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Noisy transitional flows in imperfect channels
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Here, we study noisy transitional flows in imperfect millimetre-scale channels. For
probing the flows, we use microcantilever sensors embedded in the channel walls.
We perform experiments in two nominally identical channels. The different sets of
imperfections in the two channels result in two random flows in which the high-order
moments of the near-wall fluctuations differ by orders of magnitude. Surprisingly,
however, the lowest-order statistics in both cases appear to be qualitatively similar
and can be described by a proposed noisy Landau equation for a slow mode. The
noise, regardless of its origin, regularizes the Landau singularity of the relaxation
time and makes transitions driven by different noise sources appear similar.
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1. Introduction

More than a century ago, Osborne Reynolds investigated the transition to turbulence
in a glass pipe into which he injected a filament of dye at the inlet (Reynolds
1883). Reynolds noticed that the characteristics of the dye filament and hence the
entire flow field depended on the dimensionless flow rate, or the Reynolds number,
Re=UD/ν (here, U is the mean flow velocity, D is the pipe diameter, and ν is the
fluid kinematic viscosity). When Re was below a critical value, Re� Recr, the dye
propagated downstream as a thin filament without breaking up, indicating a laminar
flow in the pipe. At Re > Recr, this pattern changed dramatically: waves appeared
in the vicinity of the inlet, sometimes leading to substantial flow randomization
downstream. With increasing Re, the fraction of the tube length occupied by these
waves increased, and at Re� Recr, the entire flow became turbulent.

Reynolds, however, was unable to determine a unique value for Recr. He noticed
that the value of Recr was sensitive to various imperfections, most notably the
geometry of the inlet. If the inlet was sharp, inlet perturbations appeared in the form
of shed vortices that caused transition to turbulence at large Reynolds numbers. These
perturbations, however, rapidly decayed downstream, if the Reynolds number was not
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too large. By carefully eliminating these, Reynolds was able to delay the transition
up to Re≈ 12 800 (Reynolds 1883). Others following Reynolds were able to sustain
laminar flows in pipes even for Reynolds numbers as high as 100 000 (Pfenninger
1961). Relatively recently, the effects of initial (inlet) perturbations on Recr were
quantified by introducing well-controlled disturbances (jets) injected through holes
in the vicinity of the inlet (Darbyshire & Mullin 1995). Consistent with Reynolds’
observations, the flow became turbulent at smaller and smaller Reynolds numbers as
the ratio of the disturbance velocity to the mean flow velocity was increased (for a
comprehensive review, see Yaglom 2012).

The above-described ‘decay or amplification’ of waves (or perturbations) forms
the basis of Landau’s phenomenological theory of transition (Landau & Lifshitz
1987). It must be stressed that, based on his general approach which revolutionized
the theory of critical phenomena, Landau was not interested in the notoriously
difficult and non-universal problem of deriving the value of the critical (transitional)
Reynolds number Recr. Instead, he assumed the existence of a transitional (marginal)
velocity distribution ū at Re = Recr, and attempted an investigation of the general
and universal flow properties in the vicinity of Recr in terms of a small perturbation
velocity v. Then, under the small (infinitesimal) perturbation, the total velocity
becomes u = ū + v, and the total pressure becomes p = p0 + p1 with p0 being the
transitional pressure distribution and p1 being the perturbation. In general, the field ū
can be time-dependent but, following Landau, we assume the transitional pattern to
be steady. The Navier–Stokes equations can then be written as

ū · ∇ū=−∇p0

ρ
+ ν∇2ū, ∇ · ū= 0; (1.1a,b)

∂v

∂t
+ ū · ∇v + v · ∇ū+ v · ∇v =−∇p1

ρ
+ ν∇2v, ∇ · v = 0. (1.2a,b)

