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ABSTRACT

Bonus-malus systems (BMSs) are widely used in actuarial sciences. These sys-
tems are applied by insurance companies to distinguish the policyholders by
their risks. The most known application of BMS is in automobile third-party
liability insurance. In BMS, there are several classes, and the premium of a
policyholder depends on the class he/she is assigned to. The classification of
policyholders over the periods of the insurance depends on the transition rules.
In general, optimization of these systems involves the calculation of an appro-
priate premium scale considering the number of classes and transition rules
as external parameters. Usually, the stationary distribution is used in the opti-
mization process. In this article, we present a mixed integer linear programming
(MILP) formulation for determining the premium scale and the transition
rules. We present two versions of the model, one with the calculation of station-
ary probabilities and another with the consideration of multiple periods of the
insurance. Furthermore, numerical examples will also be given to demonstrate
that the MILP technique is suitable for handling existing BMSs.
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1. INTRODUCTION

Bonus-malus system (BMS) is a risk managing method whose best known
application is in automobile third-party liability insurance. It will be
assumed that there are some unobservable parameters which influence each
policyholder’s personal risk. The estimation of these parameters is difficult with
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statistical methods, though with multi-period contracts the insurance company
can estimate the overall risk more accurate for each policyholder.

In other words, policyholders can be categorized by their risks, although
the insurance company is unable to determine precisely with observable
parameters (such as age, sex, education, etc.) which risk-group a particular
policyholder belongs to. These risk-groups are usually called ‘types’ in the
literature. Therefore, this classification is prone to error, that is, there is an
underlying unobservable parameter that explains the risks of the policyhold-
ers. On the other hand, policyholders know their true types, a typical situation
of asymmetric information. Asymmetric information causes welfare loss whose
magnitude can be reduced, for example, by the application of a BMS.

In a BMS, there are finitely many classes, each having a different premium.
At the start of the contract, each policyholder is assigned to the ‘initial class.’
Subsequently, if the policyholder has a claim in the following period, then
he/she moves to a worse class, so the payment of the policyholder may increase
in the following period. If he/she does not have a claim in a particular period,
then he/she moves to a better class; therefore, his/her payment may become less
in the subsequent period.

Without asymmetric information, each policyholders’ premium (for each
risk type) would be equal to the expected claim (in each class). Hence, the prob-
lem is to set the premiums to approximate the ‘ideal situation’ (i.e. the case
without asymmetric information) as closely as possible (this is not the same as
to adjusting expected premium levels to expected claims). A perfect match is
impossible in real situations. Thus, a natural goal is to minimize the difference
from the ‘ideal’ solution. To achieve this, we strive at setting a ‘good’ premium
scale and ‘good’ transition rules. The first possibility is widely studied in the
actuarial literature; however, there is less emphasis on the second one. In this
article, we use mixed integer linear programming (MILP) to jointly optimize
the premium scale and the transition rules in a BMS.

In Section 2, we overview the relevant literature on BMS with particular
emphasis on optimization models. In Section 3, we present an LP model to
optimize the premiums and introduce a MILP model for the optimization of
the transition rules. We also construct another model for the joint optimization
of the transition rules and premiums. In Section 4, the previously introduced
models are modified: instead of the stationary distribution multi-period opti-
mization is applied. In Section 5, results of some numerical experiments are
discussed. In Section 6, we discuss computational issues related to the MILP
model.

2. LITERATURE OVERVIEW

In the context of insurance mathematics, asymmetric information was first
studied by Rothschild and Stiglitz (1976). They found that adverse selection
causes social welfare loss and equilibrium of the market does not always exist.
Social welfare loss caused by adverse selection can be reduced. Cooper and
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Hayes (1987) investigated multi-period contracts and found that if there is a
contract where the premiums (and indemnities) depend on claim history of the
previous year(s), social welfare loss can considerably be reduced.

In general, in real-life situations, adverse selection is accompanied by moral
hazard. In the models of moral hazard, the probability of claims also depends
on the effort of the policyholder. The insurance company, however, does not
know the exact effort the policyholder makes to reduce the risk of the damage.
The insurer can merely estimate it from the claim amount (Shavell, 1979). With
the use of a BMS, the insurer motivates the policyholders to reduce risk. This
is so because if someone has a claim, then the following period he/she will be
assigned to a worse class (if there is any). Hence, his/her premium will increase.

The typical appearance of moral hazard in the automobile third-party lia-
bility insurances is the so-called ‘bonus-hunger’ meaning that policyholders
choose self-financing the damage rather than making a claim to the insurance
company. If the claim amount is lower than the premium increase of the fol-
lowing periods, then it is not worth reporting a claim to the insurer (De Prill,
1979; Sundt, 1989).

Adverse selection and moral hazard are usually present at the same time (as
in the case of BMS). Contract theory investigates these kinds of problems (such
as Bolton and Dewatripont, 2005). In the literature, there is less emphasis on
the empirical tests of adverse selection and moral hazard. The empirical find-
ings are not completely straightforward, see, for example, Dahlby (1983) and
Puelz and Snow (1994) who argue for the existence of adverse selection, while
Chiappori and Salanié (2000) are against it. The existence of moral hazard in
automobile third-party liability insurance has been empirically studied by Lee
and Kim (2016), Dionne et al. (2013), Vukina and Nestić (2015), and Abbring
et al. (2008).

The efficiency of a BMS is typically measured by an indicator called ‘elastic-
ity’ introduced in Loimaranta (1972). Elasticity shows how expected payment
will increase if risk increases by 1%. Elasticity is a helpful indicator for optimiz-
ing a system where it is required that higher-risk policyholders have a higher
expected payment, although it does not reflect the risk aversion of the policy-
holders. In any BMS, this means that the variance of the premiums should not
be too high.

There are a lot of articles where the expected premiums and expected claims
are matched (Lemaire, 1995; Heras et al., 2004; Denuit et al., 2007). However,
the aspect that the policyholder may be satisfied with a bit higher expected pre-
mium on the condition that the variation of premiums is decreased significantly
is somewhat disregarded (or partially regarded). Nonetheless, in Loimaranta
(1972) there is a model which minimizes the variance of the premium scale
assuming a fixed level of elasticity.

The transition rules define the classification of a BMS. Transition rules tell
us how many classes should the policyholders go down in the following period
if they cause claims. Additionally, there should be a claim-free transition rule
which sends the policyholder one or more classes up in the subsequent period.
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Designing a BMS requires choosing the transition rules between the classes and
determines the number of classes, the scale of premiums and the initial class.

There are many papers about the optimization of BMSs (e.g. Cooper and
Hayes, 1987; Lemaire, 1995; Denuit and Dhaene, 2001; Brouhns et al., 2003;
Heras et al., 2004; Mert and Saykan, 2005; Denuit et al., 2007; Najafabadi
and Sakizadeh, 2017). Typically, in these works, the number of classes, the
transition rules and the initial class are fixed while the scale of premiums is
determined in the optimization process. Recently, Tan et al. (2015) have incor-
porated in their model the effect of the transition rule changes. Gyetvai and
Ágoston (2018) gave an optimization model for choosing the best transition
rules, while the premium scale is fixed. In the present article, we extend this
model to optimize the premium scale and transition rules jointly.

3. A MILP MODEL FOR OPTIMIZATION OF THE TRANSITION RULES

In this section, we construct a MILP model for joint optimization of the pre-
mium scale and transition rules. In the literature of BMSs, using LP (or MILP)
technique is not so common. Only one known LP model exists, Heras et al.
(2004). We adopted the assumptions made in that article.

