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Let S denote the collection of all finite subsets of N . We define an operation on S
that makes S into a positive semigroup with set inclusion as the associated partial
order. Positive semigroups are the natural home for probability distributions with
exponential properties, such as the memoryless and constant rate properties. We
show that there are no exponential distributions on S, but that S can be partitioned
into subsemigroups, each of which supports a one-parameter family of exponential
distributions. We then find the distribution on S that is closest to exponential, in a
certain sense. This work might have applications to the problem of selecting a
finite sample from a countably infinite population in the most random way.

1. INTRODUCTION

The motivation for this article is the problem of selecting a finite set of positive
integers in “the most random way possible.” The phrase in quotes is ambiguous, of
course, but we will at least obtain a partial solution by considering the collection
of finite sets as a positive semigroup (S,-) whose associated partial order is set
inclusion. Positive semigroups are the natural mathematical home for probability
distributions with exponential-type properties, including the memoryless and con-
stant failure rate properties, special properties related to uniform distributions, and
maximum entropy properties. All of these relate, in some sense, to the degree of
randomness of the distribution.

More specifically, our goal is to describe the semigroup (S,-) and study prob-
ability distributions on § that have exponential properties. We will show that there
are no exponential distributions on S, but that S naturally partitions into a countable
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collection of subsemigroups, each of which supports a one-parameter family of
exponential distributions. We will then construct a two-parameter family of distri-
butions on S that are close to exponential in a strong sense. For basic information
about probability distributions on semigroups, see Hognés and Mukherjea [2]. For
properties and characterizations of the standard exponential distribution, see Azlarov
and Volodin [1]. For the general theory of random sets, see Matheron [3].

2. POSITIVE SEMIGROUPS

A semigroup (S, -) consists of a set S and a binary operation - on S that is associative:
(xy)z = x(yz2), x,y,2 €S.

A positive semigroup is a semigroup (S, -) that has an identity e, satisfies the left
cancellation law, and has no nontrivial inverses; that is, for all x, y, z € S, the fol-
lowing hold:

1. xe = ex = x.
2. xy = xz implies y = z.
3. xy=eimpliesx =y =e.

The relation < on S defined by x < y if and only if y = xt for some r € Sis a
partial order on S; that is, x < x for each x € S (the reflexive property) x <yand
y < x imply x = y (the antlsymmetmc property), and x < y and y < z imply x <
(the transitive property). If x <y, then ¢+ € § satisfying xt = y is unique and
is denoted x~!y. For each x € S, the mapping ¢ — x¢ is an order isomorphism
from S onto the set xS = {y € S:x < y}; that is, x < y if and only xt < yr for all
x,y,t € S. Indeed, the algebraic assumptions are precisely the ones needed for the
partially ordered set (S, <) to have this self-similarity property.

Positive semigroups are often found embedded in groups. Specifically, sup-
pose that (G,-,=<) is a left-ordered group, that is, (G,-) is a group and < is a partial
order on G satisfying x < y = zx < zy for x, y, z € G. Let e denote the identity
element of G and let S = {x € G : x > e} denote the set of positive elements of G.
Then (S,-) is a positive semigroup and =< restricted to S is the associated partial
order. Conversely, suppose that (G,-) is a group and that S is a positive subsemi-
group of G. For x,y € G, define x < y if and only if xz = y for some ¢t € S. Then
(G,-,=<) is a left-ordered group with S as the set of positive elements. On the other
hand, as this article hopefully illustrates, there are interesting positive semigroups
that cannot be embedded in groups.

In general, topological and measure-theoretic assumptions are imposed on S as
well, but in this article we will only be concerned with discrete semigroups (where
S is countably infinite). In this case, the one additional assumption needed is that
[e,x]={r € S:1=<x} is finite for each x € S, so that the partially ordered set (S,-)
is locally finite. Note that counting measure # is left-invariant for (S,-); that is,
#(xA) =#(A) for x € Sand A C S. Moreover, # is the unique left-invariant measure
up to multiplication by positive constants.
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If T'is a nonempty subset of S and is closed under the operation -, then (7,-) is
also a positive semigroup, since the other algebraic assumptions are simply inher-
ited. However, the partial order associated with 7T is not, in general, the restriction
of < to 7, but a subpartial order of this restriction; that is, if x, y € T, then x <y
implies x <y, but the converse is not true unless x 'y € T. If T is closed under -
but does not contain e, then T'U {e} is also a closed under - and, hence, is a positive
subsemigroup of S.

