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The coefficient of tail dependence is a quantity that measures how extreme events in one
component of a bivariate distribution depend on extreme events in the other component.
It is well known that the Gaussian copula has zero tail dependence, a shortcoming for
its application in credit risk modeling and quantitative risk management in general. We
show that this property is shared by the joint distributions of hitting times of bivariate
(uniformly elliptic) diffusion processes.
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1. INTRODUCTION

Let Y and Z be continuous random variables, with distribution functions FY and FZ ,
respectively. The coefficients of lower tail dependence, λL and upper tail dependence λU, of
Y and Z are defined to be:

λL = lim
α↓0

P(Y ≤ F−
Y (α)|Z ≤ F−

Z (α)),

and
λU = lim

α↑1
P(Y ≥ F−

Y (α)|Z ≥ F−
Z (α))

where F− denotes the generalized inverse of F : F−(y) = inf{x ∈ R : F (x) ≥ y}.
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The coefficients of tail dependence can also be expressed in terms of the copula C of Y
and Z as (McNeil, Frey, and Embrechts [24], p. 209):

λL = lim
α↓0

C(α, α)
α

, λU = lim
α↑1

1 − 2α+ C(α, α)
α

It is well known that when Y and Z have a bivariate Gaussian distribution with correlation
ρ, |ρ| < 1, or more generally, when Y and Z have a Gaussian copula with this correlation,
λL = λU = 0 (McNeil et al. [24], p. 211).

In this paper, we show that the property of zero lower tail dependence of the Gaussian
copula is shared by the hitting times of the components of two-dimensional diffusion pro-
cesses. In particular, we show that if X is a two-dimensional diffusion process with generator
L, acting on smooth functions f as

Lf =
∑
i

bi(x)
∂f

∂xi
+

1
2

∑
i,j

aij(x)
∂2f

∂xi∂xj

where L is uniformly elliptic with smooth and bounded coefficients, and if the hitting times
τi are defined as τi = inf{t > 0|Xi(t) = ci}, then the coefficient of lower tail dependence
between τ1 and τ2 is λL = 0. For upper tail independence, the fact that λU = 0 was proved
for the case when b and a are constant in Metzler [25].

The main technical result employed in our proof of the lower tail independence (λL = 0)
for the hitting times of a non-degenerate two-dimensional diffusion is the large deviations
principle for small time for such processes due to Varadhan [28]. More refined results are
available; see, for example, Azencott [1]. There is a large literature on the application of large
deviations to the problem of the exit of a diffusion from a domain; see, for example, Freidlin
and Wentzell [14], Fleming and James [13], and references therein. Exact asymptotics of
hitting times of Gaussian processes are presented in Dębicki et al. [8].

We have not aimed for maximum generality with respect to the coefficients in pre-
senting our results. Large deviation principles generalizing the result in Varadhan [28] are
known (see, e.g. Baldi and Chaleyat-Maurel [2], or the aforementioned work of Azencott
[1]), and under further conditions, these results can be extended (with the same rate func-
tion) to inhomogeneous diffusion processes (e.g. Herrmann, Imkeller, and Peithmann [18]).
Smoothness of the coefficients is also used to obtain smoothness of minimizing geodesics
based on classical results in the calculus of variations (used in Theorem 4.11), and also
leads to increased regularity of the distributions of hitting times (see Remark 4.5). It is
straightforward to extend the results of this paper to show that the hitting times of any two
components of a uniformly elliptic n-dimensional diffusion process with smooth bounded
coefficients have zero tail dependence.

There is a large literature on the extremes of multivariate distributions. Resnick [26]
provides a motivated introduction to multivariate extreme value analysis, with a number of
applications. Balkema and Embrechts [3] provide mathematical and statistical techniques
for finding the asymptotic behavior of multivariate extremes. Multivariate notions of tail
dependence have been studied by some authors (e.g. Li [23]). Furman et al. [17] study
generalized notions of tail dependence. The tail order of Ledford and Tawn [21] (see also
Hua and Joe [19]) provides a more refined measure of dependence in the tail. Using the
large deviation results employed in this paper (or perhaps the extensions of Azencott [1]),
it may be possible to evaluate these tail dependence measures for diffusion hitting times.
Consideration of extensions of the results in this paper to such notions is left for future
research.
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It is possible to construct models with positive lower tail dependence, using auxiliary
variables (e.g. latent variables or subordinators) that affect both components of the diffu-
sion simultaneously. As a simple example, let W be a standard two-dimensional Brownian
motion, and Nt a standard Poisson process. Then a straightforward calculation shows that
the hitting times ofXt = W (Nt) exhibit positive tail dependence. The situation is somewhat
analogous to the positive coefficient of tail dependence for multivariate Student-t random
vectors, which are variance mixtures of multivariate Gaussians.