3.1. Preliminaries

We assume that there are I different risk-groups (types) among the policyhold-
ers. Each type has different risks that do not change over time. In the practice of
BMS, transition rules are based only on claim numbers, and the claim amount
is ignored. This is reasonable since the risk-groups can be distinguished more
accurately by the number of claims than by the (conditional) claim amount.We
use the same assumption in the MILP model. Therefore, we only consider the
number of claims. For the sake of simplicity, we assume that the claim amount
is the same for each type of policyholders (in every model, we assume it is one
for each risk-group).

Let M > 0 be the highest number of possible claims in a period and let λim
be the probability of the occurrence of m claims for the policyholders of type i
(for estimation of claim numbers, see, for instant, Arató and Martinek, 2014)
(i= 1, . . . , I ,

∑M
m=0 λim = 1). We denote the risk-parameters (expected claim

amount) for risk-group i with λi (λi =∑M
m=0 mλim). To keep notation simple,

the types are indexed in an increasing risk order; the expected claim amount
is the least for type 1 and the highest for type I . Let φi be the proportion of
the type i policyholders among all of the policyholders (

∑I
i=1 φi = 1). In BMS,

there are K + 1 classes indexed from 0 to K. The premium of class k is denoted
by πk. In a BMS, the premiums should be monotonic; hence, we assume that
πk−1 ≥ πk (k= 1, . . . ,K).

The transition rules give the way the policyholders will be reclassified after
a certain number of claims occur. Hence, there is a transition rule for allm, and
we can write the rules in matrices Tm. Each Tm is a binary matrix that means
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if the element of row k1 and column k2 equals to one (Tm
k1,k2

= 1), then a poli-
cyholder with m claims and currently in the class k1 will be reclassified into the
class k2 in the next period. Let Xi

t be the classification of a type i policyholder
in period t.

Definition 1. A discrete-time stochastic process is called a Markov chain if

P(Xt+1 = kt+1|Xt = kt,Xt−1 = kt−1, . . . ,X1 = k1,X0 = k0)
= P(Xt+1 = kt+1|Xt = kt) (3.1)

holds for every period t.

Since transition rules are based only on the previous period’s claim his-
tory and classification, condition (3.1) holds for the process of classificationXi

t .
The transition probability matrix (Pi) contains the probabilities of transitions
between periods for type i policyholders:

Pi
k1,k2

= P(Xi
t+1 = k2|Xi

t = k1)=
M∑
m=0

λimT
m
k1,k2

. (3.2)

Let cik,t be the probability that the policyholder in period t is classified into
class k. In other words, the process Xi

t takes value k, that is, P(X
i
t = k)= cik,t.

We denote Ci
t the vector form of the cik,t variables. For each period for the

probabilities cik,t, the following equation should hold (Lemaire, 1995):

Ci
t
� =Ci

0
�
(Pi)t, (3.3)

where � stands for transposition, and in the expression (Pi)t the t is an
exponent denoting the time period.

If a Markov chain is aperiodic and irreducible, then probabilities cik,t tend
to a unique stationary distribution cik. This distribution can be calculated by
solving the following system of equations:

cik =
K∑
j=0

cijP(X
i
t+1 = k|Xi

t = j) k= 0, . . . ,K (3.4)

K∑
k=0

cik = 1. (3.5)

Substituting (3.2) into (3.4), the first part of the system of equations can be
written as:

cik =
K∑
j=0

M∑
m=0

cijλ
i
mT

m
j,k k= 0, . . . ,K. (3.6)
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Definition 2. A Markov chain is said to be irreducible, if for every class k, j and
period t there exists a period s, such that

P(Xi
t+s = k|Xi

t = j)> 0. (3.7)

Not every transition rule results in an irreducible Markov chain. In the
optimization of the transition rules, we can ensure irreducibility with con-
straints that exclude the non-irreducible transition rules. If the policyholder
is in the highest class, then it is not possible to classify him/her into a higher
class. In addition, from the lowest class the policyholders cannot be classified
lower. Therefore, the finite number of classes and the considered transition
rules ensure the aperiodicity of the irreducible Markov chain.

Optimizing a BMS means looking for an appropriate premium scale
and transition rules that minimize the difference between the expected claim
amount and the premiums in some norm:

min
(π0,π1,...,πK ,T0

0,0,T
1
0,0,...,T

m
k1,k2

,...,TM
K,K )

K∑
k=0

I∑
i=1

φicik(T
0
0,k,T

1
0,k, . . . ,

TM
K,k, λ

i
0, λ

i
1, . . . , λ

i
M)d(πk, λi)

subject to

constraints on the decision variables,

where d(., .) is usually the �2 or �1 norm (see, Norberg, 1976; Heras et al.,
2002). Most used constraints are the profitability constraint and constraints on
the premium scale: for example, the difference between the premiums of two
consecutive classes cannot be more than 20%. Certainly, besides these most
used constraints we can give other constraints for special purposes. The above
minimization problem is nonlinear, in Sections 3.2–3.4, we describe how the
problem can be linearized. Optimization of a BMS is usually based on sta-
tionary probabilities (see, e.g., Lemaire, 1995; Heras et al., 2002). Initially, we
accept this assumption and construct our MILP model accordingly.

In practice, however, every policyholder starts the contract in the ini-
tial class. Reaching the stationary distribution would require several periods.
Therefore, the early probabilities cik,t differ significantly from the stationary
probabilities. For this reason, we construct an alternative MILP model as
well where the stochastic process is modeled only for the first fixed number
of periods.

3.2. Optimizing the premium scale when the transition rules are fixed

Optimizing the premium scale means that we seek the appropriate premi-
ums for a BMS with fixed transition rules. Since transition rules are external
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parameters, the stationary probabilities are parameters as well. The premiums
can be obtained by the following LP:

min
I∑
i=1

K∑
k=0

φigik (LP1.obj)

Subject to

πkcik + gik ≥ λicik ∀i, k (LP1.1)

πkcik − gik ≤ λicik ∀i, k (LP1.2)
πk−1 ≥ πk k= 1, . . . ,K (LP1.3)
πk ≥ 0 ∀k
gik ≥ 0≥ 0 ∀k, i

Because the transition rules are fixed, the stationary probabilities can be
calculated. Thus, for each class (k) and group (i), the cik are known parameters.
Besides, the expected number of claims of each group (λi) and their ratios (φi)
are also outer parameters.

The variables of the model are the premiums of the classes (πk). The objec-
tive is to find a premium scale where each groups’ expected payment is as close
to their expected number of claims as possible. In this LP model, we minimize
the absolute deviation. Hence, we introduce gik auxiliary decision variables that
denote the absolute deviations of the group i in class k. Constraints (LP1.1) and
(LP1.2) define the deviation of group i and class k. Constraints (LP1.3) set the
premium scale to be monotonic. In the objective function of the model, the
absolute deviation variables (gik) are weighted by the ratio of the groups (φi).

Moreover, it is worth to remark that an approximation of a quadratic (and
many other) loss functions can be used in an LP model, instead of the absolute
deviation.