3. EXPONENTIAL DISTRIBUTIONS

Suppose that (S,-) is a (discrete) positive semigroup and that X is a random variable
taking values in § (so that P(X = x) > 0 for each x € S). The tail probability
function of X is the mapping x — P(X > x). In general, this function does not
uniquely determine the distribution of X.

Random variable X has an exponential distribution if

P(XExA)=P(X=x)P(XEA), x€€SACS. 1)

Equivalently, the conditional distribution of x !X given X > x is the same as the
distribution of X for each x € §. Random variable X has a memoryless distribution
if (1) holds for all x € S and all A of the form yS, where y € S. Equivalently,

P(X=xy)=P(X=x)P(X>=y), x,yES,

so that the conditional tail probability function of x ~'X given X > x is the same as
the tail probability function of X. In the language of reliability theory, X has con-
stant failure rate (or simply constant rate) if the (discrete) probability density func-
tion is proportional to the tail probability function:

P(X =x)=aP(X =x), xES,

for some positive constant «. In general,

> P(X=x)=E#[eX]),

XES
so that if X has constant rate, then the rate constant must be

1
T E#lex])

There are a number of nice properties and characterizations of exponential dis-
tributions on positive semigroups, perhaps a bit surprising given the minimal alge-
braic assumptions. We mention a few of these; for more details, see Siegrist [5-7].
First, X has an exponential distribution on § if and only if X is memoryless and has
constant rate. In general, however, a distribution can have one of these properties
(memoryless or constant rate), but not the other. Second, F:S — (0,1] is the tail
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probability function of an exponential distribution on S if and only if F(xy) =
F(x)F(y)forallx,y € Sand X5 F(x) < oo (the reciprocal of this sum is then the
rate constant). This characterization prescribes a method for finding all exponential
distributions on a given positive semigroup. Finally, suppose that X and Y are inde-
pendent and identically distributed (i.i.d.) on S. Then the common distribution is
exponential if and only if the conditional distribution of X given XY = z is uniform
on [e, z] for each z € S. Furthermore, if X, X,, ... are i.i.d. exponential and ¥, =
X,---X, is the corresponding “gamma” variable of order n € N, then the condi-
tional distribution of (Y,...,Y,) given ¥, ., = z is uniform on the set

1LY y) ES" iy Sy, < oo <y, L

For general positive semigroups, counting measure # is replaced by a left-
invariant measure A; sums become integrals with respect to A; and density func-
tions and uniform distributions are with respect to A as well. At least in terms of the
algebraic structure, exponential distributions specify the most random way to select
elements of S. Of course, the motivating example for this theory is the positive
semigroup ([0,00),+). The associated partial order is the ordinary order and Le-
besgue measure is the invariant measure. The exponential distributions for this pos-
itive semigroup are the ordinary exponential distributions. Rowell and Siegrist [4]
explore positive semigroups isomorphic to the standard one, in the context of reli-
ability theory. We briefly mention a few discrete examples.

Example 1: Let N denote the set of nonnegative integers. Then (N,+) is a positive
semigroup, and the associated partial order is the ordinary order =. The exponential
distribution with rate parameter p € (0,1) has tail probability function and density
function given by

P(X=x)=(1-pt PX=x)=p(l-p), xeN
Of course, this is the standard geometric distribution with success parameter p.

Example 2: Let N, denote the set of positive integers. Then (N, ,-) is a positive
semigroup where - is ordinary multiplication. The associated partial order is the
division order: x < y if and only if x divides y. The exponential distributions turn
out to be precisely the Dirichlet distributions with completely multiplicative coef-
ficient functions; the zeta distribution is an important special case (see Siegrist[7]).