The analysis of the asymptotic behavior of joint hitting times is of interest in a number
of applied fields. Bivariate hitting time densities arise in applications in neuroscience, where
they may be used to model the joint distributions of firing times of action potentials of
coupled neurons (Iyengar [20]). Sacerdote, Tamborrino, and Zucca [27] provide a numerical
method for the computation of the joint density of τ1 and τ2 based on the solution of
a system of integral equations, and prove convergence of their method. Hitting times of
multidimensional diffusion processes often arise in credit risk modelling in mathematical
finance. See, for example, Bielecki and Rutkowski [5]. In this context, our results may be
interpreted as showing that the tail independence property of the Gaussian copula, which
has received so much criticism in the context of the application of the model of Li [22] to
the pricing of collateralized debt obligations, is shared by multivariate versions of the credit
risk model of Black and Cox [6].

The remainder of this paper is structured as follows. The second section sets notation
and reviews some results from large deviations theory needed in subsequent sections. The
third section considers the case of a Brownian motion, that is, when b ≡ 0 and a is a constant
matrix, and proves lower tail independence of the hitting times using Schilder’s Theorem
on large deviations of the Brownian sample paths. This special case is included here as its
proof is particularly simple, and contains all the main ideas behind the proof of the general
case. The fourth section shows lower tail independence of τ1 and τ2 in the general case,
using results on the small-time behavior of diffusion processes due to Varadhan [28].

2. NOTATION AND BACKGROUND

Denote by C([0, 1],R2) the set of all continuous functions ω from [0, 1] to R
2, with ‖ω‖ =

supt∈[0,1] |ω(t)|, and Cx([0, 1],R2) the subset with ω(0) = x. Let b : R
2 → R and σ : R

2×2 :→
R be bounded, C2 functions with bounded derivatives, and suppose that there exist κ,K > 0
such that κ‖ξ‖2 ≤ ξ′a(x)ξ ≤ K‖ξ‖2 for all x, ξ ∈ R

2, where a = σσ
′
. Let Lε be the operator:

Lεf = ε
∑
i

bi(x)
∂f

∂xi
+
ε

2

∑
i,j

aij(x)
∂f

∂xi∂xj
(1)

acting on smooth functions f : R
2 → R, and let L = L1. Let Xε (with X = X1) be

the Markov process associated with Lε, and let P
ε
x be the measure on C([0, 1],R2) giving the

distribution of the process Xε started at the point x at time 0. This may be realized as
the distribution of the unique strong solution to the stochastic differential equation:

dXε(t) = εb(Xε(t))dt+
√
ε · σ(Xε(t)) dWt, Xε(0) = x0, (2)

where Wt is a two-dimensional standard Brownian motion defined on a filtered probabil-
ity space (Ω,F , {Ft}t∈[0,1],P) satisfying the usual conditions. We assume, without loss of
generality, that x0 = 0. For i = 1, 2, let ci > 0, τi = inf{t > 0|Xi(t) ≥ ci}, and let Fi be the
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distribution of τi, and note the time-scaling property:

P(τi ≤ ε) = P

(
sup
t∈[0,ε]

Xi(t) ≥ ci

)

= P

(
sup
t∈[0,1]

Xi(εt) ≥ ci

)
= P

(
sup
t∈[0,1]

Xε,i(t) ≥ ci

)
. (3)

LetH1 be the subset of C([0, 1],R2) consisting of absolutely continuous functions ω with
square-integrable derivative, and H1

x the subset of H1 with ω(0) = x. Similarly, for any A ⊆
C([0, 1],R2), let Ax = A ∩ Cx([0, 1],R2). Let g = a−1, and define I : C([0, 1],R2) → [0,∞]
by

I(ω) =

{
1
2

∫ 1

0
ω̇(t)′g(ω(t))ω̇(t) dt ω ∈ H1

∞ ω /∈ H1
(4)

and recall that I is lower-semi-continuous, with compact lower level sets (see, e.g. Friedman
[16], pp. 326–332).

Recall the distance d(x, y) on R
2, defined through the length function l : H1 → R+:

l(ω) =
∫ 1

0

√
ω̇(t)′g(ω(t))ω̇(t) dt (5)

by:
d(x, y) = inf{l(ω)|ω(0) = x, ω(1) = y}. (6)

If ω ∈ H1 and ωα,β(s) : [α, β] → R
2 is defined by ωα,β(s) = ω((β − α)−1(s− α)) then

1
2

∫ β

α

ω̇α,β(s)′g(ωα,β(s))ωα,β(s) ds = (β − α)−1I(ω). (7)

This leads to the following two facts stated in Varadhan [28]:

