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Dynamics of the interaction of synthetic jet
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The vortex dynamics in a stratified environment is of fundamental importance in various
flow systems, however, the mechanism of successive vortex–interface interactions remains
not fully understood. This study investigates synthetic jet vortex rings impinging on a
water–oil interface by experiment and numerical simulation. Two cases in the laminar
and transitional regimes are concerned with the Froude number (Fr) of 0.35 and
0.82, respectively. The vortex rings for the two cases follow a similar evolution with
three distinct stages, including vortex free-travel, vortex–interface interaction and vortex
stretching. As products of the vortex–interface interaction, the secondary vortex rings
are baroclinically generated in both water and oil followed by the formation of hairpin
vortices through azimuthal deformation. Distinguished from an isolated vortex–interface
interaction, complex interactions occur between the primary vortex ring and hairpin
vortices, which can enhance the vortex ring instability in existence of the stratification for
the laminar case. However, the vortex ring instability for the transitional case can develop
earlier due to nonlinear effects with increasing Reynolds number. The spatio-temporal
properties of the interface deformation and interfacial waves are analysed. The maximum
penetration height of vortex rings scales with Fr2 as that for the isolated situation.
Particularly, the transitional case is found to produce destabilization of the interfacial
waves at a further radial location. The mechanism is revealed by connecting the dynamics
of the vortex and the interface, which can be attributed to the radial development of
perturbances stemming from the vortex ring instability under strong vortex–interface
interaction.
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1. Introduction

Vortex rings (Shariff & Leonard 1992) have always played a crucial role in scientific
research and engineering applications. Over the past few decades, the dynamics of the
vortex ring evolving in a uniform environment has been well established in theory (Shusser
& Gharib 2000; Krueger 2005; Sullivan et al. 2008), experiment (Maxworthy 1977; Glezer
1988; Cater, Soria & Lim 2004; Das, Bansal & Manghnani 2017) and numerical simulation
(Shariff, Verzicco & Orlandi 1994; Archer, Thomas & Coleman 2008; Lin et al. 2020).
However, for many practical situations, the formation and evolution of the vortex exist in
a non-uniform or stratified environment, such as the wake of aircrafts and vessels in the
stratified flow, convection of thermals in the inversion layer, interaction of flame fronts with
the turbulent flow, diffusion of contaminants in the atmosphere and halocline in oceans
(Dahm, Scheil & Tryggvason 1989; Sarpkaya 1996; Advaith et al. 2017). As a result, the
dynamics of the vortex ring can be more complex under the influence of the interaction
with the stratified interface. Therefore, it is of importance to understand the dynamics and
mechanism for flow control by manipulating the vortex ring.

The canonical property during the vortex ring impinging on a stratified interface is the
generation of the secondary or tertiary vorticity in non-zero density gradient regions due to
baroclinicity. The interactions between different vortical structures have a profound impact
on the vortex dynamics involving rebounding, reconnection, destabilization and collapse
(Song, Bernal & Tryggvason 1992; Advaith et al. 2017), as well as entrainment and mixing
(Linden 1973). In addition to the complex interaction phenomena, the flow field properties
are influenced by multiple control parameters, including Reynolds number (Re), Atwood
number (At), Froude number (Fr) and Richardson number (Ri). The Atwood number gives
the non-dimensional density difference across the interface (Dahm et al. 1989), Froude
number measures the competition beween the inertial force and the restoring buoyancy
force (Herault, Facchini & Bars 2018), and Richardson number denotes the ratio of the
potential energy of the stratification and the kinetic energy (Olsthoorn & Dalziel 2017).
The formation of the secondary or tertiary vortex ring is also universal in the vortex ring
interaction with solid boundaries (Walker et al. 1987; Orlandi & Verzicco 1993; Cheng,
Lou & Luo 2010; Xu et al. 2017). However, the generation mechanism for the latter is
attributed to boundary layer separation under the adverse pressure gradient (Walker et al.
1987).

The research of the vortex dynamics in a stratified environment has been mainly
conducted with respect to the laminar or turbulent vortex ring impinging on a free surface
or an internal interface. For the interaction with a free surface, Chu, Wang & Hsieh (1993)
experimentally compared the dynamics of a laminar vortex ring impinging on a free
surface and a solid surface at the circulation Reynolds numbers ReΓ from 900 to 2350.
They found the fundamental flow phenomenon of the primary vortex ring was similar
between the two cases, which could be divided into three stages of vortex free-traveling,
stretching and rebounding. However, with increasing Reynolds number, the free surface
deformation was enhanced to reach approximately 4 % of the orifice diameter despite a
lower Froude number (Fr < 0.15).

Song et al. (1992) investigated the free surface waves generated by the head-on collision
of a vortex ring at Fr = 0.252–0.988 and ReΓ = 15 100–64 700 by experiment and
numerical simulation. They observed three types of free surface patterns associated with
the vortical structure evolution, including axisymmetric depression of the surface for weak
vortex–surface interaction, axisymmetric radially propagating waves in the early stage of
strong vortex–surface interaction and fully three-dimensional (3-D) waves with breakup
of the vortex core. Particularly, they detected vortex reconnection as the main cause of the
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generation of the surface waves after colliding with the surface. Vortex reconnection was
further studied by Weigand & Gharib (1995) for a turbulent vortex ring impinging on the
free surface with various angles at Fr = 0.46. The flow field exhibited a trifurcation that
resulted from the interaction with the surface during the transition stage, and a bifurcation
during the fully developed turbulent stage. However, the reconnection was absent in the
simulation of Archer, Thomas & Coleman (2010) for a laminar vortex ring impinging on a
free surface with Fr approaching zero. They ascribed this discrepancy to the effects of the
slenderness ratio, initial depth and Reynolds number of the vortex ring.

In terms of the interaction with an internal interface between two liquids, Linden (1973)
earlier experimentally studied entrainment caused by a turbulent vortex ring impinging
on a density interface with Fr between 0.14 and 0.80. They found that the maximum
penetration length of the vortex ring was a function of Fr. Dahm et al. (1989) performed
a detailed flow visualization of an axisymmetric vortex ring interaction with a variable
thickness interface at ReΓ = 2000–16 000. The density difference was sufficiently small
to satisfy the Boussinesq limit, and Ri (= Fr−2) varied from 4.3 to 275. The results
indicated that for a sharp interface (the interface thickness was far less than the vortex
length scale), the vortex dynamics was governed solely by AR, i.e. the product of At and
Ri. At a lower AR, the outmost layer of the vortex ring was successively peeled away
by baroclinic vorticity, resulting in the formation of a complex backflow. In contrast, the
dynamics tended to the interaction with a solid wall with the increased AR. However, for
a thick interface, the vortex dynamics was also related to the interface thickness.

Orlandi, Egermann & Hopfinger (1998) presented experimental and numerical results
of a laminar vortex ring descending in a density fluid with finite thickness. The vortex
ring was observed to shrink as it penetrated the stratified fluid, and eventually disappeared
due to the effects of baroclinic vorticity and cross-diffusion, whereas no internal waves
were generated. In a similar stratified environment, Advaith et al. (2017) studied the
vortex behaviour by particle image velocimetry (PIV) over a range of Re = 1350–4600
and Ri = 0.1–4. The scenarios of the vortex–interface interaction were characterized into
non-penetrative, partially penetrative and extensively penetrative regimes. In addition,
they detected the occurrence of short-wavelength instability for a plume structure
generated by the vortex ring against buoyancy. Olsthoorn & Dalziel (2017) investigated
the mechanism of the vortex ring interaction with a stratified interface at Re = 1600–2800
and Ri = 0.6–9.8. The reconstruction of the three-dimensional vortical structures based
on stereoscopic PIV enabled analysis of the vortex ring instability. The results indicated
that the unstable wavenumber in the presence of a stratified interface was similar to the
unstratified situation, and the time scale of the instability growth was inversely dependent
on Ri. Furthermore, the instability of the secondary vorticity field was similar to the Crow
instability.