Both ū and v vanish on solid walls. Neglect of the O(v2) contribution to (1.2a,b)
results in linearized Navier–Stokes equations to be used for investigating instabilities
in fluid flows. Now, the task is to find a solution to (1.1) and (1.2) describing the time
evolution of an initially (t = 0) infinitesimally small perturbation v. In this case, the
O(v2) contribution to (1.2a) is neglected. For the perturbation, Landau assumed the
form v(r, t)= A(t)f (r), where A(t)= constant× e−iΩt is the slowly varying amplitude
with a complex eigenfrequency, Ω=ω+ iγ , and f (r) describes the spatial dependence.
If the near-wall effects are not too important, one can write the differential equation
(in the frame of reference moving with the mean flow)

d|A|2
dt
= 2γ1|A|2 − α|A|4, (1.3)

which is to be solved subject to an initial perturbation A(0)=A0. The solution to this
equation is

|A(t)|2
|A0|2 =

e2γ1t

1+ |A0|2 α2γ1
(e2γ1t − 1)

. (1.4)

Indeed, setting γ = c(Re − Recr), one can reproduce the observed ‘decay or
amplification’ of perturbations. When Re − Recr < 0, A(t) → 0 in the limit
t→∞ (t� 1/γ ); otherwise, the amplitude grows, saturating at |A(∞)| ∝√Re− Recr.
The theory suggests that information about the initial conditions disappears on a time
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scale τ = (1/(2|γ1|)) ∝ (1/(|Re− Recr|)). This behaviour is similar to the ‘critical
slowing down’ in the proximity of a critical point in phase transitions. In pipe
flows, it has important and interesting consequences. A perturbation occurring at
position l and being advected by a mean flow of velocity U stays in the pipe for
a time interval t0 ≈ (L − l)/U, where L is the pipe length. Therefore, to observe
the decay of a perturbation generated in the bulk or its growth towards a final
turbulent state, one needs t0� τ , requiring unreasonably long pipes around Recr. The
divergent relaxation time τ ∝ |Re− Rcr|−ζ , with ζ ≈ 0.56, was also recently obtained
in numerical simulations of transition in force-driven Navier–Stokes equations by
McComb et al. (2014).

Landau’s theory of transition, although insightful, is better applicable to wakes in
flows past bluff bodies (Sreenivasan, Strykowski & Olinger 1987) and in convection,
i.e. in situations where wall effects and viscosity do not dominate. It is well justified
in pipe flows when the characteristic size of a perturbation is O(D) and wall effects
are unimportant. Efforts to describe transition in pipes using the Landau theory, most
notably by Stuart and others (Stuart 1971), focused on obtaining the magnitudes
of the coefficients γ1 and α and testing their possible universality. This universality
remains elusive, suggesting that wall effects must be important in transition. Numerical
simulations and experimental data show that, at least in the range 2300 6 Re 6 105,
powerful bursts generated by unstable boundary layers are mainly responsible for
turbulence production in the bulk.

The majority of workers studying the transition to turbulence in pipes have been
interested in the flow response to perturbations in otherwise perfect pipes (Yaglom
2012). This interest can partially be explained by the mathematical well-posedness
of the problem and by the emergence of numerical methods combined with powerful
computers. Conversely, the ‘fuzzy’ problem involving inlet disturbances, pipe
imperfections and pipe roughness has not attracted as much attention (Pausch &
Eckhardt 2015). In this article, we investigate both experimentally and theoretically
the transition to turbulence in imperfect channels. In other words, we are not
interested in reducing the roughness or removing wall and inlet imperfections.
Specifically, we strive to quantify growing perturbations near the wall by their spectra
and statistical properties, including probability densities and low- and high-order
moments. Remarkably, we observe that, while low-order moments are relatively
independent of the experimental details, high-order moments are extremely sensitive
to these details and may differ by orders of magnitudes. To describe our experimental
observations, we propose a modified Landau theory in which all imperfection-induced
flow disturbances are treated as added high-frequency noise. This theory agrees well
with our experimental observations. An important consequence of this theory is
that the noise regularizes the Landau singularity of the relaxation time. It must be
emphasized that, in this regime (i.e. in imperfect channels), turbulence is constantly
driven by noise, which makes the problem very different from the initial-value
problem considered by Hof et al. (2006).

