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ON LONG-RANGE DEPENDENCE OF RANDOM MEASURES

DANIEL VAŠATA,∗ Czech Technical University in Prague

Abstract

This paper deals with long-range dependence of random measures on Rd . By examples,
it is demonstrated that one must be careful in order to define it consistently. Therefore,
we define long-range dependence by a rather specific second-order condition and provide
an equivalent formulation involving the asymptotic behaviour of the Bartlett spectrum
near the origin. Then it is shown that the defining condition may be formulated less
strictly when the additional isotropy assumption holds. Finally, we present an example
of a long-range dependent random measure based on the 0-level excursion set of a
Gaussian random field for which the corresponding spectral density and its asymptotics
are explicitly derived.
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1. Introduction

Long-range dependence of one-dimensional stochastic processes is an important concept
observed in various physical, biological, geological, economic, and social systems; see, e.g. [2],
[15], and references therein. One possible formulation for a second-order stationary stochastic
process {Xn | n = 1, 2, . . . } is based on the comparison of the variance of the sample mean X̄n
with 1/n as n → ∞. Here, Xn is called long-range dependent if

lim sup
n→∞

var X̄n
1/n

= lim sup
n→∞

var(
∑n
k=1Xk)

n
= ∞,

i.e. if the decrease of the variance is slower than 1/n. This condition is strongly connected
with the summability of the covariance function and also with the asymptotic behaviour of the
spectral density near the origin.

Our aim in this paper is to deal with an extension of this concept to random measures on the
d-dimensional Euclidean space Rd . When d = 1, long-range dependence of a second-order
stationary random measure ζ on R was defined in [7] and [8] by the condition

lim sup
t→∞

var ζ(0, t]/t = ∞,

which is the straightforward generalization of the previous condition for one-dimensional
stochastic processes. Again, there is a connection to the covariance and the spectrum of ζ
as was shown in [7, Lemma 12.7.III].
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A possible extension of this definition to Rd was proposed in [7] by requiring a second-order
stationary random measure ζ to satisfy

lim sup
n→∞

var ζ(Kn)

νd(Kn)
= ∞ (1.1)

for some convex averaging sequence (Kn)n∈N, where νd is the d-dimensional Lebesgue measure
on Rd . Recall that a convex averaging sequence (Kn)n∈N is a sequence of convex compact
sets, nondecreasing in the sense of inclusion, such that r(Kn) = sup{r ≥ 0 | Br(x) ⊂
Kn for some x} → ∞ as n → ∞, where Br(x) is the closed ball with radius r centred at x.
However, as is shown in Example 3.1, this definition is inconsistent for d ≥ 2, since the value of
the limit superior may in general depend on a particular choice of the convex averaging sequence.
This situation may occur when the correlation structure of ζ is directionally dependent. In [8],
the criterion (1.1) was used requiring its validity for every convex averaging sequence which
yields a consistent definition. However, such a condition is difficult to verify and there are no
known equivalent formulations in terms of spectral properties.

In order to avoid those complications, we define long-range dependence (Definition 3.1)
more strictly by

lim sup
a→∞

var ζ(aBd)

νd(aBd)
= ∞, (1.2)

where Bd is the closed unit ball. It should be noted that such a formulation was already used in
[13] in connection to random closed sets, where germ–grain models with power-law grain sizes
were analysed. For this definition we derive an equivalent condition (Theorem 3.1) formulated
as an unboundedness of the Bartlett spectrum of ζ in the vicinity of the origin and its several
consequences. After that, we deal with a question as to whether the closed ball Bd in (1.2)
might be equivalently replaced by a different convex set, that is, whether one might equivalently
require that

lim sup
a→∞

var ζ(aK)

νd(aK)
= ∞ (1.3)

for some arbitrary bounded convex set K ⊂ Rd with nonempty interior. However, as is shown
in Example 3.2, for d ≥ 3 this is generally not possible and one can only show (Proposition 3.2)
that long-range dependence of ζ implies (1.3) for every bounded convex set K with nonempty
interior.

Then, we focus on random measures with rotation invariant reduced covariance measure and
show in Proposition 3.3 that (1.3) is equivalent to long-range dependence of ζ independently
ofK as long as it is a bounded convex set with nonempty interior. It would be also desirable to
know whether the rotation invariance is sufficient for the independence of (1.1) on the choice of
the convex averaging sequence (Kn), but we have not been able to solve this fully. Hence, we
only show in Proposition 3.4 that ζ is long-range dependent when (1.1) holds for some convex
averaging sequence.

Finally, in Section 4 important examples having both positive and negative values of the
exponent of power-law behaviour of the spectral density near the origin are introduced. We
especially emphasize a random measure based on the 0-level excursion set of a Gaussian random
field with Cauchy covariance function in Example 4.3 for which the spectral density is explicitly
derived.

https://doi.org/10.1017/apr.2016.72 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.72


On long-range dependence of random measures 1237

2. Random measures and the Bartlett spectrum

Here we briefly recapitulate relevant material from stochastic geometry. For more details,
we refer the reader to [6], [7], and [17]. Recall that a random measure on Rd is a measurable
mapping from some probability space (�,A,P) to a measurable space (M,M) of all locally
finite Borel measures on Rd , where M is the smallest σ -algebra for which all mappings
ϕ ∈ M �→ ϕ(A), A ⊂ Rd is Borel, are measurable. A random measure ζ is second-
order stationary if both its intensity measure � = E ζ and second-order moment measure
�2 = E ζ (2) = E(ζ × ζ ) are locally finite measures satisfying�(A+x) = �(A) and�2((A+
x)× (B+x)) = �2(A×B) for all BorelA,B ⊂ Rd and all x ∈ Rd . In that case, the intensity
measure � is absolutely continuous with respect to the Lebesgue measure νd on Rd with
constant density λ called the intensity of ζ .

The covariance measure C2 is defined by C2(A × B) = �2(A × B) − �(A)�(B) =
cov(ζ(A), ζ(B)) for all Borel A,B ⊂ Rd , whenever both � and �2 are locally finite. The
covariance measure C2 of a second-order stationary random measure ζ is expressible as the
product of νd along the diagonal and the reduced covariance measure C̆2, see, e.g. [7, Proposition
12.6.III], i.e. in the integral form∫

R2d
f (x1, x2)C2(dx1 × dx2) =

∫
Rd

dx

∫
Rd

f (x, x + y)C̆2(dy) (2.1)

for any bounded measurable function f on R2d of bounded support. The reduced covariance
measure C̆2 on Rd (and also C2 on R2d ) is a signed measure in the sense of distributions rather
than an ordinary Borel measure. This means that it is a continuous linear functional on the
spaceCc(Rd) of continuous compactly supported complex-valued functions and that it has real
values on real functions from Cc(R

d). The upper variation C̆+
2 and lower variation C̆−

2 of C̆2
are (ordinary) Borel measures defined by C̆+

2 = (|C̆2| + C̆2)/2 and C̆−
2 = (|C̆2| − C̆2)/2, re-

spectively, where |C̆2| is the total variation of C̆2 defined by C̆2(f ) = sup|g|≤f, g∈Cc(Rd ) |C̆2(g)|
for every f ∈ Cc(R

d). It might be shown (e.g. [6, Proposition 8.1.II]) that C̆2 is symmetric,
translation bounded, and positive semidefinite, i.e. C̆2(A) = C̆2(−A) for all Borel A ⊂ Rd ,
for each bounded Borel B ⊂ Rd there exists KB < ∞ such that |C̆2(x + B)| ≤ KB for all
x ∈ Rd , and, for every f ∈ Cc(Rd),∫

Rd

(f ∗ f ∗)(x)C̆2(dx) ≥ 0,

where f ∗ f ∗ is the convolution of f and the involution f ∗ of f defined by f ∗(x) = f (−x)

for every x ∈ Rd .
The Bartlett spectrum 	 of a second-order stationary random measure ξ is defined as the

Fourier transform of C̆2, i.e. it is a positive Borel measure satisfying∫
Rd

(f ∗ f ∗)(x)C̆2(dx) = (2π)d/2
∫

Rd

∣∣∣f̌ (ξ)∣∣∣2
	(dξ) (2.2)

for every bounded Borel f with bounded support (e.g. [6, Proposition 8.2.I]), where f̌ is the
inverse Fourier transform (in the unitary sense) defined by

f̌ (ξ) = (2π)−d/2
∫

Rd

eixξf (x)dx.