Example 3: Let A be a finite alphabet and let S = A* denote the space of all finite
words with letters from A. The free semigroup (S,-) is a positive semigroup where
- is the concatenation operation. The identity is the “empty word” e, and x < y if
and only if x is a prefix of y. An exponentially distributed variable has the form

X=X,...X,

where the random letters X, X,, ... are i.i.d. on the alphabet A and where the length
L is independent of (X, X5, ...) and has a geometric distribution on N.
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4. THE POSITIVE SEMIGROUP OF FINITE SUBSETS

Let S denote the set of all finite subsets of N... It is easy to see that the partially

ordered set (S, C) satisfies the self-similarity property described in Section 2. Our

goal in this section is to define and study the corresponding positive semigroup.
We identify a nonempty subset x of N, with the function given by

x(i) = ith smallest element of x

with domain {1,2,...,#(x)} if x is finite or with domain N, if x is infinite. If x is
nonempty and finite, max (x) denotes the maximum value of x; by convention, we
take max (@) = 0 and max (x) = oo if x is infinite. Thus, #(x) < max (x) for every x.
If x and y are nonempty subsets of N, with max(y) < #(x), we let x o y denote the
subset whose function is the ordinary composition of x and y: xo y(i) = x(y(i)). We
also define x ° @ = 0 for any x C N.. Note that x o y is always defined when x is
infinite.
We now define a binary operation - on S by

xy = x U (x°cy) =x U {ith smallest element of x“:i € y}.

Note that the operation is well defined since x¢ is infinite. The operation might
seem contrived, but it is not. Up to a relabeling of the positive integers, there is only
one way to associate a positive semigroup with the subset partial order.

THEOREM 1: (S,-) is a positive semigroup with the subset partial order.
Proor: The associative rule holds, and in fact
x(yz) = (xy)z=x U (xey) U (x oy eoz).
The empty set is the identity
W=xU(x°0)=xU0=x,
Ox=0U(Nyox)=0Ux=x.

The left-cancellation law holds: Suppose that xy = xz. Then x U (x“°y) = x U
(x¢ o z) by definition and, hence, x“ o y = x¢ o z since the pairs of sets in each union
are disjoint. However, then y = z. There are no nontrivial inverses: If xy = 0, then
x U (x€oy)=0. Hence, we must have x = ¢ and, therefore, also x“ ey =N, oy =
y=0.

Finally, the associated partial order is the subset order. Suppose first that
xu =y. Then x U (x¢ o u) =y so x C y. Conversely, suppose that x C y. Let
u={i €EN,:x() € y}. Thenx U (x o u) =y, so xu = y. |
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Note that the irreducible elements of (S, -) are the singletons {i}, where
i € N, . Note also that

{iHi} = {i,i+1},
i+ 1Hi} =1{i,i + 1},
{iHi+ 1} ={i,i +2}.

Thus, the binary operation is not commutative and the right-cancellation law does
not hold, so (S, ) just satisfies the minimal algebraic assumptions of a positive semi-
group. In particular, S cannot be embedded in a group. Finally, if i} < i, < --- <i,,
then

{in}{in*]} te {ll} = {il’i27 e ln}

ProposITION 1: For x,y € S,

#(xy) = #(x) + #(y), 2
{max(x) if max (y) = max(x) — #(x)

max (xy) = . 3
max (y) + #(x) if max(y) > max(x) — #(x).

PrOOF: #(xy) = #[x U (x°°y)] =#(x) + #(x cy) since x and x¢  y are disjoint.
However, clearly, #(x o y) = #(y).

Equation (3) is trivial if x or y is the identity (f), so we will assume that x and
y are nonempty. Note that, by definition,

max (xy) = max(x U (x€°y)) = max{max (x), max (x¢ o y)}.

Leti = #(x) and n = max(x). Then n € x and the remaining i — 1 elements of x are
in{1,2,...,n — 1}. Hence, x¢ contains n — i elements of {1,2,...,n — 1}, together
with all of the elements of {n + 1,n+ 2, ...}. If max(y) =n — i, then max (x“cy) =
x°(max(y)) =n—1,somax(xy) =n=max(x). If max(y) > n — i, then max(xy) =
max (x¢cy) = x“(max(y)) =n + (max(y) — (n — i)) = max(y) + i. u

The semigroup (S, -) has an interesting structure, but to see it we need some
additional notation. For k € N, let

S, ={x € S:max(x) — #(x) =k}
and let 7, = {0} U S,. For (n,k) € {(0,0)} U (N, X N), let
Spx =1x € S:#(x) = n, max(x) =n + k} = {x € §;: #(x) = n}.

Of course, Spo = {0}. If n € N, and k € N, then

n+tk—1
#(Sn,k) = (4)

n—1
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since x € S, , must contain the element n + k and n — 1 elements from {1,2,...,
n + k — 1}. If we interpret the binomial coefficient (:}) as 1, then (4) is valid for
n =k =0 also.