2. Experiments

2.1. Experimental set-up
We performed our experiments in two nominally identical rectangular channels with
linear dimensions Lx × Ly × Lz = 35 × 8 × 0.9 mm3 and with hydraulic diameters
D ≈ 1.6 mm. A pressurized air source is used to establish air flow in each channel.
The flow rate is monitored using a rotameter, and the pressure drop 1p between
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FIGURE 1. (a) Rectangular channel with linear dimensions Lx × Ly × Lz = 35 × 8 ×
0.9 mm3. The test section is highlighted. The microcantilever chip is integrated into
the middle of the bottom wall. (b) Optical microscope (left) and scanning white light
interferometry (right) images of the bottom walls of the two channels. The optical images
are 6.2 × 4.6 mm2, and the interferometry images are 0.7 × 0.5 mm2. The colour scale
bar is the same for both images. (c) Double logarithmic plot of pressure drop 1p as a
function of Reynolds number in the channels. The lines are fits to laminar (dashed) and
Blasius (dotted) flow models with the transition around Re∼ 2× 103. Error bars are shown
only when larger than symbols.

the inlet and the outlet is measured using a differential gauge. The near-wall flow
in each channel is probed by a rectangular microcantilever with linear dimensions
lx × ly × lz = 27.5 × 225 × 3 µm3 (figure 1a,b). In the first channel (henceforth
channel (i)), the chip carrying the microcantilever is embedded in the bottom wall
of the microchannel by a surrounding aluminium structure that is cut from an
∼300 µm-thick smooth sheet (matching the height of the chip) and glued to the
bottom wall (figure 1b). The root-mean-square (r.m.s.) roughness on the wall is
∼300 nm. In the second channel (henceforth channel (ii)), a groove, which matches
the size of the cantilever chip closely, is machined on the bottom channel wall
(figure 1b). The r.m.s. roughness on this wall is significantly larger, ∼3 µm. In both
channels, the test section is approximately 17 mm (≈11D) from the inlet. Because
turbulence is driven and sustained by noise due to imperfections in our channels,
the distance of the test section from the inlet is sufficient for the observation of
the transition (Zagarola & Smits 1998). Both channels have smooth and transparent
top walls, and the motion of the tips of the microcantilevers is read out using the
optical beam deflection technique (Meyer & Amer 1988). We confirm that our optical
transducer remains linear in the explored parameter space.

We emphasize that the two channels, while nearly identical in all macroscopic
aspects (e.g. linear dimensions, inlet pipes), possess different sets of microscopic
imperfections on their walls and test sections, as seen in figure 1(b). Here, we are
not concerned with the particulars of these imperfections, which may include but are
not limited to surface roughness, wall asperities, bumps, edges, and so on. As we
show below, even though these imperfections may lead to different random flows, the
lowest-order statistics remain qualitatively similar.
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2.2. Pressure drop
The pressure drops 1p between the inlets and outlets of both channels are shown in
figure 1(c) as a function of the Reynolds number. In the low-Reynolds-number range
06 Re. 103, 1p can be fitted to that in a Poiseuille flow using the nominal channel
parameters with no free parameters. This is the dashed asymptote in figure 1(c). In
the high-Re regime, the data appear to converge to another asymptote (dotted line).
This is the pressure drop calculated from the Colebrook equation in a rectangular duct
(Jones 1976), using only experimentally available parameters. The pressure drops in
both channels match closely.

2.3. Spectral properties
We first turn to the spectral properties of near-wall fluctuations. Flow forces act
on the microcantilever and give rise to mechanical fluctuations. The microcantilever
has a sharply peaked resonance at 100 kHz with a linewidth of 500 Hz. Its linear
response function is frequency-independent in the frequency range f < 80 kHz and
can be approximated as |G(f )| ≈ 1/κ , with κ being the cantilever spring constant
and κ ≈ 3 N m−1. Thus, the linear relation, Sz(f ) ≈ SF(f )/κ2, between the spectral
densities of the force SF(f ) and the cantilever displacement Sz(f ) remains valid
below f < 80 kHz. At very low flow rates (Re . 800), Sz(f ) becomes obscured by
measurement noise because the flow cannot generate detectable cantilever motion.

