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We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint

copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem

characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing.

In this paper we prove the following analogue for directed graphs: Suppose that T is a

tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If

G has minimum in- and outdegree at least (1 − 1/r)n then G contains a perfect T -packing.

In the case when T is a cyclic triangle, this result verifies a recent conjecture of

Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when

T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large

indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically

for all r � 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning

almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma

[1, 6].

2010 Mathematics subject classification: Primary 5C35

Secondary 5C20, 5C70

1. Introduction

1.1. Perfect packings in undirected graphs

Given two (di)graphs H and G, an H-packing in G is a collection of vertex-disjoint

copies of H in G. An H-packing is called perfect if it covers all the vertices of G. Perfect

H-packings are also referred to as H-factors or perfect H-tilings. Note that perfect H-

packings are generalizations of perfect matchings (which correspond to the case when

H is a single edge). Tutte’s theorem characterizes all those graphs that contain a perfect

matching. On the other hand, Hell and Kirkpatrick [8] showed that the decision problem
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of whether a graph G has a perfect H-packing is NP-complete precisely when H has a

component consisting of at least three vertices. Thus, for such graphs H , it is unlikely that

there is a complete characterization of those graphs containing a perfect H-packing. It is

natural therefore to ask for simple sufficient conditions which force a graph to contain a

perfect H-packing.

A seminal result in the area is the following theorem of Hajnal and Szemerédi [7].

Theorem 1.1 (Hajnal and Szemerédi [7]). Every graph G whose order n is divisible by r

and whose minimum degree satisfies δ(G) � (1 − 1/r)n contains a perfect Kr-packing.

It is easy to see that the minimum degree condition here cannot be lowered. In recent

years there have been several generalizations of the Hajnal–Szemerédi theorem. Kühn

and Osthus [15, 16] characterized, up to an additive constant, the minimum degree which

ensures that a graph G contains a perfect H-packing for an arbitrary graph H . Kierstead

and Kostochka [13] proved an Ore-type analogue of the Hajnal–Szemerédi theorem: If G

is a graph whose order n is divisible by r, then G contains a perfect Kr-packing provided

that d(x) + d(y) � 2(1 − 1/r)n − 1 for all non-adjacent x �= y ∈ V (G). Kühn, Osthus and

Treglown [17] characterized, asymptotically, the Ore-type degree condition which ensures

that a graph G contains a perfect H-packing for an arbitrary graph H . Recently, Keevash

and Mycroft [11] proved the following r-partite version of the Hajnal–Szemerédi theorem,

thereby tackling a conjecture of Fischer [5] for sufficiently large graphs.

Theorem 1.2 (Keevash and Mycroft [11]). Given r ∈ N, there exists an n0 ∈ N such that

the following holds. Suppose G is an r-partite graph with vertex classes V1, . . . , Vr , where

|Vi| = n � n0 for all 1 � i � r. If

δ(G) � (1 − 1/r)n + 1

then G contains a perfect Kr-packing.

(Here δ(G) denotes the minimum degree of a vertex from one vertex class Vi to

another vertex class Vj .) Keevash and Mycroft [11] actually proved a stronger result

than Theorem 1.2. Indeed, they showed that the minimum degree condition here can be

relaxed to δ(G) � (1 − 1/r)n provided that G is not isomorphic to one special construction.

Further, their result extends to perfect Kk-packings where 1 � k � r (see [11] for more

details).

1.2. Packing tournaments in directed graphs

It is natural to seek analogues of the Hajnal–Szemerédi theorem in the digraph and

oriented graph settings. We consider digraphs with no loops and at most one edge in each

direction between every pair of vertices. An oriented graph is a digraph without 2-cycles.

In this paper we restrict our attention to the problem for digraphs. See [22, 2] for an

overview of the known results concerning perfect packings in oriented graphs.

The minimum semidegree δ0(G) of a digraph G is the minimum of its minimum outdegree

δ+(G) and its minimum indegree δ−(G). Let δ(G) denote the minimum degree of G, that
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is, the minimum number of edges incident to a vertex in G. (Note that if both xy and yx

are directed edges in G, they are counted as two separate edges.) Denote by Tr the set of

all tournaments on r vertices. Our main result is an analogue of the Hajnal–Szemerédi

theorem for perfect tournament packings in digraphs.

Theorem 1.3. Given an integer r � 3, there exists an n0 ∈ N such that the following holds.

Suppose T ∈ Tr and G is a digraph on n � n0 vertices where r divides n. If

δ0(G) � (1 − 1/r)n

then G contains a perfect T -packing.

Notice that the minimum semidegree condition in Theorem 1.3 is tight. Indeed, let

n, r ∈ N such that r divides n. Let G′ be the digraph obtained from the complete digraph

on n vertices by removing all those edges lying in a given vertex set of size n/r + 1. Then

δ0(G′) = (1 − 1/r)n − 1

and G′ does not contain a perfect T -packing for any T ∈ Tr . In general, any digraph G′′

on n vertices with an independent set of size n/r + 1 (and δ0(G′′) = (1 − 1/r)n − 1) does

not contain a perfect T -packing.

In the case when T is the cyclic triangle C3, Theorem 1.3 verifies a recent conjecture of

Czygrinow, Kierstead and Molla [4] for large digraphs. Further, notice that Theorem 1.3

is a ‘true generalization’ of the Hajnal–Szemerédi theorem in the sense that the former

implies the latter for large graphs.

We remark that, by applying the same probabilistic trick used by Keevash and

Sudakov in Section 7 of [12], one can obtain an asymptotic version of Theorem 1.3 from

Theorem 1.2. In [4] it was also shown that such an asymptotic version of Theorem 1.3

for T = C3 follows from a result concerning perfect packings in multigraphs.

Similarly to many proofs in the area, our argument splits into ‘extremal’ and ‘non-

extremal’ cases. When T �= C3, the extremal case considers digraphs G containing a set of

vertices of size n/r that spans an ‘almost’ independent set (i.e., G is ‘close’ to an extremal

graph G′′ as above). Interestingly, when T = C3 we have an extra extremal configuration

(see Section 3.2), and thus have two separate extremal cases. In the non-extremal case our

proof splits into two main tasks: finding an ‘almost’ perfect T -packing in G and finding

a so-called ‘absorbing set’ that can be used to cover the remaining vertices with disjoint

copies of T (see Section 3.3 for the precise definition of such a set). To obtain the former

we apply a result of Keevash and Mycroft [10] concerning almost perfect matchings in

hypergraphs. We also make use of the Directed Graph Removal Lemma (see, e.g., [1, 6]).

A substantial proportion of the paper is devoted to obtaining our desired absorbing set.

A more detailed overview of the proof is given in Section 2.

1.3. Degree conditions forcing perfect transitive tournament packings

Although the minimum semidegree condition in Theorem 1.3 is ‘best possible’, one could

replace the condition by a weaker one. Indeed, for transitive tournaments we conjecture
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that the following stronger statement is true. Let Tr denote the transitive tournament on

r vertices.

Conjecture 1.4. Let n, r ∈ N such that r divides n. Suppose that G is a digraph on n vertices

so that for any x ∈ V (G),

d+(x) � (1 − 1/r)n or d−(x) � (1 − 1/r)n. (1.1)

Then G contains a perfect Tr-packing.

Conjecture 1.4 would imply the following very recent result of Czygrinow, DeBiasio,

Kierstead and Molla [3].

Theorem 1.5 (Czygrinow, DeBiasio, Kierstead and Molla [3]). Let n, r ∈ N such that r

divides n. Then every digraph G on n vertices with

δ+(G) � (1 − 1/r)n

contains a perfect Tr-packing.

In Section 4 we give a short proof of Conjecture 1.4 in the case when r = 3. We also

prove the following asymptotic version of Conjecture 1.4.

Theorem 1.6. Let η > 0 and r � 3. Then there exists an n0 ∈ N such that the following

holds. Suppose that G is a digraph on n � n0 vertices, where r divides n, and that for any

x ∈ V (G),

d+(x) � (1 − 1/r + η)n or d−(x) � (1 − 1/r + η)n.

Then G contains a perfect Tr-packing.

We give a unified approach to proving Theorems 1.3 and 1.6, though the proof of the

former is substantially more involved.

For ‘most’ tournaments T , there does not exist a ‘non-trivial’ minimum outdegree

condition which forces a digraph G to contain a perfect T -packing. Indeed, let T ∈ Tr
such that every vertex in T has an inneighbour. Let n ∈ N such that r divides n. Obtain

the digraph G from the complete digraph on n − 1 vertices by adding a vertex x that

sends out all possible edges to the other vertices (but receives none). Then δ+(G) = n − 2,

but G does not contain a perfect T -packing since x does not lie in a copy of T .

So certainly Conjecture 1.4 and Theorem 1.5 cannot be generalized to arbitrary

tournaments T . It would be interesting to establish whether the degree conditions

in Conjecture 1.4 and Theorem 1.5 force a perfect T -packing for some non-transitive

tournament T on r vertices.

In the next section we give an outline of the proofs as well as details about the

organization of the paper.
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2. Overview of the proofs and organization of the paper

2.1. Outline of the proof of Theorem 1.3

Suppose that G and T ∈ Tr are as in Theorem 1.3. Further, suppose that there is a

‘small’ set M ⊆ V (G) with the property that both G[M] and G[M ∪ Q] contain perfect

T -packings for any ‘very small’ set Q ⊆ V (G) where |Q| ∈ rN. Then notice that, to find a

perfect T -packing in G, it suffices to find an ‘almost’ perfect T -packing in G′ := G \ M.

Indeed, suppose that G′ contains a T -packing M1 covering all but a very small set of

vertices Q. Then by definition of M, G[M ∪ Q] contains a perfect T -packing M2. Thus,

M1 ∪ M2 is a perfect T -packing in G, as desired.

Roughly speaking, we refer to such a set M as an ‘absorbing set’ (see Section 3.3 for

the precise definition of such a set). The ‘absorbing method’ was first used in [20] and has

subsequently been applied to numerous embedding problems in extremal graph theory.

In general, a digraph G as in Theorem 1.3 may not contain an absorbing set. For

example, consider the complete 3-partite digraph G1 with vertex classes V1, V2, V3 of size

n/3. (So G1 contains all possible edges with endpoints in different vertex classes.) Then G1

satisfies the hypothesis of Theorem 1.3 in the case when T = T3 and r = 3. However, if

Q ⊆ V1 such that |Q| = 3 then it is easy to see that there does not exist a set M ⊆ V (G1)

such that both G1[M] and G1[M ∪ Q] contain perfect T3-packings. Notice though that

G1 is ‘close to extremal’ (i.e., G1 contains an independent set of size n/3).

