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This paper proposes the use of a generalized finite difference method for the numerical

simulation of free surface single phase flows during mould filling process which are common

in some industrial processes particularly in the area of metal casting. A novel and efficient idea

for the computation of the normal vectors for free surface flows is introduced and presented

for the first time. The incompressible Navier–Stokes equations are numerically solved by the

well-known Chorin’s projection method. After we showed the main ideas behind the meshless

approach, some numerical results in two and three dimensions are presented corresponding

to mould filling process simulation.

Key words: 97M50, 76M25, 35Q35, 35R35

1 Introduction

Metal casting processes are one of the oldest techniques used to manufacture a wide

range of metal components with specific dimensions and shapes for different applications.

These processes start with a poured process which is simply to fill a mould with molten

material which takes the shape thereof and then is allowed to solidify [33].

Mould filling is one of the most important factors that determine the quality of casting

end products. During metal filling, free surface flow which initially enters into the mould

can be divided into streams and these, at the same time, could be partially sprayed therein

due to its high geometric complexity resulting in a set of defects in the end product [4].

One of such defect is mainly due to the generation of additional free surfaces that leads

to the appearance of secondary phase layers (for example, oxide layers when the casting

process takes place in ambient atmosphere).

In order to obtain homogeneous casting components with an acceptably low amount

of defects, it is required to make a proper design process in which the various mould

filling gates and the positions of vents assure an optimum filling flow. Improvements in

product quality and process productivity can be achieved by improving the design of

https://doi.org/10.1017/S0956792517000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792517000249


Application of a generalized finite difference method 451

casting. These include the development of more effective control of mould filling and

mould thermal performance [12].

Numerical simulation offers a powerful alternative at an attractive cost to study the

effectiveness of the different designs and mould filling processes. In the last decades, several

numerical methods and software packages have been developed to simulate and analyse

the metal flow during mould filling. These methods and packages are based on traditional

methods such as Finite Element Method [13,16,25,31] and Finite Volume Method [1,19],

and generally they use the Volume of Fluid Method [17] to track free surfaces. However,

these methods become both computational and economically expensive to the real-world

problems of today [26].

Meshless methods have been developed as an alternative to mesh-based methods and

they are able to overcome some of the limitations presented in traditional methods

[2, 28, 32]. One of the first meshless methods that has been developed was the Smoothed-

Particle Hydrodynamics (SPH). This Lagrangian method was originally proposed to solve

borderless problems in gas dynamics of astrophysical interest [15,27]. Since that time, the

SPH has proved to be a very effective method to predicting complex fluid flow in injection

moulding process and casting of components having highly complex three-dimensional

shapes. The SPH also has proved to be suitable for simulating mechanical processes such

as metal forming and extrusion forging due to its ability to model the behaviour of

complex-free surfaces and their ability to tolerate high levels of deformation as well as

tracking deformation history [3, 5–12, 20].

Nonetheless, since the development of the original version, SPH suffered instability,

inconsistency and difficulties in proper treatment of the boundary conditions so that over

the next years, many improvements were incorporated to the original SPH formulation

[26, 28] and several alternative meshless methods have been proposed [14].

A Lagrangian truly meshless approach that can overcome some of the problems in SPH

formulation and especially those related to the treatment of the boundary conditions is the

Finite Pointset Method (FPM) developed by Kuhnert [21], at the Fraunhhofer Institute

for Industrial Mathematics (ITWM by its name in German) in Kaiserslautern, Germany, it

has been continuously studied and applied to problems in fluid dynamics [22,38,39]. FPM

uses a weighted least squares (LS) interpolation scheme to approximate the field variables

and their derivatives at each point of the domain. Some of the advantages of this method is

its relatively simple numerical implementation and the boundary conditions can be imple-

mented in a natural way just prescribing them on those points placed on the boundary [38].