Lemma 2.1: Let 0 ≤ α ≤ β,

inf{I(ω)|ω(α) = x, ω(β) = y} =
d2(x, y)
2(β − α)

. (8)

Lemma 2.2: For 0 ≤ t1 < t2 < t3 · · · < tn ≤ 1,

inf{I(ω)|ω(tj) = xj , j = 1, . . . , n} =
1
2

n−1∑
j=1

d2(xj+1, xj)
tj+1 − tj

. (9)

The following large deviation principle is the main result required to derive the tail
independence of the hitting times of X, and is due to Varadhan [28], which generalized the
result for the special case of Brownian motion, often referred to as Schilder’s Theorem:

Theorem 2.3: For G ⊆ C([0, 1],R2) open and F ⊆ C([0, 1],R2) closed:

lim inf
ε↓0,y→x

ε log P
ε
y(G) ≥ − inf

ω∈Gx

I(ω), (10)

lim sup
ε↓0,y→x

ε log P
ε
y(F ) ≤ − inf

ω∈Fx

I(ω). (11)
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For k1, k2 ∈ [0,∞), t1, t2 ∈ [0, 1], define:

B(k1, t1, k2, t2) = {ω ∈ C0([0, 1],R2)| sup
t∈[0,t1]

ω1(t) ≥ k1, sup
t∈[0,t2]

ω2(t) ≥ k2}. (12)

That is, B(k1, t1, k2, t2) is the set of paths that start at 0, cross k1 by time t1 and cross k2

by t2. For k1, k2 ∈ [0,∞) define:

Bk1,k2 = {ω ∈ C0([0, 1],R2)| sup
t∈[0,1]

ω1(t) ≥ k1, sup
t∈[0,1]

ω2(t) ≥ k2}, (13)

so that Bk1,k2 = B(k1, 1, k2, 1).
Define the constants:

J1 = inf{I(ω), ω ∈ Bc1,0}, (14)

J2 = inf{I(ω), ω ∈ B0,c2}, (15)

J1,2 = inf{I(ω), ω ∈ Bc1,c2}. (16)

Since Bc1,c2 ⊆ Bc1,0, and Bc1,c2 ⊆ B0,c2 , we have J1,2 ≥ J1 and J1,2 ≥ J2. Also, notice that
the time-scaling property (7) implies that with t < 1,

inf {I(ω)|ω ∈ B(c1, t, c2, t)} = t−1J1,2. (17)

3. BROWNIAN MOTION CASE

In this section, we will consider tail independence in the special case where b ≡ 0 and a is a
constant matrix with aii = σ2

i , and a12 = a21 = σ1σ2ρ for σi > 0, i = 1, 2, and ρ ∈ (−1, 1).
In this case, Xt may be taken as the solution of the stochastic differential equation (2) with
b ≡ 0 and

σ =
(
σ1

√
1 − ρ2 ρσ1

0 σ2

)

with σi > 0, i = 1, 2 and ρ ∈ (−1, 1). Thus, X1
t is σ1 multiplied by a Brownian motion

Z1
t =

√
1 − ρ2W 1

t + ρW 2
t and X2

t is σ2 multiplied by a Brownian motion Z2
t = W 2

t , and Z1
t

and Z2
t have correlation ρ. Denote c̃i = ci

σi
for i = 1, 2. Without loss of generality, we may

assume that c̃2 ≤ c̃1, so that κ = (c̃2/c̃1)2 ≤ 1.
Here we summarize a proof that the coefficient of lower tail dependence is equal to zero

in the Brownian motion case, using Schilder’s Theorem. The extension to the case of variable
coefficients based on Theorem 2.3 from Varadhan [28] is presented in the next section. We
may assume ρ �= 0, since zero tail dependence follows immediately from the independence
of τ1 and τ2 in the case of zero correlation. The argument proceeds as follows:

1. Use properties of marginal hitting time distributions to remove inverse CDFs from
the ratio in the definition of the coefficient of tail dependence: Let βt be a standard
Brownian motion and let κ = (c̃2/c̃1)2 ≤ 1. By Brownian scaling:

F1(t) = P

(
sup
s≤t

βs ≥ c̃1

)
= P

(
sup
s≤κt

βs ≥ c̃2

)
= F2(κt), (18)

which can also be seen from the explicit formula for the hitting time distribution of
Brownian motion. Recall the definition of λL, and make the substitution F1(ε) = α

λL = lim
α↓0

P(τ1 ≤ F−1
1 (α), τ2 ≤ F−1

2 (α))
P(τ1 ≤ F−1

1 (α))
= lim

ε↓0
P(τ1 ≤ ε, τ2 ≤ κε)

P(τ1 ≤ ε)
. (19)
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2. Apply time scaling and large deviation results to approximate probabilities: Using
Brownian scaling