It turns out that being ‘close’ to an extremal example is the only barrier preventing

our digraph G from containing an absorbing set M. Indeed, in the case when T �= C3 we

show that if G does not contain an ‘almost’ independent set of size n/r then G contains

our desired set M. As mentioned in Section 1.2, when T = C3 we have an extra extremal

configuration Ex(n) (see Section 3.2). In this case we show that if G is far from Ex(n) and

does not contain an ‘almost’ independent set of size n/3 then G contains our desired set

M (see Theorem 5.1).

Constructing the absorbing set in the non-extremal case. The crucial idea in proving that

a non-extremal digraph G contains an absorbing set M is to first show that G has many

‘connecting structures’ of a certain type. For example, to find our desired absorbing set

it suffices to show that, for any x, y ∈ V (G), there are ‘many’ (r − 1)-sets X ⊆ V (G) so

that both X ∪ {x} and X ∪ {y} span copies of T in G. In Section 8 we prove a number

of so-called connection lemmas that guarantee such connecting structures. This turns

out to be quite a subtle process as we prove different connection lemmas depending on

the structure and size of T . In particular, we need to deal with the case when T = C3

separately. (This stems from the fact that we now have two extremal cases. See Section 8

for more details.) In Section 9 we use the connection lemmas to construct the absorbing

set M.

Covering the remaining vertices of G in the non-extremal case. As mentioned earlier, once

we have constructed an absorbing set M in a non-extremal digraph G, it suffices to find

an ‘almost’ perfect T -packing in G′ = G \ M. For this, we translate the problem into

one about almost perfect matchings in hypergraphs. Indeed, from G′ we construct a

hypergraph J on V (G′) where, for any 1 � i � r, an i-tuple Y ⊆ V (G′) forms an edge in
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J precisely when Y spans a subtournament of T of size i in G′. So one may think of

J as consisting of ‘layers’ J1, . . . , Jr where Ji contains the edges of size i. For example, if

T = T3, then the edge set of J1 is V (G′), the edge set of J2 consists of all pairs {x, y}
where xy ∈ E(G′) or yx ∈ E(G′) and the edge set of J3 consists of all triples {x, y, z} that

span a copy of T3 in G′. J is an example of a so-called r-complex (see Section 7 for the

precise definition).

Vitally, J has the property that a matching in Jr corresponds to a T -packing in G′.

We thus apply a result of Keevash and Mycroft [10] on almost perfect matchings in

r-complexes. (In order to apply this result we again use that G is non-extremal.) This

ensures an almost perfect matching in Jr and thus an almost perfect T -packing in G′, as

desired.

The extremal cases. Finally, we deal with the case when G is close to an extremal

example. If T = C3 and G is close to Ex(n) then a relatively short argument shows that

G must contain a perfect C3-packing (see Lemma 5.6). On the other hand, the general

extremal case when G contains an almost independent set of size n/r is more involved (see

Lemma 5.5). (Note that the class of digraphs G on n vertices with an almost independent

set of size n/r and δ0(G) � (1 − 1/r)n is wide.) We draw on ideas from [14] to tackle this

case.

The extremal cases are the only parts of the proof where we use the full force of

the minimum semidegree condition on G. Indeed, the argument in the non-extremal case

holds even if we relax the condition to δ0(G) � (1 − 1/r − o(1))n.

2.2. The proof of Theorem 1.6

The proof of Theorem 1.6 follows the same general approach as that of Theorem 1.3 in

the non-extremal case: Again our two main tasks are to (i) find an absorbing set and (ii)

cover almost all of the remaining vertices with a Tr-packing. Thus, where possible, we

present the tools for both proofs in a unified way. Indeed, many of our auxiliary results

are applied in both proofs.

2.3. Organization of the paper

In the next section we formally introduce the notion of an absorbing set and define

the extremal digraph Ex(n). We also introduce other notation and definitions. We prove

Conjecture 1.4 in the case of transitive triangles in Section 4. In Section 5 we state the

main auxiliary results that we prove in the paper and derive Theorems 1.3 and 1.6 from

them. In Section 6 we prove Turán-type results for digraphs. These results will be applied

both when constructing our absorbing sets and when finding an almost perfect T -packing

in the non-extremal case. Section 7 deals with this latter task. We state and prove the

connection lemmas for Theorems 1.3 and 1.6 in Section 8. These are then used to construct

our absorbing sets in Section 9. After giving a number of useful results in Section 10 we

tackle the extremal cases of Theorem 1.3 in Sections 11 and 12.
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3. Notation and preliminaries

3.1. Definitions and notation

Given two vertices x and y of a digraph G, we write xy for the edge directed from x to y.

We write V (G) for the vertex set of G, E(G) for the edge set of G and define |G| := |V (G)|
and e(G) := |E(G)|. We denote by N+

G (x) and N−
G (x) the out- and the inneighbourhood of x

and by d+
G(x) and d−

G(x) its out- and indegree. We will write N+(x), for example, if this is

unambiguous. For a vertex x ∈ V (G) and a set Y ⊆ V (G) we write d+
G(x, Y ) to denote the

number of edges in G with startpoint x and endpoint in Y . We define d−
G(x, Y ) analogously.

The minimum semidegree δ0(G) of G is the minimum of its minimum outdegree δ+(G)

and its minimum indegree δ−(G). Let δ(G) denote the minimum degree of G, that is, the

minimum number of edges incident to a vertex in G. (Note that if both xy and yx are

directed edges in G, they are counted as two separate edges.)

Given a subset X ⊆ V (G), we write G[X] for the subdigraph of G induced by X. We

write G \ X for the subdigraph of G induced by V (G) \ X. For x1, . . . , xm ∈ V (G) we define

G[x1, . . . , xm] := G[{x1, . . . , xm}].

Given a set X ⊆ V (G) and a digraph H on |X| vertices we say that X spans a copy of

H in G if G[X] contains a copy of H . In particular, this does not necessarily mean that

X induces a copy of H in G. For disjoint X,Y ⊆ V (G) we let G[X,Y ] denote the digraph

with vertex set X ∪ Y whose edge set consists of all those edges xy ∈ E(G) with x ∈ X

and y ∈ Y . If G and H are digraphs, we write G ∪ H for the digraph whose vertex set is

V (G) ∪ V (H) and whose edge set is E(G) ∪ E(H). If G and H have the same vertex set V

then let G − H denote the digraph with vertex set V and edge set E(G) \ E(H).

Given digraphs G and H , we say that G is H-free if G does not contain H as a

subdigraph. Let G be a (di)graph on n vertices and let γ > 0. We say that a set S ⊆ V (G)

is γ-independent if G[S] contains at most γn2 edges. Given two digraphs G and H on n

vertices we say that G γ-contains H if, after adding at most γn2 edges to G, the resulting

digraph contains a copy of H . More precisely, G γ-contains H if there is an isomorphic

copy G′ of G such that V (G′) = V (H) and |E(H) \ E(G′)| � γn2.

For a (di)graph G and disjoint A,B ⊆ V (G), we write eG(A,B) for the number of

edges in G with one endpoint in A and the other in B. (So eG(A,B) = eG(B,A).) Given a

(di)graph T , let 2T denote the disjoint union of two copies of T .

Recall that Tr denotes the transitive tournament of r vertices. Given 1 � i � r, we say

a vertex x ∈ V (Tr) is the ith vertex of Tr if x has indegree i − 1 and outdegree r − i in Tr .

Given a set X and r ∈ N, we denote by
(
X
r

)
the set of all r-subsets of X.

Throughout the paper, we write 0 < α � β � γ to mean that we can choose the

constants α, β, γ from right to left. More precisely, there are increasing functions f and

g such that, given γ, whenever we choose some β � f(γ) and α � g(β), all calculations

needed in our proof are valid. Hierarchies of other lengths are defined in the obvious way.

3.2. The extremal digraph Ex(n)

Suppose that n � 3 and c are non-negative integers. Define a1, a2, a3 ∈ N such that 	n/3
 �
a1 � a2 � a3 � �n/3�, where a1 + a2 + a3 = n. Let A1, A2 and A3 be disjoint vertex sets
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A1

A2A3

Figure 1. The extremal digraph Ex(n).

of size a1 − c, a2 + c and a3 respectively. Let Exc(n) denote the digraph with vertex set

A1 ∪ A2 ∪ A3 and whose edge set is defined as follows.

• Ai induces a complete digraph in Exc(n) (for all 1 � i � 3).

• If x ∈ Ai and y ∈ Ai+1 then xy ∈ E(Exc(n)) (for all 1 � i � 3, where indices are taken

mod 3).

Define Ex(n) := Ex0(n). (See Figure 1.) We call A1, A2 and A3 the vertex classes of Ex(n).

Suppose that n is divisible by 3. Note that δ0(Ex1(n)) = 2n/3 − 2 but Ex1(n) does not

contain a perfect C3-packing. Thus, in the proof of Theorem 1.3 for T = C3 we have two

extremal cases to consider: when G contains an ‘almost’ independent set of size n/3 and

when G ‘almost’ contains Ex(n).

3.3. Absorbing sets

Let T ∈ Tr . Given a digraph G, a set S ⊆ V (G) is called a T -absorbing set for Q ⊆ V (G),

if both G[S] and G[S ∪ Q] contain perfect T -packings. In this case we say that Q is

T -absorbed by S . Sometimes we will simply refer to a set S ⊆ V (G) as a T -absorbing set

if there exists a set Q ⊆ V (G) that is T -absorbed by S .

When constructing our absorbing sets in Section 9 we will use the following Chernoff

bound for binomial distributions (see, e.g., [9, Corollary 2.3]). Recall that the binomial

random variable with parameters (n, p) is the sum of n independent Bernoulli variables,

each taking value 1 with probability p or 0 with probability 1 − p.

Proposition 3.1. Suppose that X has binomial distribution and 0 < a < 3/2. Then

P(|X − EX| � aEX) � 2e− a2

3
EX.

4. Proof of Conjecture 1.4 for transitive triangles

Let H be a collection of digraphs and G a digraph. We say that G contains a perfect

H-packing if G contains a collection of vertex-disjoint copies of elements from H that
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together cover all the vertices of G. We now prove Conjecture 1.4 in the case of transitive

triangles.

Theorem 4.1. Let m ∈ N. Suppose that G is a digraph on n := 3m vertices so that for any

x ∈ V (G),

d+(x) � 2n/3 or d−(x) � 2n/3. (4.1)

Then G contains a perfect T3-packing.

Proof. Let G be a digraph as in the statement of the theorem. Remove as many

edges from G as possible so that (4.1) still holds. Let G′ denote the graph on V (G)

where xy ∈ E(G′) if and only if xy ∈ E(G) or yx ∈ E(G). So δ(G) � 2n/3 by (4.1). Thus,

Theorem 1.1 implies that G′ contains a perfect K3-packing and so G contains a perfect

{T3, C3}-packing. Let M denote the perfect {T3, C3}-packing in G that contains the most

copies of T3.