FPM has shown to be far superior to traditional mesh-based methods due to its

Lagrangian nature for problems involving rapidly changing flow domains with respect to

time, multiphase or free surface flows [18,23,36,39–41]. This makes it especially attractive

for processes simulation in particular for the metal casting industry where free surface

flows with rapidly changing flow domains over time are taking place. Thus, as an attempt

to develop simulation software for mould filling processes in the metal casting industry,

we propose in this work the application of the generalized finite difference method, called

FPM, developed by Kuhnert to this particular field of research. To the authors knowledge,

this is the first time that the presented original idea for the normal vector computation

as well as some numerical results in 3D for a mould filling process simulation using this

meshless approach are reported in the scientific literature.
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The structure of the paper is as follows: Section 2 presents the governing partial

differential equations for fluid flow and the well-known Chorin’s projection method for

the numerical solution of the corresponding PDEs. Section 3 shortly describe the basic

ideas behind FPM. Section 4 deals with the free surface velocities derivatives. Section 5

presents a completely new and original idea for the computation of normal vectors on

the free surface boundaries. The numerical simulations are presented in Section 6 with

the corresponding results followed by some conclusions given in last section.

2 Mathematical model

The considered mathematical model for incompressible low Reynolds number flow are

the Navier–Stokes equations in Lagrangian form which read

Dx

Dt
= v, (2.1a)

Dv

Dt
=

−1

ρ
∇p + μΔv + g, (2.1b)

∇ · v = 0, (2.1c)

where D/Dt denotes the material derivative, x represents the trajectories of material

points, v is the fluid velocity field, p is the fluid pressure, ρ denotes the fluid density, μ the

dynamic viscosity and g the gravitational vector field.

Different boundary conditions must be considered in the case of mould filling processes,

in particular, we imposed no-slip and slip conditions on mould walls and inlet channel

walls, respectively, while constant inlet velocity condition on the inlet surface has been

fixed.

The boundary condition on the free surface is defined as the jump ([·]) on the interface

between two fluids thus the surface stress boundary reads

[τ · n − pn] = σκn, (2.2)

where τ is the viscous stress tensor, σ is the fluid surface tension, κ denotes the curvature

on the interface and n is the unit normal vector on the interface. This can be represented

under certain assumptions as follows:

p− n · τ · n = p0 + σκ, (2.3a)

t · τ · n = 0, (2.3b)

with p0 the fixed pressure corresponding of a fluid in contact with the free surface.

Now, let x be a set of numerical points/particles representing a finite part of the fluid

and distributed on the entire fluid domain of interest, these particles carry all the relevant

information as velocity, density, pressure, etc. These particles obey the fluid dynamics

and need to be updated as time evolves. Since such particles obey the incompressible

Navier–Stokes equations, the first-order Chorin’s projection method is implemented for

numerically solving and this is shortly presented for completeness [38] and [42].
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Let xk and vk be initially given. They denote the particles positions and velocity field

evaluated at these particles at time tk , respectively. The Chorin’s projection method is of

first-order accuracy in time and it consist of the following two main steps:

• Update particle positions and temporal fluid velocities at time tk+1

xk+1 = xk + dtvk, (2.4a)

ṽ = vk + dtΔvk + dtg. (2.4b)

• Correct fluid velocity

vk+1 = ṽ − dt∇pk+1, (2.5)

with the constraint ∇·vk+1 = 0. When using the free divergence constraint, the following

Poisson equation arises:

Δpn+1 =
∇ · ṽ
dt

. (2.6)

Please note that the pressure gradient update ∇pk+1 is obtained when solving

equation (2.6).

3 The FPM main ideas

In this section, we describe the main ideas of FPM proposed by [21]. The FPM is a

member of the family of the LS methods and it is closely related to the finite point

method by Oñate et al. [29] and [30]. Although they are very similar, they are not

identical. The main difference is that finite point method of Oñate uses polynomial basis

and the FPM method uses Taylor series which allows to compute, by an LS approach,

the function and its derivatives values that naturally appear as unknown coefficients in

the series.