This kind of LP problem first appeared in Heras et al. (2002), but the above
LP is different. In the original model, the difference between the expected pre-
mium and expected claim is minimized, so the constraints (LP1.1) and (LP1.2)
looked as:

K∑
k=0

πkcik + gk ≥ λi ∀i (3.8)

and
K∑
k=0

πkcik − gk ≤ λi ∀i (3.9)

and the objective function was
∑I

i=1 φigk.
If the number of types is less than the number of BMS classes, the optimal

objective function value will be 0 in this model. In other words, the expected
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premium equals the expected claim for all risk-groups. Merely considering the
overall expected deviation would result in high dispersion among the premi-
ums of the classes. In some numerical experiments, we encountered cases where
the highest premium was more than 1 million times higher than the lowest
one. Such a substantial difference between premiums is undoubtedly not ade-
quate in an insurance contract because it would not reduce the risk for the
policyholder. The most standard way to handle this problem is the manual
limitation of the dispersion of the premiums. We applied a different approach
for managing the risk aversion of policyholders.

In our objective function (LP1.obj), we minimize the absolute deviations
of each type’s expected payment from the expected claims weighted with the
proportion of the types (this expression appears in many studies Norberg, 1976;
Tan et al., 2015 with the difference that �1 norm is used instead of �2). The
zero value for the objective function in this model would mean that each risk-
group’s premium is constant (i.e. does not change from class to class) and it is
equal to the expected claim for each type. In real circumstances, this is definitely
impossible. Heras et al. (2002) set other constraints to limit the Lomaintra-
efficiency. These constraints can be inserted in our models, but we think that a
smaller objective value would be preferable to the policyholder than a higher
objective value with a better efficiency measure.

Theorem 1. There is an optimal solution of LP1, where for all k there is a risk-
group i, where πk = λi.

Proof.Assume on the contrary that there is a class k where the premium differs
from each type’s expected claim (π ′

k �= λi, ∀i).
Set K0 contains classes where premium equals to π ′

k (K0 :=
{
k|πk = π ′

k

}
).

Furthermore, set Ip and In contain risk-groups where the expected claims are
greater/less than π ′

k:

Ip :=
{
i|λi > π ′

k

}
; In :=

{
i|λi < π ′

k

}
.

If we start to increase π ′
k with a value ε, then the objective of the model will

change with εg where

g=
⎛
⎝∑

i∈In

∑
k∈K0

φicik −
∑
i∈Ip

∑
k∈K0

φicik

⎞
⎠.

If π ′
k < λ1, then g is negative which means that with the increase of the π ′

k,
the value of the objective function can be better. The situation is similar if
π ′
k > λI . In this case, g is positive, which means that decreasing π ′

k leads to a
smaller objective function value.

For the case when λ1 < π ′
k < λI notice that the value of g depends on the val-

ues of In and Ip. This means that if there is a premium π ′
k > λi and we increase
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this premium with ε, then g changes only if π ′
k + ε > λi+1. Put differently, if g

of the π ′
k + ε is zero, then λi+1 should also be optimal.

Since this holds for each k, there should be an optimal premium scale where
the premiums are all equal to a λ.

Theorem 1 suggests a quite unusual solution. The remarks below are meant
to explain the motivation.

• If there is only one risk-group, then each class premiums are equal (πk = π ,
∀k); this fact corresponds to the statement of theorem 1 for I = 1. In this con-
text, it is just a generalization that when there are two types of policyholders,
then there are two premium values. For further motivation, see Example 3.1.

• If we have only a few types of policyholders, in many classes the premium
can be the same. At first sight, it seems that we can get the same results
with a less spread BM system. However, the stationary probabilities of a
larger BM system may differ from a smaller one’s. For instance, in Example
3.1, a policyholder with 0.9 expected claim pays the high premium with a
probability 0.99998 and the low premium with probability 0.00002. These
probabilities cannot be reproduced in a two-class BM system.

• If there are many risk-groups, then every class may have separated premium
value.

• If the designer of the BM system prefers to have distinct premium values in
each class, she/he can easily prescribe it with additional constraints.

Example 3.1. Let us consider a BM system with the most straightforward transi-
tion rule: in the event of any claims, the policyholder moves downward, otherwise
upward a class. Given this transition rule, there is a relatively easy relation
amongst the stationary probabilities:

cik =
(
1− λi

λi

)k

ci0, (3.10)

where the k outside the parenthesis is power and not an index. After applying the
expression for the sum of this geometric sequence:

ci0 =
1−λi

λi
− 1(

1−λi

λi

)K+1 − 1
. (3.11)

Let K = 2h+ 1, then:

h∑
k=0

cik =
1−λi

λi
− 1(

1−λi

λi

)2h+2 − 1

(
1−λi

λi

)h+1 − 1

1−λi

λi
− 1

=
(

1−λi

λi

)h+1 − 1(
1−λi

λi

)2h+2 − 1
. (3.12)

If λi > 0.5, then expression (3.11) tends to 1 (as h tends to infinity), otherwise
it tends to 0. Hence, a policyholder with claim probability higher than 50% will
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TABLE 1

STATIONARY PROBABILITIES OF A 10 CLASS BMS.

Class λi = 0.1 λi = 0.9

9 0.8889 2.29× 10−9

8 0.0988 2.06× 10−8

7 0.0110 1.86× 10−7

6 0.0012 1.67× 10−6

5 0.0001 1.51× 10−5

4 1.51× 10−5 0.0001
3 1.67× 10−6 0.0012
2 1.86× 10−7 0.0110
1 2.07× 10−8 0.0988
0 2.29× 10−9 0.8889

be almost surely in the lower half of the BM system. Similarly, any policyholder
with less than 50% claim probability would be most likely in the upper half.

Let us assume that there are two types of policyholders: λ1 < 0.5 and λ2 > 0.5.
The premium is λ2 for classes 0, . . . , h and λ1 for the other classes. Asymptotically
both types will pay the same amount as their risks. This statement holds for
quadratic (and any other meaningful) loss function. If the premium increases
gradually, we cannot get the same result. In certain cases, quite small h is enough
to approximate the asymptotic result: let λ1 = 0.1, λ2 = 0.9 and h= 4. Table 1
shows both risk-groups’ stationary probabilities. If the premium is 0.1 for classes
5–9 and 0.9 for classes 0–4, then both types of policyholders would pay their fair
premium with 0.99998 probability.

3.2.1. Profit constraint.
A crucial question is the financial balance of the BMS. In the long run, it is not
worth to design an unprofitable BMS. In the model LP1, if the objective value
is as close to zero, as it is financially balanced. Besides that, each model that
operates with the Lomaintra-efficiency ensures some kind of balance.

In the relevant literature, there are studies where profitability is explicitly
prescribed (Coene and Doray, 1996) and articles where it is not (Heras et al.,
2004; Tan et al., 2015). With our notation, the profit constraint takes the form

I∑
i=1

(
φi

K∑
k=0

(
πkcik

))≥
I∑
i=1

φiλi. (3.13)

The financial balance of the BMS is an important requirement; however, in this
case, Theorem 1 does not hold any more.

Theorem 2. There is an optimal solution of LP1 with constraint (3.13), where
there is only one type of premium that is unequal to any risk-group’s expected
claim.
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Proof. By way of contradiction, let us assume that the optimal solution
involves two premium values (πk1 < πk2 ) that differ from any type’s expected
claim. Sets K1 and K2 contain classes where the premium equals to πk1 and πk2
(K1 := {κ|πκ = πk1}, K2 := {κ|πκ = πk2}). Furthermore, sets Ip1 , Ip2 and In1 , In2
are defined as

Ip1 :=
{
i|λi > πk1

}
; Ip2 :=

{
i|λi > πk2

}
;

In1 :=
{
i|λi < πk1

}
; In2 :=

{
i|λi < πk2

}
.