Suppose for a contradiction that M is not a perfect T3-packing. Then there is a copy

C ′
3 of C3 in M. Let V (C ′

3) = {x, y, z} where xy, yz, zx ∈ E(C ′
3). Suppose that d−

G(w) < 2n/3

for some w ∈ V (C ′
3). Without loss of generality assume that w = x. Then (4.1) implies that

d+
G(x) � 2n/3. If d+

G(z) < 2n/3 then we may remove the edge zx from G and still (4.1) holds,

a contradiction to the minimality of G. So d+
G(z) � 2n/3. An identical argument implies

that d+
G(y) � 2n/3. This shows that d−

G(w) � 2n/3 for all w ∈ V (C ′
3) or d+

G(w) � 2n/3 for

all w ∈ V (C ′
3).

Without loss of generality assume that d+
G(w) � 2n/3 for all w ∈ V (C ′

3). (The other

case is analogous.) Note that G[x, y, z] contains precisely three edges (else V (C ′
3) spans

a copy of T3, a contradiction to the maximality of M). In particular, there are at

least 2n − 3 = 6m − 3 > 6(|M| − 1) edges in G with startpoint in V (C ′
3) and endpoint in

V (G) \ V (C ′
3). This implies that there is an element T ∈ M \ {C ′

3} that receives at least 7

edges from V (C ′
3) in G.

So there is a vertex, say x, in V (C ′
3) such that d+

G(x, V (T )) = 3. Furthermore, y and

z have a common outneighbour in G that lies in V (T ). Together this implies that

V (C ′
3) ∪ V (T ) spans a copy of 2T3 in G. This yields a perfect {T3, C3}-packing in G

containing more copies of T3 than M, a contradiction. So the assumption that M is not

a perfect T3-packing is false, as desired.

5. Deriving Theorems 1.3 and 1.6 from the auxiliary results

In this section we state a number of auxiliary results that we will prove in the paper.

We then combine these results to prove Theorems 1.3 and 1.6. Roughly speaking, the

following result states that if G is as in Theorem 1.3 (namely has large semi-degree) and

is non-extremal, then G contains a ‘small’ absorbing set that absorbs any ‘very small’ set

of vertices in G.

https://doi.org/10.1017/S0963548315000036 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548315000036


882 A. Treglown

Theorem 5.1. Let 0 < 1/n � ε � ξ � γ, α � 1/r where n, r ∈ N and r � 3, and let T ∈
Tr . Suppose that G is a digraph on n vertices so that

δ0(G) � (1 − 1/r − ε)n.

Further suppose the following.

• G does not contain any γ-independent set of size at least n/r.

• If T = C3 then G does not α-contain Ex(n).

Then V (G) contains a set M so that |M| � ξn and M is a T -absorbing set for any W ⊆
V (G) \ M such that |W | ∈ rN and |W | � ξ2n.

The next result is an analogue of Theorem 5.1 that will be applied in the proof of

Theorem 1.6.

Theorem 5.2. Let 0 < 1/n � ε � ξ � γ � 1/r where n, r ∈ N and r � 3. Suppose that G

is a digraph on n vertices so that, for any x ∈ V (G),

d+(x) � (1 − 1/r − ε)n or d−(x) � (1 − 1/r − ε)n.

Further suppose that G does not contain any γ-independent set of size at least n/r. Then

V (G) contains a set M so that |M| � ξn and M is a Tr-absorbing set for any W ⊆ V (G) \ M

such that |W | ∈ rN and |W | � ξ2n.

We prove Theorems 5.1 and 5.2 in Section 9. The crucial tools used in these proofs are

so-called ‘connection lemmas’, which we introduce in Section 8.

Theorem 5.3. Let 0 < 1/n � 1/	 � ε � γ � 1/r and T ∈ Tr for some r � 3. Suppose that

G is a digraph on n vertices such that

δ0(G) � (1 − 1/r − ε)n. (5.1)

Then at least one of the following properties holds.

(i) G contains a T -packing that covers all but at most 	 vertices.

(ii) G contains a γ-independent set of size at least n/r.

Theorems 5.1 and 5.3 together ensure that a non-extremal digraph G in Theorem 1.3

contains a perfect T -packing. The following result is an analogue of Theorem 5.3 that

will be applied in the proof of Theorem 1.6.

Theorem 5.4. Let 0 < 1/n � 1/	 � ε � γ � 1/r, where n, r ∈ N and r � 3. Suppose that

G is a digraph on n vertices such that, for any x ∈ V (G),

d+(x) � (1 − 1/r − ε)n or d−(x) � (1 − 1/r − ε)n. (5.2)

Further suppose that, given any x, y ∈ V (G), if d+(x) < (1 − 1/r − ε)n and d−(y) < (1 −
1/r − ε)n then xy �∈ E(G). Then at least one of the following properties holds.

(i) G contains a Tr-packing that covers all but at most 	 vertices.

(ii) G contains a γ-independent set of size at least n/r.
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In Section 7 we deduce Theorems 5.3 and 5.4 from a result of Keevash and Mycroft [10]

concerning almost perfect matchings in hypergraphs. The next two results cover the

extremal cases of Theorem 1.3.

Lemma 5.5. Let r ∈ N such that r � 3. There exist γ > 0 and n0 ∈ N such that the follow-

ing holds. Suppose that T ∈ Tr and G is a digraph on n � n0 vertices where n is divisible by

r. If

δ0(G) � (1 − 1/r)n (5.3)

and G contains a γ-independent set of size n/r, then G contains a perfect T -packing.

Lemma 5.6. There exist α > 0 and n0 ∈ N such that the following holds. Suppose that G

is a digraph on n � n0 vertices where n is divisible by 3. If

• δ0(G) � 2n/3 − 1 and

• G α-contains Ex(n),

then G contains a perfect C3-packing.

Lemmas 5.5 and 5.6 are proved in Sections 11 and 12 respectively. We now deduce

Theorem 1.3 from Theorems 5.1 and 5.3 and Lemmas 5.5 and 5.6.

Proof of Theorem 1.3. Define constants ε, ξ, γ, α and integers n0, 	 such that

0 < 1/n0 � 1/	 � ε � ξ � γ, α � 1/r.

Let T ∈ Tr and suppose that G is a digraph on n � n0 vertices such that r divides n and

δ0(G) � (1 − 1/r)n. By Lemmas 5.5 and 5.6 we may assume the following.

(i) G does not contain any γ-independent set of size n/r.

(ii) If T = C3 then G does not α-contain Ex(n).

(Otherwise G contains a perfect T -packing, as desired.) Thus, we can apply Theorem 5.1

to obtain a set M ⊆ V (G) so that |M| � ξn and M is a T -absorbing set for any W ⊆
V (G) \ M such that |W | ∈ rN and |W | � ξ2n. Set G′ := G \ M and let n′ := |G′| � (1 − ξ)n.

Since n is divisible by r and M is a T -absorbing set, n′ is also divisible by r. Further,

δ0(G′) � (1 − 1/r)n − ξn � (1 − 1/r − ξ)n′.

Notice that G′ does not contain any γ/2-independent set of size at least n′/r. (Otherwise

G contains a γ-independent set of size n/r, a contradiction to (i).) Therefore, by applying

Theorem 5.3 with G′, n′, ξ, γ/2 playing the roles of G, n, ε, γ, we obtain a T -packing M1 in

G′ that covers all but at most 	 vertices. Let W denote the set of vertices in G′ that are

not covered by M1. So |W | � 	 � ξ2n and, since n′ is divisible by r, |W | ∈ rN. Thus, by

definition of M, G[M ∪ W ] contains a perfect T -packing M2. Therefore, M1 ∪ M2 is a

perfect T -packing in G, as desired.
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Similarly we deduce Theorem 1.6 from Theorems 5.2 and 5.4.

Proof of Theorem 1.6. Define additional constants ε, ξ, γ and integers n0, 	 such that

0 < 1/n0 � 1/	 � ε � ξ � γ � 1/r, η.

Suppose that G is a digraph on n � n0 vertices where r divides n and

(i) for any x ∈ V (G), d+(x) � (1 − 1/r + η)n or d−(x) � (1 − 1/r + η)n.

Suppose that for some x, y ∈ V (G),

d+(x) < (1 − 1/r + η)n, d−(y) < (1 − 1/r + η)n and xy ∈ E(G).

Then if we remove the edge xy from G, (i) still holds. In particular, this implies that we

may assume that

(ii) given any x, y ∈ V (G), if d+(x) < (1 − 1/r + η)n and d−(y) < (1 − 1/r + η)n then xy �∈
E(G).

Note that (i) implies that

(iii) G does not contain any γ-independent set of size n/r.

Apply Theorem 5.2 to obtain a set M ⊆ V (G) so that |M| � ξn and M is a Tr-absorbing

set for any W ⊆ V (G) \ M such that |W | ∈ rN and |W | � ξ2n. Set G′ := G \ M and let

n′ := |G′| � (1 − ξ)n. Since n is divisible by r and M is a Tr-absorbing set, n′ is also

divisible by r. Further, (i) implies that for any x ∈ V (G′),

d+
G′ (x) � (1 − 1/r − ε)n′ or d−

G′ (x) � x(1 − 1/r − ε)n′.

Suppose that for some x, y ∈ V (G′),

d+
G′ (x) < (1 − 1/r − ε)n′ and d−

G′ (y) < (1 − 1/r − ε)n′.

Then

d+
G(x) < (1 − 1/r − ε)n′ + ξn � (1 − 1/r + η)n and d−

G(y) < (1 − 1/r + η)n.

Thus, by (ii), xy �∈ E(G′). Notice that G′ does not contain any γ/2-independent set of

size at least n′/r. (Otherwise G contains a γ-independent set of size n/r, a contradiction

to (iii).) Therefore, by applying Theorem 5.4 with G′, n′, γ/2 playing the roles of G, n, γ, we

obtain a Tr-packing M1 in G′ that covers all but at most 	 vertices. Let W denote the set

of vertices in G′ that are not covered by M1. So |W | � 	 � ξ2n and, since n′ is divisible

by r, |W | ∈ rN. Thus, by definition of M, G[M ∪ W ] contains a perfect Tr-packing M2.

Hence, M1 ∪ M2 is a perfect Tr-packing in G, as desired.

Suppose that G is a digraph on n vertices that satisfies (1.1). Suppose that for some

x, y ∈ V (G), d+(x) < (1 − 1/r)n, d−(y) < (1 − 1/r)n and xy ∈ E(G). Then if we remove the

edge xy from G, (1.1) still holds. Thus, to prove Conjecture 1.4 it suffices to consider

digraphs G with the following additional assumption. Given any x, y ∈ V (G), if d+(x) <

(1 − 1/r)n and d−(y) < (1 − 1/r)n then xy �∈ E(G). The next result states that such a

digraph G contains a perfect Tr-packing or contains an ‘almost’ independent set of size

n/r.
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Theorem 5.7. Given any γ > 0 and an integer r � 3 there exists an n0 ∈ N such that the

following holds. Suppose that G is a digraph on n � n0 vertices where r divides n and that,

for any x ∈ V (G),

d+(x) � (1 − 1/r)n or d−(x) � (1 − 1/r)n.