Compared to the stratified environment constructed by two miscible liquids with
some cross-diffusion, the interface between two immiscible liquids also exists in many
applications including petroleum transportation, oil spills on the sea, two-phase reactions
and separations in industries (Park, Chinaud & Angeli 2016; Song, Choi & Kim 2021).
However, the interaction of the immiscible interface with the external perturbance of a
jet or a vortex ring has been rarely brought into focus, which involves complex interface
behaviours in addition to the vortex dynamics. Recently, Yeo et al. (2020) conducted an
experiment of a vortex ring colliding with a sharp water–oil interface at Re = 1000–4000.
The results indicated that the flow pattern was directly influenced by the Reynolds number,
where the degree of the interface deformation was enhanced with increasing Reynolds
number. At the largest Reynolds number, the vortex ring could penetrate the interface
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almost completely, and then reversed its translational direction with the formation of a
trailing jet due to the buoyancy effect. However, there is still a lack of quantitative analysis
on the vortex dynamics, as well as the accurate tracking of the interface deformation
and possible interfacial waves. In addition, Song et al. (2021) experimentally studied
the behaviours of the water–oil interface with an impinging vortex ring generated in
oil. They identified the key features of the interface in a non-dimensional regime map
as no-deformation, no-rebounding, rebounding and symmetry breakup. The geometric
quantities related to the interface deformation were characterized by the Froude and Bond
numbers. However, they only measured the 2-D velocity fields in the oil layer. The details
of the vortical structure evolution near the interface and three-dimensional properties of
the interface, especially for a strong vortex–interface interaction, remain to be explored.

The purpose of this study is to investigate the dynamics of the interaction of successive
vortex rings with a stratified water–oil interface by experiment and numerical simulation.
The previous studies mainly focus on an isolated vortex ring impinging on the stratified
interface. In a practical flow system, the evolution and deformation of the interface
are usually an accumulated consequence of persistent vortex–interface interactions.
Furthermore, the interaction between vortex rings could be more complex than that for
an isolated situation. Based on these perspectives, we use a synthetic-jet actuator (Smith
& Glezer 1998; Cater & Soria 2002; Glezer & Amitay 2002; Wang & Feng 2018) to
periodically generate vortex rings so that successive vortex–interface interactions can
be achieved. In particular, the application of 3-D numerical simulation enables accurate
capture of the 3-D instability of vortex rings and the spatio-temporal properties of the
interface, and thus gain insight into the underlying flow mechanism.

2. Experimental setup and procedures

2.1. Experimental setup and parameters
The experiments were performed in a Plexiglas water tank of 600 × 600 × 600 mm3 with
a room temperature of 27 °C. The vortex ring was generated by a piston-type synthetic jet
actuator (Xu et al. 2017; Wang, Feng & Xu 2019) which was made up of a Panasonic
servo electromotor (MSMD042PIU), an eccentric disk, a connecting rod with length
l = 300 mm, a piston with diameter Dp = 29 mm and a cavity, as shown in figure 1. A
hard rubber hose was used to connect the synthetic jet actuator and a J-like Plexiglas
hollow circular cylinder to ensure sealing. The hollow circular cylinder was approximately
300 mm from the tank bottom. A circular jet orifice with diameter D0 = 12 mm and plate
thickness Hp = 5 mm was mounted on the end of the hollow circular cylinder so that the
vortex rings coud move upwards vertically during the experiments. Note that the vertical
segment of the hollow circular cylinder close to the jet orifice was 120 mm (10D0), and that
was long enough to eliminate any possible impact of the bent segment on the formation of
the vortex ring.

Before the experiments, the tank was first filled with water up to the height Hw = 42 mm
(3.5D0) above the orifice. The water had been filtered using a filter with a carbon-fiber
filter element and filtering precision of 5–10 µm, guaranteeing less impurities within
the water. After that, soy oil with ρo = 915.8 kg m−3 and μo = 0.0413 kg ms−1 was
immediately added above the water to seal the interface, up to the height Ho = 72 mm
(6D0). Due to immiscibility between the water–oil phases, they were stratified by a stable
and sharp interface. Thus, a clean interface could be obtained to eliminate the influence
of impurities on the vortex behaviour in collision with the interface (Sarpkaya 1996),
ensuring that the conditions in the experiments and simulations were as similar as possible.
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Figure 1. Schematic of experimental set-up for LIF and PIV measurements.

The corresponding Atwood number was

At = ρw − ρo

ρw + ρo
= 0.042, (2.1)

where ρw is the water density. The coordinate system was defined as follows: the origin
was located at the stratified interface with the x-axis along the jet motion direction, the
y-axis along the spanwise direction and the z-axis determined by right-hand rule.

Throughout the experiments, two cases with the excitation frequency of the servo
electromotor fe = 0.5 and 1 Hz were investigated, corresponding to the synthetic jet cycle
T = 1/fe = 2 and 1 s. The amplitude of the eccentric disk was fixed at Ae = 3.67 mm. By
taking the derivative of the piston shift, the piston velocity up can be expressed as

up(t) = 2πAefe sin(2π fet)

⎛
⎝ Ae cos(2π fet)√

l2 − (Ae sin(2π fet))2
+ 1

⎞
⎠ . (2.2)

Since l � Ae(Ae/l ≈ 0.012), the piston velocity could be simplified as

up(t) ≈ 2πAefe sin(2π fet). (2.3)

As suggested by Das et al. (2017), the present piston velocity could result in a ratio of
acceleration impulse and total impulse of 0.5 during the synthetic jet blowing period, and
thus no stopping vortex appeared to interact with the primary vortex ring at this impulse
ratio. Additionally, we did not observe the formation of a stopping vortex from the flow
visualization and PIV results.

The instantaneous velocity at the jet exit u0 could be given as follows based on mass
conservation of the incompressible fluid:

u0(t) ≈ 2πAefe(Dp/D0)
2 sin(2π fet). (2.4)

Correspondingly, the averaged exit velocity U0 was calculated according to the definition
of the time-averaged blowing velocity over the entire cycle (Smith & Glezer 1998):

U0 = 1
T

∫ T/2

0
u0(t) dt = 2Aefe(Dp/D0)

2. (2.5)
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Thus U0 = 21.43 and 42.87 mm s−1 for the two cases. Note that the jet exit velocity
in (2.4) was obtained based on the slug model, as suggested by the previous studies of
the synthetic jet (Cater & Soria 2002; Kotapati, Mittal & Cattafesta 2007; Van Buren,
Whalen & Amitay 2014). However, there would be a reverse flow near the wall during
the deceleration phase of the piston motion (Das & Arakeri 1998), which may change
the averaged exit velocity. The exact solution of the instantaneous exit velocity can be
calculated by referring to the work of Das & Arakeri (2000) for a sinusoidally oscillating
pipe flow. As a result, the error of the averaged exit velocity due to the approximation in
(2.4) could be estimated as 3 % and 2 % for the laminar and transitional cases, respectively.

Then, the Strouhal number St, dimensionless stroke length L and circulation Reynolds
number ReΓ (Glezer 1988) could be given as

St = feD0

U0
, (2.6)

L = L0

D0
= U0T

D0
, (2.7)

ReΓ = Γ0

νw
= ηL0U0

νw
, (2.8)

where L0 is the stroke length, η is a factor dependent upon the exit velocity program and
equals 1.23 for a sinusoidal velocity program (Shuster & Smith 2007), and νw is the water
kinematic viscosity. Thus, St = 0.28, L = 3.6, and ReΓ = 1293 and 2590 for the two cases.
The stroke length denotes the motion distance of the vortex ring from the jet exit during the
synthetic jet blowing period, and the current L0 (L0/Hw ≈ 1) could guarantee the effective
interaction between vortex rings and the stratified interface. The present two cases were
in the laminar and transitional regimes, respectively, according to the transition map for
axisymmetric synthetic jet vortex rings in Shuster & Smith (2007). Furthermore, according
to the regime map of Song et al. (2021) for the vortex ring impinging on a water–oil
interface, the interface behaviours for the laminar and transitional cases pertained to
no-rebounding and rebounding regimes, respectively.

In addition to these two states, one case at a larger ReΓ , corresponding to the turbulent
regime of synthetic jet vortex rings, was also examined during the experiments. However,
it was found that the interface was dramatically deformed and oil could penetrate into
water as bubbles caused by consecutive impingement of high-speed turbulent vortex rings
on the interface. As a result, the flow field was ruined by intense reflections stemming
from the deforming interface and oil bubbles, which could not be effectively settled by the
current experimental techniques.

