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Abstract. Let γn = [x1, . . . , xn] be the nth lower central word. Denote by Xn the set
of γn-values in a group G and suppose that there is a number m such that |gXn | ≤ m for
each g ∈ G. We prove that γn+1(G) has finite (m, n)-bounded order. This generalizes the
much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a
BFC-group is finite.
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1. Introduction. Given a group G and an element x ∈ G, we write xG for the con-
jugacy class containing x. Of course, if the number of elements in xG is finite, we have
|xG| = [G : CG(x)]. A group is said to be a BFC-group if its conjugacy classes are finite
and of bounded size. One of the most famous of B. H. Neumann’s theorems says that
in a BFC-group the commutator subgroup G′ is finite [6]. Later Wiegold showed that if
|xG| ≤ m for each x ∈ G, then the order of G′ is bounded by a number depending only on m.
Moreover, Wiegold found a first explicit bound for the order of G′ [10], and the best-known
bound was obtained in [5] (see also [7] and [9]).

The recent articles [3] and [2] deal with groups G in which conjugacy classes con-
taining commutators are bounded. Recall that multilinear commutator words are words
which are obtained by nesting commutators, but using always different variables. More
formally, the group-word w(x) = x in one variable is a multilinear commutator; if u
and v are multilinear commutators involving disjoint sets of variables then the word
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w = [u, v] is a multilinear commutator, and all multilinear commutators are obtained in
this way. Examples of multilinear commutators include the familiar lower central words
γn(x1, . . . , xn) = [x1, . . . , xn] and derived words δn, on 2n variables, defined recursively by

δ0 = x1, δn = [δn−1(x1, . . . , x2n−1), δn−1(x2n−1+1, . . . , x2n)].
We let w(G) denote the verbal subgroup of G generated by all w-values. Of course, γn(G)

is the nth term of the lower central series of G while δn(G) = G(n) is the nth term of the
derived series.

The following theorem was established in [2].

THEOREM 1.1. Let m be a positive integer and w a multilinear commutator word.
Suppose that G is a group in which |xG| ≤ m for any w-value x. Then the order of the
commutator subgroup of w(G) is finite and m-bounded.

Throughout the article, we use the expression “(a, b, . . . )-bounded” to mean that a
quantity is finite and bounded by a certain number depending only on the parameters
a, b, . . . .

The present article grew out of the observation that a modification of the techniques
developed in [3] and [2] can be used to deduce that if |xG′ | ≤ m for each x ∈ G, then γ3(G)

has finite m-bounded order. Naturally, one expects that a similar phenomenon holds for
other terms of the lower central series of G. This is indeed the case.

THEOREM 1.2. Let m, n be positive integers and G a group. If |xγn(G)| ≤ m for any
x ∈ G, then γn+1(G) has finite (m, n)-bounded order.

Using the concept of verbal conjugacy classes, introduced in [4], one can obtain a
generalization of Theorem 1.2. Let Xn = Xn(G) denote the set of γn-values in a group G.
It was shown in [1] that if |xXn | ≤ m for each x ∈ G, then |xγn(G)| is (m, n)-bounded. Hence,
we have

COROLLARY 1.3. Let m, n be positive integers and G a group. If |xXn(G)| ≤ m for any
x ∈ G, then γn+1(G) has finite (m, n)-bounded order.

Observe that Neumann’s theorem can be obtained from Corollary 1.3 by specializ-
ing n = 1. Another result which is straightforward from Corollary 1.3 is the following
characterization of finite-by-nilpotent groups.

THEOREM 1.4. A group G is finite-by-nilpotent if and only if there are positive integers
m, n such that |xXn | ≤ m for any x ∈ G.

2. Preliminary results. Recall that in any group G the following “standard commu-
tator identities” hold, when x, y, z ∈ G.

(1) [xy, z] = [x, z]y[y, z];
(2) [x, yz] = [x, z][x, y]z;

(3) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (Hall–Witt identity);

(4) [x, y, zx][z, x, yz][y, z, xy] = 1.

Note that the fourth identity follows from the third one. Indeed, we have

[xy, y−1, zy][yz, z−1, xz][zx, x−1, yx] = 1.
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Since [xy, y−1] = [y, x], it follows that

[y, x, zy][z, y, xz][x, z, yx] = 1.

Recall that Xi denote the set of γi-values in a group G.