The spectral densities of the cantilever fluctuations Sz(f ) obtained for the two
channels are shown at different Reynolds numbers in figure 2. For Re . 1000
(figure 2a,b), the spectra for both cases are barely above the noise floor (dotted
black line) and appear similar for the most part. For Re > 1600 (figure 2c–f ), small
differences between the two cases can be noticed. First, the fluctuations in channel (ii)
with the rougher wall are larger than those in channel (i) by an order of magnitude;
second, the spectrum in channel (ii) extends to slightly higher frequencies. As the
Reynolds number is increased, both data traces increase monotonically and smoothly.
Interestingly, Sz(f )∝ 1/f for both channels in the low-frequency range.

2.4. Statistical properties
Next, we turn to the statistical properties of the near-wall fluctuations. We collect
long-time traces of the cantilever amplitudes filtered in the frequency range 100 Hz<
f < 30 kHz to remove the high-frequency resonant oscillations. We then sample the
time data every 3 µs, obtaining ∼106 data points. Because we are interested in single-
point probability density functions (PDFs), we do not worry about oversampling in
comparison to other relaxation times in the measurement, e.g. the ring-down time of
the cantilever.

The PDFs for different Reynolds numbers are plotted in figure 3. For Re . 1000,
our measurements are dominated by technical noise, and the PDFs in both channels
(i) and (ii) are perfectly Gaussian (figure 3a,b). In the range Re > 1600, both PDFs
go through dramatic changes, as seen in figure 3(c–f ). First, one notices a substantial
broadening of the tails of the PDF in channel (i), indicating the presence of strong
wall velocity/pressure bursts, which may reach the bulk (Yakhot, Bailey & Smits
2010). The PDFs observed in channel (ii) for Re > 1600 suggest that the flow here
is somewhat more homogeneous (figure 3c–f ) compared with that in channel (i), but
wall bursts make the PDFs more asymmetric and intermittent (figure 3e). This trend
continues with increasing Reynolds number (figure 3f ). The dotted lines in the insets
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FIGURE 2. Power spectral density Sz(f ) of cantilever displacements for different Reynolds
numbers for channels (i) and (ii): (a) 820, (b) 1030, (c) 1650, (d) 2100, (e) 2330, (f ) 3000.
The dotted line in (a) shows the noise floor of the measurement; the noise floor and the
spectra are indistinguishable at Re≈ 820 for the frequency range f > 300 Hz.

show that the PDFs in channel (i) cannot be fitted to Gaussians, even at very small
displacements; an exponential decay seems perhaps more appropriate. The differences
between the two flows can also be clearly seen in the moments of the PDFs listed
in table 1. The moments are also plotted in figure 4, with zrms = 〈z2〉1/2 (brackets
indicate averaging) in figure 4(a) and normalized high-order moments in figure 4(b).
The high-order moments obtained in the two channels differ by orders of magnitude.
These observations can be summarized as follows. The random flow in channel (i)
is more intermittent compared with that in channel (ii); however, the intensity of the
fluctuations in channel (ii) is larger. Based upon these observations, it may not be
incorrect to conclude that these are two very different random flows. While the exact
source of the differences in these two flows is impossible to identify, it must be due
to the different sets of imperfections in the two channels.
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FIGURE 3. Probability density functions at different Reynolds numbers for channels
(i) and (ii): (a) 820, (b) 1030, (c) 1650, (d) 2100, (e) 2330, (f ) 3000. The x-axes are
in units of zrms, which are different for each data set (see table 1). The dotted lines are
Gaussians.