2.2. Flow field measurements
Time-resolved laser-induced-fluorescence (LIF) flow visualization and 2-D PIV were
applied to qualitatively and quantitatively measure the flow fields in the axisymmetic
(x–y) plane of the synthetic jet, respectively. The flow fields were illuminated by a vertical
laser sheet with the thickness of 1 mm from a 5-W Nd:YAG continuous laser through the
orifice axis. A high-speed CMOS camera (Photron Fastcam SA2/86K-M3) with a 105 mm
Nikon lens was used to capture the flow field images, as shown in figure 1. For the LIF
measurements, the flow structures could be visualized by fluorescent dye (Rhodamine 6G)
at a concentration of 3 p.p.m. pre-injected into the hollow circular cylinder. The camera
sampling frequency was fixed at 50 Hz. During the PIV measurements, hollow glass beads
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with a median diameter of 10 µm and density of 1.05 g cm−3 were first uniformly seeded
as the tracer particles. For the laminar and transitional cases, the camera resolution was set
to 1024 (x) × 2048 (y) pixels and 1280 (x) × 2048 (y) pixels, and the corresponding field
of view was 60 mm × 120 mm (5D0 × 10D0) and 75 mm × 120 mm (6.25D0 × 10D0),
respectively. Additionally, the sequence of the particle images was sampled at 180 Hz
and 360 Hz for the two cases so that the maximum particle displacement between adjacent
frames was less than 10 pixels. Prior to each sampling, the synthetic jet actuator would run
for more than 10 jet cycles to ensure convergence of the flow quantities.

In total, two groups, with each group comprising 10 914 and 8730 frames, were captured
for the two cases, respectively. The velocity vector fields were calculated using a multi-pass
iterative Lucas–Kanade (MILK) algorithm (Champagnat et al. 2011). The size of the final
interrogation window was set to 32 × 32 pixels with a 75 % overlap, corresponding to
a physical scale of 1.875 mm (0.16D0). Assuming a 0.1 pixel accuracy of the particle
displacement, the velocity uncertainty was less than 2 %.

It is necessary to point out the purpose of the experimental measurements. For a
stratified environment, the particle images are easily distorted due to different refractive
indices of the two phases. This could be slightly improved through increasing the camera
focus depth and modifying the calibration, however, even small changes in the refractive
indices of the two layers will defocus the particles near the interface (Olsthoorn & Dalziel
2017). Consequently, the accurate velocity field across the interface cannot be acquired
by PIV. In addition, intense reflections are produced in the oil layer when the interface
is deformed significantly, which will corrupt the particle images. Thus, it is difficult to
achieve a perfect time-resolved velocity field, and the present experimental results are
mainly used to provide a reference of the flow field before the vortex ring reaches the
interface for the numerical simulations.

3. Numerical methods

3.1. Interface tracking
The numerical simulation paid special attention to the deformation of the interface
between the water–oil phases, which can be captured by using the volume of fluid (VOF)
method. The VOF method is typically employed to track the interface location for two or
more phase fluids that are not miscible (Derakhti & Kirby 2014; Mohasan et al. 2021). In
the computational control volume, the water phase (primary phase) or oil phase (secondary
phase) can be distinguished by the corresponding volume fraction φw or φo, meeting the
condition of φw + φo = 1. Thus, the volume fraction with a value of 0 or 1 represents
a single pure phase, and a value between 0 and 1 represents the interface between the
two phases. For ideal mixtures, material properties in each computational cell are in the
volume-averaged form so that the density ρ and dynamic viscosity μ of the water–oil
mixture is ρ = ρwφw + ρoφo and μ = μwφw + μoφo, respectively. Based on the above,
the conservation equations of the system, i.e. the continuity equation and momentum
equation are presented as

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.1)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + ∇uT)] + ρg + F . (3.2)
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The accurate location of the water–oil interface can be acquired through solving a
continuity equation of the water volume fraction as follows:

∂φw

∂t
+ ∇ · (φwu) = 0. (3.3)

Note that the body force term F in (3.2) stems from the surface tension, which is related
to the surface tension coefficient and wall adhesion effect according to the continuum
surface force model proposed by Brackbill, Kothe & Zemach (1992). In this simulation,
the interfacial tension coefficient was set to 0.05 N m−1, and the effect of wall adhesion on
the interface could be neglected since the interface was modelled without a rigid boundary.

3.2. Computational model
The simulations of the three-dimensional, incompressible flow used different viscous
models based on the states of synthetic jet vortex rings at different Reynolds numbers.
For the laminar case, the synthetic jet was simulated by the laminar model, which has
also been used by Gao et al. (2020) for the simulation of starting jets at a comparable
Reynolds number. In addition, the pre-test results with turbulence model indicated that the
vortex ring was completely dissipated before impinging on the interface, which seriously
deviated from the experimental phenomenon. For the transitional case, the synthetic jet
was modelled using the delayed detached eddy simulation (DDES) model.

The detached eddy simulation (DES) (Spalart 2009) model is a hybrid Reynolds-
averaged Navier–Stokes (RANS)/large-eddy simulation (LES) method, where RANS
is used for the attached boundary layers and LES is used for the detached flow
regions. Compared to LES, DES moderates the grid resolution requirement and thus the
computational cost. However, the standard DES model suffers from some problematic
behaviours. For instance, the transition area between RANS and LES could not be
accurately resolved by LES due to the coarse grid resolution (Mansouri & Boushaki 2019);
grid-induced separation could be produced in which the separation depends on the grid
spacing rather than the flow physics (Gritskevich et al. 2012). To overcome these issues,
DDES has been developed with a modified length scale lDDES by an empiric blending
function fd as follows (Ge, Vasilyev & Hussaini 2019):

fd = 1 − tanh[(8rd)
3], (3.4)

rd = νt + ν

κ2d2√ui,jui,j
, (3.5)

where νt is the kinematic eddy viscosity, ν is the molecular viscosity, κ is the Kármán
constant, d is the distance to the wall and ui,j is the velocity gradient tensor. Here, fd
approximates to 1 in the LES region and falls to 0 in the RANS region. The length scale
of DDES is given as (Wang et al. 2020)

lDDES = lRANS − fdmax(0, lRANS − lLES), (3.6)

where lRANS and lLES are the length scales of RANS and LES, respectively, and lLES =
CDESΔmax with CDES the model constant and Δmax the maximum edge length of the cell.
Particularly, the DDES based on the k−ω shear-stress transport (SST) model was used in
this study. The detailed information of the governing equations as well as the length scale
can be found in Gritskevich et al. (2012).
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Figure 2. Computational domain (a) and grid topology (b) in the numerical simulation.

3.3. Computational domain and boundary conditions
The computation was performed in the domain as shown in figure 2(a). The synthetic
jet vortex rings were ejected from the orifice into a cylinder domain consisting of the
water and oil fluids of the stratification. The diameter of the fluid domain was 16D0, and
within such a radial range, the influence of the finite domain size on the jet flow could
be ignored based on the previous studies (Hadžiabdić & Hanjalić 2008; Wu et al. 2020).
The water and oil heights were the same as those in the experiment. A section of pipe
domain with depth 2D0, diameter Dp and orifice thickness Hp was used to facilitate the
formation of the synthetic jet as an actuator, while the internal flow field was not concerned
here. An inflow boundary condition with u0(t) = 2πAefe sin(2π fet) was imposed at the
bottom of the actuator to generate the synthetic jet, and the no-slip boundary condition was
imposed for the walls of the actuator. In the fluid domain, a free-slip boundary condition
was imposed at the bottom surface of the water domain, and an outflow boundary condition
was imposed at the rest boundaries as shown in figure 2(b), similar to the option of Kotapati
et al. (2007).

By referring to the implementation of Hadžiabdić & Hanjalić (2008), the present
simulation generated a hybrid-type grid which was composed of triangular prisms in
the region r/D0 < 0.25 (r is the radial coordinate) and hexahedral cells in the rest of
the domain. The number of cells of the external flow field in the axial (x), radial (r)
and azimuthal (θ) directions was Nx × Nr × Nθ = 166 × 142 × 256 and 166 × 172 × 456
for the laminar and transitional cases, respectively. The azimuthal grid was distributed
uniformly, and the radial grid size gradually increased for r/D0 > 0.25. In particular,
grids were clustered within the regions of the initial shear layer and vortex rolling-up
(0.25 < r/D0 < 1), ensuring a fine resolution for accurately capturing the formation and
evolution of the vortical structures. The first grid height in boundary layer regions of the
jet orifice satisfied y+ ∼ 1. The grids in the vicinity of the water–oil interface were also
refined to accurately track the interface deformation and the vortex–interface interaction.
Consequently, the total grid numbers were approximated as 7 million and 15 million for
the two cases, respectively.
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Figure 3. Comparison of vorticity contours near the jet exit (a–c) and the interface (d–f ) obtained by coarse
(a,d), medium (b,e) and fine (c, f ) grid resolutions for the transitional case, respectively. (a) |ωz|max = 168.3,
(b) |ωz|max = 161.9, (c) |ωz|max = 162.1, (d) |ωz|max = 134.5, (e) |ωz|max = 150.4 and ( f ) |ωz|max = 153.3.

