Glasgow Math. J. **63** (2021) 54–58. © Glasgow Mathematical Journal Trust 2019. doi:10.1017/S0017089519000508.

ON FINITE-BY-NILPOTENT GROUPS

ELOISA DETOMI

Dipartimento di Ingegneria dell'Informazione - DEI, Università di Padova, Via G. Gradenigo 6/B, 35121 Padova, Italy e-mail: eloisa.detomi@unipd.it

GURAM DONADZE

Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil and Institute of Cybernetics of the Georgian Technical University, Sandro Euli Str. 5, 0186, Tbilisi, Georgia e-mail: gdonad@gmail.com

MARTA MORIGI

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy e-mail: marta.morigi@unibo.it

PAVEL SHUMYATSKY

Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil e-mail: pavel2040@gmail.com

(Received 3 July 2019; revised 18 November 2019; accepted 28 November 2019; first published online 20 December 2019)

Abstract. Let $\gamma_n = [x_1, \ldots, x_n]$ be the *n*th lower central word. Denote by X_n the set of γ_n -values in a group *G* and suppose that there is a number *m* such that $|g^{X_n}| \le m$ for each $g \in G$. We prove that $\gamma_{n+1}(G)$ has finite (m, n)-bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.

2010 Mathematics Subject Classification. Primary 20E45; Secondary 20F12, 20F24.

1. Introduction. Given a group *G* and an element $x \in G$, we write x^G for the conjugacy class containing *x*. Of course, if the number of elements in x^G is finite, we have $|x^G| = [G: C_G(x)]$. A group is said to be a BFC-group if its conjugacy classes are finite and of bounded size. One of the most famous of B. H. Neumann's theorems says that in a BFC-group the commutator subgroup *G'* is finite [6]. Later Wiegold showed that if $|x^G| \le m$ for each $x \in G$, then the order of *G'* is bounded by a number depending only on *m*. Moreover, Wiegold found a first explicit bound for the order of *G'* [10], and the best-known bound was obtained in [5] (see also [7] and [9]).

The recent articles [3] and [2] deal with groups G in which conjugacy classes containing commutators are bounded. Recall that multilinear commutator words are words which are obtained by nesting commutators, but using always different variables. More formally, the group-word w(x) = x in one variable is a multilinear commutator; if u and v are multilinear commutators involving disjoint sets of variables then the word

https://doi.org/10.1017/S0017089519000508 Published online by Cambridge University Press

The first and third authors are members of INDAM. The fourth author was supported by CNPq-Brazil.

w = [u, v] is a multilinear commutator, and all multilinear commutators are obtained in this way. Examples of multilinear commutators include the familiar lower central words $\gamma_n(x_1, \ldots, x_n) = [x_1, \ldots, x_n]$ and derived words δ_n , on 2^n variables, defined recursively by

 $\delta_0 = x_1, \qquad \delta_n = [\delta_{n-1}(x_1, \dots, x_{2^{n-1}}), \delta_{n-1}(x_{2^{n-1}+1}, \dots, x_{2^n})].$

We let w(G) denote the verbal subgroup of G generated by all w-values. Of course, $\gamma_n(G)$ is the *n*th term of the lower central series of G while $\delta_n(G) = G^{(n)}$ is the *n*th term of the derived series.

The following theorem was established in [2].

THEOREM 1.1. Let *m* be a positive integer and *w* a multilinear commutator word. Suppose that *G* is a group in which $|x^G| \le m$ for any *w*-value *x*. Then the order of the commutator subgroup of w(G) is finite and *m*-bounded.

Throughout the article, we use the expression "(a, b, ...)-bounded" to mean that a quantity is finite and bounded by a certain number depending only on the parameters a, b, ...

The present article grew out of the observation that a modification of the techniques developed in [3] and [2] can be used to deduce that if $|x^{G'}| \le m$ for each $x \in G$, then $\gamma_3(G)$ has finite *m*-bounded order. Naturally, one expects that a similar phenomenon holds for other terms of the lower central series of *G*. This is indeed the case.

THEOREM 1.2. Let *m*, *n* be positive integers and *G* a group. If $|x^{\gamma_n(G)}| \le m$ for any $x \in G$, then $\gamma_{n+1}(G)$ has finite (m, n)-bounded order.

Using the concept of verbal conjugacy classes, introduced in [4], one can obtain a generalization of Theorem 1.2. Let $X_n = X_n(G)$ denote the set of γ_n -values in a group G. It was shown in [1] that if $|x^{X_n}| \le m$ for each $x \in G$, then $|x^{\gamma_n(G)}|$ is (m, n)-bounded. Hence, we have

COROLLARY 1.3. Let m, n be positive integers and G a group. If $|x^{X_n(G)}| \le m$ for any $x \in G$, then $\gamma_{n+1}(G)$ has finite (m, n)-bounded order.