We return to the r.m.s displacement of the cantilever, zrms= 〈z2〉1/2, as a function of
the Reynolds number, shown in figure 4(a). The dashed lines are fits to our proposed
equation, discussed below. We note that the zrms values obtained by integrating the
spectra and from the time domain measurements agree closely. There are three regions
in the plot marked with different shadings. The first region, Re. 800, is dominated by
technical noise and does not provide any insight. In the second region (blue), where
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FIGURE 4. (a) Cantilever r.m.s. displacements, zrms, versus Re for channels (i) and (ii).
The dashed lines are fits to the results of the noisy Landau equation, (3.5), with parameters
given in table 2. (b) Normalized high-order moments. The error bars are estimated from
convergence tests performed by computing the moments for a subset of the data (e.g. half).
When not shown, the error bars are smaller than the symbol size.

Re 〈z2〉1/2 (nm) 〈z4〉/〈z2〉2 〈z6〉/〈z2〉3 〈z8〉/〈z2〉4
(i) (ii) (i) (ii) (i) (ii) (i) (ii)

0 0.07 0.06 2.99 3.04 14.9 15.5 104 111
480 0.07 0.07 3.00 3.04 15.0 15.4 105 109
820 0.07 0.08 2.99 3.01 15.0 15.0 106 103

1030 0.08 0.07 3.00 3.06 15.1 15.6 107 111
1240 — 0.14 — 3.75 — 29.2 — 366
1650 0.25 0.56 5.61 3.92 81.5 31.8 1890 421
2100 0.97 2.50 8.75 4.15 261 47.3 15 400 1500
2330 1.13 3.33 13.7 3.94 654 38.1 60 400 768
2550 1.46 4.05 20.7 4.34 2840 49.6 1.02× 106 1120
2750 1.79 5.02 31.2 4.65 5960 55.4 2.36× 106 1170
3000 2.82 5.73 48.4 5.33 20 100 97.6 1.39× 107 5010

TABLE 1. Moments.

1000.Re. 1600, the magnitudes of the cantilever fluctuations are of the same order
for both channels (i) and (ii), zrms ∼ 1 nm. In the third region (pink), the observed
r.m.s. amplitude of near-wall fluctuations in the rough channel (ii) is larger than that
of those in the smooth channel (i). The slope changes for both data traces around Re≈
2000, suggesting the onset of more sustained perturbations. The data traces appear to
increase parallel to each other for Re & 2000.

3. Theory

The similarities in the two data traces in figure 4(a) suggest that there may be
common underlying physics to both cases. In order to describe both flows by a single
equation, we return to the Landau theory discussed above. We incorporate the non-
idealities into the Landau theory by considering a general additive noise term φ(t). We
assume that a high-frequency random Gaussian force φ(t) defined by the correlation
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function φ(t)φ(t′)= 2φ2δ(t− t′) stirs the fluid. Then, (1.2a) is modified as

∂v

∂t
+ ū · ∇v + v · ∇ū+ v · ∇v =−∇p1

ρ
+ ν∇2v + φ(t). (3.1)

Repeating Landau’s arguments leading to (1.3), we write

∂A
∂t
= γ1A− α

2
A3 + φ(t). (3.2)

Averaging over high-frequency fluctuations gives a modified Landau equation for the
slow mode

d|A|2
dt
= 2γ1|A|2 − α|A|4 + φ2. (3.3)

In a force-driven flow with initial condition A0 = 0, the solution to (3.3) is

|A(t)|2 = γ1

α
+ β− − β+e−(t/τ)

β− + β+e−(t/τ)

(
β+ − γ1

α

)
, (3.4)

where β± = ±(γ1/α) +
√
(γ1

2/α2)+ (φ2/α) > 0 with τ = (1/(2
√
γ 2

1 + φ2α)). This
gives in the long-time limit

|A(∞)|2 = β+ = γ1

α
+
√
γ1

2

α2
+ φ

2

α
. (3.5)

Remembering that in Landau theory γ1 = c(Re− Recr), we notice an important
consequence of noise: the relaxation time τ remains finite in the limit Re→ Recr, in
contrast to the ‘critical slowing down’ discussed above. Thus, the external noise source
regularizes the dynamics around the transition point. In addition, (3.2) indicates that,
when A is small in the low-Re limit so that the O(A3) contributions can be neglected,
A obeys Gaussian statistics.

