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Let S denote the collection of all finite subsets of N�+We define an operation on S
that makes S into a positive semigroup with set inclusion as the associated partial
order+ Positive semigroups are the natural home for probability distributions with
exponential properties, such as the memoryless and constant rate properties+ We
show that there are no exponential distributions on S, but that S can be partitioned
into subsemigroups, each of which supports a one-parameter family of exponential
distributions+We then find the distribution on S that is closest to exponential, in a
certain sense+ This work might have applications to the problem of selecting a
finite sample from a countably infinite population in the most random way+

1. INTRODUCTION

The motivation for this article is the problem of selecting a finite set of positive
integers in “the most random way possible+” The phrase in quotes is ambiguous, of
course, but we will at least obtain a partial solution by considering the collection
of finite sets as a positive semigroup ~S,{! whose associated partial order is set
inclusion+ Positive semigroups are the natural mathematical home for probability
distributions with exponential-type properties, including the memoryless and con-
stant failure rate properties, special properties related to uniform distributions, and
maximum entropy properties+ All of these relate, in some sense, to the degree of
randomness of the distribution+

More specifically, our goal is to describe the semigroup ~S,{! and study prob-
ability distributions on S that have exponential properties+We will show that there
are no exponential distributions on S, but that S naturally partitions into a countable
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collection of subsemigroups, each of which supports a one-parameter family of
exponential distributions+We will then construct a two-parameter family of distri-
butions on S that are close to exponential in a strong sense+ For basic information
about probability distributions on semigroups, see Högnäs and Mukherjea @2# + For
properties and characterizations of the standard exponential distribution, see Azlarov
and Volodin @1# + For the general theory of random sets, see Matheron @3# +

2. POSITIVE SEMIGROUPS

A semigroup ~S,{! consists of a set S and a binary operation { on S that is associative:

~xy!z � x~ yz!, x, y, z � S+

A positive semigroup is a semigroup ~S, {! that has an identity e, satisfies the left
cancellation law, and has no nontrivial inverses; that is, for all x, y, z � S, the fol-
lowing hold:

1+ xe � ex � x+
2+ xy � xz implies y � z+
3+ xy � e implies x � y � e+

The relation � on S defined by x � y if and only if y � xt for some t � S is a
partial order on S; that is, x � x for each x � S ~the reflexive property!, x � y and
y � x imply x � y ~the antisymmetric property!, and x � y and y � z imply x � z
~the transitive property!+ If x � y, then t � S satisfying xt � y is unique and
is denoted x�1y+ For each x � S, the mapping t r xt is an order isomorphism
from S onto the set xS � $ y � S : x � y% ; that is, x � y if and only xt � yt for all
x, y, t � S+ Indeed, the algebraic assumptions are precisely the ones needed for the
partially ordered set ~S, �! to have this self-similarity property+

Positive semigroups are often found embedded in groups+ Specifically, sup-
pose that ~G,{,�! is a left-ordered group; that is, ~G,{! is a group and � is a partial
order on G satisfying x � y n zx � zy for x, y, z � G+ Let e denote the identity
element of G and let S � $x � G : x � e% denote the set of positive elements of G+
Then ~S,{! is a positive semigroup and � restricted to S is the associated partial
order+ Conversely, suppose that ~G,{! is a group and that S is a positive subsemi-
group of G+ For x, y � G, define x � y if and only if xt � y for some t � S+ Then
~G,{,�! is a left-ordered group with S as the set of positive elements+ On the other
hand, as this article hopefully illustrates, there are interesting positive semigroups
that cannot be embedded in groups+

In general, topological and measure-theoretic assumptions are imposed on S as
well, but in this article we will only be concerned with discrete semigroups ~where
S is countably infinite!+ In this case, the one additional assumption needed is that
@e, x#� $t � S : t � x% is finite for each x � S, so that the partially ordered set ~S,{!
is locally finite+ Note that counting measure # is left-invariant for ~S,{!; that is,
#~xA!� #~A! for x � S and A � S+Moreover, # is the unique left-invariant measure
up to multiplication by positive constants+
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If T is a nonempty subset of S and is closed under the operation {, then ~T,{! is
also a positive semigroup, since the other algebraic assumptions are simply inher-
ited+ However, the partial order associated with T is not, in general, the restriction
of � to T, but a subpartial order of this restriction; that is, if x, y � T, then x �T y
implies x � y, but the converse is not true unless x�1y � T+ If T is closed under {
but does not contain e, then T � $e% is also a closed under { and, hence, is a positive
subsemigroup of S+