Observe that Neumann's theorem can be obtained from Corollary 1.3 by specializing n = 1. Another result which is straightforward from Corollary 1.3 is the following characterization of finite-by-nilpotent groups.

THEOREM 1.4. A group G is finite-by-nilpotent if and only if there are positive integers m, n such that $|x^{X_n}| \le m$ for any $x \in G$.

2. Preliminary results. Recall that in any group *G* the following "standard commutator identities" hold, when $x, y, z \in G$.

- (1) $[xy, z] = [x, z]^{y}[y, z];$
- (2) $[x, yz] = [x, z][x, y]^{z};$
- (3) $[x, y^{-1}, z]^{y}[y, z^{-1}, x]^{z}[z, x^{-1}, y]^{x} = 1$ (Hall–Witt identity);

(4) $[x, y, z^{x}][z, x, y^{z}][y, z, x^{y}] = 1.$

Note that the fourth identity follows from the third one. Indeed, we have

 $[x^{y}, y^{-1}, z^{y}][y^{z}, z^{-1}, x^{z}][z^{x}, x^{-1}, y^{x}] = 1.$

Since $[x^y, y^{-1}] = [y, x]$, it follows that

$$[y, x, z^{y}][z, y, x^{z}][x, z, y^{x}] = 1.$$

Recall that X_i denote the set of γ_i -values in a group G.

LEMMA 2.1. Let k, n be integers with $2 \le k \le n$ and let G be a group such that $[\gamma_k(G), \gamma_n(G)]$ is finite and $|x^{\gamma_n(G)}| \le m$ for any $x \in G$. Then for every $g \in X_n$, we have

 $|g^{\gamma_{k-1}(G)}| \le m^{n-k+2} |[\gamma_k(G), \gamma_n(G)]|.$

Proof. Let $N = [\gamma_k(G), \gamma_n(G)]$. It is sufficient to prove that in the quotient group G/N, for every integer d with $k - 1 \le d \le n$

 $|(gN)^{\gamma_d(G/N)}| \le m^{n-d+1}$ for every γ_{n-d+1} -value $gN \in G/N$,

since this implies that $g^{\gamma_d(G)}$ is contained at most m^{n-d+1} cosets of N, whenever $g \in X_{n-d+1}$.

So in what follows we assume that N = 1. The proof is by induction on n - d. The case d = n is immediate from the hypotheses.

Let c = n - d + 1. Choose $g \in X_c$ and write g = [x, y] with $x \in X_{c-1}$ and $y \in G$. Let $z \in \gamma_d(G)$. We have

$$[x, y, z^{x}][z, x, y^{z}][y, z, x^{y}] = 1.$$

Note that

$$[z, x] \in [\gamma_d(G), \gamma_{c-1}(G)] \le \gamma_{d-1+c}(G) = \gamma_n(G),$$

and

$$[y, z] \in \gamma_{d+1}(G) \le \gamma_k(G),$$

whence $[z, x, y^{z}] = [z, x, y[y, z]] = [z, x, y]$. Thus,

$$1 = [x, y, z^{x}][z, x, y^{z}][y, z, x^{y}] = [x, y]^{-1}[x, y]^{z^{x}}[z, x, y][y, z, x^{y}]$$
$$= [x, y]^{-1}[x, y]^{z^{x}}(y^{-1})^{[z, x]}y((x^{y})^{-1})^{[y, z]}x^{y}.$$

It follows that

$$[x, y]^{z^{x}} = [x, y](x^{-1})^{y}(x^{y})^{[y, z]}y^{-1}y^{[z, x]}$$

Since $x^{\nu} \in X_{c-1}$ and $[y, z] \in \gamma_{d+1}(G)$, by induction

$$|\{(x^{\nu})^{[\nu,z]} \mid z \in \gamma_d(G)\}| \le m^{n-d-1+1}.$$

Moreover, $[z, x] \in \gamma_n(G)$ and so $|\{y^{[z,x]} \mid z \in \gamma_d(G)\}| \le m$. Thus,

$$|\{[x, y]^{z^{\star}} \mid z \in \gamma_d(G)\}| = |\{[x, y]^z \mid z \in \gamma_d(G)\}| \le mm^{n-d} = m^{n-d+1}$$

as claimed.

Let *H* be a group generated by a set *X* such that $X = X^{-1}$. Given an element $g \in H$, we write $l_X(g)$ for the minimal number *l* with the property that *g* can be written as a product of *l* elements of *X*. Clearly, $l_X(g) = 0$ if and only if g = 1. We call $l_X(g)$ the length of *g* with respect to *X*. The following result is Lemma 2.1 in [3].