Further suppose that, given any x, y ∈ V (G), if d+(x) < (1 − 1/r)n and d−(y) < (1 − 1/r)n

then xy �∈ E(G). Then at least one of the following properties holds.

(i) G contains a perfect Tr-packing.

(ii) G contains a γ-independent set of size at least n/r.

Proof. The proof is almost identical to that of Theorem 1.6 so we omit it.

So Theorem 5.7 implies that to prove Conjecture 1.4 for large digraphs it suffices to

prove the extremal case.

6. Turán-type stability results for embedding tournaments

6.1. The Turán result for Theorem 1.3

The aim of this subsection is to prove Proposition 6.4 which, roughly speaking, states that

a digraph G on n vertices of sufficiently large semidegree (i) contains many copies of a

fixed T ∈ Tr or (ii) contains an ‘almost’ independent set of size n/r. Proposition 6.4 will

be applied in the proof of both Theorem 5.1 and Theorem 5.3.

The next result is an immediate consequence of Turán’s theorem.

Proposition 6.1. Let n, r ∈ N where r � 2. Suppose that G is a digraph on n vertices such

that

e(G) >

(
1 − 1

r − 1

)
n2

2
+

(
n

2

)
. (6.1)

Then G contains a copy of Kr .

Proof. Let G′ be the graph on V (G) whose edge set consists of all pairs xy where

xy, yx ∈ E(G). Then (6.1) implies that e(G′) > (1 − 1/(r − 1))n2/2 and thus G′ contains a

copy of Kr by Turán’s theorem. Hence, Kr ⊆ G as required.

Proposition 6.2. Let 1/n � α � 1/r with n, r ∈ N and r � 3, and let T ∈ Tr . Suppose that

G is a digraph on n vertices such that

δ0(G) �
(

1 − 1

r − 1
− α

)
n. (6.2)

If G is T -free then G contains an independent set of size at least (1/(r − 1) − 2r2α)n.

Proof. Let V (T ) = {v1, . . . , vr−2, a, b} and set T ′ := T [v1, . . . , vr−2]. Using (6.2), greedily

construct a copy T ′′ of T ′ in G. To simplify notation, for each 1 � i � r − 2, we will refer

to the vertex in T ′′ (and thus G) corresponding to the vertex vi in T ′ as vi.
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We say that a vertex v ∈ V (G) is a candidate for a in G if the following conditions hold.

• If avi ∈ E(T ) then vvi ∈ E(G) (for each 1 � i � r − 2).

• If via ∈ E(T ) then viv ∈ E(G) (for each 1 � i � r − 2).

We give an analogous definition of a candidate for b in G. Let A denote the set of

candidates for a in G and let B denote the set of candidates for b in G. Thus, (6.2) implies

that

|A|, |B| �
(

1

r − 1
− (r − 2)α

)
n. (6.3)

Without loss of generality, suppose that ab ∈ E(T ). Since G is T -free, there is no edge

in G whose startpoint lies in A and whose endpoint lies in B. In particular, A ∩ B is an

independent set.

Set A′ := A \ B. Suppose for a contradiction that |A′| � 2(r − 1)2αn. Given any vertex

x ∈ A′, since x sends no edges to B, (6.2) and (6.3) imply that there are at most(
1

r − 1
+ α

)
n −

(
1

r − 1
− (r − 2)α

)
n = (r − 1)αn

vertices in A′ that x does not send an edge to (including itself). Thus,

δ+(G[A′]) � |A′| − (r − 1)αn �
(

1 − 1

2(r − 1)

)
|A′|

and so

e(G[A′]) �
(

1 − 1

2(r − 1)

)
|A′|2 >

(
1 − 1

r − 1

)
|A′|2

2
+

(
|A′|
2

)
.

Hence, Proposition 6.1 implies that Kr ⊆ G[A′] and so G contains a copy of T , a

contradiction. Therefore, |A′| < 2(r − 1)2αn. Together with (6.3), this implies that the

independent set A ∩ B is of size at least(
1

r − 1
− (r − 2)α

)
n − 2(r − 1)2αn �

(
1

r − 1
− 2r2α

)
n,

as required.

To prove Proposition 6.4 we will apply Proposition 6.2 together with the following

directed version of the Removal Lemma (see, e.g., [1, 6]).

Lemma 6.3 (Directed Graph Removal Lemma). Let γ > 0 and t ∈ N. Given any digraph

H on t vertices, there exists α = α(H, γ) > 0 and n0 = n0(H, γ) ∈ N such that the following

holds. Suppose that G is a digraph on n � n0 vertices such that G contains at most αnt copies

of H . Then G can be made H-free by deleting at most γn2 edges.

Proposition 6.4. Let 0 < 1/n � α � ε � 1/r where r, n ∈ N and r � 2, and let T ∈ Tr .
Suppose that G is a digraph on n vertices such that

δ0(G) �
(

1 − 1

r − 1
− ε

)
n
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and so that G contains at most αnr copies of T . Then G contains a
√
ε-independent set of

size at least n/(r − 1).

Proof. The case when r = 2 is trivial, and thus we may assume that r � 3. Define an

additional constant γ so that α � γ � ε. Suppose that G is as in the statement of the

proposition. Since G contains at most αnr copies of T , Lemma 6.3 implies that one can

remove at most γn2 edges from G to obtain a spanning subdigraph G′ that is T -free. So at

most
√
γn vertices in G are incident to more than 2

√
γn of the edges in G − G′. Therefore,

since γ � ε, there exists an induced subdigraph G′′ of G′ such that n′′ := |G′′| � (1 − ε)n

and

δ0(G′′) �
(

1 − 1

r − 1
− 2ε

)
n′′.

Since G′′ is T -free, Proposition 6.2 implies that G′′ contains an independent set S of

size at least (
1

r − 1
− 4r2ε

)
n′′ �

(
1

r − 1
− 5r2ε

)
n.

By construction of G′′, S is a γ-independent set in G. By adding at most 5r2εn arbitrary

vertices to S we obtain a
√
ε-independent set in G of size at least n/(r − 1), as desired.

6.2. The Turán result for Theorem 1.6

In this section we give an analogue of Proposition 6.4 which will be applied in the proof

of both Theorem 5.2 and Theorem 5.4. The next result is an analogue of Proposition 6.2.

Proposition 6.5. Let 1/n � α � 1/r where n, r ∈ N and r � 3. Suppose that G is a digraph

on n vertices such that, for any x ∈ V (G),

d+(x) �
(

1 − 1

r − 1
− α

)
n or d−(x) �

(
1 − 1

r − 1
− α

)
n. (6.4)

If G is Tr-free then G contains an independent set of size at least (1/(r − 1) − rα)n.

Proof. Let r′ ∈ N. Suppose that T ′ is a copy of Tr′ in G. Let V (T ′) = {x1, . . . , xr′ }, where

xi plays the role of the ith vertex of Tr′ . We say that T ′ is consistent if there exists

0 � s′ � r′ such that

• d+(xi) � (1 − 1/(r − 1) − α)n for all i � s′;

• d−(xi) � (1 − 1/(r − 1) − α)n for all i > s′.

We call s′ a turning point of T ′. (Note that T ′ could have more than one turning point.)

Inequality (6.4) implies that every copy of T1 in G is consistent. Suppose that, for some

1 � r′ < r − 2, we have found a consistent copy T ′ of Tr′ in G. As before, let

V (T ′) = {x1, . . . , xr′ },

where xi plays the role of the ith vertex of Tr′ , and let s′ denote a turning point of T ′. Set

N ′ :=
⋂
i�s′

N+(xi) ∩
⋂
i>s′

N−(xi).
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Since T ′ is consistent with turning point s′ and r′ < r − 2,

|N ′| �
(

1 − r′

r − 1
− r′α

)
n > 0.

Consider any x ∈ N ′. Then V (T ′) ∪ {x} spans a consistent copy of Tr′+1 in G, where

x plays the role of the (s′ + 1)th vertex in Tr′+1. (This is true regardless of whether

d+(x) � (1 − 1/(r − 1) − α)n or d−(x) � (1 − 1/(r − 1) − α)n.)

This observation implies that we can greedily construct a consistent copy T of Tr−2 in

G. Let V (T ) = {y1, . . . , yr−2}, where yi plays the role of the ith vertex of Tr−2, and let s

denote a turning point of T . Set

N :=
⋂
i�s

N+(yi) ∩
⋂
i>s

N−(yi).

Since T is consistent with turning point s,

|N| �
(

1 − r − 2

r − 1
− (r − 2)α

)
n �

(
1

r − 1
− rα

)
n.

Suppose that there is an edge xy ∈ E(G[N]). Then V (T ) ∪ {x, y} spans a copy of Tr in

G where x and y play the roles of the (s + 1)th and (s + 2)th vertices in Tr respectively.

This is a contradiction, so N is an independent set in G, as required.

Proposition 6.6. Let 0 < 1/n � α � ε � 1/r where n, r ∈ N and r � 2. Suppose that G is

a digraph on n vertices such that, for any x ∈ V (G),

d+(x) �
(

1 − 1

r − 1
− ε

)
n or d−(x) �

(
1 − 1

r − 1
− ε

)
n.

Further suppose that G contains at most αnr copies of Tr . Then G contains a
√
ε-independent

set of size at least n/(r − 1).

Proof. We follow the same argument as in the proof of Proposition 6.4 except that we

apply Proposition 6.5 rather than Proposition 6.2.

7. k-complexes and almost perfect tournament packings

The key tool in the proofs of Theorems 5.3 and 5.4 is a result of Keevash and Mycroft [10,

Theorem 2.3] concerning almost perfect matchings in so-called k-complexes. To state this

result we require some more definitions. Let k ∈ N. A k-system is a hypergraph J in which

every edge of J contains at most k vertices and ∅ ∈ E(J). For 0 � i � k, we refer to the

edges of size i in J as the i-edges of J , and write Ji to denote the i-uniform hypergraph on

V (J) induced by these edges. A k-complex J is a k-system whose edge set is closed under

inclusion. That is, if e ∈ E(H) and e′ ⊆ e then e′ ∈ E(H).

Let J be a k-complex. For any edge e ∈ E(J), the degree d(e) of e is the number of

(|e| + 1)-edges e′ of J that contain e as a subset. The minimum r-degree δr(J) of J is the

minimum of d(e) taken over all r-edges e ∈ E(J). The degree sequence of J is defined as

δ(J) := (δ0(J), δ1(J), . . . , δk−1(J)).
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Given a vector a = (a0, . . . , ak−1) of positive integers we write δ(J) � a to mean that

δi(J) � ai for all 0 � i � k − 1.