3. EXPONENTIAL DISTRIBUTIONS

Suppose that ~S,{! is a ~discrete! positive semigroup and that X is a random variable
taking values in S ~so that P~X � x! � 0 for each x � S!+ The tail probability
function of X is the mapping x r P~X � x!+ In general, this function does not
uniquely determine the distribution of X+

Random variable X has an exponential distribution if

P~X � xA! � P~X � x!P~X � A!, x � S, A � S+ (1)

Equivalently, the conditional distribution of x�1X given X � x is the same as the
distribution of X for each x � S+ Random variable X has a memoryless distribution
if ~1! holds for all x � S and all A of the form yS, where y � S+ Equivalently,

P~X � xy!� P~X � x!P~X � y!, x, y � S,

so that the conditional tail probability function of x�1X given X � x is the same as
the tail probability function of X+ In the language of reliability theory, X has con-
stant failure rate ~or simply constant rate! if the ~discrete! probability density func-
tion is proportional to the tail probability function:

P~X � x!� aP~X � x!, x � S,

for some positive constant a+ In general,

(
x�S

P~X � x!� E~#@e, X # !,

so that if X has constant rate, then the rate constant must be

a �
1

E~#@e, X # !
+

There are a number of nice properties and characterizations of exponential dis-
tributions on positive semigroups, perhaps a bit surprising given the minimal alge-
braic assumptions+We mention a few of these; for more details, see Siegrist @5–7# +
First, X has an exponential distribution on S if and only if X is memoryless and has
constant rate+ In general, however, a distribution can have one of these properties
~memoryless or constant rate!, but not the other+ Second, F : S r ~0,1# is the tail
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probability function of an exponential distribution on S if and only if F~xy! �
F~x!F~ y! for all x, y � S and(x�S F~x!�` ~the reciprocal of this sum is then the
rate constant!+ This characterization prescribes a method for finding all exponential
distributions on a given positive semigroup+ Finally, suppose that X and Y are inde-
pendent and identically distributed ~i+i+d+! on S+ Then the common distribution is
exponential if and only if the conditional distribution of X given XY � z is uniform
on @e, z# for each z � S+ Furthermore, if X1, X2, + + + are i+i+d+ exponential and Yn �
X1{{{Xn is the corresponding “gamma” variable of order n � N�, then the condi-
tional distribution of ~Y1, + + + ,Yn! given Yn�1 � z is uniform on the set

$~ y1, y2 , + + + , yn ! � S n : y1 � y2 � {{{ � yn %+

For general positive semigroups, counting measure # is replaced by a left-
invariant measure l; sums become integrals with respect to l; and density func-
tions and uniform distributions are with respect to l as well+At least in terms of the
algebraic structure, exponential distributions specify the most random way to select
elements of S+ Of course, the motivating example for this theory is the positive
semigroup ~ @0,`!,�!+ The associated partial order is the ordinary order and Le-
besgue measure is the invariant measure+ The exponential distributions for this pos-
itive semigroup are the ordinary exponential distributions+ Rowell and Siegrist @4#
explore positive semigroups isomorphic to the standard one, in the context of reli-
ability theory+We briefly mention a few discrete examples+

Example 1: Let N denote the set of nonnegative integers+ Then ~N,�! is a positive
semigroup, and the associated partial order is the ordinary order �+ The exponential
distribution with rate parameter p � ~0,1! has tail probability function and density
function given by

P~X � x!� ~1 � p!x, P~X � x!� p~1 � p!x, x � N+

Of course, this is the standard geometric distribution with success parameter p+

Example 2: Let N� denote the set of positive integers+ Then ~N�,{! is a positive
semigroup where { is ordinary multiplication+ The associated partial order is the
division order: x � y if and only if x divides y+ The exponential distributions turn
out to be precisely the Dirichlet distributions with completely multiplicative coef-
ficient functions; the zeta distribution is an important special case ~see Siegrist @7# !+