Note that the Fourier transform exists for every positive semidefinite measure on Rd and is
determined uniquely by condition (2.2) for all f ∈ Cc(R

d), see [3, Theorem 4.7]. If C̆2 is
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absolutely continuous with continuous density cov(x) then cov is called the covariance function
and it is a positive semidefinite function. Moreover, in this case, by Bochner’s theorem (e.g.
[14, Theorem IX.9]), 	 is bounded and

cov(x) = (2π)−d/2
∫

Rd

eiξx	(dξ). (2.3)

3. Long-range dependence of random measures

Let ζ be a second-order stationary random measure. Using the definition of C̆2 and (2.2),
one may easily show that

var ζ(A)

νd(A)
=

∫
Rd

(1A ∗ 1∗
A)(x)

νd(A)
C̆2(dx) = (2π)d/2

∫
Rd

|1̌A(ξ)|2
νd(A)

	(dξ) (3.1)

for every Borel A ⊂ Rd such that 0 < νd(A) < ∞, where 1A is the indicator function of A.
This relation is the key ingredient of our further analysis.

We begin with an assertion that allows one to combine different covariance behaviours of
random measures in different directions.

Lemma 3.1. Let k,m be positive integers. Let ζ1 and ζ2 be two independent second-order
stationary random measures on Rk and Rm, respectively, with intensities λ1, λ2 ≥ 1

2 , such
that 0 ≤ ζ1(A) ≤ νk(A) almost surely for every Borel A ⊂ Rk and 0 ≤ ζ2(B) ≤ νm(B)

almost surely for every Borel B ⊂ Rm, where νk and νm are Lebesgue measures on Rk and
Rm, respectively. Then ζ defined by

ζ(A× B) = ζ1(A)ζ2(B)− ζ1(A)(E ζ2)(B)− (E ζ1)(A)ζ2(B)+ 2(E ζ1)(A)(E ζ2)(B)

for every bounded Borel A ⊂ Rk , B ⊂ Rm is a second-order stationary random measure on
Rk+m and its reduced covariance measure is given by C̆2 = C̆2;1 × C̆2;2, where C̆2;1 and C̆2;2
are covariance measures of ζ1 and ζ2, respectively. Moreover, 0 ≤ ζ(C) ≤ 2λ1λ2νk+m(C)
almost surely for every Borel C ⊂ Rk+m.

Proof. Let A ⊂ Rk , B ⊂ Rm be bounded Borel sets. If νk(A) = 0 or νm(B) = 0 then
ζ(A× B) = 0. Thus, assuming that νk(A) > 0 and νm(B) > 0, we obtain

ζ(A× B)

νk(A)νm(B)
= ζ1(A)

νk(A)

ζ2(B)

νm(B)
− λ2

ζ1(A)

νk(A)
− λ1

ζ2(B)

νm(B)
+ 2λ1λ2.

The range of possible values of ζ(A× B) is therefore determined by the range of the function
f (x, y; λ1, λ2) = xy−λ2x−λ1y+2λ1λ2 on the domain 0 ≤ x, y ≤ 1. Since λ1, λ2 ≥ 1

2 , then
0 ≤ f (x, y; λ1, λ2) ≤ 2λ1λ2 for all 0 ≤ x, y ≤ 1. Hence, ζ(A × B) is always nonnegative
and therefore ζ is a random measure on Rk+m. Moreover, �(A × B) = E ζ(A × B) =
(E ζ1)(A)(E ζ2)(B) = λ1λ2νk(A)νm(B) = λ1λ2νk+m(A × B). Thus, the intensity of ζ is
λ = λ1λ2. For the covariance measure, we further obtain

C2(C ×D) = E(ζ(C)−�(C))(ζ(D)−�(D))

= E(ζ1(A1)− E ζ1(A1))(ζ1(A2)− E ζ1(A2))

· E(ζ2(B1)− E ζ2(B1))(ζ2(B2)− E ζ2(B2))

= C2;1(A1 × A2)C2;2(B1 × B2),

where C = A1 × B1, D = A2 × B2, and A1, A2 ⊂ Rk , B1, B2 ⊂ Rm are Borel sets. The
statement for the reduced covariance measure C̆2 of ζ follows from (2.1). �
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Now let us present an example showing the dependence of (1.1) on a particular choice of
the convex averaging sequence (Kn)n∈N.

Example 3.1. Let d ≥ 2 and Ka,b = [−a, a] × bBd−1 for some a, b > 0, where Bd−1 is
the closed unit ball in Rd−1. Clearly, Ka,b is a compact convex set in Rd and νd(Ka,b) =
2abd−1cd−1, where cd−1 is the (d − 1)-dimensional volume of the unit ball in Rd−1. The
inverse Fourier transform of its indicator function 1Ka,b is given by

1̌Ka,b (ξ) = 1̌aB1(ξ1)1̌bBd−1(ξ2) = a1̌B1(a |ξ1|)bd−11̌Bd−1(b ‖ξ2‖),

where ξ = (ξ1, ξ2), and ‖ξ2‖ denotes the Euclidean norm of ξ2 = (ξ2, . . . , ξd) in Rd−1. Note
that 1̌Bn(r) = r−n/2Jn/2(r) for every n ∈ N and r > 0, where Jn/2 is the Bessel function of
the first kind of order n/2; see, e.g. [18, Section 3]. Thus, from (3.1), we have

var ζ(Ka,b)

νd(Ka,b)
= (2π)d/2

2cd−1

∫
Rd

J 2
1/2(a |ξ1|)

|ξ1|
J 2
(d−1)/2(b ‖ξ2‖)

‖ξ2‖d−1 	(dξ).

Let us assume that 	 is continuous with density f	(ξ) = |ξ1|s ‖ξ2‖−t �1(|ξ1|−1)�2(‖ξ2‖−1),
where s, t ∈ (0, 1), and �1, �2 are bounded continuous positive functions on [0,∞). Note that
such a ζ exists by Lemma 3.1, Example 4.1, and Example 4.3. Hence, we obtain

var ζ(Ka,b)

νd(Ka,b)
= (2π)d/2

2cd−1

∫
R

�1(|ξ1|−1)
J 2

1/2(a |ξ1|)
|ξ1|1−s dξ1

∫
Rd−1

�2(‖ξ2‖−1)
J 2
(d−1)/2(b ‖ξ2‖)

‖ξ2‖d−1+t dξ2.

By introducing spherical coordinates, integrating over angles, and proper substitutions, we
obtain

var ζ(Ka,b)

νd(Ka,b)
= (2π)d/2(d − 1)a−sbt

∫ ∞

0
�1

(
a

x

)
J 2

1/2(x)

x1−s dx
∫ ∞

0
�2

(
b

y

)
J 2
(d−1)/2(y)

y1+t dy.