P(τ1 ≤ ε) = P

(
sup
s≤ε

βs ≥ c̃1

)
= P

(
sup
s≤1

ε−1/2βεs ≥ ε−1/2c̃1

)

= P(sup
s≤1

√
εβs ≥ c̃1) = P

ε
0(Bc̃1,0) (20)

and similarly:
P(τ1 ≤ ε, τ2 ≤ κε) = P

ε
0(B(c̃1, 1, c̃2, κ)). (21)

Applying Theorem 2.3 yields:1

− lim
ε↓0

ε log(P(τ1 ≤ ε)) = inf
ω∈Bc̃1,0

I(ω) = J̃1 (22)

− lim
ε↓0

ε log(P(τ1 ≤ ε, τ2 ≤ κε) = inf
ω∈B(c̃1,1,c̃2,κ)

I(ω) = J̃1,2. (23)

Heuristically, P(τ1 ≤ ε) ≈ exp(−ε−1J̃1) and P(τ1 ≤ ε, τ2 ≤ κε) ≈ exp(−ε−1J̃1,2).

3. Show that J̃1,2 > J̃1, and conclude that λL = 0.
Let ω ∈ H1

0 be any path such that supt∈[0,1] ω1(t) ≥ c̃1, that is, ω ∈ Bc̃1,0, with
ω1(t′) = c̃1. Then, by the Cauchy–Schwartz inequality:

I(ω) ≥ 1
2(1 − ρ2)

∫ t′

0

(ρ · ω̇1(t) − ω̇2(t))2 dt+
1
2

∫ t′

0

ω̇1(t)2 dt ≥ c̃21
2t′

with equality if and only if ω = ω∗ with ω∗
1(t) = c̃1t, ω∗

2(t) ≡ ρc̃1t < c̃2 for t ≤ κ.
So J̃1 = c̃21

2 . Since I is lower-semi-continuous with compact level sets, and F =
B(c̃1, 1, c̃2, κ) is closed, I attains its minimum on F at some ω̃. The above argument
shows that J̃1,2 = I(ω̃) > J̃1 (since ω∗ /∈ F , so ω̃ �= ω∗). Thus:

0 > J̃1 − J̃1,2 = lim
ε↓0

ε log
(

P(τ1 ≤ ε, τ2 ≤ κε)
P(τ1 ≤ ε)

)
(24)

implying that λL = 0.

4. GENERAL CASE

In this section, we present a proof of the tail independence of the hitting times of diffusions
in the general two-dimensional case. Throughout, we assume without loss of generality that
J1 ≥ J2 where J1 and J2 are defined in (14) and (15), respectively.

4.1. Properties of the Hitting Time Distributions

In this section, we derive properties of the distributions of the hitting times τ1 and τ2 that
are used later in the paper. While many of the results are likely well-known, we include
proofs when we are unaware of a precise reference.

1 Here we use the fact that Bc̃1,0 and B(c̃1, 1, c̃2, κ) are both continuity sets, meaning that the upper and
lower bounds given by Theorem 2.3 are equal. This is shown below in Proposition 4.6.
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First of all, we have that Fi(0) = 0 since X has continuous sample paths and ci > xi0 = 0.
Also, as a distribution function, Fi is right-continuous with left-hand limits, and is increasing
(not necessarily strictly increasing). We would like to show that Fi are continuous and
strictly increasing, as this justifies the use of expressions such as F−1

1 (α) and F−1
2 (F1(ε))

(as well as the continuity of these inverses), below. The fact that the distribution Fi is
strictly increasing can be derived as a consequence of the following result from Bass [4], for
d = 2, and referred to there as the support theorem for Xt.

Theorem 4.1: Suppose σ and b are bounded, σ−1 is bounded, x ∈ R
d, and Xt satisfies (2)

with X0 = x, ε = 1. Suppose ψ : [0, t] → R
d is continuous, with ψ(0) = x and δ > 0. There

exists k > 0, depending only on δ, t, the modulus of continuity of ψ, and the bounds on b
and σ such that

P

(
sup
s≤t

|Xs − ψ(s)| < δ

)
≥ k. (25)

Proof: See Bass [4] (pp. 25–27). �

Quoting Bass [4] (p. 26) (substituting our notation) “This can be phrased as saying the
graph of Xs stays inside an δ-tube about ψ. By this we mean, if Gδψ = {(s, y) : |y − ψ(s)| <
δ, s ≤ t}, then {(s,Xs) : s ≤ t} is contained in Gδψ with positive probability.”

Proposition 4.2: Fi is strictly increasing, i = 1, 2.