Example 3: Let A be a finite alphabet and let S � A* denote the space of all finite
words with letters from A+ The free semigroup ~S,{! is a positive semigroup where
{ is the concatenation operation+ The identity is the “empty word” e, and x � y if
and only if x is a prefix of y+ An exponentially distributed variable has the form

X � X1 + + + XL ,

where the random letters X1, X2, + + + are i+i+d+ on the alphabet A and where the length
L is independent of ~X1, X2, + + +! and has a geometric distribution on N+
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4. THE POSITIVE SEMIGROUP OF FINITE SUBSETS

Let S denote the set of all finite subsets of N�+ It is easy to see that the partially
ordered set ~S, �! satisfies the self-similarity property described in Section 2+ Our
goal in this section is to define and study the corresponding positive semigroup+

We identify a nonempty subset x of N� with the function given by

x~i ! � ith smallest element of x

with domain $1,2, + + + ,#~x!% if x is finite or with domain N� if x is infinite+ If x is
nonempty and finite, max~x! denotes the maximum value of x; by convention, we
take max~À!� 0 and max~x!�` if x is infinite+ Thus, #~x!� max~x! for every x+
If x and y are nonempty subsets of N� with max~ y!� #~x!, we let x � y denote the
subset whose function is the ordinary composition of x and y: x � y~i !� x~ y~i !!+We
also define x � À � À for any x � N�+ Note that x � y is always defined when x is
infinite+

We now define a binary operation { on S by

xy � x � ~x c � y!� x � $ith smallest element of x c : i � y%+

Note that the operation is well defined since x c is infinite+ The operation might
seem contrived, but it is not+ Up to a relabeling of the positive integers, there is only
one way to associate a positive semigroup with the subset partial order+

Theorem 1: ~S,{! is a positive semigroup with the subset partial order.

Proof: The associative rule holds, and in fact

x~ yz! � ~xy!z � x � ~x c � y! � ~x c � y c � z!+

The empty set is the identity

xÀ � x � ~x c � À!� x � À� x,

Àx � À � ~N� � x!� À � x � x+

The left-cancellation law holds: Suppose that xy � xz+ Then x � ~x c � y! � x �
~x c � z! by definition and, hence, x c � y � x c � z since the pairs of sets in each union
are disjoint+ However, then y � z+ There are no nontrivial inverses: If xy � À, then
x � ~x c � y!� À+ Hence, we must have x � À and, therefore, also x c � y � N� � y �
y � À+

Finally, the associated partial order is the subset order+ Suppose first that
xu � y+ Then x � ~x c � u! � y so x � y+ Conversely, suppose that x � y+ Let
u � $i � N� : x c~i ! � y% + Then x � ~x c � u!� y, so xu � y+ �
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Note that the irreducible elements of ~S, {! are the singletons $i % , where
i � N�+ Note also that

$i %$i % � $i, i � 1%,

$i � 1%$i % � $i, i � 1%,

$i %$i � 1% � $i, i � 2%+

Thus, the binary operation is not commutative and the right-cancellation law does
not hold, so ~S,{! just satisfies the minimal algebraic assumptions of a positive semi-
group+ In particular, S cannot be embedded in a group+ Finally, if i1 � i2 � {{{� in,
then

$in %$in�1% + + + $i1% � $i1, i2 , + + + , in %+

Proposition 1: For x, y � S,

#~xy! � #~x!� #~ y!, (2)

max~xy! � �max~x! if max~ y!� max~x!� #~x!

max~ y!� #~x! if max~ y! � max~x!� #~x!+
(3)

Proof: #~xy!� #@x � ~x c � y!#� #~x!� #~x c � y! since x and x c � y are disjoint+
However, clearly, #~x c � y!� #~ y!+