By the Lebesgue dominated convergence theorem,

∫ ∞

0
�1

(
a

x

)
J 2

1/2(x)

x1−s dx ∼ �1(a)

∫ ∞

0

J 2
1/2(x)

x1−s dx = �1(a)C1 as a → ∞,

∫ ∞

0
�2

(
b

y

)
J 2
(d−1)/2(y)

y1+t dy ∼ �2(b)

∫ ∞

0

J 2
(d−1)/2(y)

y1+t dy = �2(b)C2 as b → ∞,

where 0 < C1, C2 < ∞ are the values of the respective (Weber–Schafheitlin-type) integrals;
see, e.g. [20, Section 13.41] for precise formulae. Let us take the convex averaging sequence
(Kn)n∈N with Kn = Kan,bn for all n ∈ N, where an = nt/2s and bn = n. By previous
considerations,

var ζ(Kn)

νd(Kn)
∼ nt/2(2π)d/2(d − 1)C1C2�1(n

t/2s)�2(n) as n → ∞.

Since t > 0, it follows that nt/2�1(n
t/2s)�2(n) → ∞ as n → ∞ and, hence,

lim sup
n→∞

var ζ(Kn)

νd(Kn)
= ∞.
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On the other hand, taking K̃n = Kan,bn with an = n and bn = ns/2t for all n ∈ N yields

var ζ(K̃n)

νd(K̃n)
∼ n−s/2(2π)d/2(d − 1)C1C2�1(n)�2(n

s/2t ) as n → ∞

and, since n−s/2�1(n)�2(n
s/2t ) → 0 as n → ∞, we obtain

lim sup
n→∞

var ζ(K̃n)

νd(K̃n)
= 0.

Therefore, the limit superior depends on a particular choice of the convex averaging sequence.

The previous example shows that when d ≥ 2, the fulfilment of (1.1) for some convex aver-
aging sequence (Kn)n∈N cannot be used for a consistent definition of long-range dependence.
In order to avoid any inconsistencies and further complications we recommend the following
more strict definition.

Definition 3.1. A second-order stationary random measure ζ on Rd is long-range dependent
if

lim sup
a→∞

var ζ(aBd)

νd(aBd)
= ∞. (3.2)

The following proposition connects long-range dependence of ζ to its reduced covariance
measure C̆2. For random measures on R1, it was shown in [7, Lemma 12.7.III].

Proposition 3.1. Let ζ be a second-order stationary random measure and C̆2 be its reduced
covariance measure. Further, let C̆+

2 and C̆−
2 be the upper and lower variations, respectively,

of C̆2. If C̆−
2 is totally finite then ζ is long-range dependent if and only if C̆+

2 is not totally finite.

Proof. Let fa(x) = (1aBd ∗ 1∗
aBd

)(x)/adνd(B
d). Since

(1aBd ∗ 1∗
aBd

)(x) = ad(1Bd ∗ 1∗
Bd
)(x/a) and (1Bd ∗ 1∗

Bd
)(0) = νd(B

d),

fa(0) = 1, and fa(x) converges pointwise monotonically to 1 as a → ∞. Hence,∫
Rd

fa(x)C̆
+
2 (dx) → C̆+

2 (R
d) and

∫
Rd

fa(x)C̆
−
2 (dx) → C̆−

2 (R
d) as a → ∞.

Thus, if C̆−
2 (R

d) < ∞ then lima→∞ var ζ(aBd)/νd(aBd) = C̆+
2 (R

d)− C̆−
2 (R

d) and the
statement follows. �

A very useful characterization of long-range dependence can be formulated using the Bartlett
spectrum.

Theorem 3.1. Let ζ be a second-order stationary random measure with Bartlett spectrum 	

and K ⊂ Rd be an arbitrary bounded convex set containing the origin 0 in its interior. Then
ζ is long-range dependent if and only if

lim sup
b→0+

	(bK)

νd(bK)
= ∞. (3.3)
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Proof. First we show the equivalence when K = Bd . Let us assume that ζ is a long-range
dependent random measure. By (3.1),

var ζ(aBd)

νd(aBd)
= (2π)d/2

∫
Rd

faBd (ξ)	(dξ)

with notation faBd (ξ) = |1̌aBd (ξ)|2|/νd(aBd). Since 1̌aBd (ξ) = ad 1̌Bd (aξ), we have

faBd (ξ) = adfBd (aξ) and faBd (0) = (2π)−dadcd,

where cd = νd(B
d). It is easy to show (see, e.g. [18, Section 3]) that 1̌Bd (ξ) = 1̌Bd (‖ξ‖) =

‖ξ‖−d/2 Jd/2(‖ξ‖) for all ξ �= 0, where Jd/2 is the Bessel function of the first kind of
order d/2. Thus, faBd (ξ) = (ad/cd)(a ‖ξ‖)−dJ 2

d/2(a ‖ξ‖). The Bessel function may be
bounded (see [12]) as J 2

d/2(x) ≤ C/x for all x ≥ √
μ, where μ = (d + 1)(d + 3) and C =

16
√
μ/π

√
3

3
(
√
μ− 1). Hence, faBd (ξ) ≤ (C/cd)(1/a) ‖ξ‖−(d+1) whenever a ‖ξ‖ ≥ √

μ.
Furthermore, if ‖ξ‖ = √

μa−1/(d+1) ≥ √
μa−1, we obtain faBd (ξ) ≤ (C/cd)(1/

√
μ). The

integration of faBd over Rd may be therefore separated into three parts, ‖ξ‖ > √
μa−1/(d+1),√

μa−1 < ‖ξ‖ ≤ √
μa−1/(d+1), and ‖ξ‖ ≤ √

μa−1. That is,

∫
Rd

faBd (ξ)	(dξ) = I1 + I2 + I3,

where

I1 =
∫

‖ξ‖>√
μ/a1/(d+1)

faBd (ξ)	(dξ) ≤ C

cd

∫
‖ξ‖>√

μ/a1/(d+1)

1

a ‖ξ‖d+1	(dξ),

I2 =
∫

√
μ/a<‖ξ‖≤√

μ/a1/(d+1)
faBd (ξ)	(dξ) ≤ C

cd

∫
√
μ/a<‖ξ‖≤√

μ/a1/(d+1)

1

a ‖ξ‖d+1	(dξ),

I3 =
∫

‖ξ‖≤√
μ/a−1

faBd (ξ)	(dξ) ≤ (2π)−dadcd	(
√
μa−1Bd).

The integrand of I1 is always bounded by C/(cd
√
μ) and for every ξ it decreases as a in-

creases. Let ga(ξ) = min{a−1 ‖ξ‖−(d+1) , μ(d+1)/2} for every a > 0, ξ ∈ Rd . The translation
boundedness (see, e.g. [3, Proposition 4.9]) of 	 implies that ga ∈ L1(Rd , 	) for all a > 0.
Moreover, since ga(ξ) ≤ g1(ξ) for all a > 1, there exists K1 < ∞ such that

I1 ≤ C

cd

∫
‖ξ‖>√

μa−1/(d+1)
ga(ξ)	(dξ) ≤ C

cd

∫
Rd

ga(ξ)	(dξ) ≤ K1 for all a > 1.