If πk1 < λ1, then the premium in classes k ∈K1 shall be increased by ε. This
change does not violate the profit constraint (3.13) but reduces the objective
function by gε;

g=
∑
i∈Ip1

φi
∑
k∈K1

cik,

which means the premium scale cannot be optimal.
If λ1 < πk1 , then decreasing premiums in classes k ∈K1 by ε produce pre-

miums that are equal to the increase δ(ε) in classes k ∈K2. To preserve the
financial balance of the system, we must have

δ(ε)= ε

∑I
i=1

∑
k∈K1

cik∑I
i=1

∑
k∈K2

cik
.

Decreasing premium in classes k ∈K1 by ε (and increasing it by δ(ε) in classes
k ∈K2) will change the objective function by gε;

g=
∑
i∈Ip1

φi
∑
k∈K1

cik −
∑
i∈In1

φi
∑
k∈K1

cik

+
∑I

i=1

∑
k∈K1

cik∑I
i=1

∑
k∈K2

cik

(∑
i∈In2

φi
∑
k∈K2

cik −
∑
i∈Ip2

φi
∑
k∈K2

cik

)
.

If g is negative, then the increase of the premium in classes k ∈K1 will result in
a better value for the objective function; if it is positive, then the value of the
objective function will be worse.

Let πk1 > λi1 for k1 ∈K1 and πk2 < λi2 for k2 ∈K2. If the premium decreases
in classes k1 ∈K1, then the g changes only if πk1 − ε < λi1 for k1 ∈K1 or πk2 +
δ(ε)> λi2 for k2 ∈K2. This means that if g= 0, then at least one premium can
be replaced with a λ which is the assertion of the theorem.

3.3. Optimizing transition rules when the premium scale is fixed

Transition rules are typically defined by transition matrices as in Section 3.1.
In order to build a MILP model, we introduce binary variables Tj,m,k for each
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entry of the transition matrices. If Tj,m,k = 1, then the policyholders with m
claims are moved from class k, j classes forward (backward if j< 0) in the
following period. Denote the domain of j by Jk = [Jk : Jk] for class k where
−k= Jk < 0 and K − k= Jk > 0 are the two extremes. If a binary variable
Tj,m,k = 1 and index j is positive, then the policyholders with m claims are put
move upward in the system. Put differently, they move to a class with a lower
premium if it is possible. In the case of j< 0, the policyholders move down-
ward if they havem claims. Index j can be 0 as well, which means that they stay
in the same class in the subsequent period.

The aim of the model is to find the best transition rule that separates the
expected payment of the risk-groups most evenly, that is, we want to minimize
the deviation of the payment and the number of the expected claims (in some
norm) of each class.

First, we present a model for the optimization of the transition rules with
a fixed premium scale. The stationary distribution depends on the transition
rules, as we defined in Section 3.1. Therefore, the stationary probabilities are
also variables. The model looks now

min
I∑
i=1

K∑
k=0

φigik (MILP1.obj)

Subject to

Jk∑
j=Jk

Tj,m,k = 1, ∀m, k (MILP1.1)

Jk∑
j=min (Jk ,1)

Tj,0,k = 1, ∀k (MILP1.2)

max (Jk ,−1)∑
j=Jk

Tj,M,k = 1, ∀k (MILP1.3)

Jk∑
�=j

T�,m,k ≥Tj,m+1,k ∀j, k, m= 0, . . . ,M − 1 (MILP1.4)

K∑
k=0

cik = 1 ∀i (MILP1.5)

dik,j,m ≥ λimc
i
k − (1−Tj,m,k) ∀i, j, k,m (MILP1.6)

cik =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m ∀i, k (MILP1.7)
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I∑
i=1

cik ≥ τ ∀k (MILP1.8)

πkcik + gik ≥ λicik ∀i, k (MILP1.9)

πkcik − gik ≤ λicik ∀i, k (MILP1.10)

Tj,m,k ∈ (0, 1) ∀j,m, k
gik ≥ 0; cik ≥ 0 ∀k, i
dik,j,m ≥ 0 ∀k, j,m, i.

We briefly explain the constraints in the model.

3.3.1. Defining reasonable transition rules.
The constraints (MILP1.1) ensure a transition rule for each possible claim and
classes. Constraints (MILP1.2) ensure that the policyholder without claims
should move upward and in class K, he/she should stay in the class. Constraint
(MILP1.3) ensures that there should be at least one case (the highest possi-
ble number of claims) where there is a downward classification. Constraint
(MILP1.4) guarantees the transition rule to be stricter if the number of claims
gets higher.

3.3.2. Obtaining the stationary distribution.
Equations (MILP1.5) states that each type of policyholders should be in one
of the classes. We also have to take care of connecting the stationary proba-
bilities to the transition rules (see (3.6)). The following quadratic constraints
accomplish this:

cik =
k∑

j=−(K−k)

M∑
m=0

λimTj,m,kcik−j k= 1, . . . ,K − 1, ∀i. (3.14)

To make these constraints linear, we introduce the variables dik,j,m, as the prob-
abilities that an individual from group i and from class k moves to class k+ j
in the next period. We define these variables with the constraints (MILP1.6).
Constraints (MILP1.7) are meant to linearize the quadratic constraints. To
make the linearization complete, we would need additional constraints besides
those in (MILP1.6), namely

dik,j,m ≤ λimc
i
k ∀i, j, k,m (3.15)

and

dik,j,m ≤Tj,m,k ∀i, j, k,m. (3.16)

In fact, we do not need them explicitly stated as is shown in the next theorem.
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Theorem 3. If Tj,m,k = 1, then dik,j,m = λimc
i
k, otherwise d

i
k,j,m = 0, provided that

(MILP1.1), (MILP1.5), (MILP1.6) and (MILP1.7) hold.

Proof.

1=
K∑
k=0

cik ≥
K∑
k=0

M∑
m=0

∑
(j,m)|Tj,m,k=1

dik,j,m ≥
K∑
k=0

(
M∑
m=0

λimc
i
k

)
=

K∑
k=0

cik = 1,

The first equality holds because of constraints (MILP1.5), the second inequality
holds because of (MILP1.7). The third inequality comes from (MILP1.6) and
the last equality is valid since the sum of variables λim equals 1 for each type.
This means that all relations are equalities implying that variables d that are not
present in

∑K
k=0

∑M
m=0

∑
(j,m)|Tj,m,k=1 d

i
k,j,m have to be 0 while all other d ′s have to

be equal to λimc
i
k.

Because of Theorem 3, the constraints (3.15) and (3.16) can be omitted from
theMILP1 model.

Often in practice, the transition rules do not differ from class to class which
means that there is a unified transition rule for each claim m. This means that
instead of binary variables Tj,m,k we can simply use binary variables Tj,m. In
this case, Jk is the same for all k; therefore, it is sufficient to set only one upper
(J =K) and lower limit (J = −K). Also, the constraints (MILP1.7) should
be different because we have to omit reclassifications leading to non-existent
classes.

cik =
0∑

j=Jk

0∑
�=j

M∑
m=0

dik−�,j,m k= 0, ∀i

cik =
min (Jk ,k)∑

j=max (Jk ,−(K−k))

M∑
m=0

dik−j,j,m k= 1, . . . ,K − 1, ∀i (MILP1.7’)

cik =
Jk∑
j=0

j∑
�=0

M∑
m=0

dik−�,j,m k=K, ∀i

3.3.3. Ensuring irreducibility of Markov chains.
The constraints (MILP1.8) are needed for the irreducibility condition. Because
in the optimization models there are stationary probabilities, it is sufficient to
assume that each stationary probability (for each k) be positive. InMILPmod-
els, we cannot use strict inequalities but with a parameter τ > 0 and τ ≈ 0 we
can prescribe that each stationary probabilities be positive. This is an eligible
condition for an irreducible Markov chain, but if τ is unnecessarily high, we
may exclude some transition rules that give irreducible Markov chains. There
are alternative solutions for the irreducibility constraint as well.
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For example, we can set the transition rule of the claim-free case to exactly
one upward (as it is ordinarily done in practice). Moreover, there is a more
precise solution if we exclude one by one those transition rules that would not
lead to an irreducible Markov chain. The question of the objective function is
discussed in Section 3.2 and the profit constraint (3.13) can be inserted into the
model according to wish.