Equation ~3! is trivial if x or y is the identity ~À!, so we will assume that x and
y are nonempty+ Note that, by definition,

max~xy! � max~x � ~x c � y!!� max$max~x!,max~x c � y!%+

Let i � #~x! and n � max~x!+ Then n � x and the remaining i �1 elements of x are
in $1,2, + + + , n � 1% + Hence, x c contains n � i elements of $1,2, + + + , n � 1% , together
with all of the elements of $n �1, n � 2, + + +% + If max~ y!� n � i , then max~x c � y!�
x c~max~ y!!� n �1, so max~xy!� n � max~x!+ If max~ y!� n � i, then max~xy!�
max~x c � y!� x c~max~ y!!� n � ~max~ y!� ~n � i !!� max~ y!� i + �

The semigroup ~S, {! has an interesting structure, but to see it we need some
additional notation+ For k � N, let

Sk � $x � S :max~x!� #~x!� k%

and let Tk � $À% � Sk+ For ~n, k! � $~0,0!% � ~N� � N !, let

Sn, k � $x � S : #~x!� n, max~x!� n � k%� $x � Sk : #~x!� n%+

Of course, S0,0 � $À% + If n � N� and k � N, then

#~Sn, k ! � �n � k � 1

n � 1
� (4)
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since x � Sn, k must contain the element n � k and n � 1 elements from $1,2, + + + ,
n � k � 1% + If we interpret the binomial coefficient ��1

�1� as 1, then ~4! is valid for
n � k � 0 also+

Theorem 2: Sk is a subsemigroup of S, and hence Tk is a positive subsemigroup of
S, for each k � N. The associated partial order on Tk is the subset partial order.

Proof: We first show that xy � Sk for x, y � Sk+ The result is trivial if x � À or
y � À ~which can only happen when k � 0!+ Thus, we will assume that x and y are
nonempty+ Then max~ y!� max~x!� #~x!, since the left-hand side is k � #~ y! and
the right-hand side is k+ By Proposition 1, max~xy!� max~ y!� #~x!+ Hence,

max~xy!� #~xy! � ~max~ y!� #~x!!� ~#~x!� #~ y!!� max~ y!� #~ y!� k+

Therefore, xy � Sk+ To prove the last statement in the theorem, it suffices to show
that if x, y � Sk and x � y, then x�1y � Sk+ Thus, suppose that x � Sm, k, y � Sn, k,
where m � n, and xu � y for some u � S ~so that x � y!+ Then max~ y!� n � k �
m � k � max~x!, so by another application of Proposition 1,max~ y!� max~u!� m
and, hence, max~u!� n � m � k+ However, #~u!� n � m and, hence, u � Sk+ �

Note that S0 � $$1,2, + + + ,m% :m � N % + If y � S and #~ y!� n, then

$1,2, + + + ,m%y � $1,2, + + + ,m% � $m � y~1!,m � y~2!, + + + ,m � y~n!%+

In particular, $1,2, + + + ,m%$1,2, + + + , n%� $1,2, + + + ,m � n% , so ~S0, {! is isomorphic
to ~N,�!, the positive semigroup in Example 1, and x � #~x! is an isomorphism+
Finally, note that À � S0, so T0 � S0+ To characterize the exponential distributions
on Tk, we must first characterize the minimal elements of Sk ~which are the irreduc-
ible elements of Tk!+

Proposition 2: The set of minimal element of Sk is

Mk � $x � Sk : x~i !� k for all i � #~x!%+

There are 2k minimal elements.

Proof: First, we show that if x � Sk is not a minimal element of Sk, then x � Mk+
Thus, suppose that x � uv, where u, v � Sk are nonempty+ Then max~u! � k and
max~u! � u � uv� x+Moreover, max~u! � max~x!, so the rank of max~u! in x is
less than #~x!� #~u!� #~v!+ Therefore, x � Mk+