In addition, the grid dependency examination was conducted for the transitional case
in comparison with the other two grids of Nx × Nr × Nθ = 146 × 152 × 404 (coarse) and
186 × 192 × 508 (fine). Figure 3 presents the results of the vorticity contours near the
jet exit and the interface obtained by different grid resolutions. The differences in the
intensity and distribution of the vorticity near the jet exit due to grid size are small with the
corresponding maximum spanwise vorticity |ωz|max of 168.3 s−1, 161.9 s−1 and 162.1 s−1.
However, the results near the interface could be different as the grid resolution increases.
It is noted that the intensities and locations of the primary and secondary vortices for the
coarse grid derivate from those for the medium and fine grids. Based on this, the numerical
results using the medium grid could meet the present analysis, considering an acceptable
computation cost and reasonable accuracy.

The computation was conducted based on the finite volume method, in which the
bounded central differencing was used for discretization of the momentum equations, and
the second-order up-wind scheme was used for the convective terms in the turbulence
kinetic energy and the specific dissipation rate. The pressure-velocity equations were
solved by the SIMPLEC (semi-implicit method for pressure-linked equations with
consistent) algorithm. The non-dimensional time step adopted for the two cases was
t/T = 2.5 × 10−4 and 2 × 10−4, respectively, corresponding to the maximum Courant
number less than 0.5.

3.4. Data validation
The instantaneous flow field data were saved every 100 time steps within one jet cycle.
The convergence of the solution was determined on the condition that the flow quantities
from averaging the data files during one jet cycle were almost the same as those during
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Figure 4. Comparison of the profiles of instantaneous streamwise velocity u/umax (a,b) and spanwise vorticity
ωz/|ωz|max (c,d) across the vortex core between the numerical simulation and PIV for the laminar (a,c) and
transitional (b,d) cases.

four jet cycles. Furthermore, the converged numerical data after 10 jet cycles were used
for the present study.

Figure 4 compares the profiles of the streamwise velocity and spanwise vorticity across
the vortex core in the axisymmetric plane at different times before it reaches the interface
obtained from the experiments and simulations. The results for the laminar case show
much good agreement between the numerical simulation and the PIV. It is found that
the velocity and vorticity profiles at t/T = 0.75 display the local peaks in the spanwise
range of 1D0 to 3D0. These local peaks can be attributed to the induction effect of the
vortex ring stretching after impinging on the interface. The computational results for the
transitional case are basically consistent with the experimental ones, while there is a slight
increase in the local discrepancies. It should be mentioned that the synthetic jet in the
experiments is generated by a piston–cylinder apparatus through a series of pipes. The
energy loss occurs when overcoming the frictional resistance of the mechanical parts
and pipes, which affects the jet exit velocity. The energy loss is difficult to estimate,
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leading to the fact that the computations may not exactly simulate the real situation
in the experiments despite the same velocity formula for the piston motion and the
numerical inflow boundary condition (Cui & Agarwal 2006). Such a problem is expected
to be resolved through further studying the effects of the actuator geometries, and thus
selecting appropriate actuator geometries in the simulations. As a whole, the above
results can verify the validation of the numerical data. To reveal the three-dimensional
features of the vortical structure evolution and the interface deformation, the
following analysis and discussions are carried out mainly based on the numerical
results.

4. Results and discussion

4.1. Vortical structure evolution
A qualitative description of the vortical structure evolution by the LIF flow visualization
and spanwise vorticity in the axisymmetric plane is presented in figures 5 and 6 for the
two cases, respectively. We can detect the interactions between the vortical structures
from two successive jet cycles. Particularly, the water volume fraction is displayed
concurrently to characterize the interface deformation during the vortex–interface
interaction.

For the laminar case, after impingement of the primary vortex ring (PV1) on the
interface, the formation of the secondary vortex ring (SV1) in water is clearly observed,
which is orbiting the PV1 towards the jet centreline (figure 5a1,a2). As the new primary
vortex ring (PV2) moves upwards and collides with the interface, the core of the PV2
gradually flattens and SV1 is severely squeezed between the PV1 and PV2 (figure 5d1,d2).
In addition, the new secondary vortex ring (SV2) with opposite sense to the cores of the
PV2 is induced in both water and oil layers, respectively (figure 5e2). These vortices
are generated by baroclinic torque associated with variations in vertical pressure and
horizontal density gradients caused by the vortex impinging on the density interface, as
suggested by Advaith et al. (2017). With radial stretching of the PV2, the SV2 in water
continues to orbit the PV2 as described above, while the SV2 in oil gradually decays
(figure 5f 1, f 2). As reflected by the water volume fraction, the density interface displays
relatively small deformation during the vortex impingement due to a lower jet velocity.
Thus, the vortical structure evolution is less affected by the interface deformation so that
the overall flow patterns resemble those for the vortex ring impinging on solid boundaries
(Orlandi & Verzicco 1993; Cheng et al. 2010; Xu et al. 2017).

The transitional case displays significant differences in the vortex–interface interaction
and the interface deformation compared with the laminar case. With increasing Reynolds
number, the primary vortex ring could rapidly lose its symmetry about the jet centreline
during the convection, and small-scale vortices are formed in the wake as a consequence
of the Kelvin–Helmholtz instability in the shear layer (figure 6b1). As the PV2 collides
with the density interface, segments of the PV2 have crossed the initial interface location,
which severely deform the interface to be a dome-like shape (figure 6c1–c3). The strong
vortex–interface interaction, in turn, results in more flattened cores of the PV2 along
the normal direction of the deforming interface. The formation of the SV2 is also
detected, especially for the numerical result (figure 6c2), which could effectively capture
the SV2 in oil despite a larger deformation of the interface. During radial stretching of
the PV2, the SV2 in water seems to be broken up due to intense vortical interactions,
while the SV2 in oil has greater scale and strength than that for the laminar case
(figure 6d2). The interfacial waves caused by strong impingement of the vortex rings
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Figure 5. Temporal evolution of LIF flow visualization (first column), spanwise vorticity ωzD0/U0 (second
column) and water volume fraction φw (third column) for the laminar case at t/T = 0.3 (a1–a3), 0.6 (b1–b3),
0.7 (c1–c3), 0.8 (d1–d3), 0.9 (e1–e3) and 1.0 ( f 1–f 3). PV denotes primary vortex ring, SV denotes secondary
vortex ring in each phase fluid, and 1 and 2 denote vortical structures during two successive cycles. The white
dashed line denotes the initial interface location of x/D0 = 0.
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0.8 (c1–c3) and 1.0 (d1–d3).

can continuously propagate outward owing to the presence of a restoring buoyancy
force (figure 6d3). It is also noted that the interface behaviours for the laminar and
transitional cases identified in this study can match the no-rebounding and rebounding
regimes of Song et al. (2021) for an isolated vortex ring interaction with the water–oil
interface.

However, the present study focuses on the converged results of successive vortex rings
impinging on the interface, which display some differences from an isolated situation.
For a comparison, figure 7 presents the LIF flow visualization in the first jet cycle for
the laminar and transitional cases which could represent approximately an isolated vortex
ring impinging on the interface. As shown in figure 7(a–c), the primary vortex ring in the
first jet cycle for the laminar case displays similar behaviour to that in figure 5; however,
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Figure 7. Evolution of LIF flow visualization in the first jet cycle for the laminar (a–c) and transitional (d–f )
cases at t/T = 0.4 (a,d), 0.7 (b,e) and 1.0 (c, f ).

complex interactions between different vortex rings are apparently absent for the isolated
situation.