Arguing by contradiction, let us assume that there exists M < ∞ such that 	(bBd) ≤
Mνd(bB

d) for all b < 1, which yields I3 ≤ (c2
dμ

d/2/(2π)d)M . For I2, let us assume that
a > 1 and for arbitrary n ∈ N introduce y0 < · · · < yn by y0 = √

μ/a1/(d+1), yn = √
μ/a,
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and yi = y0(yn/y0)
i = √

μ/a(1/(d+1))(1+id/n) for every i = 1, . . . , n− 1. We obtain∫
yn<‖ξ‖≤y0

1

a ‖ξ‖d+1	(dξ)

=
n∑
i=1

1

ayd+1
i

(	(yi−1B
d)− 	(yiB

d))

≤ 1

ayd+1
1

	(y0B
d)+

n∑
i=1

(
1

ayd+1
i+1

− 1

ayd+1
i

)
	(yiB

d)

≤ Mcd√
μ

(
1

a(d/(d+1))(1−(d+1)/n)
+

(
1 − 1

ad/(d+1)

)
ad/n(d+1)(ad/n − 1)

ad/n(d+1) − 1

)
.

Taking n = [a], the integer part of a, yields that the first term converges to 0 as a → ∞. The
second term converges to d + 1. Thus, I2 is also bounded, which is a contradiction because
lim supa→∞ I1 + I2 + I3 = ∞ by the long-range dependence of ζ .

For the opposite implication let us assume that (3.3) holds for K = Bd . Since fBd is
continuous at the origin with fBd (0) = (2π)−dcd , there exists r0 > 0 such that faBd (ξ) =
adfBd (aξ) ≥ ad(2π)−dcd/2 for all ξ ∈ (r0/a)Bd . Therefore,

∫
Rd

faBd (ξ)	(dξ) ≥
∫

‖ξ‖≤r0/a
faBd (ξ)	(dξ) ≥ adcd

2(2π)d
	

(
r0

a
Bd

)
= rd0 c

2
d

2(2π)d
	((r0/a)B

d)

νd((r0/a)Bd)

and the statement follows.
Finally, letK1,K2 ⊂ Rd be two bounded convex sets containing the origin in their interior.

Indeed, there exist c > 0 such that cK1 ⊂ K2 and, thus,

	(bK2)

νd(bK2)
≥ 	(bcK1)

νd(bK2)
= 	(bcK1)

νd(bcK1)

νd(cK1)

νd(K2)
.

Therefore, (3.3) forK = K1 implies (3.3) forK = K2. SinceK1,K2 were arbitrary, the value
of the limit superior is independent of K , which completes the proof. �

Remark 3.1. By choosingK = Ud , the open ball in Rd , the condition in the previous theorem
may be formulated as: the upper derivative of 	 with respect to the Lebesgue measure νd at
the origin is infinite.

Remark 3.2. It is interesting to note that the dual condition (3.3) for long-range dependence
is formulated in a less restrictive way than condition (3.2). As follows from the proof of
Theorem 3.1, the key ingredient is the estimate fBd (ξ) ≤ C/ ‖ξ‖d+1, whenever ‖ξ‖ is greater
than some constant. Hence, any convex set satisfying this estimate may be equivalently used
in (3.2) instead of Bd . We refer the reader to [11] for a deeper discussion showing that
such a convex set should be bounded with sufficiently smooth boundary having everywhere
nonvanishing Gaussian curvature.

There are several obvious consequences of the previous theorem.

Corollary 3.1. If 	({0}) > 0 then ζ is long-range dependent.

Corollary 3.2. Let 	 be absolutely continuous with spectral density f	 .
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(i) If f	 is νd almost everywhere bounded in some neighbourhood of 0 then ζ is not long-
range dependent.

(ii) If, for every c > 0, there exists a neighbourhood Uc of 0 such that f	(x) ≥ c for νd
almost all x ∈ Uc then ζ is long-range dependent.

Let us continue with Remark 3.2 and inspect whether the closed ball Bd in (3.2) may be
equivalently replaced by other bounded convex sets with nonempty interior and without any
further restrictions, which yields condition (1.3). As our next example shows, the general
replacement is not possible in dimension greater than two.

Example 3.2. Let d ≥ 3 and let ζ be a second-order stationary random measure on Rd with
Bartlett spectrum 	 given by

	 = (2π)d/2

2d
∑

n∈Nd , i1,...,id∈{−1,1}
cnδ(n1i1,...,nd id ).

For the construction of ζ , see Example 4.2. Let θ ∈ SOd be a rotation in Rd such that√
dθ(1, 0, 0, . . . ) = (1, . . . , 1). LetC be the cube [−1, 1]d rotated by θ , i.e.C = θ([−1, 1]d).

For the inverse Fourier transform 1̌C(ξ)of the indicator ofC, we obtain 1̌C(ξ) = 1̌[−1,1]d (θ−1ξ).
Since 1̌[−1,1]d (ω) = 2d(2π)−d/2

∏d
i=1 sin(|ωi |)/ |ωi |, we have

|1̌aC(ξ)|2
(2a)d

= ad

πd

d∏
i=1

sin2(a(θ−1ξ)i)

a2
∣∣(θ−1ξ)i

∣∣2 .

Hence, we obtain

(2π)d/2
∫

Rd

|1̌aC(ξ)|2
νd(aC)

	(dξ) = ad
∑

n∈Nd , i1,...,id∈{−1,1}
cn

d∏
k=1

sin2(a(θ−1(n1i1, . . . , nd id))k)

a2
∣∣(θ−1(n1i1, . . . , nd id))k

∣∣2

≥ ad
d∏
k=1

sin2(a(θ−1(1, . . . , 1))k)

a2
∣∣(θ−1(1, . . . , 1))k

∣∣2

= ad−2 sin2(a
√
d)

d
.

By (3.1), this yields

lim sup
a→∞

var ζ(aC)

νd(aC)
= ∞.

On the other side, taking [−1, 1]d leads directly to

(2π)d/2
∫

Rd

|1̌a[−1,1]d (ξ)|2
νd(a[−1, 1]d) 	(dξ) = ad

∑
n∈Nd , i1,...,id∈{−1,1}

cn

d∏
k=1

sin2(a |nkik|)
a2 |nkik|2

= (2a)d
∑
n∈Nd

cn

d∏
k=1

sin2(ank)

a2n2
k

= 2d

ad

∑
n∈Nd

cn

d∏
k=1

sin2(ank)

n2
k

.
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Hence,

lim
a→∞

var ζ([−a, a]d)
νd([−a, a]d) = 0.

Thus, the limit superior depends on the particular choice of K .

Remark 3.3. The random measure ζ from Example 3.2 is not long-range dependent as easily
follows from Theorem 3.1 since 	( 1

2B
d) = 0.

Even though the closed ball Bd cannot be replaced by a general convex set in Definition 3.1,
it is possible to show the following implication.

Proposition 3.2. Let ζ be a long-range dependent second-order stationary random measure.
Then

lim sup
a→∞

var ζ(aK)

νd(aK)
= ∞

for every bounded convex set K ⊂ Rd with nonempty interior.

Proof. Let faK(ξ) = |1̌aK(ξ)|2/νd(aK). Since 1̌aK(ξ) = ad 1̌K(aξ), we obtain faK(ξ) =
adfK(aξ). Hence, as in the proof of Theorem 3.1, there exists r0 > 0 such that faK(ξ) =
adfK(aξ) ≥ ad(2π)−dνd(K)/2 for all ξ ∈ (r0/a)Bd . Therefore, by (3.1),

var ζ(aK)

(2π)d/2νd(aK)
=

∫
Rd

faK(ξ)	(dξ)

≥
∫

‖ξ‖≤r0/a
faK(ξ)	(dξ)

= rd0 νd(K)νd(B
d)

2(2π)d
	((r0/a)B

d)

νd((r0/a)Bd)

and the statement follows by Theorem 3.1. �

In what follows we focus on the case when ζ has rotation invariant reduced covariance
measure C̆2, i.e. C̆2(θA) = C̆2(A) for any bounded Borel A ⊂ Rd and any rotation θ ∈ SOd .
We start by showing the equivalence with the rotation invariance of the Bartlett spectrum 	

of ζ , which then has a specific form.