Suppose V is a set of n vertices, 1 � j � k − 1 and S ⊆ V . Define J(S, j) to be the

k-complex on V in which J(S, j)i (for 0 � i � k) consists of all i-sets in V that contain at

most j vertices of S . Let β > 0. Given k-uniform hypergraphs H,K on the same vertex set

of size n we say that K is β-contained in H if, by adding at most βnk edges to H , we can

find a copy of K in H . A matching in a hypergraph H is a collection of vertex-disjoint

edges from H .

Theorem 7.1 (Keevash and Mycroft [10]). Suppose that 1/n � 1/	 � ε � β � 1/k. Let

J be a k-complex on n vertices such that

δ(J) �
(
n,

(
1 − 1

k
− ε

)
n,

(
1 − 2

k
− ε

)
n, . . . ,

(
1

k
− ε

)
n

)
.

Then at least one of the following properties holds.

(i) Jk contains a matching that covers all but at most 	 vertices.

(ii) Jk is β-contained in J(S, j)k for some 1 � j � k − 1 and S ⊆ V (J) with |S | = 	jn/k
.

In the following two subsections we apply Theorem 7.1 to prove both Theorem 5.3 and

Theorem 5.4.

7.1. Proof of Theorem 5.3

Define additional constants β, α, α′, ε′ such that

0 < 1/n � 1/	 � ε � β � α � α′ � ε′ � γ � 1/r.

Let G be a digraph as in the statement of the theorem.

Our first task is to construct an r-complex J from G so that we can apply Theorem 7.1.

Let J be the r-system on V (G) where, for each 0 � i � r, Ji is defined as follows.

• For each subtournament T ′ of T on i vertices, any i-tuple in V (G) that spans a copy

of T ′ in G forms an i-edge in Ji.

So, for example, if T = C3, then E(J1) = V (J1), E(J2) is the set of all pairs {x, y} where

xy ∈ E(G) or yx ∈ E(G) and E(J3) is the set of all triples {x, y, z} that span a copy of

C3 in G. (Note, however, that {x, y, z} does not have to induce a copy of C3 in G. For

example, we could have G[x, y, z] = K3.)

By construction J is an r-complex. Further, notice that a matching in the r-uniform

hypergraph Jr corresponds to a T -packing in G. Clearly δ0(J) = n. Set 1 � i � r − 1 and

let T ′ be a subtournament of T on i vertices. If T ′′ is a copy of T ′ in G then (5.1)

implies that there are at least (1 − i/r − iε)n � (1 − i/r − εr)n vertices x in G such that

V (T ′′) ∪ {x} spans a copy of a subtournament of T on i + 1 vertices. This therefore

implies that

δ(J) �
(
n,

(
1 − 1

r
− εr

)
n,

(
1 − 2

r
− εr

)
n, . . . ,

(
1

r
− εr

)
n

)
.
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Hence, we can apply Theorem 7.1 with r, εr playing the roles of k, ε. So at least one of the

following conditions holds.

(a) Jr contains a matching that covers all but at most 	 vertices.

(b) Jr is β-contained in J(S, j)r for some 1 � j � r − 1 and S ⊆ V (J) = V (G) with |S | =

	jn/r
.

If (a) holds then this implies that (i) is satisfied. So we may assume that (b) holds. We

will show that this implies that (ii) is satisfied.

Let j be as in (b) and consider an arbitrary subtournament T ′ of T on j + 1 vertices.

Suppose for a contradiction that there are at least αnj+1 (j + 1)-tuples in S that span a

copy T ′′ of T ′ in G. If j = r − 1 then T ′ = T , and so this implies that Jr contains at

least αnj+1 = αnr > βnr edges that lie in S . This is a contradiction as Jr is β-contained in

J(S, j)r . So suppose that j < r − 1. Then (5.1) implies that, for each copy T ′′ of T ′ in G,

there are at least

1

(r − j − 1)!

(
1 − j + 1

r
− (j + 1)ε

)
n ×

(
1 − j + 2

r
− (j + 2)ε

)
n × · · · ×

(
1

r
− (r − 1)ε

)
n

� 1

(r − j − 1)!
× 1

2rr
nr−j−1 � 1

2r2r
nr−j−1

(r − j − 1)-tuples X in V (G) such that V (T ′′) ∪ X spans a copy of T in G. Since β � α, 1/r,

this implies that there are at least

1(
r

j+1

) × αnj+1 × 1

2r2r
nr−j−1 > βnr

r-tuples in V (G) that span a copy of T and which contain at least j + 1 vertices from S .

So Jr contains more than βnr edges that contain at least j + 1 vertices from S . This is a

contradiction as Jr is β-contained in J(S, j)r .

So there are at most αnj+1 (j + 1)-tuples in S that span a copy of T ′ in G. Thus,

since any (j + 1)-tuple of vertices spans at most 2j+1 copies of T ′, there are at most

2j+1αnj+1 � 2rαnj+1 � α′|S |j+1 copies of T ′ in G[S]. Further, since |S | = 	jn/r
, (5.1)

implies that

δ0(G[S]) � |S | − n

r
− εn �

(
1 − 1

j
− ε′

)
|S |.

Apply Proposition 6.4 with G[S], T ′, j + 1, ε′, α′ playing the roles of G,T , r, ε, α. This

implies that G[S] contains a
√
ε′-independent set of size at least |S |/j � n/r − 1. Since√

ε′|S |2 � γn2, this implies that G contains a γ-independent set of size at least n/r, as

required.

7.2. Proof of Theorem 5.4

Define additional constants β, α, α′, ε′ such that

0 < 1/n � 1/	 � ε � β � α � α′ � ε′ � γ � 1/r.

Let G be a digraph as in the statement of the theorem.
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Let r′ ∈ N and suppose that T ′ is a copy of Tr′ in G. Let V (T ′) = {x1, . . . , xr′ } where xi
plays the role of the ith vertex of Tr′ . We say that T ′ is consistent if there exists 0 � s � r′

such that

• d+(xi) � (1 − 1/r − ε)n for all i � s;

• d−(xi) � (1 − 1/r − ε)n for all i > s.

We call s a turning point of T ′. (T ′ could have more than one turning point.)

(5.2) implies that every copy of T1 in G is consistent. Suppose, for a contradiction,

that T is a copy of Tr′ in G that is not consistent (for some r′ � 2). Let yi denote the

vertex in T that plays the role of the ith vertex of Tr′ . Let k be the smallest positive

integer such that d+(yk) < (1 − 1/r − ε)n (and so d−(yk) � (1 − 1/r − ε)n by (5.2)); such

an integer exists else T is consistent with turning point r′. Then there exists k′ > k such

that d−(yk′ ) < (1 − 1/r − ε)n (otherwise T is consistent with turning point k − 1). But then

ykyk′ ∈ E(T ) ⊆ E(G), where d+(yk) < (1 − 1/r − ε)n and d−(yk′ ) < (1 − 1/r − ε)n. This is

a contradiction to the hypothesis of the theorem. Thus, every transitive tournament in G

is consistent.

Let J be the r-system on V (G) where, for each 0 � i � r, Ji is defined as follows.

• Any i-tuple in V (G) that spans a copy of Ti in G forms an i-edge in Ji.

By construction J is an r-complex. Further, a matching in Jr corresponds to a Tr-packing

in G. Clearly δ0(J) = n. Suppose that T is a (consistent) copy of Ti in G for some

1 � i � r − 1 and let s denote a turning point of T . As before, let yk denote the vertex in

T that plays the role of the kth vertex in Ti. Set

N :=
⋂
k�s

N+(yk) ∩
⋂
k>s

N−(yk).

Since T is consistent with turning point s,

|N| �
(

1 − i

r
− iε

)
n �

(
1 − i

r
− rε

)
n.

Further, given any x ∈ N, V (T ) ∪ {x} spans a copy of Ti+1 in G. So V (T ) ∪ {x} is an

edge in J . This implies that

δ(J) �
(
n,

(
1 − 1

r
− εr

)
n,

(
1 − 2

r
− εr

)
n, . . . ,

(
1

r
− εr

)
n

)
.

Hence, we can apply Theorem 7.1 with r, εr playing the roles of k, ε. So at least one of the

following conditions holds.

(a) Jr contains a matching that covers all but at most 	 vertices.

(b) Jr is β-contained in J(S, j)r for some 1 � j � r − 1 and S ⊆ V (J) = V (G) with |S | =

	jn/r
.

If (a) holds then (i) is satisfied. So we may assume that (b) holds. We will show that this

implies that (ii) is satisfied.

The argument now closely follows the proof of Theorem 5.3. Indeed, let j be as in (b).

Suppose for a contradiction that there are at least αnj+1 (j + 1)-tuples in S that span a

copy T of Tj+1 in G. If j = r − 1 then Tj+1 = Tr , and so this implies that Jr contains at
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least αnj+1 = αnr > βnr edges that lie in S . This is a contradiction as Jr is β-contained in

J(S, j)r . So suppose that j < r − 1.

Recall that every copy T of Tj+1 in G is consistent. This implies that there are at least

(1 − (j + 1)/r − (j + 1)ε)n vertices x ∈ V (G) such that V (T ) ∪ {x} spans a copy of Tj+2

in G. Repeating this process we see that, for every copy T of Tj+1 in G, there are at least

1

(r − j − 1)!

(
1 − j + 1

r
− (j + 1)ε

)
n ×

(
1 − j + 2

r
− (j + 2)ε

)
n × · · · ×

(
1

r
− (r − 1)ε

)
n

� 1

(r − j − 1)!
× 1

2rr
nr−j−1 � 1

2r2r
nr−j−1

(r − j − 1)-tuples X in V (G) such that V (T ) ∪ X spans a copy of Tr in G. Since β � α, 1/r,

this implies that there are at least

1(
r

j+1

) × αnj+1 × 1

2r2r
nr−j−1 > βnr

r-tuples in V (G) that span a copy of Tr and which contain at least j + 1 vertices from S .

So Jr contains more than βnr edges that contain at least j + 1 vertices from S . This is a

contradiction as Jr is β-contained in J(S, j)r .

Thus, there are at most αnj+1 (j + 1)-tuples in S that span a copy of Tj+1 in G. Since

any (j + 1)-tuple of vertices spans at most 2j+1 copies of Tj+1, there are at most

2j+1αnj+1 � 2rαnj+1 � α′|S |j+1

copies of Tj+1 in G[S]. Further, since |S | = 	jn/r
, (5.2) implies that, for every x ∈ V (G[S]),

d+
G[S ](x) � |S | − n

r
− εn �

(
1 − 1

j
− ε′

)
|S | or d−

G[S ](x) �
(

1 − 1

j
− ε′

)
|S |.