THEOREM 2: S, is a subsemigroup of S, and hence T is a positive subsemigroup of
S, for each k € N. The associated partial order on T, is the subset partial order.

Proor: We first show that xy € S, for x,y € S,. The result is trivial if x = 0 or
y = @ (which can only happen when k = 0). Thus, we will assume that x and y are
nonempty. Then max (y) > max (x) — #(x), since the left-hand side is k + #(y) and
the right-hand side is k. By Proposition 1, max (xy) = max(y) + #(x). Hence,

max (xy) — #(xy) = (max(y) +#(x)) — (#(x) + #(y)) = max(y) — #(y) = k.

Therefore, xy € S;. To prove the last statement in the theorem, it suffices to show
that if x, y € Sy and x C y, then x 'y € ;. Thus, suppose that x € S, ;, ¥y € S, 1
where m < n, and xu = y for some u € § (so that x C y). Then max(y) =n + k >
m + k = max(x), so by another application of Proposition 1, max(y) = max (u) + m
and, hence, max(u) = n — m + k. However, #(u) = n — m and, hence, u € S,. B

Note that S, = {{1,2,...,m}:m € N}.If y € S and #(y) = n, then
{L2,...,m}y={1,2,...,m} U{m+y(1),m + y(2),...,m + y(n)}.

In particular, {1,2,...,m}{1,2,...,n} ={1,2,...,m + n}, so (Sy, -) is isomorphic
to (N,+), the positive semigroup in Example 1, and x — #(x) is an isomorphism.
Finally, note that 0 € S, so T, = S,. To characterize the exponential distributions
on T, we must first characterize the minimal elements of S, (which are the irreduc-
ible elements of T}).

PROPOSITION 2: The set of minimal element of Sy is
M, ={x € S,:x(i) = kforall i < #(x)}.
There are 2F minimal elements.

ProoF: First, we show that if x € S, is not a minimal element of Sy, then x & M,.
Thus, suppose that x = uv, where u,v € S are nonempty. Then max (u) > k and
max (#) € u C uv = x. Moreover, max (#) < max(x), so the rank of max («) in x is
less than #(x) = #(u) + #(v). Therefore, x & M,.

Next, we show that if x € S\ M, then x is not a minimal element of Sj. Thus,
suppose that x € S; and x(i) > k for some i < #(x). Construct u € S as follows:
x(i) € u and u contains x(i) — k — 1 elements of x that are smaller than x(i). This
can be done since x(i) — i = k and, hence, x(i) — k — 1 =i — 1, and by definition,
x contains i — 1 elements smaller than x (i ). Now note that max (u) — #(u) = x(i) —
(x(i) — k) =k, so u € S;. By construction, u C x, so there exists v € S such that
uv = x. By Theorem 2, v € S and, hence, x is not a minimal element of S;.

https://doi.org/10.1017/50269964807070088 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964807070088

124 K. Siegrist

Next, note that if x € S, and #(x) = k + 2, then x & M,, since one of the k + 1
elements of x of rank less than #(x) must be at least k + 1. For n =< k + 1, the number
of elements x € M, with #(x) = n is (n k 1) , since x must contain n + kand n — 1
elements in {1,2,...,k}. Hence,

#(M,) = i(nfl>:2k' [ |

For example, the minimal elements of S, are {3}, {1,4}, {2,4}, and {1,2,5}.

5. EXPONENTIAL DISTRIBUTIONS ON 7,

THEOREM 3: There are no memoryless distributions on S and, hence, no exponen-
tial distributions.

PrOOF: Suppose that X is a random variable taking values in S and that X has a
memoryless distribution. By the memoryless property,

P{ifi} CX) =P eX)P(i € X),
P{i+1Hi}CX)=Pi+1€X)P(i €X).
However, {i}{i} = {i + 1}{i}, as noted earlier, so we must have
P(i+1€X)=PiEX)

for every i € N,. Next, note that if i} < i, < --- < i, then by another application
of the memoryless property,

P,EX,LbEX,...,i,€X)=P({i, ir...,i,} CX)
= P({i,Hi,—} .. i} CX)
=P(i, eX)P(i, €EX)...P(i, E X).

It therefore follows that the events {{i € X}:i € N,} are i.i.d. Hence, in-
finitely many of the events must occur with probability 1, so X is infinite—
a contradiction. [ |

Although there are no exponential distributions on S, the subsemigroup 7 has
a one-parameter family of exponential distributions for each k € N.