Lemma 3.2. A second-order stationary random measure ζ has rotation invariant reduced
covariance measure C̆2 if and only if its Bartlett spectrum 	 is rotation invariant. Moreover,
in that case, 	 can be factorized such that∫

Rd

f (ξ)	(dξ) = f (0)	({0})+
∫ ∞

0
	̃(d�)

∫
Sd−1

f (�ω)σd−1(dω)

for any bounded measurable function f of bounded support, where σd−1 is the spherical
measure (d − 1 Hausdorff measure) on the unit sphere Sd−1 in Rd and 	̃ is a positive measure
on (0,∞) satisfying the following boundedness condition:

sup
s>1

∫
B+s

�−d+1	̃(d�) < ∞ (3.4)

for any bounded Borel set B ⊂ (0,∞).
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Proof. To prove the equivalence of rotation invariances let θ ∈ SOd and f ∈ Cc(R
d) be

arbitrary. Let fθ ∈ Cc(Rd) be defined by fθ (x) = f (θ−1x) for all x ∈ Rd . It is easy to show
that (fθ ∗ f ∗

θ ) = (f ∗ f ∗)θ and f̌θ = (f̌ )θ . Hence,

(2π)d/2
∫

Rd

∣∣∣f̌ (ξ)∣∣∣2
	(dξ) =

∫
Rd

(f ∗ f ∗)(x)C̆2(dx)

=
∫

Rd

(f ∗ f ∗)(x)C̆2(θdx)

=
∫

Rd

(f ∗ f ∗)θ (y)C̆2(dy)

=
∫

Rd

(fθ ∗ f ∗
θ )(y)C̆2(dy)

= (2π)d/2
∫

Rd

∣∣∣f̌θ (ω)∣∣∣2
	(dω)

= (2π)d/2
∫

Rd

∣∣∣f̌ (θ−1ω)

∣∣∣2
	(dω)

= (2π)d/2
∫

Rd

∣∣∣f̌ (ξ)∣∣∣2
	(θdξ)

and the invariance follows from the uniqueness of	, see [3, Theorem 4.7]. Now the factorization
lemma (see [6, Lemma A2.7.II]) implies that 	 = 	({0})δ0 + 	̃× σd−1, where δ0 is the Dirac
measure at the origin, 	̃ is some positive measure on (0,∞), and σd−1 is the spherical measure
(d − 1 Hausdorff measure) on the unit sphere Sd−1 in Rd , i.e. in the integral form∫

Rd

f (ξ)	(dξ) = f (0)	({0})+
∫ ∞

0
	̃(d�)

∫
Sd−1

f (�ω)σd−1(dω)

for any bounded measurable function f of bounded support, see [6, Proposition A2.7.III] and
also [6, Example A2.7(b)]. The translation boundedness of 	 (see, e.g. [3, Proposition 4.9])
implies the boundedness (3.4) of 	̃. For the proof take an arbitrary point ω0 ∈ Sd−1 and for
any � ≤ π define the spherical cap P� = {ω ∈ Sd−1 | dSd−1(ω,ω0) ≤ �}, where dSd−1 is the
distance function on the sphere Sd−1. Clearly, σd−1(P�) = �d−1σd−1(S

d−1) = �d−1dcd . Let
B ⊂ (0,∞) be a bounded Borel set. For s > 1, we define AB+s = {�ω ∈ Rd | � − s ∈
B, ω ∈ P1/�}. By construction of P�, there exists a bounded Borel set A ⊂ Rd such that
AB+s ⊂ A+ sω0 for every s > 1. Thus, we obtain∫

B+s
�−d+1	̃(d�) = 1

dcd

∫
B+s

σd−1(P1/�)	̃(d�)

= 1

dcd

∫ ∞

0
	̃(d�)

∫
Sd−1

1AB+s f (�ω)σd−1(dω)

= 1

dcd
	(AB+s)

≤ 1

dcd
	(A+ sω0)

and the translation boundedness of 	 yields the result. �
Remark 3.4. The conditions of the previous lemma are satisfied by any second-order stationary
isotropic random measure.
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In the following assertion we show that the implication in Proposition 3.2 turns into an
equivalence for rotation invariant covariance measures.

Proposition 3.3. Let ζ be a second-order stationary random measure with rotation invariant
reduced covariance measure C̆2 andK ⊂ Rd be an arbitrary bounded convex set with nonempty
interior. Then ζ is long-range dependent if and only if

lim sup
a→∞

var ζ(aK)

νd(aK)
= ∞.

Proof. If ζ is long-range dependent then the statement follows from Proposition 3.2. For
the remaining implication let K ⊂ Rd satisfy the assumptions. By Lemma 3.2,

var ζ(aK)

νd(aK)
= (2π)d/2faK(0)	({0})+ (2π)d/2

∫ ∞

0
	̃(d�)

∫
Sd−1

faK(�ω)σd−1(dω),

where faK(ξ) = |1̌aK(ξ)|2/νd(aK). If 	({0}) > 0 then ζ is long-range dependent by
Corollary 3.1. Thus, let us assume that 	({0}) = 0. The L2(Sd−1, σd−1)-norm of 1̌K(�ω)
decreases with increasing � as �−(d+1), see [4, Theorem 1.1], i.e. there exists C > 0 such that∫

Sd−1

∣∣∣1̌K(�ω)∣∣∣2
σd−1(dω) ≤ C

�d+1 for every � > 0.

For faK(ξ) = adfK(aξ) this yields∫
Sd−1

faK(�ω)σd−1(dω) ≤ C

a�d+1 for every � > 0, a > 0.

Thus, similarly as in the proof of Theorem 3.1, we may split the integration in the radial
coordinate � into three parts, � > a−1/(d+1), a−1 < � ≤ a−1/(d+1), and 0 < � ≤ a−1; that is,∫ ∞

0
	̃(d�)

∫
Sd−1

faK(rω)σd−1(dω) = I1 + I2 + I3,

where

I1 =
∫ ∞

1/a1/(d+1)
	̃(d�)

∫
Sd−1

faK(�ω)σd−1(dω) ≤ C

∫ ∞

1/a1/(d+1)

1

a�d+1 	̃(d�),

I2 =
∫ 1/a1/(d+1)

1/a
	̃(d�)

∫
Sd−1

faK(�ω)σd−1(dω) ≤ C

∫ 1/a1/(d+1)

1/a

1

a�d+1 	̃(d�),

I3 =
∫ 1/a

0
	̃(d�)

∫
Sd−1

faK(�ω)σd−1(dω) ≤ adνd(K)

dcd(2π)d
	(a−1Bd),

since
∫ r

0 	̃(d�) = (1/dcd)	(rBd) for all r > 0 as follows from the previous lemma, from
	({0}) = 0, and from σd−1(S

d−1) = dcd . The integrand of I1 is always bounded by C and for
every � it decreases as a increases. Let ga(�) = min{a−1�−(d+1), 1} for every a > 0, � > 0.
The translation boundedness (3.4) of 	̃ implies that ga ∈ L1(R+, 	̃) for every a > 0. Hence,
there exists K1 < ∞ such that

I1 ≤ C

∫ ∞

1/a1/(d+1)

1

a�d+1 	̃(d�) ≤ C

∫ ∞

0
ga(�)	̃(d�) ≤ K1 for all a > 1.
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Now let us argue by contradiction and assume that ζ is not long-range dependent. By The-
orem 3.1, there exists M < ∞ such that 	(bBd) ≤ Mνd(bB

d) for all b < 1, which yields
I3 ≤ (νd(K)/d(2π)d)M . Similarly as in the proof of Theorem 3.1,∫ 1/a1/(d+1)

1/a

1

a�d+1 	̃(d�)

≤ M

d

(
1

ad/(d+1)(1−(d+1)/n)
+

(
1 − 1

ad/(d+1)

)
ad/n(d+1)(ad/n − 1)

ad/n(d+1) − 1

)

for every n ∈ N. Taking n = [a] yields the boundedness of I2 which is a contradiction. �
Finally, we show that the rotation invariance of the reduced covariance measure enables us

to relate long-range dependence with condition (1.1).