Next, we show that if x � Sk� Mk, then x is not a minimal element of Sk+ Thus,
suppose that x � Sk and x~i ! � k for some i � #~x!+ Construct u � S as follows:
x~i ! � u and u contains x~i !� k � 1 elements of x that are smaller than x~i !+ This
can be done since x~i !� i � k and, hence, x~i !� k � 1 � i � 1, and by definition,
x contains i �1 elements smaller than x~i !+ Now note that max~u!� #~u!� x~i !�
~x~i !� k!� k, so u � Sk+ By construction, u � x, so there exists v � S such that
uv� x+ By Theorem 2, v � Sk and, hence, x is not a minimal element of Sk+
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Next, note that if x � Sk and #~x!� k � 2, then x � Mk, since one of the k � 1
elements of x of rank less than #~x!must be at least k �1+ For n � k �1, the number
of elements x � Mk with #~x!� n is � k

n � 1� , since x must contain n � k and n � 1
elements in $1,2, + + + , k% + Hence,

#~Mk ! � (
n�1

k�1� k

n � 1
�� 2k + �

For example, the minimal elements of S2 are $3% , $1,4% , $2,4% , and $1,2,5% +

5. EXPONENTIAL DISTRIBUTIONS ON Tk

Theorem 3: There are no memoryless distributions on S and, hence, no exponen-
tial distributions.

Proof: Suppose that X is a random variable taking values in S and that X has a
memoryless distribution+ By the memoryless property,

P~$i %$i % � X ! � P~i � X !P~i � X !,

P~$i � 1%$i % � X ! � P~i � 1 � X !P~i � X !+

However, $i %$i %� $i � 1%$i % , as noted earlier, so we must have

P~i � 1 � X ! � P~i � X !

for every i � N�+ Next, note that if i1 � i2 � {{{ � in then by another application
of the memoryless property,

P~i1 � X, i2 � X, + + + , in � X ! � P~$i1, i2 , + + + , in % � X !

� P~$in %$in�1% + + + $i1% � X !

� P~i1 � X !P~i2 � X ! + + + P~in � X !+

It therefore follows that the events $$i � X % : i � N�% are i+i+d+ Hence, in-
finitely many of the events must occur with probability 1, so X is infinite—
a contradiction+ �

Although there are no exponential distributions on S, the subsemigroup Tk has
a one-parameter family of exponential distributions for each k � N+

Theorem 4: A random variable X taking values in Tk has an exponential distribu-
tion if and only if the tail probability function F and density function f have the
following form, for some a � ~0,1!:
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F~x! � a #~x!, x � Tk , (5)

f ~x! �
~1 � a!k�1

~1 � a!k�1 � a
a #~x!, x � Tk + (6)

Proof: The function F~x! � a #~x! takes values in ~0,1# and satisfies F~xy! �
F~x!F~ y! for all x, y � Tk+ Moreover,

(
x�Tk

F~x! � 1 � (
n�1

`

(
x�Sn, k

F~x!

� 1 � (
n�1

`

(
x�Sn, k

a n

� 1 � (
n�1

` �n � k � 1

n � 1 �a n

�
~1 � a!k�1 � a

~1 � a!k�1
+

It follows that F and f as given earlier are the tail probability function and density
function, respectively, of an exponential distribution+

Conversely, suppose that F is the tail probability function of a memoryless
distribution on Tk+ As noted earlier, T0 is isomorphic to ~N,�!, with # an isomor-
phism+ Thus, if k � 0, F must have the form F~x! � a #~x! , where a � F~$1%! �
~0,1!+ For general k, we will show by induction on #~x! that F~x! � a #~x! , where
a � F~$k � 1%! � ~0,1!+ The result is trivially true if #~x! � 0, since x � À+ The
result is also trivially true if #~x! � 1, since the only such x � Tk is x � $k � 1% +
Suppose now that F~x!�a #~x! for all x � Tk with #~x!� n+ Let x � Tk with #~x!�
n � 1+ If x is not irreducible, then x � uv, where u, v � Tk, #~u!� n, #~v!� n, and
#~u!� #~v!� #~x!+ In this case,