3.4. Joint optimization of transition rules and premiums

In this section, we introduce a modification of the model in Section 3.3. In
this modification, we can jointly optimize the transition rules and premiums.
In this case, if we use πk (∀k) as nonnegative variables, then we get a quadratic
constraint problem (MIQCP). Because solving a MILP usually needs less com-
putational time than the corresponding MIQCP, we linearize the quadratic
constraints. First, we consider the model without a profit constraint. Due to
Theorem 1, it is sufficient if we allow only finitely many possibilities for the
premiums.

To this end, we start with default premiums for each class that we can
increase if needed. We set each default premium to the expected claims of
types with the lowest risk πk = λ1, ∀k. We introduce ε as a value for changing
the default premium. We also consider various layers of these modifications.
Denote by ε� how much the premium changes in layer � compared to the
default premium.

By Theorem 1, it is sufficient if we set the values of the changes to ε� =
λ� − λ1, � = 2, . . . ,L, and L= I − 1. Binary variable O�

k indicates whether we
increase the premium in class k by ε�. That is, if O�

k = 1, then the final premium
of the class k is λ1 + ε� = λ�. The final premiums should be monotonously
decreasing:

πk +
L∑

�=1

ε�O�
k ≥ πk+1 +

L∑
�=1

ε�O�
k+1 k= 0, . . . ,K. (MILP1.13)

Only one change should be active in each class:

L∑
�=1

O�
k ≤ 1 ∀k. (MILP1.14)

In addition, the premium changes should be considered in the constraints
(MILP1.9) and (MILP1.10). This would, however, change these linear con-
straints into quadratic ones. We can linearize these constraints with continuous
nonnegative variables o�,i

k . With the following constraints, we can prescribe that
if O�

k = 1, then o�,i
k should be equal to cikε

�, otherwise 0.

o�,i
k ≥ ε�

(
cik − (1−O�

k)
) ∀i, k, � = 1, . . . , I − 1 (MILP1.15)
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o�,i
k ≤ ε�cik ∀i, k, � = 1, . . . , I − 1 (MILP1.16)

and

o�,i
k ≤ ε�O�

k ∀i, k, � = 1, . . . , I − 1. (MILP1.17)

We modify the constraints (MILP1.9) and (MILP1.10) as well:

πkcik +
I−1∑
�=1

o�,i
k + gik ≥ λicik ∀i, k (MILP1.18)

πkcik +
I−1∑
�=1

o�,i
k − gik ≤ λicik ∀ik. (MILP1.19)

In the MILP for the joint optimization of transition rules and premi-
ums, we would minimize (MILP1.obj), subject to (MILP1.1)–(MILP1.8) and
(MILP1.13)–(MILP1.19).

If we consider the profit constraint (3.13), then with finitely many premium
changes we may not get the global optimum. Additionally, by Theorem 2, there
can be one additional premium in the optimal solution.We can include another
layer for this extra premium with this unique premium’s level. However, we do
not know the exact value of the ε of this layer, beforehand. With adding mul-
tiple additional layers of premium changes, we can approximate the optimal
solution with arbitrary precision.

We increase the number of layers (L) and separate them into two setsL1 and
L2, thus L= |L1| + |L2|. The first type of layers denotes the modifications used
earlier to achieve the expected claims of the risk-groups ε� = λ� − λ1, if � ∈L1

hence |L1| = I − 1. The other type of layer is for the unique premium only. For
this, we arbitrarily determine every ε�, if � ∈L2. By Theorem 2, there can only
be one type of unique premium, that is, there can be at least one active layer
in L2. For this, we introduce binary variables S�, for all � ∈L2. This variable
equals to 1, if the classes’ layer � is active:

K∑
k=0

O�
k ≤ (K + 1)S� ∀� ∈L2. (MILP1.20)

There can be at least one active layer in L2:∑
�∈L2

S� ≤ 1. (MILP1.21)

In this case, we also have to include the profit constraint in the model:

I∑
i=1

φi
K∑
k=0

(
πkcik +

L∑
�=1

o�,i
k

)
≥

I∑
i=1

φiλi. (MILP1.22)
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The values ε� if � ∈L2 are arbitrary, as well as |L2|. In theory, if we include
a large number of L2 type layers, then the model may give a good solution
close to the global optimum. If |L2| is large, then the computational time
increases dramatically because of the ‘big-M’ constraints, such as (MILP1.15)–
(MILP1.17). In the numerical experiments, we used only one second-type layer
(|L2| = 1). In this case, we iteratively reran the model to find the best ε of this
layer. This reduced computational time, especially for larger instances without
significantly affecting the optimal solution.

4. MULTI-PERIOD MODEL

In Section 3.3, we presented a MILP model based on the stationary distribu-
tion. In some cases, however, for the probabilities to reach the stationary level
more time periods are needed than the policyholders may remain in the system.
In these cases, instead of the stationary distribution, using the probabilities in
each period of the insurance contract in the optimization would be more appro-
priate. In this section, we introduce a modification of the model in Section 3.4,
where we do not use the stationary probabilities.

Take the first 
 periods of the insurance contract. The index of time is
denoted by t, (t= 0, . . . ,
) where t= 0 means the beginning of the contract
and 
 is the end of it. The variables cik, g

i
k, d

i
k,j,m depend now on time, so we use

the notation cik,t, g
i
k,td

i
k,j,m,t accordingly. In the starting period (indexed with 0)

each policyholder is assigned to the same initial class. We introduce Bk binary
variables for all classes to determine the initial class.When theBk variable takes
the value 1, then class k is the initial class. Assume that there is only one initial
class:

K∑
k=0

Bk = 1 (4.1)

cik,0 =Bk ∀i, k. (4.2)

Transition rules are determined in the same way as previously. This means that
the constraints (MILP1.1)–(MILP1.4) remain unchanged in the multi-period
model. Constraints (MILP1.5)–(MILP1.7) now become

K∑
k=0

cik,t = 1 ∀i, t= 1, . . . ,
 (4.3)

dik,j,m,t ≥ λimc
i
k,t − (1−Tj,m,k) ∀i, j, k,m, t= 0, . . . ,
 − 1 (4.4)

cik,t =
k∑

j=−(K−k)

M∑
m=0

dik−j,j,m,t−1 ∀i, k, t. (4.5)
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Constraint (MILP1.8) can only be used for irreducibility if 
 is large enough.
In the multi-period model, another approach for irreducibility would be more
appropriate. Theorem 2 is still valid in the multi-period case, so for the joint
optimization of the premiums and transition rules we can use the same mod-
ifications as in Section 3.4. Variables o�,i

k , however, should be time-dependent
and replaced by variables o�,i

k,t.
There are two ways for including the profit constraint in the multi-period

model. Either we prescribe the profitability over all of the 
 + 1 periods or we
do so for each period. If we consider the overall profit, then the model should
include the following constraint:


∑
t=0

I∑
i=1

φi
K∑
k=0

(
πkcik,t +

L∑
�=1

o�,i
k,t

)
≥

I∑
i=1

(
 + 1)φiλi. (4.6)

On the other hand, if we consider profitability in each period, then we have

I∑
i=1

φi
K∑
k=0

(
πkcik,t +

L∑
�=1

o�,i
k,t

)
≥

I∑
i=1

φiλi ∀t. (4.7)

Furthermore, in the objective function, we should consider the absolute
deviation of every period:

min

∑
t=0

I∑
i=1

K∑
k=0

φigik,t. (MILP2.obj)

5. NUMERICAL EXPERIMENTS

For calculations, we used an AMD Ryzen 5 2600 Six-Core CPU 3,40 GHz
computer with 16 GB DDR4 RAM. We ran the program in Python 3.7.3. and
used the Gurobi 8.1.0 solver for the optimization. To reduce the numerical
problems caused by the large number of ‘big-M’ constraints, we did concurrent
optimization within Gurobi for solving the LP which means that the solver uses
multiple algorithms simultaneously and returns the solution obtained first.