LEMMA 2.2. Let *H* be a group generated by a set $X = X^{-1}$ and let *K* be a subgroup of finite index *m* in *H*. Then each coset *K*b contains an element *g* such that $l_X(g) \le m - 1$.

In the sequel, the above lemma will be used in the situation where $H = \gamma_n(G)$ and $X = X_n$ is the set of γ_n -values in G. Therefore, we will write l(g) to denote the smallest number such that the element $g \in \gamma_n(G)$ can be written as a product of as many γ_n -values.

Recall that if *G* is a group, $a \in G$, and *H* is a subgroup of *G*, then [H, a] denotes the subgroup of *G* generated by all commutators of the form [h, a], where $h \in H$. It is well known that [H, a] is normalized by *a* and *H*.

LEMMA 2.3. Let $k, m, n \ge 2$ and let G be a group in which $|x^{\gamma_n(G)}| \le m$ for any $x \in G$. Suppose that $[\gamma_k(G), \gamma_n(G)]$ is finite. Then for every $x \in \gamma_{k-1}(G)$, the order of $[\gamma_n(G), x]$ is bounded in terms of $m, n, and |[\gamma_k(G), \gamma_n(G)]|$ only.

Proof. By Neumann's theorem, $\gamma_n(G)'$ has *m*-bounded order, so the statement is true for $k \ge n + 1$. Therefore, we deal with the case $k \le n$. Without loss of generality, we can assume that $[\gamma_k(G), \gamma_n(G)] = 1$.

Let $x \in \gamma_{k-1}(G)$. Since $|x^{\gamma_n(G)}| \leq m$, the index of $C_{\gamma_n(G)}(x)$ in $\gamma_n(G)$ is at most *m* and by Lemma 2.2 we can choose elements $y_1, \ldots, y_m \in X_n$ such that $l(y_i) \leq m - 1$ and $[\gamma_n(G), x]$ is generated by the commutators $[y_i, x]$. For each $i = 1, \ldots, m$, write $y_i = y_{i1} \cdots y_{im-1}$, where $y_{ij} \in X_n$. The standard commutator identities show that $[y_i, x]$ can be written as a product of conjugates in $\gamma_n(G)$ of the commutators $[y_{ij}, x]$. Since $[y_{ij}, x] \in \gamma_k(G)$, for any $z \in \gamma_n(G)$, we have that

$$[[\gamma_{ii}, x], z] \in [\gamma_k(G), \gamma_n(G)] = 1.$$

Therefore, $[y_i, x]$ can be written as a product of the commutators $[y_{ij}, x]$.

Let $T = \langle x, y_{ij} | 1 \le i, j \le m \rangle$. It is clear that $[\gamma_n(G), x] \le T'$ and so it is sufficient to show that T' has finite (m, n)-bounded order. Observe that $T \le \gamma_{k-1}(G)$. By Lemma 2.1, $C_{\gamma_{k-1}(G)}(y_{ij})$ has (m, n)-bounded index in $\gamma_{k-1}(G)$. It follows that $C_T(\{y_{ij} | 1 \le i, j \le m\})$ has (m, n)-bounded index in T. Moreover, $T \le \langle x \rangle \gamma_n(G)$ and $|x^{\gamma_n(G)}| \le m$, whence $|T : C_T(x)| \le m$. Therefore, the center of T has (m, n)-bounded index in T. Thus, Schur's theorem [8, 10.1.4] tells us that T' has finite (m, n)-bounded order, as required.

The next lemma can be seen as a development related to Lemma 2.4 in [3] and Lemma 4.5 in [10]. It plays a central role in our arguments.

LEMMA 2.4. Let $k, n \ge 2$. Assume that $|x^{\gamma_n(G)}| \le m$ for any $x \in G$. Suppose that $[\gamma_k(G), \gamma_n(G)]$ is finite. Then the order of $[\gamma_{k-1}(G), \gamma_n(G)]$ is bounded in terms of m, n and $|[\gamma_k(G), \gamma_n(G)]|$ only.

Proof. Without loss of generality, we can assume that $[\gamma_k(G), \gamma_n(G)] = 1$. Let $W = \gamma_n(G)$. Choose an element $a \in X_{k-1}$ such that the number of conjugates of a in W is maximal possible, that is, $r = |a^W| \ge |g^W|$ for all $g \in X_{k-1}$.