LEMMA 2.1. Let k, n be integers with 2 ≤ k ≤ n and let G be a group such that
[γk(G), γn(G)] is finite and |xγn(G)| ≤ m for any x ∈ G. Then for every g ∈ Xn, we have

|gγk−1(G)| ≤ mn−k+2|[γk(G), γn(G)]|.
Proof. Let N = [γk(G), γn(G)]. It is sufficient to prove that in the quotient group G/N ,

for every integer d with k − 1 ≤ d ≤ n

|(gN)γd(G/N)| ≤ mn−d+1 for every γn−d+1-value gN ∈ G/N,

since this implies that gγd(G) is contained at most mn−d+1 cosets of N , whenever g ∈ Xn−d+1.
So in what follows we assume that N = 1. The proof is by induction on n − d. The

case d = n is immediate from the hypotheses.
Let c = n − d + 1. Choose g ∈ Xc and write g = [x, y] with x ∈ Xc−1 and y ∈ G. Let

z ∈ γd(G). We have

[x, y, zx][z, x, yz][y, z, xy] = 1.

Note that

[z, x] ∈ [γd(G), γc−1(G)] ≤ γd−1+c(G) = γn(G),

and

[y, z] ∈ γd+1(G) ≤ γk(G),

whence [z, x, yz] = [z, x, y[y, z]] = [z, x, y]. Thus,

1 = [x, y, zx][z, x, yz][y, z, xy] = [x, y]−1[x, y]zx [z, x, y][y, z, xy]
= [x, y]−1[x, y]zx

(y−1)[z,x]y((xy)−1)[y,z]xy.

It follows that

[x, y]zx = [x, y](x−1)y(xy)[y,z]y−1y[z,x].

Since xy ∈ Xc−1 and [y, z] ∈ γd+1(G), by induction

|{(xy)[y,z] | z ∈ γd(G)}| ≤ mn−d−1+1.

Moreover, [z, x] ∈ γn(G) and so |{y[z,x] | z ∈ γd(G)}| ≤ m. Thus,

|{[x, y]zx | z ∈ γd(G)}| = |{[x, y]z | z ∈ γd(G)}| ≤ mmn−d = mn−d+1

as claimed.

Let H be a group generated by a set X such that X = X −1. Given an element g ∈ H , we
write lX (g) for the minimal number l with the property that g can be written as a product of
l elements of X . Clearly, lX (g) = 0 if and only if g = 1. We call lX (g) the length of g with
respect to X . The following result is Lemma 2.1 in [3].

LEMMA 2.2. Let H be a group generated by a set X = X −1 and let K be a subgroup of
finite index m in H. Then each coset Kb contains an element g such that lX (g) ≤ m − 1.
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In the sequel, the above lemma will be used in the situation where H = γn(G) and
X = Xn is the set of γn-values in G. Therefore, we will write l(g) to denote the smallest
number such that the element g ∈ γn(G) can be written as a product of as many γn-values.

Recall that if G is a group, a ∈ G, and H is a subgroup of G, then [H, a] denotes the
subgroup of G generated by all commutators of the form [h, a], where h ∈ H . It is well
known that [H, a] is normalized by a and H .

LEMMA 2.3. Let k, m, n ≥ 2 and let G be a group in which |xγn(G)| ≤ m for any x ∈ G.
Suppose that [γk(G), γn(G)] is finite. Then for every x ∈ γk−1(G), the order of [γn(G), x] is
bounded in terms of m, n, and |[γk(G), γn(G)]| only.

Proof. By Neumann’s theorem, γn(G)′ has m-bounded order, so the statement is true
for k ≥ n + 1. Therefore, we deal with the case k ≤ n. Without loss of generality, we can
assume that [γk(G), γn(G)] = 1.

Let x ∈ γk−1(G). Since |xγn(G)| ≤ m, the index of Cγn(G)(x) in γn(G) is at most m and by
Lemma 2.2 we can choose elements y1, . . . , ym ∈ Xn such that l(yi) ≤ m − 1 and [γn(G), x]
is generated by the commutators [yi, x]. For each i = 1, . . . , m, write yi = yi 1 · · · yi m−1,
where yi j ∈ Xn. The standard commutator identities show that [yi, x] can be written as a
product of conjugates in γn(G) of the commutators [yij, x]. Since [yij, x] ∈ γk(G), for any
z ∈ γn(G), we have that

[[yij, x], z] ∈ [γk(G), γn(G)] = 1.