5.1. Model without profitability constraint

5.1.1. Results of stationary model.
For the calculations, we considered two types of policyholders, a ‘good’ with
lower risk and a ‘bad’ with high risk. For the sake of simplicity, we assumed
M = 1 in every case and the same proportion of types. Four alternative
scenarios were investigated, two non-realistic with high claim probabilities
(10%; 20%) and (10%; 50%), and two scenarios with more realistic parameters
(1%; 2%) and (1%; 5%), respectively.
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FIGURE 1: Changes of the transition rule for one claim as a function of the number of classes.

We considered a 10-class BMS for each scenario and used the model
introduced in Section 3.4. We jointly optimized the transition rules with the
premiums without the profitability constraint. We investigated the cases where
transition rules are allowed to be different in each class (introduced in Section
3.3) and when the transition rules are unified (introduced in Section 3.3.2).

Table 2 presents the transition rules of a 10-class BMS in each scenario. If
there is no claim in a period, then in every situation, the policyholder moves one
class upward. If there is a claim during the period, then only unrealistic, ‘high’
probability cases resulted in non-unified transition rules. In the ‘small’ proba-
bility situations, the results of the non-unified models gave the same solution
as the unified ones. In these cases, the policyholders will be classified into class
0 if they have a claim. In the ‘high’ risk situations, however, the higher classes
have less strict transition rules if transition rules are non-unified. Overall, if the
claim-risks are higher, the transition rules are less strict. We investigated every
scenario’s BMS with more classes as well. The computational time of the mod-
els was limited to 3 h. When the limit had been reached, we stopped and the
best solution found was recorded.

Table 3 presents the differences in the objective function as well as running
time between the unified (U) and non-unified (NU) models. As we increase the
number of classes, for the ‘high’ probability scenarios, the NU models gave an
even better solution. In the cases of ‘small’ probabilities, however, the change
of U to NU was of no significance. Besides, the NU models are computation-
ally much harder because of the large number of binary variables. While the U
models produced optimal solutions in every case within a second, in many cases
we could not compute the optimal solution of the NU models in 3 h. With uni-
fied transition rules, we investigated the effect of the number of classes. Every
optimal solution was determined from a 3-class to a 120-class BMS.

In Figure 1, the unified transition rule for the case of a claim in each BMS
can be seen.
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TABLE 2

THE TRANSITION RULES OF THE 10-CLASS BM SYSTEMS FOR EACH SITUATION.

One claim

Current 1–2% 1–5% 10–20% 10–50%

class Zero claim Non-unified Unified Non-unified Unified Non-unified Unified Non-unified Unified

0 +1 0 0 0 0 0 0 0 0
1 +1 −1 −1 −1 −1 −1 −1 −1 −1
2 +1 −2 −2 −2 −2 −2 −2 −2 −2
3 +1 −3 −3 −3 −3 −3 −3 −3 −2
4 +1 −4 −4 −4 −4 −4 −4 −4 −2
5 +1 −5 −5 −5 −5 −5 −4 −5 −2
6 +1 −6 −6 −6 −6 −6 −4 −6 −2
7 +1 −7 −7 −7 −7 −7 −4 −4 −2
8 +1 −8 −8 −8 −8 −7 −4 −1 −2
9 0 −9 −9 −9 −9 −2 −4 −1 −2
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TABLE 3

DIFFERENCES IN RUNNING TIME AND OBJECTIVES OF 10–15-CLASSES BM SYSTEMS. THE TIME U PRESENTS THE RUNNING TIME OF THE UNIFIED MODEL,
THE TIME NU IS THE NON-UNIFIED MODEL’S COMPUTATIONAL TIME (BOTH IN SECONDS). THE OBJ. CH. COLUMNS SHOW THE IMPROVEMENT OF THE

OBJECTIVE VALUE OF THE MODEL WITH THE NON-UNIFIED TRANSITION RULES.

1–2% 1–5% 10–20% 10–50%

Obj. ch. Time Time Obj. ch. Time Time Obj. ch. Time Time Obj. ch. Time Time
Class (%) NU U (%) NU U (%) NU U (%) NU U

10 0 22 0.2 0 6 0.3 −0.08 539 0.2 −0.52 5 0.2
11 0 589 0.2 0 41 0.2 −0.10 9311 0.3 −0.60 16 0.2
12 0 10,606 0.3 0 289 0.3 −0.13 10,800 0.3 −0.67 423 0.3
13 0 10,800 0.4 0 2992 0.3 −0.15 10,800 0.4 −0.68 475 0.3
14 0 10,800 0.3 0 10,800 0.3 −0.16 10,800 0.4 −0.72 1229 0.4
15 0 10,800 0.4 0 10,800 0.4 −0.17 10,800 0.5 −0.78 10,800 0.5
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As the number of classes increases, the transition rule gets stricter in gen-
eral, in every scenario. Though, after a certain number of classes the penalty
for a claim tends to decrease. In addition, if the probabilities are higher, then
the point where the rate of decline changes occurs at a much lower number of
classes. The m= 0 case resulted in a one positive step in each situation.

For visualization of the sorting capability of the BMS, we use an indica-
tor that represents the overpayment for a type i policyholder that we denote
by OPi. OPi shows the ratio of the paid and the ideal payment of type i
policyholders.

OPi =
∑K

k=0 πkcik
λi

− 1. (5.1)

Therefore, if OPi is positive, then the expected payment of risk-group i is
more, if negative, it is less than their expected claim. We also introduce the
� =∑I

i=1 |OPi| that can be interpreted as the righteousness of the BMS. If it is
close to zero, then every policyholder pays close to his/her ideal level.

� differs from the model’s objective due to the risk aversion of the policy-
holders. Hence, it is possible to design a BMS where the � is smaller than our
model’s optimal result, though deviations of the premiums can be considerably
higher in that case.

� decreases in every situation with the increase in the number of classes
(Figure 2) which means that a BMS with a larger number of classes would be a
better sorting system. If the risk-groups’ parameters are higher, then � tends to
the zero level, which means the BMS almost perfectly sorts the types. For the
10–50% case, the BMSs over 20 classes sort almost perfectly the types, the 10–
20% situation needs about 100 classes. In lower-risk situations even 120 classes
are not enough for a viable sorting system, but we can see some decrease as the
number of classes increases. Also, we can see that in the lower-risk situations,
the smaller number of classes brings the payment of ‘good’ policyholders closer
to their ideal level. As the number of classes increases, payment for ‘bad’ types
gets closer to their ideal level, too.