Apply Proposition 6.6 with G[S], j + 1, ε′, α′ playing the roles of G, r, ε, α. This implies that

G[S] contains a
√
ε′-independent set of size at least |S |/j � n/r − 1. Since

√
ε′|S |2 � γn2,

this implies that G contains a γ-independent set of size at least n/r, as required.

8. The connection lemmas

In Section 9 we prove Theorems 5.1 and 5.2. Roughly speaking, in both these theorems,

when our digraph G is non-extremal we require a ‘small’ T -absorbing set in G that absorbs

any ‘very small’ set of vertices in G (for some T ∈ Tr).
The crucial idea in finding such an absorbing set is to first prove that our digraph G

has many ‘connecting structures’ of a certain type. More precisely, to find our desired

absorbing set it suffices to show that, for any x, y ∈ V (G), there are ‘many’ (r − 1)-sets

X ⊆ V (G) so that both X ∪ {x} and X ∪ {y} span copies of T in G. Our main task

therefore is to prove so-called ‘connection lemmas’ that guarantee such sets X. In the

case when T = C3, though, we may not be able to find such sets. However, in this case

we instead find, for any x, y ∈ V (G), ‘many’ 5-sets X ⊆ V (G) so that both X ∪ {x} and

X ∪ {y} span copies of 2T in G.

The approach of proving connection lemmas to find absorbing structures for packing

problems has been very fruitful. Indeed, Lo and Markström [18, 19] used such connection
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lemmas to tackle perfect packing problems for hypergraphs (although their terminology

for these ‘connecting structures’ differs from ours). Further, recently the author [23]

applied this method to prove a degree sequence version of the Hajnal–Szemerédi theorem.

A single connection lemma (Lemma 8.1) for Theorem 5.2 is given in Section 8.1.

However, for Theorem 5.1, we need to prove a number of separate connection lemmas.

In Section 8.3 we prove the connection lemma for Theorem 5.1 for those T ∈ Tr where

r � 5 (see Lemma 8.4). The proof relies on T containing T3 as a subtournament. (So

this method certainly cannot be applied in the case when T = C3.) It is easy to see that

all tournaments on at least four vertices contain T3. However, for T ∈ T4, the minimum

semidegree condition on our digraph G is not high enough for the proof method of

Lemma 8.4 to go through. Thus, we use a different approach to prove the connection

lemma in this case (see Section 8.2). This method makes use of a simple structural

property of tournaments on four vertices (see Fact 8.2). The case when T = T3 is covered

by Lemma 8.1.

Finally, we need a separate connection lemma for when T = C3 (see Section 8.4). Of

all the connection lemmas, this one has the most involved proof. This stems from the

fact that we now have two extremal cases. Thus, to find our connecting structures in a

non-extremal digraph G on n vertices we must use both the property that G does not

contain an ‘almost’ independent set of size n/3 and that G does not α-contain Ex(n).

8.1. The connection lemma for Theorem 5.2

The following connection lemma is a straightforward consequence of Proposition 6.6.

Lemma 8.1. Let 0 < 1/n � ε � η � γ � 1/r where n, r ∈ N and r � 3. Suppose that G

is a digraph on n vertices such that, for any z ∈ V (G),

d+(z) � (1 − 1/r − ε)n or d−(z) � (1 − 1/r − ε)n. (8.1)

Further, suppose that G does not contain a γ-independent set on at least n/r vertices. Given

any x, y ∈ V (G), there exist at least ηnr−1 (r − 1)-sets X ⊆ V (G) such that both X ∪ {x}
and X ∪ {y} span copies of Tr in G.

Proof. Let x, y ∈ V (G). Suppose that d+(x) � (1 − 1/r − ε)n and d−(y) � (1 − 1/r − ε)n.

(The other cases are identical.) Set S := N+(x) ∩ N−(y). So

|S | � (1 − 2/r − 2ε)n =
r − 2 − 2εr

r
n.

This implies that

|S | − n

r
− εn � |S | − |S |

r − 2 − 2εr
− 2εr|S |

� |S | − |S |
r − 2

− 3εr|S | − 2εr|S |

�
(

1 − 1

r − 2
− γ2

4

)
|S |.
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Together with (8.1), this implies that, for any z ∈ S ,

d+
G[S ](z) �

(
1 − 1

r − 2
− γ2

4

)
|S | or d−

G[S ](z) �
(

1 − 1

r − 2
− γ2

4

)
|S |.

Suppose for a contradiction that G[S] contains at most 23r−3η|S |r−1 copies of Tr−1.

Note that

1/|S | � 23r−3η � γ2/4 � 1/(r − 1).

Hence, applying Proposition 6.6 with G[S], r − 1, 23r−3η, γ2/4 playing the roles of G, r, α

and ε respectively, we obtain a γ/2-independent set S ′ in G[S] of size at least |S |/(r − 2).

Note that

|S |
r − 2

� (r − 2 − 2εr)

r(r − 2)
n � n

r
− 2εn.

Therefore, S ′ is a γ/2-independent set in G of size at least n/r − 2εn. By adding at most

2εn arbitrary vertices to S ′, we obtain a γ-independent set in G of size at least n/r, a

contradiction.

Thus, there are at least 23r−3η|S |r−1 � 2r−1ηnr−1 copies of Tr−1 in G[S]. (The inequality

here follows since |S | � n/4.) Any (r − 1)-set in S spans at most 2r−1 different copies of

Tr−1 in G[S]. So there are at least ηnr−1 (r − 1)-sets X ⊆ S that span a copy of Tr−1 in

G[S]. By definition of S , for each such set X, both X ∪ {x} and X ∪ {y} span copies of

Tr in G, as required.

8.2. The connection lemma for tournaments on four vertices

The following simple fact will be used in the proof of the connection lemma for

tournaments on four vertices (Lemma 8.3).

Fact 8.2. If T ∈ T4 then there is a subset S ⊆ V (T ) with |S | ∈ {1, 2} and such that given

any s ∈ S , either

• ss′ ∈ E(T ) for all s′ ∈ V (T ) \ S or

• s′s ∈ E(T ) for all s′ ∈ V (T ) \ S .

Lemma 8.3. Let 0 < 1/n � ε � η � γ � 1 and T ∈ T4. Suppose that G is a digraph on

n vertices such that

δ0(G) � (3/4 − ε)n (8.2)

and so that G does not contain any γ-independent set of size at least n/4. Then, for any

x, y ∈ V (G), there exist at least ηn3 3-sets X ⊆ V (G) such that X ∪ {x} and X ∪ {y} span

copies of T in G.

Proof. By Fact 8.2, T contains a subset S ⊆ V (T ) with |S | ∈ {1, 2} and such that given

any s ∈ S , either

• ss′ ∈ E(T ) for all s′ ∈ V (T ) \ S or

• s′s ∈ E(T ) for all s′ ∈ V (T ) \ S .
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We divide the proof into two cases depending on |S |.

Case 1: |S | = 1.

Let V (T ) = {x1, x2, x3, s} where S = {s}. Consider the case when sxi ∈ E(T ) for i = 1, 2, 3.

(The other case, when xis ∈ E(T ) for i = 1, 2, 3, is analogous.) Set A := N+
G (x) ∩ N+

G (y)

and let T ′ := T [x1, x2, x3]. Our aim is to find ηn3 3-sets X ⊆ A that span copies of T ′

in G[A]. Then the choice of s and A ensures that each such set X has the property that

X ∪ {x} and X ∪ {y} span copies of T in G (where x and y respectively play the role of

s), as desired.

By (8.2) we have that |A| � (1/2 − 2ε)n and so

δ0(G[A]) � |A| − (1/4 + ε)n � |A| − (1/4 + ε)
|A|

1/2 − 2ε

� |A| − (1/2 + 5ε)|A| � (1/2 − γ2/4)|A|.

Suppose for a contradiction that G[A] contains at most 65η|A|3 copies of T ′. Note that

1/|A| � 65η � γ2/4 � 1/3. Hence, applying Proposition 6.4 with G[A], T ′, 3, 65η, γ2/4

playing the roles of G,T , r, α and ε respectively, we obtain a γ/2-independent set A′ in

G[A] of size at least |A|/2 � (1/4 − ε)n. By adding at most εn arbitrary vertices to A′, we

obtain a γ-independent set in G of size at least n/4, a contradiction.

Thus, there are at least 65η|A|3 � 23ηn3 copies of T ′ in G[A]. Any 3-set in A spans at

most 23 different copies of T ′ in G[A]. So there are at least ηn3 3-sets X ⊆ A that span a

copy of T ′ in G[A], as required.

Case 2: |S | = 2.

Let V (T ) = {x1, x2, s1, s2} where S = {s1, s2}. Assume that x1, x2 ∈ N+
T (s1) and x1, x2 ∈

N−
T (s2). (The other cases can be dealt with analogously.) We may further assume that

s2s1 ∈ E(T ) (otherwise, we can reset S = {s1} and then follow the argument from Case 1).

Finally, we may assume that x1x2 ∈ E(T ).

For each of our desired 3-sets X, the vertices x and y will play the role of s1 in the copy

of T that spans X ∪ {x} and X ∪ {y}, respectively. Let s′
2 ∈ V (G) such that s′

2x, s
′
2y ∈ E(G).

By (8.2) there are at least (1/2 − 2ε)n choices for s′
2. Set

A := N+
G (x) ∩ N+

G (y) ∩ N−
G (s′

2).

Then (8.2) implies that

|A| �
(

1

4
− 3ε

)
n.

Suppose that G[A] contains at most γn2/2 edges. Then by adding at most 3εn vertices

to A, we obtain a γ-independent set in G of size at least n/4, a contradiction. So G[A]

contains at least γn2/2 edges.

Given any x′
1x

′
2 ∈ E(G[A]), set X := {s′

2, x
′
1, x

′
2}. By construction, X ∪ {x} spans a copy

of T in G, where x, s′
2, x

′
1, x

′
2 play the roles of s1, s2, x1 and x2 respectively, and X ∪ {y}

spans a copy of T in G, where y, s′
2, x

′
1, x

′
2 play the roles of s1, s2, x1 and x2 respectively.
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Recall that there are at least (1/2 − 2ε)n choices for s′
2 and at least γn2/2 choices for

x′
1x

′
2. Overall, this implies that there are at least

(1/2 − 2ε)n × γn2

2
× 1

3!
� ηn3

choices for X, as desired.

8.3. The connection lemma for tournaments on at least five vertices

Lemma 8.4. Let 0 < 1/n � ε � η � γ � 1/r, where n, r ∈ N and r � 5, and let T ∈ Tr .
Suppose that G is a digraph on n vertices such that

δ0(G) � (1 − 1/r − ε)n (8.3)

and so that G does not contain a γ-independent set on at least n/r vertices. Given any

x, y ∈ V (G), there exist at least ηnr−1 (r − 1)-sets X ⊆ V (G) such that both X ∪ {x} and

X ∪ {y} span copies of T in G.