Therefore, [yi, x] can be written as a product of the commutators [yij, x].
Let T = 〈x, yij | 1 ≤ i, j ≤ m〉. It is clear that [γn(G), x] ≤ T ′ and so it is sufficient to

show that T ′ has finite (m, n)-bounded order. Observe that T ≤ γk−1(G). By Lemma 2.1,
Cγk−1(G)(yij) has (m, n)-bounded index in γk−1(G). It follows that CT ({yij | 1 ≤ i, j ≤ m}) has
(m, n)-bounded index in T . Moreover, T ≤ 〈x〉γn(G) and |xγn(G)| ≤ m, whence |T : CT (x)| ≤
m. Therefore, the center of T has (m, n)-bounded index in T . Thus, Schur’s theorem [8,
10.1.4] tells us that T ′ has finite (m, n)-bounded order, as required.

The next lemma can be seen as a development related to Lemma 2.4 in [3] and
Lemma 4.5 in [10]. It plays a central role in our arguments.

LEMMA 2.4. Let k, n ≥ 2. Assume that |xγn(G)| ≤ m for any x ∈ G. Suppose that
[γk(G), γn(G)] is finite. Then the order of [γk−1(G), γn(G)] is bounded in terms of m, n
and |[γk(G), γn(G)]| only.

Proof. Without loss of generality, we can assume that [γk(G), γn(G)] = 1. Let
W = γn(G). Choose an element a ∈ Xk−1 such that the number of conjugates of a in W
is maximal possible, that is, r = |aW | ≥ |gW | for all g ∈ Xk−1.

By Lemma 2.2, we can choose b1, . . . , br ∈ W such that l(bi) ≤ m − 1 and aW =
{abi |i = 1, . . . , r}. Let K = γk−1(G). Set M = (CK(〈b1, . . . , br〉))K (i.e. M is the intersec-
tion of all K-conjugates of CK(〈b1, . . . , br〉). Since l(bi) ≤ m − 1 and, by Lemma 2.1,
CK(x) has (m, n)-bounded index in K for each x ∈ Xn, observe that the centralizer
CK(〈b1, . . . , br〉) has (m, n)-bounded index in K. So also M has (m, n)-bounded index
in K.

Let v ∈ M . Note that (va)bi = vabi for each i = 1, . . . , r. Therefore, the elements vabi

form the conjugacy class (va)W because they are all different and their number is the
allowed maximum. So, for an arbitrary element h ∈ W , there exists b ∈ {b1, . . . , br} such
that (va)h = vab and hence vhah = vab. Therefore, [h, v] = v−hv = aha−b and so [h, v]a =
a−1aha−ba = [a, h][b, a] ∈ [W , a]. Thus, [W , v]a ≤ [W , a] and so [W , M] ≤ [W , a].
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Let x1, . . . , xs be a set of coset representatives of M in K. As [W , xi] is normalized by
W for each i, it follows that

[W , K] ≤ [W , x1] · · · [W , xs][W , M] ≤ [W , x1] · · · [W , xs][W , a].
Since s is (m, n)-bounded and by Lemma 2.3 the orders of all subgroups [W , xi] and [W , a]
are bounded in terms of m and n only, the result follows.

Proof of Theorem 1.2. Let G be a group in which |xγn(G)| ≤ m for any x ∈ G. We need
to show that γn+1(G) has finite (m, n)-bounded order. We will show that the order of
[γk(G), γn(G)] is finite and (m, n)-bounded for k = n, n − 1, . . . , 1. This is sufficient for
our purposes since [γ1(G), γn(G)] = γn+1(G). We argue by backward induction on k. The
case k = n is immediate from Neumann’s theorem so we assume that k ≤ n − 1 and the
order of [γk+1(G), γn(G)] is finite and (m, n)-bounded. Lemma 2.4 now shows that also
the order of [γk(G), γn(G)] is finite and (m, n)-bounded, as required.

Proof of Corollary 1.3. Let G be a group in which |xXn(G)| ≤ m for any x ∈ G. We wish
to show that γn+1(G) has finite (m, n)-bounded order. Theorem 1.2 of [1] tells us that
|xγn(G)| is (m, n)-bounded. The result is now immediate from Theorem 1.2.

Proof of Theorem 1.4. In view of Corollary 1.3, the theorem is self-evident since a
group G is finite-by-nilpotent if and only if some term of the lower central series of G is
finite.
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