ratios (mH) at an inclination
θ = 25◦.

was at least an order of magnitude higher than the kinetic granular temperature. The
computed effective temperatures were in reasonable agreement with the measurements
of Sarkar & Khakhar (2008).

Based on the single-particle results and following Sarkar & Khakhar (2008), a
theory was presented for the segregation of such mixtures. The theory predicts the
equilibrium number fraction profile in terms of the effective temperature, which in
turn depends on the local viscosity and self-diffusivity of the particles. The theory
gave good predictions of the equilibrium number fraction profiles, using the computed
viscosity and self-diffusivity as inputs. Finally, the segregation model was combined
with the rheological model given by Tripathi & Khakhar (2011b) and an empirical
expression for the self-diffusivity to yield profiles of inertial number, volume fraction,
number fraction, shear stress, shear rate and mean velocity in the layer. The flow and
segregation processes are coupled and the profiles were computed using an iterative
procedure. The predicted profiles match with the simulation results for the different
cases studied.

The results indicate that the relatively simple continuum model yields a detailed and
accurate description of the flow and segregation in the case of mixtures of equal-size
and different-density particles. The components of the model are individually validated
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FIGURE 17. Comparison of the theoretical prediction (lines) with simulation results
(symbols) for different volume fractions of heavy particle (mH = 3) mixtures at an inclination

θ = 25◦.

by DEM simulations in three stages: (i) single-particle motion; (ii) segregation model
alone; and (iii) combined models for flow, segregation and diffusion. A natural
extension of the approach would be to consider different-size particles. This, however,
introduces two complexities: firstly, the effective volume, used for estimation of the
buoyancy force, is different for the different-size particles and is not straightforward
to estimate; secondly, the binary diffusivity is required for the diffusion flux, which is
different from the self-diffusivity. We will report these results separately.
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