For the transitional case, the primary vortex ring in the first cycle convects with
better symmetry about the jet centreline due to no pre-existing external perturbance.
Subsequently, the primary vortex ring could shrink during its penetration into the oil layer,
and eventually penetrate the interface almost completely, leading to a larger maximum
height of the interface deformation (figure 7e). Soon after that, the primary vortex
ring is detected to reverse its direction and return into the water layer with opposite
rotational sense of the cores due to the buoyancy effect (figure 7f ). However, such
phenomenon has not happened to the corresponding case of successive vortex rings, and
the relevant reasons can be explained here. The interface deformation during the vortex
impingement essentially stems from the conversion of kinetic energy into potential energy.
For successive vortex rings, there could be small-scale structures in front of the primary
vortex ring before its collision with the interface due to strong vortex–interface interactions
in previous cycles. The interaction of the primary vortex ring with these small scales
could cause strength reduction and energy dissipation, however, that does not happen to
an isolated case. As a result, less vortex kinetic energy is converted into potential energy
of the interface for synthetic jets, leading to a lower maximum penetration height and no
formation of an outstanding reversed jet from oil to water in comparison to the isolated
case.

The dynamics of the vortical structure evolution is further quantitatively depicted in
figure 8. The vortex centre is defined as the centroid of the vorticity (Cantwell & Coles
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Figure 8. Temporal evolution of (a) primary vortex ring diameter Dv /D0 and streamwise trajectory xv /D0,
(b) stretching velocity Vs/U0 and convective velocity Uc/U0, and (c) core circulation Γ/D0U0 of the primary
vortex ring and secondary vortex ring for the laminar and transitional cases.

1983) and is calculated as

xv = 1
Γ

∫
Ω

xωz dΩ, (4.1)

yv = 1
Γ

∫
Ω

yωz dΩ, (4.2)

Γ =
∫

Ω

ωz dΩ, (4.3)

where Ω denotes the vortex region determined by the λci criterion (Zhou et al. 1999). In
this study, the flow area with a λci above 0.5 s−1 is recognized as the vortex area. This
threshold could effectively distinguish the vortex ring from the shear layer while retaining
most of the vorticity, and the results are also insensitive to this cut-off level. Within this
vortex area, the entire vorticity is used for the above integrations. Note, during the primary
vortex ring interaction with the interface, the secondary vortex ring in the last cycle (SV1)
is relatively weak and difficult to be identified by the λci. Hence, only the circulation of
the SV2 including those in both water and oil layers is calculated.

The vortex ring diameter equals the distance between vortex centres corresponding to
the positive and negative vorticities. Based on changes in the growth rate of the vortex
ring diameter, the process of the vortex ring impinging on the interface can be divided
into three stages, i.e. vortex free-travel, vortex–interface interaction and vortex stretching
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Figure 9. Schematic of the baroclinic generation of vorticity during the vortex–interface interaction.

stages, as marked by I, II and III in figure 8(a). In addition, the numerical results are
compared with those from PIV in terms of the vortex diameter and streamwise trajectory
before it collides with the interface. The simulations could reasonably reflect the vortical
structure evolution of the experimental counterparts despite the local discrepancies in
the streamwise trajectory for the laminar case, which could be due to different energy
dissipations between the experiment and numerical simulation.

In the free-travel stage (stage I), the diameter of the formed primary vortex ring displays
little change. The streamwise trajectory varies approximately linearly with the time, and
the convection velocity produces a local platform after reaching the maximum value.
Here, the vortex ring translational velocity Ut before impinging on the interface can
be obtained by the linear fit of the vortex centre streamwise trajectory. The resultant
translational velocity is 33.83 and 80.53 mm s−1 for the two cases corresponding to 1.58U0
and 1.88U0, respectively. Thus, the Froude number based on the vortex translational
velocity Fr is computed as (Linden 1973; Herault et al. 2018)

Fr = Ut√
g′D0

, (4.4)

where g′(= gρ/ρw) is the reduced gravitational acceleration. Consequently, Fr is 0.35
and 0.82 for the two cases. In addition, the circulation of the primary vortex ring also
increases approximately linearly during the translation, and reaches a larger peak value for
the transitional case than the laminar case.

As the primary vortex ring enters stage II, a significant increase in the vortex ring
diameter and stretching velocity is detected, indicating the onset of the vortex–interface
interaction. Such behaviour is associated with the retardation of the vortex ring when
it encounters strong resistance due to buoyancy, and thus leads to stretching of the
vortex diameter. Meanwhile, a local increase in the circulation occurs for the two
cases due to local compression of the vortex core. Once the secondary vorticity is
baroclinically generated near the interface, the circulation of the primary vortex ring
decreases dramatically and the transitional case exhibits a larger decay rate than the
laminar case due to the influence of stronger baroclinic vorticity. In the later period of
stage II, the circulation of the secondary vortex ring decreases rapidly for the two cases
with the interface recovery due to buoyancy.

The influence of the vortex–interface interaction on the vortex ring circulation is further
discussed here. In this study, when an initially stably stratified system (light fluid above
dense fluid) is perturbed by the vortex impingement, misalignment in pressure and density
gradients is created due to dense fluid above light fluid, as shown in figure 9. According to
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vorticity-transportation equation in a variable density flow (Advaith et al. 2017):

Dω

Dt
= ω · ∇u + ν∇2ω + 1

ρ2 (∇ρ × ∇p), (4.5)

the last term depicts baroclinic torque and can be written as (1/ρ2)((∂ρ/∂y)(∂p/∂x) −
((∂ρ/∂x)(∂p/∂y)) in a two-dimensional case, thus leading to the generation of opposite
sign vorticity to that of the primary vortex ring. As a result, the vorticity cancellation
occurs along the edge of the induced boundary layer due to the interaction between the
primary vortex ring and baroclinic vorticity, and that is believed to be the major cause for
the circulation reduction of the primary vortex ring during the vortex–interface interaction
(Chu et al. 1993). In addition, another possible mechanism of impacting the circulation
is that part of the kinetic energy of the primary vortex ring can be dispersed by the
fast-propagating interfacial waves caused by the vortex impingement. The total kinetic
energy of the vortex motion is proportional to the circulation (Kambe & Mya Oo 1984),
and thus the circulation of the primary vortex ring could also be reduced.

In the last stage (stage III), the vortex ring diameter increases with a lower growth
rate relative to stage II, which somewhat resembles that of Song et al. (1992) for an
isolated vortex ring impinging on the free surface at higher Froude number (Fr = 0.988).
The primary vortex ring for the laminar case undergoes stretching with a relatively
constant velocity owing to recovery of the interface. However, evident fluctuations of
the stretching and convective velocities can still be detected for the transitional case,
suggesting consecutive interactions between vortex rings and the interface. Additionally,
the circulations of the primary and secondary vortex rings gradually decay, which is
mainly attributed to the viscous effect. The present results characterize the dynamics
of successive vortex rings impinging on the stratified interface. Although there is much
difference in the Reynolds number and Froude number for the two cases, the behaviour of
the primary vortex ring could follow a similar evolution process.

Figure 10 displays the evolution of three-dimensional vortical structures for the laminar
case based on the vorticity iso-surface |ωxyz|D0/U0(|ωxyz| =

√
ω2

x + ω2
y + ω2

z ) from
different views. Note that the vorticity iso-surfaces of two different thresholds are
examined. The lower vorticity iso-surface is coloured by the streamwise vorticity ωxD0/U0
and water volume fraction φw, as shown by the legend. They are used to identify the
hairpin vortex or streamwise vortex, and thus to reveal the vortical structure evolution in
both water and oil phases. The higher vorticity iso-surface is coloured by green to reflect
the interaction between the primary vortex ring and other vortical structures. In addition,
figure 11 provides the evolution of local three-dimensional vortical structures to clearly
illustrate the formation and evolution of the hairpin vortex and complex interaction with
the primary vortex ring.

It is noticed that extreme azimuthal waviness has been developed at the cores of the SV1
in water when it orbits into the interior of the PV1, and the corresponding wavenumber
m equals 8 (see figure 10a1). The development of a certain amount of azimuthal wave
on the vortex ring surface is due to the azimuthal instability (Widnall, Bliss & Tsai 1974;
Morre & Saffman 1975), which has been well known in studies of a vortex ring interaction
with the free-slip (Dahm et al. 1989; Archer et al. 2010; Olsthoorn & Dalziel 2017) and
no-slip (Walker et al. 1987; Orlandi & Verzicco 1993; Ren & Lu 2015) boundaries. The
present study further validates that it also exists in the interaction of vortex rings with the
immiscible interface.