Proposition 3.4. Let ζ be a second-order stationary random measure with rotation invariant
reduced covariance measure C̆2. If

lim sup
n→∞

var ζ(Kn)

νd(Kn)
= ∞

for some convex averaging sequence (Kn)n∈N then ζ is long-range dependent.

Proof. Assume that	({0}) = 0 since, otherwise, ζ is long-range dependent by Corollary 3.1.
By the same arguments as in the proof of Proposition 3.3, for every n ∈ N, there exist Cn > 0
such that ∫

Sd−1

∣∣∣1̌Kn(�ω)∣∣∣2
σd−1(dω) ≤ Cn

�d+1 for all � > 0.

Moreover, following the proof of [4, Theorem 1.1], one may show thatCn ≤ C(S(Kn))
3, where

S(Kn) is the surface area ((d−1)-dimensional Hausdorff measure) ofKn andC is independent
of Kn. Let (an)n∈N be the sequence of nonnegative real numbers such that S(Kn) = ad−1

n , i.e.
S(a−1

n Kn) = 1. Since Kn ⊂ Kn+1 for all n ∈ N, it follows that an ≤ an+1 for all n ∈ N.
Moreover, an → ∞ as n → ∞ since r(Kn) = sup{r ≥ 0 | Br(x) ⊂ Kn for some x} → ∞
as n → ∞ by the convex averaging property of (Kn). For fKn(ξ), we thus obtain fKn(ξ) =
fanKn/an(ξ) = adnfKn/an(anξ) and, therefore,∫

Sd−1
fKn(�ω)σd−1(dω) ≤ C

an�d+1 for every n ∈ N, � > 0.

Again, we may write∫ ∞

0
	̃(d�)

∫
Sd−1

fKn(rω)σd−1(dω) = I1 + I2 + I3,

where

I1 =
∫ ∞

1/a1/(d+1)
n

	̃(d�)
∫
Sd−1

fKn(�ω)σd−1(dω) ≤ C

∫ ∞

1/a1/(d+1)
n

1

an�d+1 	̃(d�),

I2 =
∫ 1/a1/(d+1)

n

1/an
	̃(d�)

∫
Sd−1

fKn(�ω)σd−1(dω) ≤ C

∫ 1/a1/(d+1)
n

1/an

1

an�d+1 	̃(d�),

I3 =
∫ 1/an

0
	̃(d�)

∫
Sd−1

fKn(�ω)σd−1(dω) ≤ νd(Kn)

dcd(2π)d
	(a−1

n Bd).
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Let gn(�) = min{a−1
n �−(d+1), 1} for every n ∈ N, � > 0. The translation boundedness (3.4)

of 	̃ implies that gn ∈ L1(R+, 	̃) for every n ∈ N. Let n0 ∈ N be such that an > a1 for
n > n0. Then, there exists C1 < ∞ such that

I1 ≤ C

∫ ∞

1/a1/(d+1)
n

1

an�d+1 	̃(d�) ≤ C

∫ ∞

0
gn(�)	̃(d�) ≤ C1 for all n > n0.

We again argue by contradiction and assume that ζ is not long-range dependent. Hence, by
Theorem 3.1, there exists M < ∞ such that 	(bBd) ≤ Mνd(bB

d) for all b < 1, which yields

I3 ≤ νd(Kn)

dcd(2π)d
	(a−1

n Bd)

≤ M

d(2π)d
νd(Kn)

adn

= M

d(2π)d
νd(Kn)

anS(Kn)

≤ M

d(2π)d
1

dd/(d−1)c
1/(d−1)
d

for all n ∈ N

since a set that maximizes its volume for the fixed surface area S(Kn) is the ball of radius
d−1
√
S(Kn)/(dcd) as follows from the isoperimetric inequality; see, e.g. [16, Section 7.1].

Therefore, I3 is bounded. To deal with I2 let for any n such that an > 1 and any k ∈ N introduce
y0 < · · · < yk by y0 = 1/a1/(d+1)

n , yk = 1/an, and yi = y0(yk/y0)
i = a

−(1/(d+1))(1+id/k)
n for

every i = 1, . . . , k − 1. Similar arguments as in the proof of Theorem 3.1 yield∫ y0

yk

1

an�d+1 	̃(d�) ≤ M

d

(
1

a
(d/(d+1))(1−(d+1)/k)
n

+
(

1 − 1

a
d/(d+1)
n

)
a
d/k(d+1)
n (a

d/k
n − 1)

a
d/k(d+1)
n − 1

)
.

Setting k = [an], the integer part of an, implies the boundedness of I2 as n → ∞ which is a
contradiction. This completes the proof. �
Remark 3.5. It is an open question as to whether the implication from the previous proposition
may be reversed, i.e. if ζ is long-range dependent second-order stationary random measure with
rotation invariant reduced covariance measure, whether (1.1) is valid for every convex averaging
sequence. However, for this situation we were not able to either prove the statement or to find
a counterexample.

4. Several examples

In this section we construct several specific random measures that were needed in the previous
examples.

Example 4.1. Suppose that α > 0. We construct a random measure on R with spectral density
f	(ω) that behaves like |ω|α as ω → 0. Let A be a nonnegative continuous random variable
with bounded probability density function fα and let Ua be for every a > 0 a random variable
uniformly distributed on [0, 2π/a], i.e.Ua ∼ Uniform[0, 2π/a]. LetXa be a stationary random
closed set (see, e.g. [17, Chapter 2] or [5, Chapter 6]) given as the union of equidistant closed
intervals shifted by Ua , i.e.

Xa =
⋃
n∈Z

[
(4n− 1)

π

2a
, (4n+ 1)

π

2a

]
+ Ua.
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The volume fraction P(x ∈ Xa) is equal to 1
2 for every a > 0. The covariance function

cova(x) = P(0, x ∈ Xa) − 1
4 is a triangle function, cova(x) = (1/2π) arcsin(cos(ax)) for

every x ∈ R, a > 0. As an odd function it may be expanded into the following cosine series:

cova(x) =
∞∑
k=0

2

(2k + 1)2π2 cos((2k + 1)ax).

Let X be a doubly stochastic random closed set obtained form A and {Xa}a>0 as X = XA.
The volume fraction of X is P(x ∈ X) = 1

2 and the covariance of X is cov(x) = EA covA(x),
where EA is the expectation with respect to A. Hence,

cov(x) =
∞∑
k=0

2

(2k + 1)2π2 EA cos((2k + 1)Ax).

A random measure ζ on R with desired properties is given by the so-called volume measure
ofX, i.e. a random measure defined by ζ(B) = ν1(X∩B) for every Borel setB ⊂ R, where ν1
is the Lebesgue measure on R. By construction, ζ is second-order stationary with intensity
λ = 1

2 and covariance function cov(x). Let us now determine the Bartlett spectrum 	 of ζ .
The expectation of cosines may be interpreted as the inverse Fourier transform of gα , where
gα(a) = fα(|a|) for all a ∈ R,

EA cos(nAx) =
∫ ∞

0
cos(nxa)fα(a)da =

√
π√
2
ǧα(nx).