Proof: By reordering the indices, the result only needs to be proved for i = 1. Let δ > 0,
and r > 0. Applying the above theorem with ψ1(s) = (c1 + 2δ)s/r gives that F1(r) > 0 =
F (0). Now let t > r, and consider a smooth ψ such that ψ1(s) ≤ ci − 2δ for s ≤ r and
ψ1(t) > ci + 2δ. Then

F1(t) − F1(r) = P(r < τ1 ≤ t) ≥ P

(
sup
s≤t

|Xs − ψ(s)| < δ

)
> 0. (26)

�

Next, we consider whether Fi(t) are continuous, that is, whether Fi(t−) = Fi(t). To
prove this, we use two results. The first is another result from Bass [4]. Throughout, Kj

will be strictly positive constants.

Theorem 4.3: Suppose Xt solves (2) with ε = 1, σ and b bounded. There exist K1 and K2

depending only on |σ| such that:

P

(
sup
s≤t

|Xs −X0| > λ+ ‖b‖∞t
)

≤ K1 exp(−K2λ
2/t). (27)

Proof: See Bass [4] (p. 23). �

Let Γ(t, x; y) denote the density of Xt given that X0 = y, which is the fundamental
solution of the operator L− ∂t. Bounds on the fundamental solution, given by Friedman
[15] (p. 24), imply that

0 ≤ Γ(t, x; y) ≤ K3

t
exp

(
−K4

‖x− y‖2

t

)
(28)

(where we have specialized the results in the reference to the case d = 2).
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Proposition 4.4: For all t > 0, Fi(t−) = Fi(t).

Proof: Let t > 0, and suppose to the contrary that F1(t) − F1(t−) = ξ > 0. Let δn =
n−1‖b‖∞, and tn = t− 1

n , and note that:

F1(t) − F1(tn) = P(tn < τ ≤ t) > ξ. (29)

But

P(tn < τ ≤ t) ≤ P(X1(tn) ∈ [c1 − δn, c1))

+ P

(
X1(tn) < c1 − δn, sup

s∈(tn,t]

X1(s) ≥ c1

)
= P1(n) + P2(n). (30)

We will control each term separately.

P1(n) =
∫ c1

c1−δn

∫ ∞

−∞
Γ(tn, 0, y)dy2dy1 (31)

≤ K3

tn

∫ c1

c1−δn

∫ ∞

−∞
exp

(
−K4

(y2
1 + y2

2)
tn

)
dy2dy1 (32)

≤ K5δn
tn

≤ K6δn. (33)

Using the Markov property, and the bound (27)

P2(n) ≤
∫ c1−δn

−∞

∫ ∞

−∞
Γ(tn, 0, y)P

(
sup

0<s≤n−1
|Xs − y| ≥ c1 − y1

)
dy2dy1 (34)

=
∫ c1−δn

−∞

∫ ∞

−∞
Γ(tn, 0, y)P

(
sup

0<s≤n−1
|Xs − y| ≥ c1 − y1 − δn + n−1‖b‖∞

)
dy2dy1

≤ K1

∫ ∞

−∞

∫ ∞

−∞
1{y1<c1−δn}Γ(tn, 0, y) exp

(−K2n(c1 − y1 − n−1‖b‖∞)2
)
dy2dy1

≤ K1K3

∫ ∞

−∞

∫ ∞

−∞
1{y1<c1−δn} exp

(
−K4

‖y‖2

tn

)

× exp
(−K2n(c1 − y1 − n−1‖b‖∞)2

)
dy2dy1.

P1(n) clearly tends to zero, and P2(n) tends to zero by the Dominated Convergence
Theorem. But then F1(t) − F1(tn) tends to zero, contradicting (29). �

Remark 4.5: According to Elliott, Siu, and Yang [10], u(x, t) = P(τ1 > t|X0 = x) solves the
partial differential equation ∂tu = Lu. where It should be noted that the boundary data
is not continuous (the initial condition is u(x, 0) = 1{x1<c1}, but the boundary condition
is u(c1, x2, t) = 0). Nonetheless, a suitable notion of weak solution exists that is smooth
on the interior of the domain. Let v(x, t) = 1 − u(x, t) = P(τ1 ≤ t|X0 = x), so that F1(t) =
v(0, t). v is as smooth as u; so F1 should inherit the maximum smoothness (in time) of the
solution to the partial differential equation (PDE). One can also argue that the density of
the hitting time is strictly positive for t > 0 as follows. Let f1(t) = F ′

1(t) = ∂tv(0, t) > 0.
Let w(x, t) = ∂tv(x, t), so that f1(t) = w(0, t), and note that, by differentiating the PDE:
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∂tu = Lu⇒ ∂tv = Lv ⇒ ∂tw = Lw. Since v is increasing in t, w ≥ 0. Now, suppose that
fi(t0) = 0 for some 0 < t0 < T . Then w(0, t) = 0. But w ≥ 0, so this means that w attains
a minimum at (0, t0), and by the Strong Maximum Principle for parabolic PDEs (Evans
[11], pp. 396–397), w is constant on Ut0 = U × (0, t0]. In particular, this implies that f1(t) =
w(0, t) = w(0, t0) = 0 for all 0 < t < t0, contradicting the fact that F1 is strictly increasing.
(In order to meet the hypotheses in the reference, we can consider w over U × (0, T ] where
U = (−ε, ε) × (−ε, ε) to meet the requirements that U be bounded, and w smooth on UT
and continuous on ŪT .)