The dotted line represents the profit-ratio of the insurer, which is the
expected overall payment of the policyholders divided by the expected total
claims minus one. If the profit-ratio is positive, then the BMS is profitable.
Certainly, if every policyholder’s expected payment equals to his/her ideal level,
then the profit-ratio is zero. With a lower number of classes, the policyholders
pay less but as the number of classes increases the payment is increasing as well.

5.1.2. Consideration of more than one claim per period.
In the previous models, the maximal number of claims that can happen in a
period is one. We also considered a model whenM = 2, where the probabilities
of the claims are calculated according to the Poisson distribution. Figure 3
presents the transition rules of the models. On the left-side, the first claim’s
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FIGURE 2: Changes of the OPi and the profit-ratio as a function of the number of classes.

FIGURE 3: The first and second claim’s transition rules.

transition rule is shown. The other graph presents the additional reduction that
the second claim would cause.

In the figure of the first claim transition rule, we also display with paler
colors the results of the models with M = 1. These lines are almost the same;
hence, the first claim is treated similarly in all of the scenarios.
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FIGURE 4: The ratio between the reduction of the first and second claim.

For the second claim, when there are only a few classes in every scenario,
the second claim is not treated too strictly. Interestingly in the scenario of 1–
2%, the second claim is not considered at all, if there are less than 40 classes.
However, as the number of the classes increases, the smaller probability scenar-
ios’ transition rules decrease. The higher probability scenarios’ transition rules
do not decrease that much.

Figure 4 presents the ratio between the first and the second claims’ reduc-
tion in the classification. If the value is 100%, then the second claim is treated
the same way as the first one is. When it is less than 100%, then the second
claim results in less class-reduction. Mostly, the transition rule for the second
claim is not that strict as the first one. In the 10–50% scenario as the number
of classes increases, the rule of the second claim gets a bit unstable. The reason
behind it is because the� in these BM systems is nearly zero. Hence, the second
claim does not influence the solution that much.

In practice, usually, the second claim is treated similarly to the first one.
The occurrence of two claims in the same period in the real world has a very
small probability. We also found that the consideration of multiple claims does
not change the � values of the models. Besides, the first claims’ transition rule
was also very similar to theM = 1 case. Therefore, in the following numerical
examples, we considered only one possible claim, for the sake of computational
simplicity.

5.1.3. Results of multi-period models.
For the multi-period model, we studied the 
 = 20 and 
 = 40 cases. For treat-
ing irreducibility, constraints (MILP1.8) may not be suitable. Therefore, we
fixed the m= 0 transition rule to 1. Because of the excessive amount of com-
putations required by the multi-period model, we only calculated BMSs where
the number of classes is divisible by 5, up to 30 classes. Figure 5 shows the
differences of the m= 1 transition rule in each case.
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FIGURE 5: Changes of the transition rule for one claim as a function of the number of classes.

Figure 5 shows the transition rule of the multi-period models, compared to
the results of the stationary models. In the ‘high’ probability situations and in
the 1–5% case, the transition rules are much stricter in the multi-period model.
In the 1–2% risk situation, however, the transition rules become less strict when
there are 25 or 30 classes. In these cases, the value represents the average over-
payment (or underpayment) of the types during the insurance contract. Figure
6 shows the differences between the � values from the stationary model.

As the number of the periods increases, the� of the multi-periodmodel gets
closer to the result of the stationary model. As Figure 6 shows if 
 is smaller,
then the overpayment is less for the ‘good’ policyholders, and the underpay-
ment is more for the ‘bad’ ones. In addition, because of the limitation of the
periods, if we increase the number of classes, then the sorting capability of
the system does not necessarily improve. In the 10–50% case, in the stationary
model, each type of policyholders pays their ideal expected premium in class 25,
in contrast, in the multi-period models we obtained considerably worse results.

5.2. Model with profitability constraint

With the inclusion of the profitability constraint (MILP1.22), there is one
unique premium. In Section 3.4, we introduced a modification of the MILP
where we can determine the unique premium with additional premium chang-
ing layers. Multiple layers require more binary variables producing a notable
increase in computational time. Moreover, even with a fixed number of lay-
ers, we cannot be certain that we have found the global optimum. Therefore,
for finding an (almost) globally optimal solution within a reasonable time, we
included an iterated local search (ILS) algorithm (Figure 7; see, for instance,
Lourenço et al., 2010).
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FIGURE 6: Changes of the OPi as a function of the number of classes.

FIGURE 7: Iterated local search (source: Lourenço et al., 2010).

We started the initial solution (S0) as zero, which means that the first model
is when there is not any unique premium. We used a randomized Perturbation
function, which increases over the iteration if we do not find a better solu-
tion. However, if we find a better solution, then the following perturbation will
be a smaller increase again. To make the running time faster, we only make
LocalSearch on the perturbed solution, if the perturbed solution is close to the
best solution. We made three random restarts of this algorithm for finding a
better solution.
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FIGURE 8: Changes of the transition rule for one claim as a function of the number of classes.

5.2.1. Results of stationary model.
Figure 8 shows the results of the transition rule of them= 1 case as the number
of classes increases with the inclusion of the profitability (MILP1.22) con-
straint. Similarly to the case without considering profitability, the parameter
j decreases as the number of classes increases, but after a certain number of
classes the reduction changes its trend. Interestingly, initial decrease turns to
increase and then it again starts decreasing.

Figure 9 shows the OPi values of the different situations. With the dashed
lines, we indicate the case when profitability is not considered. Profitability typ-
ically affects the minority of BMSs. Overall, profitability increases the payment
of the policyholder, that is, the ‘good’ policyholders will pay even more from
their ideal expected premium, but the ‘bad’ policyholders pay closer to their
ideal level.

5.2.2. Results of multi-period models.
Figure 10 depicts the � values of the multi-period models if we consider the
profitability in each period (constraints (4.7)).

We can observe similar results to those without profitability constraints.
The improvement of the � is considerably smaller in the multi-period case if we
increase the number of classes compared to those of the results of the stationary
models.

5.3. Case study on real data

Using data from a Hungarian insurance company, we could work with realistic
claim probabilities. We distinguished five different risk-groups whose ratios
and expected claims can be seen in Table 4.
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TABLE 4

PARAMETERS OF THE RISK-GROUPS.

Type 1 2 3 4 5

Expected claim 1.8% 2.7% 3.2% 4.1% 5.0%
Ratio 11% 44% 26% 11% 7%

FIGURE 9: Changes of the OPi as a function of the number of classes.

We solved the stationary models and the multi-period models with 
 = 20
and 
 = 40. In both cases, we worked both with and without the considera-
tion of the profitability constraint. Because of the excessive time requirement,
we only considered the unified cases of a 20-class BMS. Table 5 presents the
transition rules and the OPi and � values of the models.

If we did not consider the profitability, the result of the stationary model
and both multi-period models would not be significantly different. The transi-
tion rule is less strict in the 
 = 20 case, but the values of overpayments have
not differed that much.

Considering profitability, however, results in a much different outcome.
The value of the objective function gets much worse, and of course, the abso-
lute overpayment increased as well compared to the financially not balanced
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TABLE 5

THE RESULTS OF THE MODELS WITH REALISTIC PARAMETERS. T0,T1 DENOTES THE TRANSITION
RULES. OBJECTIVE IS THE VALUE OF THE OBJECTIVE FUNCTION, COMPARED TO THE STATIONARY
MODEL WITHOUT PROFITABILITY. IN THE CASE OF MULTI-PERIOD MODELS, IT HAS BEEN DIVIDED

BY THE NUMBER OF PERIODS FOR THE SAKE OF COMPARISON. THE � SHOWS THE ABSOLUTE
OVERPAYMENTS, AND THE OPi IS THE OVERPAYMENT OF THE TYPE i POLICYHOLDERS.