Subsequently, the wavy structure of the SV1 in water undergoes disconnection of the
vortex core closer to the interface under the self-induction effect, followed by the formation
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ωxD0/U0

PV1

PV2

SV2 in oil

Loop-like

vortex

SV1 in water

Hairpin

vortex

–3.0 –2.0 –1.0 0 1.0 2.0 3.0 0 0.2

x

z y

x

z y0.4 0.6 0.8 1.0

φw

(b1)

(a1)

(c1)

(d1)

(b2)

(a2)

(c2)

(d2)

Figure 10. Evolution of 3-D vorticity iso-surface |ωxyz|D0/U0 = 2.5 coloured by the streamwise vorticity
ωxD0/U0(|ωxyz|D0/U0 = 10 coloured by green is displayed together, first column) and water volume fraction
φw (second column) for the laminar case at t/T = 0.3 (a1,a2), 0.6 (b1,b2), 0.8 (c1,c2) and 1.0 (d1,d2). The first
column represents upward view and the second column represents downward view.

of the hairpin vortex which attaches to the interface through a reconnection process (see
figure 11a,b). As the PV2 approaches and collides with the interface, the formation of the
SV2 in oil can be observed in figure 10(c2). Meanwhile, complex interaction between the
PV2 and the formed hairpin vortices is further detected in figures 10(c1,d1) and 11(c–f ).
To facilitate the understanding, the main interaction process has been depicted by the
schematic models in figure 12 in the form of a single hairpin vortex interaction with the
primary vortex ring.

An inverted hairpin vortex can be observed in figure 11(c) with the legs attaching to
the interface, and the head of the hairpin vortex has the opposite rotation sense to that of
the primary vortex ring (figure 12a). Subsequently, the hairpin vortex could be stretched
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PV1
Wavy structure

Stretching

Disconnection
Loop-like vortex

Reconnection

Hairpin vortex

PV2

(e)

(b)(a) (c)

(d ) ( f )

Figure 11. Evolution of local 3-D vorticity iso-surface in figure 10 at t/T = 0.3 (a), 0.45 (b), 0.6 (c), 0.75
(d) 0.85 (e) and 1.0 ( f ).

PV1

PV2

Stretching Loop-like

vortex

Hairpin

vortex

(b)(a) (c)

Figure 12. Schematic models for illustrating the interaction between the primary vortex ring and hairpin vortex
at three phases. Different vortical structures are displayed by blue, green and red patterns. The black arrow in
panel (a) denotes local rotation sense of vortices.

along the PV2 surface with the head tending to be entrained by the PV2 (figures 11d and
12b). With radial stretching of the PV2, the deformed hairpin vortex further undergoes
the core disconnection at the head (see figure 11e), and eventually evolves into a series
of loop-like vortices wrapping the PV2 (figures 11f and 12c). These loop-like vortices are
products of successive vortex–interface interactions, which have not been mentioned in the
previous studies of an isolated vortex ring impinging on the interface. The present results
can provide more meaningful details of the evolution and deformation of the hairpin vortex
as well as its interaction with the primary vortex ring in an axisymmetric flow, highlighting
the significance of 3-D numerical simulation.

For the transitional case in figure 13, the flow field becomes significantly
three-dimensional with a great number of different-scale structures caused by intense
interactions between vortex rings and the interface, and different vortical structures.
With increasing Reynolds number, the primary vortex ring rapidly develops azimuthal
deformation in its convection toward the interface, so that streamwise vortices are formed
by wrapping the vortex cores and then remain in the jet wake (figure 13c1). During the
vortex–interface interaction, strong secondary vortices are induced in both water and
oil layers. The SV2 in oil is clearly shown in figure 13(c2,d2) as a large-scale coherent
structure; however, the SV2 in water rapidly develops vortex breakdown due to strong
interaction with the PV2, resulting in a series of hairpin vortices wrapping the PV2 (see the
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PV1

0–1.0 1.0 2.0 3.0–2.0–3.0

PV2

SV2 in oil

Hairpin

vortex

Streamwise

vortex

(b1)

(a1)

(b2)

(c1) (c2)

(d1) (d2)

(a2)

ωxD0/U0
0 0.2 0.4 0.6 0.8 1.0

φw
x

yz

x

yz

x yz

Figure 13. Evolution of 3-D vorticity iso-surface |ωxyz|D0/U0 = 2.5 coloured by the streamwise vorticity
ωxD0/U0(|ωxyz|D0/U0 = 10 coloured by green is displayed together, first column) and water volume fraction
φw (second column) for the transitional case at t/T = 0.3 (a1,a2), 0.6 (b1,b2), 0.8 (c1,c2) and 1.0 (d1,d2). An
inverted view zooming in on the structures near the interface is shown on the left of panel (d1).

zoom-in image in figure 13d1). In addition, it is noticed that the secondary vortices induced
at the interface location move radially (figure 13d2,a2), suggesting outward propagation
of the interfacial waves caused by strong vortex impingement. Such flow patterns can
also verify that partial kinetic energy of the primary vortex ring is dispersed by the
fast-propagating interfacial waves for the transitional case.
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4.2. Vortex ring instability
This section will discuss the vortex ring instability during the evolution and interaction
with the density interface. First, a coordinate transformation is performed to obtain the
radial velocity ur and azimuthal velocity uθ in the cylinder coordinate system. Then the
azimuthal vorticity ωθ could be computed as ωθ = ∂u/∂r − ∂ur/∂x. In the present 3-D
numerical simulation, the wavy structures have been detected as a consequence of the
secondary vortex ring subjected to the azimuthal instability. To quantitatively characterize
the vortex ring instability, we perform an azimuthal Fourier decomposition of ωθ , which
has been widely used to extract the flow quantity of each azimuthal mode in the instability
analysis of the free vortex ring (Archer et al. 2008), and single vortex–interface (Archer
et al. 2010; Olsthoorn & Dalziel 2017) and vortex–wall (Ren & Lu 2015) interactions.

Here we focus on the instability property of the primary vortex ring, whose structures
can be extracted from the 3-D flow field corresponding to the threshold of ωθ < 0. In
addition, a cylinder control volume fixed on the vortex centre of the primary vortex ring
is used for the related integration within the streamwise, radial and azimuthal ranges of
[xv − D0/2, xv + D0/2], [0, (Rv1 + Rv2)/2] and [0, 2π], respectively, where Rv1 and Rv2
denote radii of the PV1 and PV2. The vortex centre location and the ring radius can be
obtained from figure 8, and this range is selected to remove the probable impact of the
vortex ring from the previous jet cycle. In each r−θ plane, the azimuthal vorticity with the
wavenumber m can be expressed as

ωm = ξm cos(mθ) + ζm sin(mθ), (4.6)

where ξm = (1/π)
∫ 2π

0 ωθ cos(mθ) dθ and ζm = (1/π)
∫ 2π

0 ωθ sin(mθ) dθ . Then the
amplitude of ωm can be measured using Am as follows (Ren & Lu 2015; Olsthoorn &
Dalziel 2017):

Am(x, t) =

√√√√√√√√

∫ 2π

0

∫ (Rv1+ Rv2)/2

0
ωm

2r dr dθ

∫ 2π

0

∫ (Rv1+ Rv2)/2

0
r dr dθ

. (4.7)

The non-dimensional averaged amplitude of each azimuthal mode of the primary vortex
ring is further calculated as

A∗
m(t) =

∫ xv + D0/2

xv −D0/2
Am(x, t) dx

D0
× D0

U0
=

∫ xv + D0/2

xv −D0/2
Am(x, t) dx

U0
. (4.8)

To analyse the azimuthal variations of the primary vortex ring, figure 14(a–d) displays the
iso-surface of ωθD0/U0 = −3 at several selected moments through the three evolution
stages for the laminar case. The PV2 displays an axisymmetric distribution at t/T = 0.6
before impinging on the interface. As the PV2 collides with the interface and stretches
radially, the PV2 gradually develops the azimuthal instability with the appearance of
waviness at the vortex core from t/T = 0.85 to 1.3. Particularly, a phase difference can
be observed for the azimuthal locations of the crest and trough between figures 14(c) and
14(d), indicating an obvious axial flow (circumferential flow along the vortex core axis).
The axial flow can reflect appreciable azimuthal deformation of the vortex ring according
to Naitoh et al. (2002).
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Figure 14. Iso-surface of azimuthal vorticity ωθ D0/U0 = −3 (a–d) and corresponding averaged amplitude
A∗

m of the first 30 modes of the primary vortex ring (e–h) for the laminar case at t/T = 0.6 (a,e), 0.85 (b, f ), 1.1
(c,g) and 1.3 (d,h).