Proof. Define γ′ such that η � γ′ � γ. Since |T | � 5, T contains a copy of T3. Let

V (T ) = {x1, . . . , xr−3, s1, s2, s3},

where T [s1, s2, s3] = T3, so that sisj ∈ E(T ) for i < j.

Consider any x, y ∈ V (G). We now explain how we construct our desired (r − 1)-sets

X. For each such X, x will play the role of x1 in the copy of T spanning X ∪ {x} and y

will play the role of x1 in the copy of T spanning X ∪ {y}. When constructing each X

we introduce a special vertex x∗ that will play the role of s1, s2 or s3 in the copies of T

spanned by X ∪ {x} and X ∪ {y}.

Let x∗ ∈ V (G) be such that xx∗, x∗x, yx∗, x∗y ∈ E(G). By (8.3) there are at least (1 −
4/r − 4ε)n � n/2r choices for x∗. (Note that we could not guarantee that such a vertex x∗

exists if r = 4. This is the reason why we cannot generalize this proof to work for r � 4.)

Next we iteratively choose vertices x′
2, . . . , x

′
r−3 ∈ V (G) such that, for each 2 � i � r − 3,

the following conditions hold.

(ai) x
∗x′

i, x
′
ix

∗ ∈ E(G).

(bi) xx
′
i, yx

′
i ∈ E(G) if x1xi ∈ E(T ) and x′

ix, x
′
iy ∈ E(G) if xix1 ∈ E(T ).

(ci) x
′
i′x

′
i ∈ E(G) if xi′xi ∈ E(T ) and x′

ix
′
i′ ∈ E(G) if xixi′ ∈ E(T ) (for each 2 � i′ < i).

Suppose that, for some 2 � j � r − 4, we have already chosen x′
2, . . . , x

′
j so that (ai)–(ci)

hold for 2 � i � j. Then (8.3) implies that there are at least(
1 − j + 3

r
− (j + 3)ε

)
n �

(
1 − r − 1

r
− (r − 1)ε

)
n � n

2r

choices for x′
j+1 so that (aj+1)–(cj+1) are satisfied.

Conditions (ai)–(ci) ensure that x′
i can play the role of xi for each 2 � i � r − 3. Since

there are double edges between x∗ and x, y, x′
2, . . . , x

′
r−3, there is currently freedom as to

whether x∗ will play the role of s1, s2 or s3.
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Our next task is to construct sets S1, S2, S3 of ‘candidates’ to play the role of s1, s2 and

s3 respectively. More precisely, we say that a vertex z ∈ V (G) is a candidate for s1 in G if:

• zx∗ ∈ E(G);

• xz, yz ∈ E(G) if x1s1 ∈ E(T ) and zx, zy ∈ E(G) if s1x1 ∈ E(T );

• x′
iz ∈ E(G) if xis1 ∈ E(T ) and zx′

i ∈ E(G) if s1xi ∈ E(T ) (for each 2 � i � r − 3).

We say that a vertex z ∈ V (G) is a candidate for s2 in G if:

• x∗z ∈ E(G);

• xz, yz ∈ E(G) if x1s2 ∈ E(T ) and zx, zy ∈ E(G) if s2x1 ∈ E(T );

• x′
iz ∈ E(G) if xis2 ∈ E(T ) and zx′

i ∈ E(G) if s2xi ∈ E(T ) (for each 2 � i � r − 3).

Similarly, we say that a vertex z ∈ V (G) is a candidate for s3 in G if:

• x∗z ∈ E(G);

• xz, yz ∈ E(G) if x1s3 ∈ E(T ) and zx, zy ∈ E(G) if s3x1 ∈ E(T );

• x′
iz ∈ E(G) if xis3 ∈ E(T ) and zx′

i ∈ E(G) if s3xi ∈ E(T ) (for each 2 � i � r − 3).

(Note that it is important that the first condition in the definition of a candidate for s1

differs from the first condition in the definitions of candidates for s2 and s3.)

Let S1, S2, S3 denote the set of candidates for s1, s2 and s3 respectively. Inequality (8.3)

implies that

|S1|, |S2|, |S3| �
(

1 − r − 1

r
− (r − 1)ε

)
n � n

r
− rεn. (8.4)

Case 1: |S1 ∪ S2| � n/r + γ′n.

In this case (8.3) implies that every z ∈ S3 receives at least γ′n − εn � γ′n/2 edges from

S1 ∪ S2 in G. So (8.4) implies that there are at least γ′n2/3r edges in G with startpoint in

S1 ∪ S2 and endpoint in S3. Without loss of generality assume that there are at least γ′n2/6r

edges in G with startpoint in S1 and endpoint in S3. Let s′
1s

′
3 be such an edge. Notice that,

by definition of candidates for s1 and s3, {s′
1, x

∗, s′
3} spans a copy of T3 in G with s′

1, x
∗

and s′
3 playing the roles of s1, s2 and s3 respectively. Set X := {x∗, x′

2, . . . , x
′
r−3, s

′
1, s

′
3}. By

construction X ∪ {x} spans a copy of T in G, where x plays the role of x1, x′
i plays the

role of xi (for 2 � i � r − 3), s′
1 plays the role of s1, x∗ plays the role of s2 and s′

3 plays

the role of s3. Similarly, X ∪ {y} spans a copy of T in G, where y plays the role of x1, x′
i

plays the role of xi (for 2 � i � r − 3), s′
1 plays the role of s1, x∗ plays the role of s2 and

s′
3 plays the role of s3.

Case 2: |S1 ∪ S2| < n/r + γ′n.

In this case,

|S1 ∩ S2| = |S1| − |S1 \ S2|
(8.4)

�
(
n

r
− rεn

)
− (γ′n + rεn) � n

r
− 2γ′n.

Note that there must be at least γn2/2 � γ′n2/6r edges in S1 ∩ S2, otherwise, by adding at

most 2γ′n arbitrary vertices to S1 ∩ S2, we obtain a γ-independent set in G of size at least

n/r, a contradiction. Consider any edge s′
1s

′
2 ∈ E(G[S1 ∩ S2]).

By definition of candidates for s1 and s2, {s′
1, s

′
2, x

∗} spans a copy of T3 in G with s′
1, s

′
2

and x∗ playing the roles of s1, s2 and s3 respectively. (Indeed, by definition of S1 ∩ S2 there
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is a double edge from x∗ to both s1 and s2 in G. Further, s′
1s

′
2 ∈ E(G).) Set

X := {x∗, x′
2, . . . , x

′
r−3, s

′
1, s

′
2}.

By construction X ∪ {x} spans a copy of T in G, where x plays the role of x1, x′
i plays the

role of xi (for 2 � i � r − 3), s′
1 plays the role of s1, s′

2 plays the role of s2 and x∗ plays

the role of s3. Similarly, X ∪ {y} spans a copy of T in G.

Recall that there are at least n/2r choices for x∗, at least n/2r choices for each x′
i and

at least γ′n2/6r choices for the edges selected in Cases 1 and 2. Overall, this implies that

there are at least

n

2r
×

(
n

2r

)r−4

× γ′n2

6r
× 1

(r − 1)!
� ηnr−1

choices for X, as desired.

8.4. The connection lemma for cyclic triangles

Lemma 8.5. Let 0 < 1/n � ε � η � γ, α � 1. Suppose that G is a digraph on n vertices

such that

δ0(G) � (2/3 − ε)n. (8.5)

Further suppose that

• G does not contain any γ-independent set of size at least n/3, and

• G does not α-contain Ex(n).

Then, given any x, y ∈ V (G), at least one of the following conditions holds.

(i) There are at least ηn2 2-sets X ⊆ V (G) such that X ∪ {x} and X ∪ {y} span copies of

C3 in G.

(ii) There are at least ηn5 5-sets X ⊆ V (G) such that X ∪ {x} and X ∪ {y} span copies of

2C3 in G.

Proof. Define additional constants ε′, ε′′ so that η � ε′ � ε′′ � γ, α. Consider any x, y ∈
V (G). Set

A′ := N+
G (x) ∩ N+

G (y) and B′ := N−
G (x) ∩ N−

G (y).

Note that (8.5) implies |A′|, |B′| � (1/3 − 2ε)n. Further, define A := A′ \ B′, B := B′ \ A′,

C := V (G) \ (A′ ∪ B′) and D := A′ ∩ B′. (So A,B, C, D is a partition of V (G).)

Note that given any ab ∈ E(G) with a ∈ A′ and b ∈ B′, {x, a, b} and {y, a, b} span copies

of C3 in G. Thus, if there are at least 2ηn2 such edges ab ∈ E(G), then we obtain at least

ηn2 2-sets X ⊆ V (G) such that X ∪ {x} and X ∪ {y} span copies of C3 in G, as desired.

Therefore, we may assume that

(α) there are at most 2ηn2 edges ab ∈ E(G) with a ∈ A′ and b ∈ B′.

Suppose that |B′| > (1/3 + 8η)n. Then by (8.5), every vertex in A′ sends out at least

8ηn − εn � 7ηn edges to B′ in G. Hence, there are at least

7ηn|A′| � 7ηn × (1/3 − 2ε)n > 2ηn2
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edges ab ∈ E(G) with a ∈ A′ and b ∈ B′, a contradiction to (α). Together with an analogous

argument, this implies that(
1

3
− 2ε

)
n � |A′|, |B′| �

(
1

3
+ 8η

)
n (8.6)

and so (
1

3
− 16η

)
n � |C|. (8.7)

Suppose that |D| > (1/3 − ε′′)n. Then by (α), e(G[D]) � 2ηn2. By adding at most ε′′n

arbitrary vertices to D we obtain a γ-independent set in G of size at least n/3, a

contradiction. Hence,

|D| �
(

1

3
− ε′′

)
n.

We now split the proof into two cases depending on the size of D.

Case 1: |D| < ε′n.

In this case, (
1

3
− 2ε′

)
n �

(
1

3
− 2ε

)
n − ε′n

(8.6)

� |A|, |B|
(8.6)

�
(

1

3
+ 8η

)
n (8.8)

and so (
1

3
− 16η

)
n

(8.7)

� |C|
(8.8)

�
(

1

3
+ 4ε′

)
n. (8.9)

By (α), all but at most 2
√
ηn vertices a ∈ A send out at most

√
ηn edges to B in G. So each

such vertex a sends out at least (2/3 − ε)n − √
ηn − ε′n − |C| � (1/3 − 6ε′)n edges to A in

G and at least (2/3 − ε)n − √
ηn − ε′n − |A| � (1/3 − 2ε′)n edges to C in G. Altogether,

this implies that

e(G[A]) � (|A| − 2
√
ηn)(1/3 − 6ε′)n (8.10)

(8.8)

� (|A| − 2
√
ηn)(|A| − 7ε′n)

(8.8)

� |A|2 − 3ε′n2

and

e(G[A,C]) � (|A| − 2
√
ηn)(1/3 − 2ε′)n (8.11)

(8.9)

� (|A| − 2
√
ηn)(|C| − 6ε′n)

(8.8),(8.9)

� |A||C| − 3ε′n2.