Without profitability With profitability

Stationary 
 = 20 
 = 40 Stationary 
 = 20 
 = 40

T0 1 1 1 1 1 1
T1 −6 −5 −6 −8 −2 −16
Objective 100% 100.01% 100.01% 155.53% 183.08% 163.91%
� 1.46 1.46 1.46 1.49 1.54 1.48
OP1 0.50 0.50 0.50 0.68 0.78 0.69
OP2 0.00 0.00 0.00 0.13 0.19 0.13
OP3 −0.16 −0.16 −0.16 −0.05 0.00 −0.04
OP4 −0.34 −0.34 −0.34 −0.25 −0.22 −0.24
OP5 −0.46 −0.46 −0.46 −0.38 −0.36 −0.38

FIGURE 10: Changes of the OPi as a function of the number of classes.
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TABLE 6

PREMIUM SCALES OF THE REALISTIC MODELS.

Without profitability With profitability

Premium: 0.018 0.027 0.032 0.041 0.05 0.018 0.027 0.03 0.032 0.041 0.05

Stationary – 5–19 0–4 – – – – 19 0–18 – –

 = 20 – 5–19 0–4 – – – – – 8–19 1–7 0

 = 40 – 4–19 0–3 – – – – 7–19 2–6 0–1 –

models. The difference between the stationary and the multi-period models is
more notable. The time of the multi-period model is more crucial here since
the 20-period model’s result differs more from the outcome of the stationary
model than the result of the 40-period model. Even the 
 = 40 case results in a
much worse optimal-solution than the stationary case.

Table 6 presents the optimal premiums. Each cell shows the classes, where
the column’s premium is present. Therefore, the 5–19 in the column of 0.027
means that class 5, 6, . . . , 19 has the premium 0.027.

When we did not consider the profitability constraint, the optimal premium
scale only contained two premiums: the 0.027 and 0.032. It means that three
risk-groups cannot pay their fair price. Therefore, 11% of the policyholders
surely overpay and 18% pay undoubtedly less. When the profit constraint was
considered, for the types with 0.018 and 0.027 expected claim there was no class
with a fair payment for them. The premiums were adjusted upward, but there
were still up to three different premiums. However, because in this case we
considered a metaheuristic, there may exist a better solution. In these cases, we
got the 0.03 as unique premium (with boldface in Table 6), which only appeared
in the stationary and the 
 = 40 models. In the 
 = 20 model, we did not get
any unique premium.

Interestingly, we got fewer premiums than the number of risk-groups in
every case. The other objective of the BMS is to reduce the moral hazard. In
other words, a system is needed which motivates the policyholders to reduce
their risks. For this, the designer of the BMS may want more variability on the
premiums. One possibility would be to specify a minimal difference between the
premiums of each class. However, this would be rather difficult in the joint opti-
mization approach. In this model, we can specify that each type’s fair premium
should appear in the premium scale. For this, we have to add the following
constraints:

K+1∑
k=0

L∑
�=1

O�
k ≤K (5.2)

K+1∑
k=0

O�
k ≥ 1 ∀� ∈L (5.3)
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TABLE 7

THE RESULTS WHEN EACH TYPE HAS A PREMIUM.

Premium: 0.018 0.027 0.032 0.041 0.05 T1 �1 change �2 change

Stationary
19 3–18 2 1 0

−17 1.709 1.151

 = 20 −3 1.662 1.131

 = 40 −16 1.719 1.172

FIGURE 11: Running times of the stationary models without profit.

Table 7 presents the results of the extended models. We only considered
the models without profitability constraint, because in these cases, we obtained
the exact solution. In these models, we got the same premium scales, only the
transition rules differed. Again the 
 = 20 had a much different transition rule.
When the considered time was longer, the model had a similar solution to the
stationary model. The �1-change column presents the increase in the objective
value if we add these constraints. The �2 column shows the increase if we con-
sider the �2 norm, that is, the squared deviations instead of the absolute value
of the deviations. In this case, the solution also becomes worse which means
more variation on the premiums was not that good in this case as well.

6. COMPUTATIONAL CONSIDERATIONS

In the introduced MILP model as we increase the number of classes, the num-
ber of types or the maximal number of potential claims, finding the optimal
solution may take more time. For example, the running times of the stationary
model without the profitability constraint changed as Figure 11 shows.

When K = 3, the running time, in general, was less than half-second, and
when the number of classes was 120, it increased to above 30 min. When we
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investigated the multi-period model, even the smaller instances needed a bit
more time. The 
 = 40 case required in all of the cases more than 1 h. When
the profitability was considered, the running time also increased considerably
because of the ILS’ multiple runs. The realistic case also resulted in a long
running time. The profitless 
 = 40 case needed more than 1 day for finding
the optimal solution.

It is important to note that despite the running time was lengthy in some
cases, the aim to optimize such a BMS is not a time urgent problem. An
optimized system should be valid for several years in the third-party liabil-
ity insurance application. Also, the running time can be reduced by better
hardware and with more significant tolerance level.

7. CONCLUSION

In this article, we studied the optimization of BMSs. In the literature, mostly
stationary probabilities are used for the optimization of a BMS. We developed
multiple models to optimize a BMS, both using stationary and multi-period
optimization. Our results show that when models considering several periods
instead of the (single) stationary period have different outcomes.

Numerical results show that BMSs with more classes can have a better sort-
ing capability.With more classes, however, the policyholders may not reach the
period of the stationary probabilities. This means that other transition rules
and premiums may be better than the ones obtained in models with stationary
probabilities. In addition, if there are fewer classes, then the BMSs are usually
not financially balanced. Thus, consideration of the profitability constraint can
be necessary for the insurance company.

We analyzed a case study with realistic claim-probabilities. The results in
the stationary and the multi-period models are not too far apart if the prof-
itability constraint is not included. By adding financial balancedness to the
model, the outcomes of the models differ more.
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H-1093, Fővám tér 8., Budapest, Hungary
Institute of Economics
Centre for Economic and Regional Studies
H-1097, Tóth Kálmán u. 4., Budapest, Hungary
E-Mail: gyetvai.marton@krtk.mta.hu

https://doi.org/10.1017/asb.2020.27 Published online by Cambridge University Press

https://arXiv.org/abs/1701.05441
mailto:kolos.agoston@uni-corvinus.hu
mailto:gyetvai.marton@krtk.mta.hu
https://doi.org/10.1017/asb.2020.27

	JOINT OPTIMIZATION OF TRANSITION RULES AND THE PREMIUM SCALE IN A BONUS-MALUS SYSTEM
	JOINT OPTIMIZATION OF TRANSITION RULES AND THE PREMIUM SCALE IN A BONUS-MALUS SYSTEM
	Introduction
	Literature overview
	A MILP model for optimization of the transition rules
	Preliminaries
	Optimizing the premium scale when the transition rules are fixed
	Profit constraint.

	Optimizing transition rules when the premium scale is fixed
	Defining reasonable transition rules.
	Obtaining the stationary distribution.
	Ensuring irreducibility of Markov chains.

	Joint optimization of transition rules and premiums

	Multi-period model
	Numerical experiments
	Model without profitability constraint
	Results of stationary model.
	Consideration of more than one claim per period.
	Results of multi-period models.

	Model with profitability constraint
	Results of stationary model.
	Results of multi-period models.

	Case study on real data

	Computational considerations
	Conclusion