It is clear that in general we cannot expect a result as precise as F1(ε) = F2(κε), as held
in the Brownian motion case. Nonetheless, when J1 > J2 we can show that for κ > J2

J1
and ε small enough, F1(ε) ≤ F2(κε), and when J1 = J2, the logarithmic asymptotics of
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε))) and P(τ1 ≤ ε, τ2 ≤ ε) are the same. These results are given in
Proposition (4.7), which requires the following consequences of Theorem (2.3).

Proposition 4.6: For Ji defined as in (14) and (15):

lim
ε↓0

−ε log(Fi(ε)) = Ji. (35)

Furthermore, for any γ ≤ 1:

lim
ε↓0

−ε log(P(τ1 ≤ ε, τ2 ≤ γε)) = inf{I(ω)|ω ∈ B(c1, 1, c2, γ)} (36)

lim
ε↓0

−ε log(P(τ1 ≤ γε, τ2 ≤ ε)) = inf{I(ω)|ω ∈ B(c1, γ, c2, 1)} (37)

Proof: We will consider the result for F1. The proof of the other results is similar. By (3):

F1(ε) = P
1
x(B(c1, ε, 0, ε)) = P

ε
x(Bc1,0).

Noting that B̊c1,0 consists of all ω ∈ C([0, 1],R2) such that the supremum of the first
component is strictly greater than c1 we have by Theorem 2.3:

− inf{I(ω)|ω ∈ B̊c1,0} ≤ lim inf
ε↓0

ε log(F1(ε))

≤ lim sup
ε↓0

ε logF1(ε) ≤ − inf{I(ω)|ω ∈ Bc1,0} = −J1. (38)

Now let ω∗ ∈ Bc1,0 be such that I(ω∗) = J1 (existence of ω∗ follows from the fact that Bc1,0
is closed, and I has compact lower level sets). Take ωn(s) = ω∗(s) + (s/n) for n ≥ 1. Then
ωn ∈ B̊c1,0 (the interior of Bc1,0), ω

n → ω, and I(ωn) → I(ω) by Dominated Convergence,
so the two bounds in (38) coincide and the result follows. �

Note that a special case of the last limit in the above proposition is that:

lim
ε↓0

−ε log(P(τ1 ≤ ε, τ2 ≤ ε)) = inf{I(ω)|ω ∈ Bc1,c2} = J1,2. (39)

Proposition 4.7:
(i) Suppose that J1 > J2. Then for any γ > J2/J1 there exists t0(γ) > 0 such that for all
t ≤ t0, F1(t) ≤ F2(γt). In particular, for t small enough, F−1

2 (F1(t)) ≤ γt.
(ii) Suppose that J1 = J2. Then

− lim
ε↓0

ε log P(τ1 ≤ ε, τ2 ≤ F−1
2 (F1(ε)) = J1,2. (40)
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Proof: (i) We may assume γ < 1. Let c < 1 be such that c2 ≥ J2/(J1γ). By Proposition 4.6,
there is a t0 small enough so that for all t ≤ t0,

F1(t) ≤ exp
(
−J1c

t

)
≤ exp

(
− J2

c(γt)

)
≤ F2(γt). (41)

(ii) Let J = J1 = J2 and η > 0. By Proposition 4.6 for r < r(η), and i = 1, 2, we have that

exp
(
−J

√
1 + η

r

)
≤ Fi(r) ≤ exp

(
− J

r
√

1 + η

)
(42)

so for ε small enough:

F1(ε) ≤ exp
(
− J

ε
√

1 + η

)
= exp

(
−J

√
1 + η

(1 + η)ε

)
≤ F2((1 + η)ε) (43)

and we have that F−1
2 (F1(ε)) ≤ (1 + η)ε. A similar argument shows that for ε small enough,

F−1
2 (F1(ε)) ≥ (1 + η)−1ε. Using (17) then implies

(1 + η)J1,2 = inf{I(ω)|ω ∈ B(c1, (1 + η)−1, c2, (1 + η)−1)}
≥ inf{I(ω)|ω ∈ B(c1, 1, c2, (1 + η)−1)}
= lim

ε↓0
[−ε log

(
P(τ1 ≤ ε, τ2 ≤ (1 + η)−1ε)

)]
≥ lim sup

t↓0

[−ε log
(
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε)))
)]

(44)

≥ lim inf
ε↓0

[−ε log
(
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε)))
)]

≥ lim
ε↓0

[−ε log (P(τ1 ≤ ε, τ2 ≤ (1 + η)ε))]

= (1 + η)−1 inf{I(ω)|ω ∈ B(c1, (1 + η)−1, c2, 1)}
≥ (1 + η)−1J1,2.