Since cov(x) is integrable, 	 is absolutely continuous with spectral density f	 given by the
Fourier transform of the covariance function,

f	(ω) = ĉov(ω) = 1√
2π

∫ ∞

−∞
e−ixω cov(x)dx.

By previous considerations, the Fourier transform of EA cos(nAr) is

̂EA cos(nAr)(ω) =
√
π

n
√

2
fα

( |ω|
n

)
.

Thus,

f	(ω) =
∞∑
k=0

√
2π

(2k + 1)3π2 fα

( |ω|
2k + 1

)
,

which is a uniformly convergent series. Taking fα(x) = (1/	(1 + α))xαe−x for x > 0, i.e.
the gamma distribution determined by shape parameter 1 +α and scale parameter 1, we finally
obtain

f	(ω) = |ω|α
√

2π

π2	(1 + α)

∞∑
k=0

1

(2k + 1)3+α e−|ω|/(2k+1).

Hence, the spectral density behaves as |ω|α as ω → 0. Note that by Corollary 3.2 (a), ζ is not
long-range dependent.
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Example 4.2. Here, we introduce a random measure with purely discrete spectrum separated
by a positive distance form the origin 0. It is based on a multidimensional extension of
the construction from the previous example. Let p be such that 1

2 ≤ p < 1 and U ∼
Uniform[0, 2π ]. We define a stationary random closed set X in R by

X =
⋃
n∈Z

[−pπ + 2nπ, pπ + 2nπ ] + U.

Its volume fraction is clearly P(x ∈ X) = p and the covariance function is an even continuous
piecewise linear 2π periodic function given on [0, 2π ] by

cov(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p − p2 − r

2π
for x ∈ [0, 2π(1 − p)],

2p − 1 − p2 for x ∈ (2π(1 − p), 2pπ ],

p − 1 − p2 + r

2π
for x ∈ (2pπ, 2π ].

It can be expanded into the Fourier cosine series,

cov(x) =
∞∑
n=1

2 sin2(npπ)

n2π2 cos(nx),

where the absolute term is 0 since
∫ π

0 cov(x)dx = 0. A straightforward multidimensional
extension of this construction to a random closed set X in Rd is given by X = X1 × · · · ×Xd ,
whereX1, . . . , Xd are independent and identically distributed random closed sets of the previous
type. The covariance function of X is then

cov(x) =
d∏
i=1

cov(xi) =
d∏
i=1

∞∑
ni=1

2 sin2(nipπ)

n2
i π

2
cos(nixi) =

∑
n∈Nd

cn

d∏
i=1

cos(nixi),

where n = (n1, . . . , nd) and cn = (2d/π2d)
∏d
i=1 sin2(nipπ)/n

2
i . Let ζ be a random measure

on Rd defined as the volume measure of X, ζ(B) = νd(X ∩ B) for every Borel set B ⊂ Rd .
Clearly, its intensity is λ = p and covariance function is cov(x). The Bartlett spectrum 	 of ζ
can be determined from (2.3) as

	 = (2π)d/2

2d
∑

n∈Nd , i1,...,id∈{−1,1}
cnδ(n1i1,...,nd id ).

Note that ζ is not long-range dependent as follows from Theorem 3.1 since 	( 1
2B

d) = 0.

Example 4.3. Finally, we construct a random measure determined by a parameter α ∈ (0, d)
which has absolutely continuous Bartlett spectrum with density f	(ξ) that behaves like ‖ξ‖d−α
as ξ → 0.

Let us start with the 0-level excursion setX of a stationary isotropic Gaussian random fieldZ
in Rd determined by the mean EZ = 0 and covariance function

covZ(r) = (1 + |r|2)−α/2,
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where α > 0 is a parameter; see, e.g. [1]. A stationary isotropic random field Z with such a
covariance function is known as the Cauchy model and it is a part of the so-called Cauchy class;
see [10]. The 0-level excursion set X of Z is defined by X = {x ∈ Rd | Z(x) ≥ 0} and it is a
stationary random closed set; see, e.g. [5, Section 6.6.3]. It is easy to check (e.g. with the help
of [5, Equations (6.157) and (6.159)]) that P(x ∈ X) = 1

2 and cov(x) = P(0, x ∈ X) − 1
4 =

(1/2π) arcsin(covZ(‖x‖)).
A random measure ζ with the desired properties is given by the volume measure of X,

ζ(B) = νd(X ∩ B) for every Borel set B ⊂ Rd . It follows immediately that ζ is isotropic and
second-order stationary with intensity λ = 1

2 and covariance function

cov(x) = 1

2π
arcsin

1

(1 + ‖x‖2)α/2
.

First, we inspect the connection between α and the long-range dependence of ζ . By (3.1),

var ζ(aBd)

νd(aBd)
=

∫
Rd

(1aBd ∗ 1∗
aBd

)(x)

adcd
cov(x)dx.

A simple calculation shows that (1aBd ∗ 1∗
aBd

)(x) = adνd(B
d ∩ (Bd − x/a)) and

νd(B
d ∩ (Bd − y)) = cdI1−‖y‖2/4

(
d + 1

2
,

1

2

)

whenever ‖y‖ ≤ 2, and νd(Bd ∩ (Bd − y)) = 0 otherwise, where

cd = νd(B
d) = πd/2

	(d/2 + 1)

and Ix(p, q), p, q > 0, is the regularized incomplete beta function; see, e.g. [19, Section 11.3]
for its definition and basic properties. Therefore, we may use spherical coordinates and integrate
over angles to obtain

var ζ(aBd)

νd(aBd)
= dcd

2π

∫ 2a

0
rd−1I1−r2/4a2

(
d + 1

2
,

1

2

)
arcsin

1

(1 + r2)α/2
dr.

For α > d, the integral is bounded since Ix(p, q) ∈ [0, 1], arcsin((1 + r2)−α/2) ∼ r−α as
r → ∞, and rd−1−α is integrable at ∞. Therefore, ζ is not long-range dependent. Regarding
α ≤ d, it is useful to substitute u = r/(2a) in order to obtain

var ζ(aBd)

νd(aBd)
= dcd

2π
(2a)d

∫ 1

0
ud−1I1−u2

(
d + 1

2
,

1

2

)
arcsin

1

(1 + 4a2u2)α/2
du.

Since arcsin x ∼ x as x → 0+ and (2a)α(1 + 4a2u2)−α/2 increases to u−α as a → ∞,
Lebesgue dominated and monotone convergence theorems imply that

var ζ(aBd)

νd(aBd)
∼ dcd

2π
(2a)d−α

∫ 1

0
ud−1−αI1−u2

(
d + 1

2
,

1

2

)
du as a → ∞.

For α ∈ (0, d), the integral is convergent to some positive value and (2a)d−α → ∞ as a → ∞.
Hence, ζ is long-range dependent. For α = d, we may bound arcsin x from below by x and
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use the similar monotone convergence argument to conclude that the limit is again ∞ since the
integral is now divergent. Therefore, ζ is long-range dependent.

Now, let us focus on the behaviour of the Bartlett spectrum 	. We proceed similarly as in
[9, Section 56]. The covariance function cov(x) can be regarded as a tempered distribution,
i.e. the continuous liner functional on the Schwartz space S of rapidly decreasing functions on
Rd , for all complex values of α. Moreover, it may be regarded analytic in α when Re α > 0,
which means that for every test function ψ ∈ S, the complex-valued function α �→ cov(ψ)
is analytic in α when Re α > 0. This analytic quality extends the usual concept in a natural
way including the analytic continuation; see [9, Section 24]. The Fourier transform of the
covariance in the distributional sense is equal to the Bartlett spectrum 	 of ζ and it is again
a tempered distribution analytic in α when Re α > 0. We may determine its explicit form by
analytic continuation from larger values of α, where the covariance is integrable and its Fourier
transform is given by the ordinary integral formula. For Re α > d , the covariance function is
integrable and, hence, 	 is absolutely continuous with continuous density f	 given by

f	(ξ) = 1

(2π)d/2

∫
Rd

e−ixξ cov(x)dx = 1

(2π)d/2+1

∫
Rd

e−ixξ arcsin
1

(1 + ‖x‖2)α/2
dx.