The obtained results can be used to quantitatively explain the experimental data of
figure 4(a). The time-dependent force acting on the cantilever is

F= Fẑ=−
∫

S
p1 · n dS≈ ∂p1

∂z
V ẑ, (3.6)

where ẑ is the unit vector and V is the volume of the cantilever. We simplify the
problem by approximating our channel as a long and wide rectangular (planar) duct,
and, neglecting noise, write the perturbation equation in the z direction from (3.1) as

1
ρ

∂p1

∂z
=−∂vz

∂t
− 3

2
U
(

1− 4z2

H2

)
∂vz

∂x
+ ν∇2vz +O

(
∂v2

∂z

)
. (3.7)

In close proximity to the wall, z≈H/2, and the second term on the right-hand side
of (3.7) is small. Numerical simulations (Lee, Yeo & Choi 2004), where the statistics
of acceleration in close proximity to a wall was studied, suggest that bursts are
dominated by the z-component of the velocity (v2 = O(vz

2)) and the viscous term is
unimportant. Therefore,

1
ρ

∂p1

∂z
≈−∂vz

∂t
+O

(
∂vz

2

∂z

)
. (3.8)
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C. Lissandrello, L. Li, K. L. Ekinci and V. Yakhot

Recr γ1/α (m2 s−2) φ2/α (m4 s−4)

Channel (i) 1850 0.14× (Re− Recr) 2.37× 103

Channel (ii) 1750 0.29× (Re− Recr) 5.41× 103

TABLE 2. The fit parameters used (see (3.5)).

Here, ∂tvz = O(vzU/H). To find an order of magnitude estimate for ∂z(vz
2), we

extrapolate the results of Yakhot et al. (2010), which shows that, for Re < 105, the
velocity of wall bursts is vz = O(U/10). This means that the magnitudes of the two
terms on the right-hand side of (3.8) are comparable, and O(vz

2) must be accounted
for. Thus, we deduce ∂zp1 =O(vz

2/H) and write

zrms ∼ ρVvz
2/κH ∝ |A(∞)|2. (3.9)

This exercise provides the fits (dashed lines) shown in figure 4(a) with the parameters
in table 2. The ultimate justification for the above arguments comes from the
agreement between experiment and theory in figure 4(a). The following simple order
of magnitude estimate further bolsters our confidence. Assuming vz

2/U2 ≈ 0.008
around Recr (Yakhot et al. 2010) and using the experimentally available parameters
(V ≈ 2× 10−14 m3, H ≈ 10−3 m, κ ≈ 3 N m−1), we find zrms ≈ 10−10 m, close to the
experimental values.

4. Summary and outlook

In transitional flows in imperfect channels, the high-order moments of the near-wall
fluctuations appear to be extremely sensitive to the specifics of the imperfections
in the channels. In the two nominally identical channels with different sets of
imperfections presented here, the high-order moments of the near-wall fluctuations
differ by orders of magnitude. On the other hand, the low-order moments remain
relatively independent of the details of the imperfections. In our experiments, the
zrms values seem to depend directly on the wall roughness. Additionally, zrms in these
flows can be accurately described by the noisy Landau equation presented. The
applicability of the noisy Landau equation to these different flows is probably due
to the fact that the noise term is taken to be at high frequencies as compared with
the slow mode in question. In other words, the stirring of the fluid occurs at high
frequencies. This assumption is eminently reasonable because the microscopic surface
asperities giving rise to roughness are at high spatial frequency compared with any
length scales of the flow. Our preliminary results suggest that inlet disturbances
may also be accounted for by the noisy Landau equation. Along the same lines, we
believe that even thermal fluctuations in the fluid would probably result in a similar
regularization of the Landau equation. Finally, the phenomena observed here may
have important consequences for heat and mass transfer in wall-bounded flows; this
will be discussed in detail in future work.
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