THEOREM 4: A random variable X taking values in T has an exponential distribu-
tion if and only if the tail probability function F and density function f have the
following form, for some o € (0,1):
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F(x) = a#(X)7 X € Tk’ (5)

(1 _ a)k+l Y
flx)= m a*), xeT,. (6)

PrOOF: The function F(x) = a*® takes values in (0,1] and satisfies F(xy) =
F(x)F(y) for all x, y € T,. Moreover,

2 Fx)=1+2 X F(x)

xXET; n=1x€ES,

1+§ 2 a”

n=1x€S,

+§:<n+k—1>an

n=1 n—1

(1-—a)""+
- (1— a)k+l

It follows that F and f as given earlier are the tail probability function and density
function, respectively, of an exponential distribution.

Conversely, suppose that F' is the tail probability function of a memoryless
distribution on Tj. As noted earlier, Ty is isomorphic to (N,+), with # an isomor-
phism. Thus, if X = 0, F must have the form F(x) = a*®, where a« = F({1}) €
(0,1). For general k, we will show by induction on #(x) that F(x) = a*, where
a = F({k + 1}) € (0,1). The result is trivially true if #(x) = 0, since x = 0. The
result is also trivially true if #(x) = 1, since the only such x € T, is x = {k + 1}.
Suppose now that F(x) = a*™ for all x € T, with #(x) = n. Let x € T, with #(x) =
n + 1. If x is not irreducible, then x = uv, where u,v € Ty, #(u) < n, #(v) = n, and
#(u) + #(v) = #(x). In this case,

F(x) = FW)F(v) = a*™a*®) = o*),

On the other hand, if x is irreducible, let j = min{i € x:i + 1 & x}. Note that
Jj < #(x) since max (x) = #(x) + k. Now let y € T; be obtained from x by replacing
J with j + 1. Note that #(y) = #(x) and, moreover, y° can be obtained from x by
replacing j + 1 with j. We claim that xx = yx; that is, x U (x“ox) =y U (y°°x). To
see this, note first thatif i # jand i # j + 1, then i € xif and only if i € y, and i € x°¢
if and only if i € y. On the other hand, j € x andj € y° ° x, since j = y“(x(1)) (by
definition, there are x(1) — 1 elements less than x(1) in y; the next element in y©
isj). Similarly, j + 1 € yandj + 1 € x¢ o x, since j + 1 = x°(x(1)). Since xx = yx,
it follows from the memoryless property that F(x) = F(y). Continuing this process,
we find that F(x) = F(y) for some y € S that is not minimal, but with #(y) = #(x).
It then follows that F(x) = F(y) = a*®) = a*™ and the proof is complete. ~ H
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To illustrate the last part of the proof, suppose that x = {3,4,5,8,15} € Tj,.
Then j =5,y = {3,4,6,8,15}, and xx = yx = {3,4,5,6,7,8,9,12,15,20}.

Suppose that X has the exponential distribution on 7 given in Theorem 4. From
the general theory in Section 3, the expected number of subsets of X in 7 is the
reciprocal of the rate parameter in the density function. Thus,

E#[0,X]) =1+ m

If k = 0 (recall that S, = T;), note that
PX=x)=(1—-a)a®™, X € S,. 7

On the other hand, suppose that k € N.. Then

P(XESk)Z1—P(X=ﬂ)=l—g(0)=m.

Thus, the conditional distribution of X given X € S has density function

P(X =x) k+1 o #(x)—1
P(X=x|XESk)=m=(l—a) a™ x € S,. )
k

The density function of X depends on x € T} only through #(x). The following
corollary gives the distribution of #(X).

COROLLARY 1: Suppose that X has the exponential distribution in Theorem 4 and
let U= #(X). Then

(1 —a)<*! n+k—1)
P(U=n)=m k a’ n €N, 9)

a a(l + ka)

EWU) = R
) l—-a(l—a)"" +a

(10)

where we interpret the binomial coefficient as 1 when n = Q.