The result now follows by letting η ↓ 0. �

4.2. Properties of the Variational Problems

Lemma 4.8: Suppose that ω ∈ Bc1,0 is such that I(ω) = J1. Then ω1(1) = c1, and ω1(t) < c1
for t < 1. Similarly, if ω ∈ B0,c2 is such that I(ω) = J2, then ω2(1) = c2 and ω2(t) < c2 for
t < 1.

Proof: Suppose to the contrary that ω ∈ Bc1,0, I(ω) = J1, ω1(t̃) = c1 for some t̃ < 1. Using
Lemma 2.1:

J1 ≥
∫ t̃

0

ω̇(s)′g(ω(s))ω̇(s) ds ≥ d2(0, ω(t̃))
2t̃

>
d2(0, ω(t̃))

2
≥ J1 (45)

since a path that reaches the point ω(t̃) at time 1 is in Bc1,0. This is a contradiction, so we
must have ω1(t) < c1 for all t < 1. The proof when I(ω) = J2 is similar. �
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Lemma 4.9: If J1 > J2 then there exists γ ∈ (J2
J1
, 1) such that

inf{I(ω)|ω ∈ B(c1, 1, c2, γ)} > J1. (46)

Proof: Since B(c1, 1, c2, γ) ⊆ Bc1,0, weak inequality in (46) is immediate for any γ ≥ 0.
Suppose to the contrary that equality holds for all γ ∈ (J2/J1, 1). Let γn ↓ J2/J1, and let
ωn ∈ B(c1, 1, c2, γn) and tn ∈ (0, γn] be such that I(ωn) = J1, and ωn2 (tn) = c2. Passing to
a subsequence if necessary, and using the fact that I is lower semi-continuous with compact
level sets, we obtain ωn → ω∗, tn → t∗ ≤ J2/J1, and ω∗

2(t∗) = c2, with I(ω∗) = J1. Now:

J1 = I(ω∗) =
1
2

∫ J2/J1

0

ω̇∗(t)′g(ω∗(t))ω̇∗(t) dt+
1
2

∫ 1

J2/J1

ω̇∗(t)′g(ω∗(t))ω̇∗(t) dt

≥ J1 +
1
2

∫ 1

J2/J1

ω̇∗(t)′g(ω∗(t))ω̇∗(t) dt

≥ J1 +
d2(ω∗(J2/J1), ω∗(1))

2(1 − J2/J1)
,

where the first line follows by applying (7), and the second line from Lemma 2.1. Using
Lemma 4.8 and the fact that I(ω∗) = I(ωn) = J1, ω∗

1(1) = limn→∞ ωn1 (1) = c1, and we must
have that ω∗

1(1) < c1 for t < 1, so ω∗ ∈ B(c1, 1, c2, J2/J1), and d2(ω∗(J2/J1), ω∗(1)) > 0,
yielding a contradiction. �

4.3. Tail Independence

In this section, we prove that τ1 and τ2 have zero lower tail dependence. In order to do so,
we need to recall some facts about the (scaled) squared-distance function:

u(z) = 1
2d

2(0, z) : R
2 → R+. (47)

We begin with some standard definitions. Here G ⊆ R
2 is an open set.

Definition 4.10: Let u ∈ C(G), x ∈ G. The sets D+u(x) and D−u(x) are defined to be:

D+u(x) =
{
p ∈ R

2 : lim sup
y→x,y∈Ω

u(y) − u(x) − p · (y − x)
|x− y| ≤ 0

}
, (48)

D−u(x) =
{
p ∈ R

2 : lim inf
y→x,y∈Ω

u(y) − u(x) − p · (y − x)
|x− y| ≥ 0

}
. (49)

D+u(x) is referred to as the (viscosity) super-differential of u at x and D−(x) is the
(viscosity) sub-differential of u at x.