The method is based on the so-called moving LS procedure which is shortly described

next, following [24]:

Let Ω be a given domain with boundary ∂Ω and suppose that the set of points

x1, x2, . . . , xn is distributed with corresponding function values f(x1), f(x2), . . . , f(xn). The

problem is to find an approximate value of f at some arbitrary location f(x). Thus, the

following procedure can be applied:

Define the approximation to f(x) as

f̃(x) =

m∑
k=1

pk(x)bk(x) = pt(x)b(x), (3.1)

whose local version reads

f̃(x, x̄) =

m∑
k=1

pk(x̄)bk(x) = pt(x̄)b(x), (3.2)

where pk(x) denotes a set of linear independent functions, in particular, they can be linear

monomials, m is the number of basis functions and bk(x) are the corresponding coefficients
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that need to be computed. The idea of this local version is to approximate a continuous

field by patches of polynomial surfaces where these are fitted to the data points in the

sense of LS using only local information for each computational point.

Consider also a weight function w which should satisfy several properties of a repro-

ducing kernel, in particular, the normalization condition, the Dirac-delta function and

compact support properties. Moreover, different weight functions have been used in the

literature and the most common ones are the cubic spline and the Gaussian functions,

being the last one chosen to be used in this paper which reads

w(x − xi) =

{
e−γ‖x−xi‖2/h2

, if ‖x−xi‖
h

� 1

0 else
, (3.3)

where h is the smoothing length and γ is a positive constant.

Now, minimize the quadratic form

J =

n∑
j=1

w(x, xj)e
2
j , (3.4a)

=

n∑
j=1

w(x, xj)

(
m∑

k=1

pk(xj)bk(x) − f(xj)

)2

, (3.4b)

in order to get the optimal coefficients

b = (P tWP )−1(P tW )f , (3.5)

where

P =

⎡
⎢⎢⎢⎣
p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...

p1(xnp ) p2(xnp ) · · · pm(xnp )

⎤
⎥⎥⎥⎦ , (3.6)

W =

⎡
⎢⎢⎢⎣

w(x, x1) 0 · · · 0

0 w(x, x2) · · · 0
...

...
. . .

...

0 0 · · · w(x, xnp )

⎤
⎥⎥⎥⎦ , (3.7)

f = [f(x1), f(x2), . . . , f(xnp )
t = [f1, f2, . . . , fnp ]

t, (3.8)

b(x) = [b1(x), b2(x), . . . , bm(x)]t, (3.9)

np denotes the number of neighbour points xj of x and w(x, xj) denotes a weight function

with compact support.

Once b is known, the function approximation at point x reads

f̃(x) =

m∑
k=1

pk(x)bk(x) = pt(x)(P tWP )−1(P tW )f = Φ(x)f . (3.10)
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If the base functions pi(x) are defined as follows:

pt = [1, Δxj , Δyj , Δzj , . . .], (3.11)

which in the particular case of a second-order approximation, the vector takes the

following form:

pt =

[
1, Δxj , Δyj , Δzj ,

1

2
Δx2

j , ΔxjΔyj , ΔxjΔzj ,
1

2
Δy2

j , ΔyjΔzj ,
1

2
Δz2

j

]
, (3.12)

where Δxj = xj − x, Δyj = yj − y and Δzj = zj − z for j = 1, . . . , np. Thus, con-

sidering the general approximation (3.11), the following equivalent representation is

obtained:

f̃(x) �
m∑

k=1

pk(x)bk(x) = f(xj) + ∇f(xj) · Δxj + . . . , (3.13)

which implies that under this representation, the new vector of unknown coefficients

becomes

b(x) = [f(x), ∂xf(x), ∂yf(x), . . .]t. (3.14)

In this way, we automatically get the values of a function and its derivatives at points

x which are needed for the computation of the pressure through (3.14) and for the

approximation of the velocity and pressure spatial derivatives in (2.4) and (2.5). We refer

to [37] for a more explicit presentation of the FPM method applied to the Poisson

equation.

4 Velocities derivatives on free surface points

During FPM implementation, the efficient numerical approximation of velocities deriv-

atives should be carefully considered in particular those on free surface particles since

(2.2) explicitly couples the components of velocity field. Therefore, we need to consider

the Taylor series expansion of v = (u, v, w) around (x, y, z) coupled with the boundary

condition on this surface (2.2). This can be rewritten in matrix form as

e = Pb − f ,

with

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pxyz 0 0

0 Pxyz 0

0 0 Pxyz

ξ1 ξ2 ξ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.1)
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where

Pxyz =

⎛
⎜⎜⎜⎜⎜⎜⎝

dx1 dy1 dz1
1
2
dx2

1 dx1dy1 dx1dz1
1
2
dy2

1 dy1dz1
1
2
dz2

1

dx2 dy2 dz2
1
2
dx2

2 dx2dy2 dx2dz2
1
2
dy2

2 dy2dz2
1
2
dz2

2

...
...