F~x! � F~u!F~v!� a #~u!a #~v! � a #~x!+

On the other hand, if x is irreducible, let j � min$i � x : i � 1 � x% + Note that
j � #~x! since max~x!� #~x!� k+ Now let y � Tk be obtained from x by replacing
j with j � 1+ Note that #~ y!� #~x! and, moreover, y c can be obtained from x c by
replacing j �1 with j+We claim that xx � yx; that is, x � ~x c � x!� y � ~ y c � x!+ To
see this, note first that if i � j and i � j �1, then i � x if and only if i � y, and i � x c

if and only if i � y c + On the other hand, j � x and j � y c � x, since j � y c~x~1!! ~by
definition, there are x~1!� 1 elements less than x~1! in y c ; the next element in y c

is j !+ Similarly, j � 1 � y and j � 1 � x c � x, since j � 1 � x c~x~1!!+ Since xx � yx,
it follows from the memoryless property that F~x!� F~ y!+ Continuing this process,
we find that F~x!� F~ y! for some y � Sk that is not minimal, but with #~ y!� #~x!+
It then follows that F~x!� F~ y!� a #~ y! � a #~x! and the proof is complete+ �
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To illustrate the last part of the proof, suppose that x � $3,4,5,8,15% � T10+
Then j � 5, y � $3,4,6,8,15% , and xx � yx � $3,4,5,6,7,8,9,12,15,20% +

Suppose that X has the exponential distribution on Tk given in Theorem 4+ From
the general theory in Section 3, the expected number of subsets of X in Tk is the
reciprocal of the rate parameter in the density function+ Thus,

E~#@À, X # ! � 1 �
a

~1 � a!k�1
+

If k � 0 ~recall that S0 � T0!, note that

P~X � x!� ~1 � a!a #~x!, x � S0 + (7)

On the other hand, suppose that k � N�+ Then

P~X � Sk ! � 1 � P~X � À!� 1 � g~0!�
a

~1 � a!k�1 � a
+

Thus, the conditional distribution of X given X � Sk has density function

P~X � x 6X � Sk !�
P~X � x!

P~X � Sk !
� ~1 � a!k�1a #~x!�1, x � Sk + (8)

The density function of X depends on x � Tk only through #~x!+ The following
corollary gives the distribution of #~X !+

Corollary 1: Suppose that X has the exponential distribution in Theorem 4 and
let U � #~X ! . Then

P~U � n! �
~1 � a!k�1

~1 � a!k�1 � a
�n � k � 1

k �a n, n � N, (9)

E~U ! �
a

1 � a

a~1 � ka!

~1 � a!k�1 � a
, (10)

where we interpret the binomial coefficient as 1 when n � 0.

When k � 0, ~9! gives P~U � n!� ~1 � a!a n for n � N, so U has a geometric
distribution on N+ In general, U has a modified negative binomial distribution+ It is
easy to see from ~10! that for each k � N, E~U ! is a strictly increasing function of
a and maps ~0,1! onto ~0,`!+Thus, the exponential distribution on Tk can be reparam-
eterized by expected cardinality+Moreover, the exponential distribution maximizes
entropy with respect to this parameter:

Corollary 2: The exponential distribution in Theorem 4 maximizes entropy over
all distributions on Tk with expected value given by (10).
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Proof: We use the usual inequality for entropy: if f and g are probability density
functions of random variables X and Y, respectively, taking values in Tk, then

�(
x�Tk

g~x! ln@g~x!# � �(
x�Tk

g~x! ln@ f ~x!# + (11)

If X has the exponential distribution in Theorem 4 and if E~#~Y !!� E~#~X !!, then
substituting into the right-hand side of ~11!, we see that the entropy of Y is bounded
above by

�ln~ck,a!� µk,a ln~a!,

where ck,a is the rate parameter of the exponential density in ~6! and µk,a

is the mean cardinality in ~10!+ Of course, the entropy of X achieves this upper
bound+ �

6. ALMOST EXPONENTIAL DISTRIBUTIONS ON S

There are no exponential distributions on S+ However, we can define distributions
that are “close” to exponential by forming mixtures of the distributions in ~7! and
~8!+ Thus, suppose that X takes values in S with probability mass function