When k=0, (9) gives P(U=n) = (1 — a)a” forn € N, so U has a geometric
distribution on N. In general, U has a modified negative binomial distribution. It is
easy to see from (10) that for each k € N, E(U) is a strictly increasing function of
a and maps (0, 1) onto (0,00). Thus, the exponential distribution on 7, can be reparam-
eterized by expected cardinality. Moreover, the exponential distribution maximizes
entropy with respect to this parameter:

COROLLARY 2: The exponential distribution in Theorem 4 maximizes entropy over
all distributions on Ty, with expected value given by (10).
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ProoF: We use the usual inequality for entropy: if f and g are probability density
functions of random variables X and Y, respectively, taking values in 7}, then

-2 g(hfg)] = - X g0l f(x)]. (1D
xET; xET;
If X has the exponential distribution in Theorem 4 and if E(#(Y)) = E(#(X)), then
substituting into the right-hand side of (11), we see that the entropy of Y is bounded
above by

_ln(ck,a) - :uk,a ln(a)’

where ¢, is the rate parameter of the exponential density in (6) and iy ,
is the mean cardinality in (10). Of course, the entropy of X achieves this upper
bound. u

6. ALMOST EXPONENTIAL DISTRIBUTIONS ON S

There are no exponential distributions on S. However, we can define distributions
that are “close” to exponential by forming mixtures of the distributions in (7) and
(8). Thus, suppose that X takes values in S with probability mass function

Bo(1 —ao)ag(”, x€E S,

12
B(1—a) a1 xeSs,keEN,, (12

P(X=x)={

where ay, B; € (0,1) for each k € N and >;_, 8, = 1. Thus, the conditional distri-
bution of X given X € S, is the same as the corresponding conditional distribution
of an exponential variable on T} (with parameter «;). Note that the conditional dis-
tribution of X on 7}, itself is not exponential. In fact, we cannot construct a distri-
bution on § by requiring that the conditional distributions on 7; be exponential for
each k, essentially because these semigroups share @ and, thus, are not disjoint. The
distribution of X is as close to exponential as possible, in the sense that X is essen-
tially exponential on each of the subsemigroups S, and these semigroups partition S.

There is not much that we can say about the general distribution in (12). In the
remainder of this section we will study a special case with particularly nice prop-
erties. For our first construction, let N have a geometric distribution on N with rate
parameter 1 — r € (0,1), as in Example 1. Next, given N = n, random variable X is
distributed on the subsets of {1,2,...,n}, so that i € X, independently, with prob-
ability p for each i € {1,2,...,n}. Of course, if N =0, then X = 0.

THEOREM 5: For x € S,

1—r
P(X =) = ———— (p)*[r(1 = p)] ™+, (13)
1—r+mw

P(X D x) = p*®pmax(x), (14
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ProOF: For x € §,

oo}

P(X=x)= > P(N=n)P(X=x|N=n).

n=0

If n < max (x), then x is not a subset of {1,2,...,n},so P(X=x|N=n)=0.1fn=
max (x), then x is a subset of {1,2,...,n} and, by assumption, P(X = x|N = n) =
p*¥(1 — p)"#)_ Substituting gives

P(X=x)= > (1—=r)rp*®1—p)#*=

n=max (x)

which simplifies to (13). By a similar argument,

P(X2x)= > (1—=rrp*®,
n=max (x)
which simplifies to (14). u

The distribution of X depends on x € § only through #(x) and max (x) — #(x).
As before, let U = #(X) and now let V = max(X) — #(X).

COROLLARY 3: For (n,k) € {(0,0)} U (N; X N),
PU=nV=k =PXe€E S,,,k)

1—r <n+k—1

n—1

= PR )(VP)”[F(I -pl~

COROLLARY 4: For (n, k) € {(0,0)} U (N, X N), the conditional distribution of X
given U = n, V = k is uniform on S, ;.

COROLLARY 5: Forn €N, the conditional distribution of V given U = n is negative
binomial with parameters n and r(1 — p) (when n = 0, the conditional distribution
of V is point mass at Q).

COROLLARY 6: The distribution of U is geometric with parameter (1 — r)/
(1 =r+rp).

Of course, Corollaries 4—6 determine the distribution of X and give an alter-
nate way of constructing the distribution in the first place: We first give U a geo-
metric distribution with a parameter a € (0,1); given U = n, we give V a negative
binomial distribution with parameters n and » € (0,1); and, finally, given U = n
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and V = k, we give X the uniform distribution on §,, ;. The two constructions are
equivalent, since there is a one-to-one correspondence between the pairs of param-
eters (r, p) and (a, D).