As noted earlier, u(z) is the optimal value of the optimization problem:

u(z) = inf
ω∈C0[0,1],ω(1)=z

I(ω) = inf
ω∈H1

0 ,ω(1)=z

1
2

∫ 1

0

ω̇(t)′g(ω(t))ω̇(t) dt. (50)

Results in the calculus of variations can be used to show that minimizers ω of (50) are
Lipschitz continuous (Clarke [7], Theorem 16.18, pp. 330–332), and indeed since λ(t, x, p) =
(1/2)p′g(x)p is smooth, any Lipschitz minimizer ω∗ satisfies the integral Euler equation
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(the Theorem of du-Bois-Reymond, Clarke [7], Theorem 15.2, pp. 308–309). The positive
definiteness of Λpp then implies higher order regularity of ω∗ given higher regularity of Λ,
by a Theorem of Hilbert and Weierstrass (Clarke [7], Theorem 15.7, p. 313), which in turn
implies that ω∗ is a smooth classical solution of the Euler equation for the problem.
Optimal solutions of (50) are geodesics connecting 0 and z in the Riemannian metric
on R

2 defined by the distance (6). As such, they have constant, nonzero speed, that is,
ω̇∗(t)′g(ω∗(t))ω∗(t) = k > 0 (this may also be seen from the point of view of the calculus
of variations as a consequence of the Erdmann condition, Clarke [7], Proposition 14.4, pp.
290–291). Using the formula for the first variation of the energy I (see do Carmo [9], pp.
192–196), it can be shown that u is super-differentiable, and g(z)ω̇∗(1) ∈ D+(u(z)) (for a
sketch of the proof, see Figalli and Villani [12], p. 178).

Theorem 4.11: The hitting times τ1 and τ2 have zero lower tail dependence:

λL = lim
α↓0

P(τ1 ≤ F−1
1 (α), τ2 ≤ F−1

2 (α))
α

= 0 (51)

Proof: Let ε = F−1
1 (α), so that α = F1(ε) and

λL = lim
ε↓0

P(τ1 ≤ ε, τ2 ≤ F−1
2 (F1(ε))

F1(ε)
= lim

t↓0
L(ε). (52)

It is enough to show that lim supε↓0 Λ(ε) < 0 where:

Λ(ε) = ε log(L(ε)) = ε log
(
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε))
)− ε log(F1(ε)). (53)

(i) Suppose J1 > J2. Using Proposition 4.6 we need to show that:

lim inf
ε↓0

−ε log
(
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε))
)
> J1. (54)

Let γ be as in Lemma 4.9. Then, applying Propositions 4.7 and 4.6:

lim inf
ε↓0

−ε log
(
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε))
) ≥ lim

t↓0
−ε log (P(τ1 ≤ ε, τ2 ≤ γε))

= inf{I(ω)|ω ∈ B(c1, 1, c2, γ)}
> J1. (55)

(ii) Suppose J1 = J2. Then

Λ(ε) = ε
(
log
(
P(τ1 ≤ ε, τ2 ≤ F−1

2 (F1(ε))
)− log (P(τ1 ≤ ε, τ2 ≤ ε))

)
+ ε log(P(τ1 ≤ ε, τ2 ≤ ε)) − ε log(P(τ1 ≤ ε)). (56)

Using Propositions 4.7 and 4.6, the result will follow if we can show that J12 > J1. Since
Bc1,c2 ⊆ Bc1,0, we immediately have J12 ≥ J1. Suppose that J12 = J1 = J2. Let ω∗ ∈ Bc1,c2
be such that I(ω∗) = J12 = u(c), where c = (c1, c2)′ (under the assumptions, J12 = u(c)
follows immediately from Lemma 4.8). By Lemma 4.8, ω∗(1) = (c1, c2)′ and ω∗

1(t) < c1,
ω∗

2(t) < c2 for all t < 1, and in particular, ω̇∗(1) ≥ 0. Let p ∈ D+u(c). Considering the
sequence yn = (c1 − 1

n , c2) and using the fact that u(yn) ≥ J2 = u(c) yields:

0 ≥ lim sup
yn→c

u(yn) − u(c) − p · (yn − c)
|yn − c| ≥ lim sup

yn→c

−p · (yn − c)
|yn − c| = p1. (57)

https://doi.org/10.1017/S0269964817000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964817000353


534 D. Saunders, L. K. Tsui, and S. Iyengar

Similarly, we have p2 ≤ 0. Since g(c)ω̇∗(1) ∈ D+u(c), g(c)ω̇∗(1) ≤ 0. But then
ω̇∗(1)′g(c)ω̇∗(1) ≤ 0. �

5. CONCLUSION

By utilizing the large deviations results of Varadhan [28], we have shown that the hitting
times τ1 and τ2 of the components of a two-dimensional uniformly elliptic diffusion process
have coefficient of lower tail dependence equal to zero.
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8. Dębicki, K., Kosiński, K.M., Mandjes, M., & Rolski, T. (2010). Extremes of multidimensional Gaussian

processes. Stochastic Processes and their Applications 120: 2289–2301.
9. do Carmo, M.P. (1992). Riemannian geometry. Boston: Birkhäuser.
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