...
...

...
...

...
...

...

dxn dyn dzn
1
2
dx2

n dxndyn dxndzn
1
2
dy2

n dyndzn
1
2
dz2

n

⎞
⎟⎟⎟⎟⎟⎟⎠

, (4.2)

ξ1 =

⎛
⎜⎜⎝

2μn2
x 2μnxny 2μnxnz 0 0 0 0 0 0

2sxnx synx + sxny sznx + sxnz 0 0 0 0 0 0

2txnx tynx + txny tznx + txnz 0 0 0 0 0 0

⎞
⎟⎟⎠ , (4.3)

ξ2 =

⎛
⎜⎜⎝

2μnynx 2μn2
y 2μnynz 0 0 0 0 0 0

synx + sxny 2syny szny + synz 0 0 0 0 0 0

tynx + txny 2tyny tzny + tynz 0 0 0 0 0 0

⎞
⎟⎟⎠ , (4.4)

ξ3 =

⎛
⎜⎜⎝

2μnznx 2μnzny 2μn2
z 0 0 0 0 0 0

sznx + sxnz synz + szny 2sznz 0 0 0 0 0 0

tznx + txnz tynz + tzny 2tznz 0 0 0 0 0 0

⎞
⎟⎟⎠ , (4.5)

b = (ux, uy, uz, uxx, uxy, uxz, uyy, uyz, uzz, vx, vy, vz, vxx, vxy, vxz, vyy, vyz, vzz , . . .

wx, wy, wz, wxx, wxy, wxz, wyy, wyz, wzz)
t,

and

f = (u1 − u, u2 − u, . . . , un − u, v1 − v, v2 − v, . . . , vn − v, w1 − w,w2 − w, . . . , wn − w,

p− p0 + σκ, 0, 0)t.

n = (nx, ny, nz)
t is a normal vector, while s = (sx, sy, sz)

t and t = (tx, ty, tz)
t denote tangential

vectors to the free surface. Therefore, unlike the procedure for inner particles, from the

expressions for b and P , it can be seen that at least 27 neighbouring particles are needed

for the computation of the velocity derivatives for free surface points.

5 Computation of normal vector on free surface

For the numerical computation of free surface normal vectors, some details are reported

for the two-dimensional case in [38] and [42]. Considering these ideas in three dimensions,

we can solve the following model for the sphere:

x2 + y2 + z2 + Dx + Ey + Fz + G = 0,
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once the constants are determined, the centre and radius of the sphere can be computed

(xc, yc, zc) = (−D/2,−E/2,−F/2), (5.1a)

R =
1

2

√
D2 + E2 + F2 − 4G, (5.1b)

hence the free surface curvature and unit normal vector read

κ =
1

R
, (5.2a)

n = (x − xc)κ. (5.2b)

Note that this must be done for every particle on the free surface flow.

Another more efficient and elegant approach to compute the boundary normal vector

on the free surface flow proposed by the second author is for the first time reported as

follows:

We are interested in computing the outward normal vector n at the point xi on the free

surface. Thus, let xj be one of the Nb free surface particles in a neighbourhood defined

by a weight function ωij . The weight function ωij can be quite arbitrary; however, in this

work, we consider a Gaussian weight function. Then, the angle between the boundary

normal and the vector xj − xi is given by

cos αij =
n ·

(
xj − xi

)
‖xj − xi‖ ‖n‖

., (5.3)

moreover, the following quadratic form arises

cos2 αij =
nT

(
xj − xi

) (
xj − xi

)T
n

‖xj − xi‖2
, (5.4)

if all the boundary particles in the neighbourhood of xi are considered, we have

∑
j

cos2 αijωij = nT
∑
j

((
xj − xi

) (
xj − xi

)T
ωij

‖xj − xi‖2

)
n (5.5)

defining

C =
∑
j

((
xj − xi

) (
xj − xi

)T
ωij

‖xj − xi‖2

)
. (5.6)