The averaged amplitude A∗
m of the first 30 azimuthal modes of the primary vortex

ring is presented in figure 14(e–h). With the development of waviness at the vortex
core, the wavenumber m = 8 displays the most profound peak in the spectrum as
the dominant azimuthal mode. For a Gaussian core distribution of vorticity, the most
amplified azimuthal mode depends on the slenderness ratio such that m ∼ 2.26/ε

(Shariff et al. 1994), where ε denotes the ratio of the vortex core radius and the vortex
ring radius. For the laminar case, ε is approximately 0.28 during the primary vortex ring
translation before impinging on the interface, and thus leads to the theoretical prediction
of the unstable wavenumber of m = 8, consistent with the numerical result.

In addition, it is noted that there is a local peak corresponding to the azimuthal mode
m = 4 in each spectrum. This wavenumber is naturally generated by the grid-induced
instability when simulating a circular vortex ring in Cartesian coordinates, which has
been observed in previous numerical works (Verzicco & Orlandi 1996; Stock, Dahm &
Tryggvason 2008; Cheng et al. 2010). According to the work of Cheng et al. (2010), the
impact of this numerical perturbation on the large-scale flow structures is far weaker
than the artificial perturbation at low Reynolds number, and thus could be negligible.
The present numerical simulation is performed at a comparable Reynolds number with that
in Cheng et al. (2010). Furthermore, the mode m = 4 has an apparently lower maximum
than the dominant mode during the development of the vortex ring instability, and
therefore will not interfere the determination of the dominant mode.

The azimuthal vorticity iso-surface and the corresponding averaged amplitude for the
transitional case are presented in figure 15. It is worth noting that the PV2 displays
an approximately triangular distribution at t/T = 0.6 before impinging on the interface,
distinguished from that for the laminar case. With the PV2 interaction with the interface,
the entire flow structures develop azimuthal deformation with the unstable wavenumber
m = 3 at t/T = 0.9, and the corresponding amplitude grows significantly as the dominant
mode. The dominant mode m = 3 can also be reflected by the azimuthal distribution of
hairpin vortices in figure 9(d1), similar to that of Deng et al. (2017) for interacting vortex
rings induced by an oscillating disk. In addition, a profound peak has also been detected
for the mode m = 1 in figure 15(g). However, these low-order modes display differences
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Figure 15. Iso-surface of azimuthal vorticity ωθ D0/U0 = −3 (a–d) and corresponding averaged amplitude
A∗

m of the first 30 modes of the primary vortex ring (e–h) for the transitional case at t/T = 0.6 (a,e), 0.74 (b, f ),
0.9 (c,g) and 1.14 (d,h).

from the linear theoretical prediction of the amplified azimuthal mode of m = 6 based on
the slenderness ratio ε of approximately 0.37, which can be explained as follows.

For the transitional case at a high Reynolds number, the initial vortex ring could be
strongly affected by the perturbed flow field caused by the previous vortical structures.
As a result, the vortex ring immediately becomes unstable and the linear axisymmetric
mode is destroyed by nonlinear effects (see figure 6a1). Another nonlinear phenomenon is
the development of the vortical structures on the periphery of the ring, leading to ejection
of vorticity into the wake (see figure 13b1,c1). Due to nonlinear interaction of the modes
at a certain amplitude, the low-order modes can develop greatly as the intermodulation
product and surpass the linear and high-order modes before the transition to turbulence
(Shariff et al. 1994; Dazin, Dupont & Stanislas 2006; Archer et al. 2008). Furthermore, the
most amplified azimuthal mode m = 3 could also be found in Brancher, Chomaz & Huerre
(1994) for the periodic vortex rings in round jets through adding the random fluctuations
to the initial conditions. They observed the breakdown of axisymmetry, accompanied by
the occurrence of strong streamwise vortex pairs in the braid region between consecutive
vortex rings. The present vortical evolution displays similar features to those in Brancher
et al. (1994).

To further reveal the influence of the vortex–interface interaction on the vortex ring
instability, the non-dimensional averaged modal energy E∗

m of the primary vortex ring is
calculated as

Em(x, t) =

∫ 2π

0

∫ (Rv1+ Rv2)/2

0

1
2
(u2

xm + u2
rm + u2

θm)r dr dθ

∫ 2π

0

∫ (Rv1+ Rv2)/2

0
r dr dθ

, (4.9)

E∗
m(t) =

∫ xv+D0/2

xv−D0/2
Em(x, t) dx

1
2

U2
0D0

, (4.10)
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Figure 16. Temporal evolution of selected averaged modal energy E∗
m of the primary vortex ring for the laminar

(a) and transitional (b) cases. The dashed lines correspond to the moments for dividing the three evolution
stages.

where uxm, urm and uθm respectively denote the streamwise, radial and azimuthal velocities
of the mode m obtained by performing the azimuthal Fourier decomposition with (4.6).
Figure 16 presents the temporal evolution of the selected averaged modal energies for the
two cases.

For the laminar case, the energies of the dominant mode m = 8 and its higher harmonic
m = 16 increase exponentially after the primary vortex ring starts to interact with the
interface, and nearly reach the maximum by the end of the interaction stage. These results
clearly indicate that the stratification can promote an earlier growth of the vortex ring
instability since the azimuthal instability has not been observed in such a streamwise
range for a free axisymmetric synthetic jet vortex ring at a comparable Reynolds number
(Wang et al. 2019). A similar phenomenon has also been observed by Olsthoorn &
Dalziel (2017) for a single vortex ring interacting with the stratified interface. The
mechanism of the stratification-enhanced instability could be attributed to the interaction
between the primary vortex ring with hairpin vortices stemming from baroclinic vorticity.
With stretching of the primary vortex ring, the modal energies decay due to the viscous
effect at a low Reynolds number.

The results of the modes m = 1–6 are displayed for the transitional case. The mode
m = 4 naturally generated by the grid-induced instability does not undergo a typical
exponential growth despite a slightly increasing amplitude with the vortex–interface
interaction. In contrast, the energies of other low-order modes have already increased
obviously from the vortex free-travel stage due to nonlinear effects with increasing
Reynolds number. Moreover, the mode m = 3 can reach the largest amplitude to
be the dominant mode as expected. With the beginning of the vortex–interface
interaction stage, the modal energies could continue to increase through a local
platform, whereas decay earlier than those for the laminar case. These results suggest
that for the transitional case, the effect of the Reynolds number seems to play a
prior role in the growth of the vortex ring instability compared to the stratification.
However, the instability may be modulated by the stratification through stronger
vortex–interface interaction. That could be due to the energy transfer from the vortex
ring to the outward-propagating interfacial waves, which will be discussed in the next
section.
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Figure 17. (a) Spanwise profile of interface height h/D0 corresponding to the maximum interface deformation
for the two cases. The vertical coordinate scale is magnified four times relative to the horizontal one for clarity.
(b) Maximum penetration depth hm/D0 versus Fr2 for the two cases.

4.3. Spatio-temporal property of interface
This section will reveal the properties of the interface deformation and interfacial waves
generated by the vortex ring impingement by studying the dynamics of the interface.
In the stratified flow field, the relative density is defined as ρre = (ρ − ρo)/(ρw − ρo)
varying between 0 and 1, and thus the instantaneous interface height h can be determined
corresponding to the iso-density line of ρre = 0.5 (Herault et al. 2018).

Figure 17(a) presents the spanwise distribution of the interface height corresponding to
the maximum interface deformation. It is shown that the maximum interface deformation
exhibits a Guassian distribution under successive vortex–interface interactions. The
maximum interface height produced by the transitional case could be six times larger than
that for the laminar case, representing the maximum penetration depth hm of the vortex
rings across the interface. According to Linden (1973), the balance between the vortex
kinetic energy and the potential energy of the interface deformation can be given as

gρhm = ρwU2
in, (4.11)

where Uin is the velocity of the vortex ring at the interface location of h = 0. Based
on the assumption of Uin approximate to the vortex ring translational velocity Ut, the
non-dimensional maximum penetration depth can be expressed as

hm

D0
∼ ρwU2

t

gρD0
= Fr2. (4.12)

As shown in figure 17(b), the present numerical results for the two cases display good
agreement with this relationship, indicating that the maximum penetration depth could be
proportional to Fr2 for successive vortex rings interacting with the interface, similar to the
previous results for an isolated situation (Linden 1973; Song et al. 2021).