Expressing arcsin by its Taylor series and interchanging the sum and integral due to the Lebesgue
monotone convergence theorem yields

f	(ξ) = 1

(2π)d/2+1

∞∑
k=0

Ck

∫
Rd

e−ixξ 1

(1 + ‖x‖2)α(2k+1)/2
dx,

whereCk = (2k
k

)
/4k(2k+1) for k = 0, 1, . . . are coefficients of the Taylor expansion of arcsin.

Then we use
1

(1 + s2)β
= 1

	(β)

∫ ∞

0
e−s2ue−uuβ−1 du,

where 	(·) denotes the gamma function, valid for any real s and any β with positive real part,
in order to obtain

f	(ξ) = 1

(2π)d/2+1

∞∑
k=0

Ck

	(α(2k + 1)/2)

∫
Rd

∫ ∞

0
e−ixξ e−|x|2ue−uuα(2k+1)/2−1dudx.

By interchanging the order of integration, the Fourier transform of each term may be computed
explicitly since it is just the transform of the Gaussian. Thus, finally,

f	(ξ) = 1

(2π)2d/2

∞∑
k=0

Ck

	(α(2k + 1)/2)

∫ ∞

0
e−‖ξ‖2/4ue−uuα(2k+1)/2−d/2−1du.

For any ‖ξ‖ > 0 and any Re α > 0, the right-hand side is given by the convergent series and it
is an analytic function of α. Hence, the analytic continuation of the Bartlett spectrum 	 in the
distributional sense is absolutely continuous with density f	 given by the previous expression.
To see the convergence and analyticity it is useful to split the sum into two parts determined
by k0 chosen such that Re α(2k0 + 1)/2 − d/2 ≤ 0 and Re α(2k + 1)/2 − d/2 > 0 for all
k > k0. The first part then contains a finite number of convergent integrals and the second part
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may be bounded by a convergent series,

∞∑
k=k0+1

Ck

	(α(2k + 1)/2)

∫ ∞

0
e−‖ξ‖2/4ue−uuα(2k+1)/2−d/2−1du

≤
∞∑

k=k0+1

Ck
	(α(2k + 1)/2 − d/2)

	(α(2k + 1)/2)

since∫ ∞

0
e−‖ξ‖2/4ue−uuα(2k+1)/2−d/2−1du ≤

∫ ∞

0
e−uuα(2k+1)/2−d/2−1du = 	

(
α

2
(2k+1)− d

2

)
.

Let us now focus on the asymptotic behaviour of f	(ξ) as ξ → 0. For 0 < α < d, we again
split the sum into two parts determined by the index k0 chosen such that α(2k0 +1)/2−d/2 ≤ 0
and α(2k+ 1)/2 − d/2 > 0 for all k > k0. The first part is, after the substitution u = ‖ξ‖2 /t ,
given by

1

(2π)2d/2

k0∑
k=0

Ck

	(α(2k + 1)/2)

∫ ∞

0
e−‖ξ‖2/4ue−uuα(2k+1)/2−d/2−1du

= ‖ξ‖α−d 1

(2π)2d/2

k0∑
k=0

Ck

	(α(2k + 1)/2)
‖ξ‖α2k

∫ ∞

0
e−t/4e−‖ξ‖2/t t−α(2k+1)/2+d/2−1dt.

By the additional assumption α(2k0 +1)/2−d/2 < 0, the integrals converge as a consequence
of the Lebesgue monotone convergence theorem to∫ ∞

0
e−t/4t−α(2k+1)/2+d/2−1du = 2d−α(2k+1)	

(
d

2
− α

2
(2k + 1)

)
.

Only the first term k = 0 is not diminished by the ‖ξ‖α2k factor and we obtain

1

(2π)2d/2

k0∑
k=0

Ck

	(α(2k + 1)/2)

∫ ∞

0
e−‖ξ‖2/4ue−uuα(2k+1)/2−d/2−1du

∼ ‖ξ‖α−d 	((d − α)/2)

(2π)2α−d/2	(α/2)
as ξ → 0.

The equality case α(2k0 + 1)/2 − d/2 = 0 leads to the same result but one must show the
boundedness of the last term in the sum differently by the same method as is used later for
α = d. For the second part, one can use the Lebesgue monotone convergence theorem directly
and obtain

1

(2π)2d/2

∞∑
k=k0+1

Ck

	(α(2k + 1)/2)

∫ ∞

0
e−‖ξ‖2/4ue−uuα(2k+1)/2−d/2−1du

→ 1

(2π)2d/2

∞∑
k=k0+1

Ck
	(α(2k + 1)/2 − d/2)

	(α(2k + 1)/2)

< ∞ as ξ → 0.
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Hence, in total, for 0 < α < d, we obtain

f	(ξ) = ‖ξ‖α−d 	((d − α)/2)

(2π)2α−d/2	(α/2)
(1 + h(‖ξ‖)),

where h(‖ξ‖) is a continuous function of ξ that converges to 0 with ‖ξ‖. As a consequence of
Corollary 3.2(ii), ζ is long-range dependent, which we already know from the previous analysis
of the covariance function.

When α = d , we take separately only the first term of the sum in f	 . Here, after the
substitution u = ‖ξ‖2 /t , we obtain

1

(2π)2d/2	(d/2)

∫ ∞

0
e−t/4e−‖ξ‖2/t t−1dt.

For ‖ξ‖ < 1, the integral may be split into three parts
∫ ‖ξ‖2

0 + ∫ 1
‖ξ‖2 + ∫ ∞

1 . It is easy to see
that the first and last integrals are bounded independently on ‖ξ‖. For the middle integral, using
the mean value theorem we obtain∫ 1

‖ξ‖2
e−t/4e−‖ξ‖2/t t−1dt = e−uξ /4−‖ξ‖2/uξ

∫ 1

‖ξ‖2
t−1dt = e−uξ /4−‖ξ‖2/uξ log(‖ξ‖−2),

whereuξ ∈ [‖ξ‖ , 1]depends on‖ξ‖. The factor e−uξ /4−‖ξ‖2/uξ is always in [e−1−‖ξ‖2/4,e−‖ξ‖],
which converges to [e−1, 1] as ξ → 0. The remaining terms of the sum in f	 again converge,
now to the constant

1

(2π)2d/2

∞∑
k=1

Ck
	(dk)

	(dk + d/2)
.

Therefore, for α = d ,

f	(ξ) ∼ log(‖ξ‖−2)
1

(2π)2d/2	(d/2)
(1 − h(‖ξ‖)) as ξ → 0,

where h(‖ξ‖) is asymptotically contained in the interval [0, 1 − e−1]. Again, Corollary 3.2(ii)
consistently with previous considerations yields long-range dependence of ζ in this case.

For α > d, one uses the Lebesgue monotone convergence theorem for all terms in order to
obtain

f	(ξ) → 1

(2π)2d/2

∞∑
k=0

Ck
	(α(2k + 1)/2 − d/2)

	(α(2k + 1)/2)
< ∞ as ξ → 0.

Thus, the density of the Bartlett spectrum is bounded in some neighbourhood of 0 and ζ is not
long-range dependent by Corollary 3.2(i).
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