P~X � x!� �b0~1 � a0 !a0
#~x! , x � S0

bk~1 � ak !
k�1ak

#~x!�1 , x � Sk , k � N� ,
(12)

where ak,bk � ~0,1! for each k � N and (k�0
` bk � 1+ Thus, the conditional distri-

bution of X given X � Sk is the same as the corresponding conditional distribution
of an exponential variable on Tk ~with parameter ak!+ Note that the conditional dis-
tribution of X on Tk itself is not exponential+ In fact, we cannot construct a distri-
bution on S by requiring that the conditional distributions on Tk be exponential for
each k, essentially because these semigroups share À and, thus, are not disjoint+ The
distribution of X is as close to exponential as possible, in the sense that X is essen-
tially exponential on each of the subsemigroups Sk, and these semigroups partition S+

There is not much that we can say about the general distribution in ~12!+ In the
remainder of this section we will study a special case with particularly nice prop-
erties+ For our first construction, let N have a geometric distribution on N with rate
parameter 1 � r � ~0,1!, as in Example 1+ Next, given N � n, random variable X is
distributed on the subsets of $1,2, + + + , n% , so that i � X, independently, with prob-
ability p for each i � $1,2, + + + , n% + Of course, if N � 0, then X � À+

Theorem 5: For x � S,

P~X � x! �
1 � r

1 � r � rp
~rp!#~x! @r~1 � p!#max~x!�#~x!, (13)

P~X � x! � p#~x!r max~x!+ (14)
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Proof: For x � S,

P~X � x!� (
n�0

`

P~N � n!P~X � x 6N � n!+

If n � max~x!, then x is not a subset of $1,2, + + + , n% , so P~X � x 6N � n!� 0+ If n �
max~x!, then x is a subset of $1,2, + + + , n% and, by assumption, P~X � x 6N � n!�
p#~x!~1 � p!n�#~x! + Substituting gives

P~X � x!� (
n�max~x!

`

~1 � r!r np#~x! ~1 � p!n�#~x!,

which simplifies to ~13!+ By a similar argument,

P~X � x! � (
n�max~x!

`

~1 � r!r np#~x!,

which simplifies to ~14!+ �

The distribution of X depends on x � S only through #~x! and max~x!� #~x!+
As before, let U � #~X ! and now let V � max~X !� #~X !+

Corollary 3: For ~n, k! � $~0,0!% � ~N� � N ! ,

P~U � n,V � k! � P~X � Sn, k !

�
1 � r

1 � r � rp
�n � k � 1

n � 1 �~rp!n @r~1 � p!# k+

Corollary 4: For ~n, k! � $~0,0!% � ~N� � N ! , the conditional distribution of X
given U � n, V � k is uniform on Sn, k.

Corollary 5: For n � N, the conditional distribution of V given U � n is negative
binomial with parameters n and r~1 � p! (when n � 0, the conditional distribution
of V is point mass at 0).

Corollary 6: The distribution of U is geometric with parameter ~1 � r !0
~1 � r � rp! .

Of course, Corollaries 4– 6 determine the distribution of X and give an alter-
nate way of constructing the distribution in the first place: We first give U a geo-
metric distribution with a parameter a � ~0,1!; given U � n, we give V a negative
binomial distribution with parameters n and b � ~0,1!; and, finally, given U � n
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and V � k, we give X the uniform distribution on Sn, k+ The two constructions are
equivalent, since there is a one-to-one correspondence between the pairs of param-
eters ~r, p! and ~a,b!+

Our next goal is to study the distribution of the random subset X on the sub-
semigroups Sk+ First, note that

P~X � x!

P~X � x!
�

1 � r

1 � r � rp
~1 � p!max~x!�#~x!+

Thus, for k � N, X has constant rate

1 � r

1 � r � rp
~1 � p!k

on the subsemigroup Sk+ In particular, for x � S0,

P~X � x! �
1 � r

1 � r � rp
~rp!#~x!,

P~X � x! � ~rp!#~x!+

Hence, X has the memoryless property on S0 ~in addition to the constant rate
property!+ To find the conditional distribution of X given X � Sk, we first need
P~X � Sk! or, equivalently, the probability density function of V+

Corollary 7: V has a modified geometric distribution:

P~X � S0 ! � P~V � 0!�
1 � r

~1 � r � rp!~1 � rp!
,

P~X � Sk ! � P~V � k!�
~1 � r!rp

~1 � r � rp!~1 � rp!
� r~1 � p!