The temporal behaviour of the interface height at different spanwise locations is
presented in figure 18(a,b). The results clearly display the radial propagation of the
interfacial waves caused by the vortex impingement on the interface. In particular, the
wave for the laminar case can maintain a stable amplitude of the main component with a
reduction in the local wavelet, while the wave amplitude for the transitional case suffers
from a sharp attenuation with the increased spanwise location.

The interface height perturbation is further given as h′(y, t) = h(y, t) − h̄, where h̄
denotes the time-averaged interface height. Figure 18(c,d) displays the spanwise variations
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Figure 18. Temporal evolution of interface height h/D0 (a,b) and power spectral density (PSD) of interface
height perturbation h′ (c,d) at different spanwise locations for the laminar (a,c) and transitional (b,d) cases.
Each PSD in panels (c,d) is shifted downward by 10−2 relative to the former one.

of power spectral density (PSD) of the interface height perturbation. Both the spectra
exhibit the profound peaks corresponding to the dominant frequency fe and its higher
harmonics, indicating that the propagation of the interfacial waves is controlled by the
impingement of synthetic jet vortex rings. For the laminar case, many higher harmonics
are still conspicuous at a further location of y/D0 = 7. However, higher harmonics and even
the dominant frequency become vague at this location for the transitional case, which can
be attributed to the wave destabilization associated with the enhanced three-dimensionality
of the interface deformation.

The three-dimensional deformation of the interface caused by the vortex impingement
can be directly illustrated by the iso-surface of the interface height h/D0 in the entire
computational domain, as shown in figure 19. Note, the vertical scale has been magnified
thirty times to clearly display the interface deformation at a further radial location.
The distribution of the non-dimensional kinetic energy E∗

u = ρ(u2 + v2 + w2)/ρwU2
0 on

the interface is presented simultaneously to measure the propagation characteristics of
the interfacial waves. The laminar case is shown to produce a small protuberance with
the height far less than the interface radial scale before the vortex–interface interaction
(figure 19a1), indicating the influence of the vortex ring on the interface prior to the
impingement. The distribution of kinetic energy resembles that of the primary vortex
ring with the unstable mode m = 8 (figure 19a2). After the vortex ring impingement, the
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Figure 19. 3-D iso-surface of interface height h/D0 (first and third columns, the vertical coordinate scale is
magnified thirty times for clarity) and corresponding distribution of kinetic energy E∗

u on the interface (second
and fourth columns) for the laminar (first and second columns) and transitional (third and fourth columns)
cases at t/T = 0.6 (a1–a4), 1.0 (b1–b4), 1.2 (c1–c4) and 1.4 (d1–d4).

entire interface could remain relatively well axisymmetric with the outward propagation
of ripples, and the kinetic energy mainly distributes in the central region.

In contrast, enhancement of the 3-D deformation of the interface can be detected for
the transitional case. With the vortex ring approaching, the interface rises significantly
and the depression outboard of the vortices is deeper (figure 19a3). It is found that the
outside edge of the interface produces a wave-like deformation with a comparable long
wavelength with the interface radial scale. After strong vortex–interface interaction, three
local peaks are noted at the central protuberance (figure 19b3), and the interfacial waves
as well as the depression propagate outward rapidly as reflected by the variations of
the kinetic energy (figure 19b4). In particular, the kinetic energy displays an azimuthal
distribution in a manner reminiscent of the unstable mode m = 3 of the primary vortex
ring. With further interface deformation, the central region of the interface becomes a
funnel shape due to the buoyancy effect (figure 19c3,d3), and the edge of the interface
produces large-scale azimuthal deformation as a consequence of consecutive propagation
of the interfacial waves. Therefore, it is reasonable to establish a connection between the
outer interfacial destabilization and the vortex ring instability through the vortex–interface
interaction.
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Figure 20. Temporal evolution of selected modal energy E∗
m on the interface at radial locations of r/D0 = 1 to

5 for the laminar (a) and transitional (b) cases. The dashed lines correspond to the moments for dividing the
three evolution stages.

To reveal the underlying relationship between the vortex ring instability and the interface
dynamics, the 3-D velocity field on the interface is extracted to perform the azimuthal
Fourier decomposition, and the modal energy is further computed as (4.9) and (4.10).
Figure 20 examines the spatio-temporal properties of the selected modal energies. For the
laminar case, the dominant mode m = 8 displays a larger amplitude only at the locations of
r/D0 = 1 and 2, and both the lower mode m = 1 and higher harmonic mode m = 16 have a
lower amplitude throughout the investigated range. Additionally, the mode m = 4 generated
by the grid-induced instability is observed to slightly move outward from r/D0 = 3 to 5,
whereas the energy amplitude is relatively low and decreases with the increased radial
location.

The transitional case shows a completely different behaviour. The initial amplitude of
the dominant mode m = 3 is lower than that of m = 1 produced by nonlinear interaction
of the modes; however, their energy amplitudes become comparable at r/D0 = 2 and 3.
Particularly, the energies of these characteristic modes, even the lower mode m = 2, can
continuously move radially outwards, consistent with the kinetic energy distribution in
figure 19. As the radial location further increases, the interface flow field is gradually
completely dominated by m = 1, and an increase in the corresponding amplitude can also
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be observed from r/D0 = 4 to 5. The above results can provide compelling evidence that
under strong vortex–interface interaction, the perturbances corresponding to the unstable
modes of the primary vortex ring can radially propagate on the interface, eventually
leading to destabilization of outer interfacial waves. Based on the above analysis, the
present study has established a profound connection between the dynamics of the vortex
and the interface, which can elucidate the underlying mechanism of the interfacial
deformation and destabilization caused by successive vortex–interface interactions.

5. Conclusions

In this paper, we conduct a study on the interaction of synthetic jet vortex rings with a
stratified water–oil interface by the LIF flow visualization, 2-D PIV and 3-D numerical
simulation. Two cases with vortex ring Reynolds number in the laminar and transitional
regimes are analysed in detail, corresponding to the Froude number based on the vortex
translational velocity Fr = 0.35 and 0.82, respectively.

Despite a large difference in the Reynolds number and Froude number, the vortex rings
for the two cases are detected with a similar evolution that can be divided into three stages
based on the vortex diameter growth rate, including vortex free-travel, vortex–interface
interaction and vortex stretching. As products of the vortex–interface interaction, the
secondary vortex rings are baroclinically generated in both water and oil, resulting in
a sharp decrease in the primary vortex ring circulation. Particularly, the transitional
case produces a larger decay rate due to stronger baroclinic vorticity as well as energy
dispersion by the fast-propagating interfacial waves. In addition, the vortical interaction
triggers azimuthal waviness at cores of the secondary vortex ring in water, followed by the
formation of hairpin vortices with legs attaching on the interface, and loop-like vortices
wrapping the primary vortex ring. The present results can help to better understand the
complex dynamics of successive vortex–interface interactions.

The azimuthal Fourier decomposition is used to analyse the vortex ring instability so
as to reveal the influence of the vortex–interface interaction. The laminar case develops
the most amplified unstable mode m = 8, consistent with the linear theoretical predict.
The growth of the modal energy in the vortex–interface interaction stage indicates that
the vortex ring instability is enhanced by the stratification, which is associated with the
primary vortex ring interaction with hairpin vortices. However, increasing the Reynolds
number has an impact on the vortex ring instability prior to the stratification. As a
consequence, the transitional case develops an unstable mode m = 3 as well as other
low-order modes from the vortex free-travel stage due to nonlinear interaction of the modes
before the transition to turbulence.

The spatio-temporal properties of the interface are further revealed by analysing the
dynamics of the interface. It is found that the maximum penetration height of vortex rings
for the two cases is proportional to Fr2, similar to that for an isolated situation. The radial
propagation of the interfacial waves is dominated by the vortex impingement. Particulary,
the transitional case produces destabilization of the interfacial waves at a further radial
location with enhancement of the three-dimensional deformation of the interface. The
instability analysis of the flow field on the interface demonstrates that the interfacial
destabilization can be attributed to the radial propagation of perturbances stemming from
the vortex ring instability through strong vortex–interface interaction. This significant
finding could shed light on the mechanism of the interface deformation and destabilization,
which has been mostly ignored in the previous studies. The present work can help to
understand the fundamental mechanism. More investigations over a large range of control
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parameters, especially for turbulent synthetic jet vortex rings, should be performed to
obtain a full regime map of successive vortex–interface interactions.
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