By Lemma 2.2, we can choose $b_1, \ldots, b_r \in W$ such that $l(b_i) \leq m-1$ and $a^W = \{a^{b_i} | i = 1, \ldots, r\}$. Let $K = \gamma_{k-1}(G)$. Set $M = (C_K(\langle b_1, \ldots, b_r \rangle))_K$ (i.e. M is the intersection of all K-conjugates of $C_K(\langle b_1, \ldots, b_r \rangle)$). Since $l(b_i) \leq m-1$ and, by Lemma 2.1, $C_K(x)$ has (m, n)-bounded index in K for each $x \in X_n$, observe that the centralizer $C_K(\langle b_1, \ldots, b_r \rangle)$ has (m, n)-bounded index in K. So also M has (m, n)-bounded index in K.

Let $v \in M$. Note that $(va)^{b_i} = va^{b_i}$ for each i = 1, ..., r. Therefore, the elements va^{b_i} form the conjugacy class $(va)^W$ because they are all different and their number is the allowed maximum. So, for an arbitrary element $h \in W$, there exists $b \in \{b_1, ..., b_r\}$ such that $(va)^h = va^b$ and hence $v^ha^h = va^b$. Therefore, $[h, v] = v^{-h}v = a^ha^{-b}$ and so $[h, v]^a = a^{-1}a^ha^{-b}a = [a, h][b, a] \in [W, a]$. Thus, $[W, v]^a \leq [W, a]$ and so $[W, M] \leq [W, a]$.

ELOISA DETOMI ET AL.

Let x_1, \ldots, x_s be a set of coset representatives of M in K. As $[W, x_i]$ is normalized by W for each i, it follows that

$$[W, K] \leq [W, x_1] \cdots [W, x_s][W, M] \leq [W, x_1] \cdots [W, x_s][W, a].$$

Since *s* is (m, n)-bounded and by Lemma 2.3 the orders of all subgroups $[W, x_i]$ and [W, a] are bounded in terms of *m* and *n* only, the result follows.

Proof of Theorem 1.2. Let *G* be a group in which $|x^{\gamma_n(G)}| \le m$ for any $x \in G$. We need to show that $\gamma_{n+1}(G)$ has finite (m, n)-bounded order. We will show that the order of $[\gamma_k(G), \gamma_n(G)]$ is finite and (m, n)-bounded for k = n, n - 1, ..., 1. This is sufficient for our purposes since $[\gamma_1(G), \gamma_n(G)] = \gamma_{n+1}(G)$. We argue by backward induction on *k*. The case k = n is immediate from Neumann's theorem so we assume that $k \le n - 1$ and the order of $[\gamma_{k+1}(G), \gamma_n(G)]$ is finite and (m, n)-bounded. Lemma 2.4 now shows that also the order of $[\gamma_k(G), \gamma_n(G)]$ is finite and (m, n)-bounded, as required.

Proof of Corollary 1.3. Let *G* be a group in which $|x^{X_n(G)}| \le m$ for any $x \in G$. We wish to show that $\gamma_{n+1}(G)$ has finite (m, n)-bounded order. Theorem 1.2 of [1] tells us that $|x^{\gamma_n(G)}|$ is (m, n)-bounded. The result is now immediate from Theorem 1.2.

Proof of Theorem 1.4. In view of Corollary 1.3, the theorem is self-evident since a group G is finite-by-nilpotent if and only if some term of the lower central series of G is finite.

REFERENCES

1. S. Brazil, A. Krasilnikov and P. Shumyatsky, Groups with bounded verbal conjugacy classes, *J. Group Theory* 9 (2006), 127–137.

2. E. Detomi, M. Morigi and P. Shumyatsky, BFC-theorems for higher commutator subgroups, *Q. J. Math.* **70** (2019), 849–858, doi: 10.1093/qmath/hay068.

3. G. Dierings and P. Shumyatsky, Groups with Boundedly Finite Conjugacy Classes of Commutators, *Q. J. Math.* **69** (2018), 1047–1051, doi: 10.1093/qmath/hay014.

4. S. Franciosi, F. de Giovanni and P. Shumyatsky, On groups with finite verbal conjugacy classes, *Houston J. Math.* **28** (2002), 683–689.

5. R. M. Guralnick and A. Maroti, Average dimension of fixed point spaces with applications, *J. Algebra* **226** (2011), 298–308.

6. B. H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954), 236–248.

7. P. M. Neumann and M. R. Vaughan-Lee, An essay on BFC groups, *Proc. Lond. Math. Soc.* 35 (1977), 213–237.

8. D. J. S. Robinson, *A Course in the Theory of Groups*, Graduate Texts in Mathematics, vol. 80, 2nd edition (Springer-Verlag, New York, 1996).

9. D. Segal and A. Shalev, On groups with bounded conjugacy classes, *Quart. J. Math. Oxford* 50 (1999), 505–516.

10. J. Wiegold, Groups with boundedly finite classes of conjugate elements, *Proc. Roy. Soc. London Ser. A* 238 (1957), 389–401.