Our next goal is to study the distribution of the random subset X on the sub-
semigroups S. First, note that

P(X =x) 1—r
P(XQx)_l—r-I-rp

(1 _ p)max(x)*#(x)'

Thus, for k € N, X has constant rate

1—r (1 Ji
1—r+m p

on the subsemigroup S;. In particular, for x € S,

1—r
P(X =x) = —— (mp)*™¥),
(X=2) = 75 (P
P(X 2 x) = (rp)"™.
Hence, X has the memoryless property on Sy (in addition to the constant rate

property). To find the conditional distribution of X given X € S, we first need
P(X € §)) or, equivalently, the probability density function of V.

COROLLARY 7: V has a modified geometric distribution.:
1—r
1—=r+rm)dA—rp)’

Q=rmp r(1—p)\
(rw+mm—mx )’ ke

P(XES)) =P(V=0)=

P(XES)=P(V=k) = o

COROLLARY 8: The conditional distributions of X on Sy are as follows:
P(X=x|XE S =1 —m) ()",  xE€S, (15)

P(X=x|X€ES,) =1 —rp)(rp)*-1 xXE S, kEN,. (16)

Thus, X has an almost exponential distribution in the sense of (12), with a; =
1 — rp for each k € N and with the mixing probabilities given in Corollary 7.

From Theorem 3, no exponential distribution on S exists because the events
{{i € X}:i € N, } would have to be independent with a common probability. The
next corollary explores these events for the random variable in Theorem 5.
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COROLLARY 9: Suppose that X has the distribution in Theorem 5.

1. P €EX)=prifori € N,
2. Ifiiny ..y, ENGwithiy < iy < --- <, then

PG, €X|i,€X,...,i,_, €EX)
=P(i,€EX|i, , €X)

=PGi,—i,, €X)

= prin*in—l‘
3. ForjE Ny, theevents{l € X},{2 € X},...,{j — 1 € X} are conditionally
independent given {j € X} with P(i € X|j € X) = p fori <.

Property 3 in Corollary 9 is clearly a result of the original construction of X.
Property 2 is reminiscent of a Markov property. This property implies that the events
{{i € X}:i € N, } are positively correlated, but asymptotically uncorrelated. In fact
the correlation decays exponentially, since

Pi+jEX|i€EX)=P(jEX)=pr/ = 0asj— oo.

From Corollaries 5 and 6, we can compute the expected value of U = #(X) and
W=max(X)=U+V:

n

EW) = 1—r

) a7

p
1-rA-r+r)

E(W) = (18)

It is easy to see from (17) and (18) that (E(U), E(W)), as a function of (r, p), maps
(0,1)? one-to-one and onto {(c,d) : 0 < ¢ < d < oo}. Thus, the distribution of X can
be reparameterized by expected cardinality and expected maximum. Moreover, the

distribution of X maximizes entropy with respect to these parameters. The proof of
the following corollary is essentially the same as the proof of Corollary 2

CorOLLARY 10: The distribution in Theorem 5 maximizes entropy among all dis-
tributions on S with expected cardinality given by (17) and expected maximum given

by (18).

Of fundamental importance in the general theory of random sets [3] is the hit-
ting probability function G:

G(x) = P(XNx+#0), xC N,

This function completely determines the distribution of a random set, and in the
general setting (which lacks the algebraic structure that we have here), it plays the
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role of a “distribution function.” Note that G is defined for all subsets of the posi-
tive integers, not just finite subsets.

THEOREM 6: Suppose that X has the almost exponential distribution with param-
eters p and r given in Theorem 5. Then

#(x)
G(x)= X p(1=p) 'r*,  xCN,,

-1
where, as usual, x(i) is the ith smallest element of x.

PRrROOF: Suppose first that x is finite (so that x € S). From the standard inclusion—
exclusion formula (or from [3]),

#(x)

G(x)=k§1(—1)k*‘ > P(X2Dy).

YCx.#(y)=k
Hence, substituting the result in (14), we have

#(x)

G(x) = 2 (_1)k71 2 p#(y)rmax(y)
k=1

yCx#(y)=k

#(x) #(x)

S D e

i=k yCx,#(y)=k,max(y)=x(i)

#(x) #(x)

1 .
S 30 )

#(x)
SIS (i I

i=1

#(x)

= 2 p(L=p)'r,

i=1

For infinite x, the formula holds by passing to the limit and using the continuity of
probability. u
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