Equation (5.5) can be expressed as∑
j

cos2 αijωij = nTCn, (5.7)

hence, the outward normal vector n is automatically obtained when the following optimal

problem is solved:

min
n∈�3 ,‖n‖=1

∑
j

cos2 αijωij = min
n∈�3 ,‖n‖=1

nTCn, (5.8)
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Figure 1. Mould geometry configuration in two dimensions.

which leads to the following eigenvalue problem:

Cn = βn. (5.9)

6 Numerical examples

In this section, mould filling processes in two dimensions and three dimensions are

simulated using FPM.

6.1 Complex filling in two dimensions

For the reported numerical simulation in two dimensions, we have considered the following

problem configuration taken from [34] and depicted in Figure 1.

We consider the filling of this mould under three different cases. The first simulation

corresponds to the following fluid parameters: ρ = 1, 000 kg m−3, kinematic viscosity

ν = 0.01m2 s−1 and the inlet velocity V = 18m s−1. Under this configuration, we obtain

Re = 81. Regarding the shape function w, its parameters have been taken as h = 3.0 and

γ = 6.5. The total number of particles used in this simulation was roughly 6, 000 and the

initial particle spacing for the particles was 1.5mm.

Figure 2 shows the results of the mould filling pattern numerically predicted by FPM,

the traditional SPH in [34], those obtained in [34] using the SPH DTKGC method and

the experimental results in [35] at different times. Comparisons among these results show

that FPM and SPH DTKGC methods are by far more stable than the traditional SPH

method for simulating complex filling processes. Here, it can also be noted that, as

opposed to FPM, SPH DTKGC method had slight instabilities which spread on the free
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Figure 2. Mould filling patterns for Re = 81 at different time steps. First column: FPM. Second

column: SPH DTKGC in [34]. Third column: traditional SPH in [34]. Fourth column: the experi-

mental pattern in [35].

surfaces. Hence, FPM method is more stable and reliable than SPH DTKGC method to

simulate complex filling processes.

Figures 3 and 4 show the velocity and pressure profiles for this inflow predicted by

FPM and SPH DTKGC in [34]. Both methods show similar and regular pressure fields

without oscillations which is very important for achieving good filling processes. Regarding
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Figure 3. Pressure profiles for Re = 81 at different time steps. Left column: FPM. Right column:

SPH DTKGC in [34].

velocity profiles, for both methods, it can be seen that near the mould walls fluid velocity

smoothly tends to be low, while speed is getting bigger in some remote regions. This

pattern is directly produced by the viscosity forces between the mould walls and the fluid

particles, and among fluid particles. All these results indicate that FPM is accurate and

stable for simulating mould filling processes in foundry industry.
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Figure 4. Velocity contours for Re = 81 at different time steps. Left column: FPM. Right column:

SPH DTKGC in [34].

The parameters used in [34] were taken for the second and third fluid configurations:

ρ = 1, 000 kgm−3, ν = 0.01m2 s−1, V = 10m s−1 which results in Re = 45 for the second

fluid, and ρ = 1, 000 kg m−3, ν = 0.1m2/s, V = 2ms−1 giving Re = 0.9 for the last case.

In both simulations, the weighting function support was fixed to h = 3.0 and γ = 6.5.

Now the total number of particles was roughly 6, 000 with an initial particle spacing of

1.5 mm.
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Figure 5. Mould filling patterns for Re = 45 at different time steps. Left column: FPM. Right

column: SPH DTKGC in [34].

Figure 5 shows the results of the mould filling patterns numerically predicted by FPM

and SPH DTKGC method in [34] for Re = 45 at different time steps. Comparisons

among these results show similar filling behaviours; nevertheless, it can be seen that

SPH DTKGC approach still have slight numerical instabilities which spread on the free

surfaces.
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Figure 6. Left column: Pressure. Right column: velocity profiles for Re = 45 at different time

steps (FPM).