1 � rp
�k

, k � N� +

Corollary 8: The conditional distributions of X on Sk are as follows:

P~X � x 6X � S0 ! � ~1 � rp!~rp!#~x!, x � S0 , (15)

P~X � x 6X � Sk ! � ~1 � rp!k�1~rp!#~x!�1, x � Sk , k � N� + (16)

Thus, X has an almost exponential distribution in the sense of ~12!, with ak �
1 � rp for each k � N and with the mixing probabilities given in Corollary 7+

From Theorem 3, no exponential distribution on S exists because the events
$$i � X % : i � N�% would have to be independent with a common probability+ The
next corollary explores these events for the random variable in Theorem 5+
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Corollary 9: Suppose that X has the distribution in Theorem 5.

1. P~i � X !� pr i for i � N�.
2. If i1, i2, + + + , in � N� with i1 � i2 � {{{ � in then

P~in � X 6 i1 � X, + + + , in�1 � X !

� P~in � X 6 in�1 � X !

� P~in � in�1 � X !

� pr in�in�1+

3. For j � N�, the events $1 � X %, $2 � X %, + + + , $ j �1 � X % are conditionally
independent given $ j � X % with P~i � X 6 j � X !� p for i � j.

Property 3 in Corollary 9 is clearly a result of the original construction of X+
Property 2 is reminiscent of a Markov property+ This property implies that the events
$$i � X % : i � N�% are positively correlated, but asymptotically uncorrelated+ In fact
the correlation decays exponentially, since

P~i � j � X 6 i � X ! � P~ j � X !� pr j r 0 as jr `+

From Corollaries 5 and 6, we can compute the expected value of U � #~X ! and
W � max~X !� U � V:

E~U ! �
rp

1 � r
, (17)

E~W ! �
rp

~1 � r!~1 � r � rp!
+ (18)

It is easy to see from ~17! and ~18! that ~E~U !,E~W !!, as a function of ~r, p!, maps
~0,1!2 one-to-one and onto $~c,d ! : 0 � c � d �`% + Thus, the distribution of X can
be reparameterized by expected cardinality and expected maximum+Moreover, the
distribution of X maximizes entropy with respect to these parameters+ The proof of
the following corollary is essentially the same as the proof of Corollary 2

Corollary 10: The distribution in Theorem 5 maximizes entropy among all dis-
tributions on S with expected cardinality given by (17) and expected maximum given
by (18).

Of fundamental importance in the general theory of random sets @3# is the hit-
ting probability function G:

G~x! � P~X � x � À!, x � N�

This function completely determines the distribution of a random set, and in the
general setting ~which lacks the algebraic structure that we have here!, it plays the
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role of a “distribution function+” Note that G is defined for all subsets of the posi-
tive integers, not just finite subsets+

Theorem 6: Suppose that X has the almost exponential distribution with param-
eters p and r given in Theorem 5. Then

G~x! � (
i�1

#~x!

p~1 � p!i�1r x~i !, x � N� ,

where, as usual, x~i ! is the ith smallest element of x.

Proof: Suppose first that x is finite ~so that x � S!+ From the standard inclusion–
exclusion formula ~or from @3# !,

G~x! � (
k�1

#~x!

~�1!k�1 (
y�x,#~ y!�k

P~X � y!+

Hence, substituting the result in ~14!, we have

G~x! � (
k�1

#~x!

~�1!k�1 (
y�x,#~ y!�k

p#~ y!r max~ y!

� (
k�1

#~x!

~�1!k�1pk (
i�k

#~x!

(
y�x,#~ y!�k,max~ y!�x~i !

r x~i !

� (
k�1

#~x!

~�1!k�1pk (
i�k

#~x!� i � 1

k � 1�r x~i !

� (
i�1

#~x!

r x~i ! (
k�1

i � i � 1

k � 1�~�1!k�1pk

� (
i�1

#~x!

p~1 � p!i�1r x~i !+

For infinite x, the formula holds by passing to the limit and using the continuity of
probability+ �
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