Additionally, Figure 6 depicts the pressure and velocity profiles for this inflow predicted

by FPM. It can be noted that the fluid velocity is reduced while travelling on the mould

walls. This phenomenon occurs because the inflow velocity is smaller, causing that drag

forces between fluid particles become more intense as it moves on the mould walls which

quickly decreases the kinetic energy.
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Figure 7. Mould filling patterns for Re = 0.9 at different time steps. Left column: FPM. Right

column: SPH DTKGC in [34].

Furthermore, Figure 7 shows the results of the filling patterns of the mould predicted by

FPM and SPH DTKGC method in [34] for Re = 0.9 at different time steps. Comparisons

among these results show somewhat different filling patterns. It can be observed once

again that SPH DTKGC method shows slight numerical instabilities on free surfaces and

it also was observed a high-density distribution of particles near the walls of the mould.
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Figure 8. Left column: Velocity. Centre column: pressure profiles predicted by FPM. Right

column: pressure profile predicted by SPH DTKGC in [34] for Re = 0.9 at different time steps.

This high density could be caused by the treatment given to the solid boundaries in this

method. In contrast, the results of the simulation for the same time steps using FPM

did not exhibit these irregularities on free surfaces or a high density of particles near the

walls.
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In order to determine the source of the differences between both filling patterns,

Figure 8 report the velocity and pressure profiles predicted by FPM and the pressure

profiles predicted by SPH DTKGC in [34] for this case at different time steps. Com-

parisons among these results show stable but different pressure profiles. Since this fluid

has a high viscosity and the inflow was slow, it is natural to expect roughly uniform

pressure profiles with drag forces spread over mould walls. The results predicted by

SPH DTKGC in [34] seem to be higher for a flow under such conditions, causing the

fluid to behave like in previous cases in the first steps. Coupled with this, in pressure

profiles, it can be observed further instabilities on free surfaces and some irregularities in

the domain. For FPM, otherwise, it can be observed roughly uniform pressure profiles

which cause the fluid to travel over the mould walls in all steps and no instability on

free surfaces or irregularity in the domain were observed. The velocity profiles predicted

by FPM confirm this behaviour. Therefore, FPM works well to simulate complex filling

processes.

6.2 Complex filling in 3D

For the numerical simulation in 3D, we have considered an extension of the configuration

used in previous subsection with a thickness of 14.4mm.

For this simulation, the following fluid parameters were considered: ρ = 1kg m−3,

kinematic viscosity ν = 0.00019m2 s−1 and the inlet velocity V = 0.18m s−1. Under this

configuration, we obtain Re = 210. The support of the weighting function has been fixed

to h = 3.0 and γ = 6.5. The total number of particles used in this simulation was roughly

75, 000 and the initial particle spacing was 1.6mm.

Figure 9 shows the filling pattern of this mould predicted by FPM at different times.

This shows an excellent filling pattern in 3D when compared with discussed results of

previous subsection for the same geometry in two dimensions. The observed differences

between three-dinensional and two-dimensional filling patterns for the same fluid are

mainly due to the fact that in 3D configuration, the fluid is exposed to more drag forces.

Considering these numerical results, we can conclude that FPM can be used to simulate

the mould filling process in more realistic and complex 3D geometries.

7 Conclusions and future work

We have successfully implemented and reported for the first time and to the authors

knowledge, the discussed version of the meshless method for unsteady three-dimensional

fluid flow problems for mould filling process which can be used in the area of metal

casting. Based on the numerical performance, we can conclude that FPM is other meshless

method that can be used to successfully solve more complex free surface fluid problems.

The biggest advantage of this approach over other meshless methods is that it is a real

full meshfree method, since it does not need to compute any numerical quadratures,

thus a background mesh arrangement for Gaussian points is not needed, therefore, it

is a feasible and much less involved method for real problems solving. As future work,

we are interested in several aspects as the implementation of higher order numerical

schemes for solving in time and the coupling of a mathematical model for thermal energy
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Figure 9. 3D Mould filling patterns for Re = 210 at different time steps predicted by FPM.

transfer and solidification as well as some additional physics which lead to multiphase

flows.
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