An analogous argument implies that

e(G[B])�|B|2 − 3ε′n2 and e(G[C,B])�|C||B| − 3ε′n2. (8.12)
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Suppose d−
G(x, A) � ε′′n and d−

G(y, A) � ε′′n. Then since e(G[A]) � |A|2 − 3ε′n2, there are

at least

ε′′n(ε′′n − 1)

2
− 3ε′n2 � ηn2

pairs of distinct vertices a, a′ where a ∈ (N−
G (x) ∩ A), a′ ∈ (N−

G (y) ∩ A) and aa′, a′a ∈ E(G).

For each such pair a, a′, {x, a, a′} and {y, a, a′} both span copies of C3 in G (in fact, they

both span copies of K−
3 ). This implies that (i) is satisfied. Similarly, (i) holds if both

d+
G(x, B) � ε′′n and d+

G(y, B) � ε′′n.

We may therefore assume that d−
G(x, A) < ε′′n or d−

G(y, A) < ε′′n. Without loss of

generality assume that

d−
G(x, A) < ε′′n.

This implies that

d−
G(x, C)

(8.5),(8.8)

� (2/3 − ε)n − ε′n − ε′′n − (1/3 + 8η)n (8.13)

� (1/3 − 2ε′′)n
(8.9)

� |C| − 3ε′′n.

Furthermore, we may assume that d+
G(x, B) < ε′′n or d+

G(y, B) < ε′′n. We now deal with

these two subcases separately.

Case 1a: d+
G(x, B) < ε′′n.

In this case we will show that (ii) is satisfied. Note that

d+
G(x, C)

(8.5),(8.8)

� (2/3 − ε)n − ε′′n − ε′n − (1/3 + 8η)n (8.14)

(8.9)

� |C| − 3ε′′n.

If d+
G(y, C) > 3ε′′n then (8.14) implies that there is a vertex

c ∈ (N+
G (x) ∩ N+

G (y) ∩ C) = A′ ∩ C.

But by definition A′ ∩ C = ∅, a contradiction. Thus,

d+
G(y, C) � 3ε′′n. (8.15)

Claim 8.6. If e(G[B,C]) � 6ε′′n2 then (ii) is satisfied.

Proof. Suppose that e(G[B,C]) � 6ε′′n2. This implies that there are at least 5ε′′n vertices

c ∈ C that receive at least ε′′n edges from B in G. By (8.12), all but at most 3
√
ε′n vertices

c ∈ C send out at least |B| −
√
ε′n edges to B in G. Together with (8.14), this implies that

there are at least 5ε′′n − 3
√
ε′n − 3ε′′n − 1 � ε′′n vertices c ∈ C \ {y} such that

• c ∈ N+
G (x);

• d−
G(c, B) � ε′′n and d+

G(c, B) � |B| −
√
ε′n.

Fix such a vertex c. By the choice of c and (8.12) there are at least ε′′n −
√
ε′n − 3

√
ε′n �

ε′′n/2 vertices b1 ∈ B so that
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b1

b2

b3

b4

c

x y

Figure 2. The connecting structure in Case 1a.

• b1c, cb1 ∈ E(G);

• d−
G(b1, B) � |B| −

√
ε′n.

Fix such a vertex b1. By definition of B, b1 ∈ N−
G (x). Thus, {x, c, b1} spans a copy of C3 in

G.

(8.5), (8.8) and (8.15) imply that

d+
G(y, B) � (2/3 − ε)n − 3ε′′n − ε′n − (1/3 + 8η)n � |B| − 4ε′′n.

Together with (8.12), this implies that there are at least |B| − 5ε′′n vertices b2 ∈ B \ {b1}
so that

• b2 ∈ N+
G (y);

• d+
G(b2, B), d−

G(b2, B) � |B| −
√
ε′n.

Fix such a vertex b2. Next fix a vertex b3 ∈ B \ {b1} such that

• b3 ∈ N+
G (b2);

• d+
G(b3, B) � |B| −

√
ε′n.

There are at least |B| − 5
√
ε′n choices for b3. By definition of B, b3 ∈ N−

G (y). Thus,

{y, b2, b3} spans a copy of C3 in G.

Finally, choose a vertex b4 ∈ B such that

• b4 ∈ N+
G (c) ∩ N−

G (b1) ∩ N−
G (b2) ∩ N+

G (b3).

The choice of c, b1, b2 and b3 ensures that there are at least |B| − 4
√
ε′n choices for b4. Set

X := {c, b1, b2, b3, b4}. By construction both X ∪ {x} and X ∪ {y} span copies of 2C3 in G

(see Figure 2).

Recall that there are at least ε′′n choices for c, at least ε′′n/2 choices for b1, at least

|B| − 5ε′′n choices for b2, at least |B| − 5
√
ε′n choices for b3 and at least |B| − 4

√
ε′n

choices for b4. Overall, this implies that there are at least

ε′′n × ε′′n

2
× (|B| − 5ε′′n) × (|B| − 5

√
ε′n) × (|B| − 4

√
ε′n) × 1

4!
� ηn5

choices for X. So indeed (ii) is satisfied. This proves the claim.
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Assume for a contradiction that e(G[B,C]) < 6ε′′n2. This implies that

e(G[C]) � δ−(G)|C| − e(G[B,C]) − e(G[A,C]) − e(G[D,C]) (8.16)

(8.5)

� (2/3 − ε)n|C| − 6ε′′n2 − |A||C| − ε′n|C|
(8.8),(8.9)

� |C|(2/3 − ε − 24ε′′ − 1/3 − 8η − ε′)n � |C|(1/3 − 25ε′′)n
(8.9)

� |C|2 −
√
ε′′n2.

Similarly,

e(G[B,A]) � δ+(G)|B| − e(G[B]) − e(G[B,C]) − e(G[B,D]) (8.17)

(8.5)

� (2/3 − ε)n|B| − |B|2 − 6ε′′n2 − ε′n|B|
(8.8)

� |B|(2/3 − ε − 1/3 − 8η − 24ε′′ − ε′)n � |B|(1/3 − 25ε′′)n
(8.8)

� |B||A| −
√
ε′′n2.

Let A′′, B′′, C ′′ be a partition of V (G) such that

• 	n/3
 � |A′′| � |B′′| � |C ′′| � �n/3�;

• |A′′ \ A|, |B′′ \ B|, |C ′′ \ C| � 3ε′n.

Such a partition exists by (8.8) and (8.9). Further,

• e(G[A′′, C ′′])
(8.11)

� |A′′||C ′′| − αn2/6;

• e(G[C ′′, B′′])
(8.12)

� |C ′′||B′′| − αn2/6;

• e(G[B′′, A′′])
(8.17)

� |B′′||A′′| − αn2/6;

• e(G[A′′])
(8.10)

� |A′′|2 − αn2/6;

• e(G[B′′])
(8.12)

� |B′′|2 − αn2/6;

• e(G[C ′′])
(8.16)

� |C ′′|2 − αn2/6.

This implies that G α-contains Ex(n), a contradiction. So e(G[B,C]) � 6ε′′n2. Claim 8.6

therefore implies that (ii) holds, as required.

Case 1b: d+
G(y, B) < ε′′n.

In this case we will show that (i) is satisfied. Since d+
G(y, B) < ε′′n,

d+
G(y, C)

(8.5),(8.8)

� (2/3 − ε)n − ε′′n − ε′n − (1/3 + 8η)n (8.18)

� (1/3 − 2ε′′)n
(8.9)

� |C| − 3ε′′n.

If d−
G(y, C) > 3ε′′n then (8.13) implies that there is a vertex

c ∈ (N−
G (x) ∩ N−

G (y) ∩ C) = B′ ∩ C.

But by definition B′ ∩ C = ∅, a contradiction. Thus,

d−
G(y, C) � 3ε′′n.
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This implies that

d−
G(y, A)

(8.5),(8.8)

� (2/3 − ε)n − 3ε′′n − ε′n − (1/3 + 8η)n (8.19)

� (1/3 − 4ε′′)n
(8.8)

� |A| − 5ε′′n.

Claim 8.7. If e(G[C,A]) � 14ε′′n2, then (i) is satisfied.

Proof. Suppose that e(G[C,A]) � 14ε′′n2. This implies that there are at least 8ε′′n vertices

c ∈ C that send out at least 6ε′′n edges to A in G. By (8.11) all but at most 3
√
ε′n vertices

c ∈ C receive at least |A| −
√
ε′n edges from A in G. Together with (8.13) and (8.18), this

implies that there are at least 8ε′′n − 3
√
ε′n − 6ε′′n � ε′′n vertices c ∈ C so that

• c ∈ N−
G (x) ∩ N+

G (y);

• d+
G(c, A) � 6ε′′n and d−

G(c, A) � |A| −
√
ε′n.

Fix such a vertex c. Let a ∈ A such that

• a ∈ N−
G (y) ∩ N+

G (c) ∩ N−
G (c).

The choice of c together with (8.19) implies that there are at least 6ε′′n −
√
ε′n − 5ε′′n �

ε′′n/2 choices for a. Since a ∈ A, a ∈ N+
G (x). Set X := {a, c}. By construction X ∪ {x} and

X ∪ {y} both span copies of C3 in G. In total there are at least

ε′′n × ε′′n/2 � ηn2

choices for X. Therefore (i) is satisfied. This proves the claim.

Assume for a contradiction that e(G[C,A]) < 14ε′′n2. This implies that

e(G[C]) � δ+(G)|C| − e(G[C,A]) − e(G[C,B]) − e(G[C,D]) (8.20)

(8.5)

� (2/3 − ε)n|C| − 14ε′′n2 − |C||B| − ε′n|C|
(8.8),(8.9)

� |C|(2/3 − ε − 50ε′′ − 1/3 − 8η − ε′)n � |C|(1/3 − 51ε′′)n
(8.9)

� |C|2 −
√
ε′′n2.

Similarly,

e(G[B,A]) � δ−(G)|A| − e(G[A]) − e(G[C,A]) − e(G[D,A]) (8.21)

(8.5)

� (2/3 − ε)n|A| − |A|2 − 14ε′′n2 − ε′n|A|
(8.8)

� |A|(2/3 − ε − 1/3 − 8η − 50ε′′ − ε′)n � |A|(1/3 − 51ε′′)n
(8.8)

� |B||A| −
√
ε′′n2.

By arguing precisely as in Case 1a, (8.10)–(8.12), (8.20) and (8.21) imply that G α-contains

Ex(n), a contradiction. So e(G[C,A]) � 14ε′′n2. Claim 8.7 therefore implies that (i) holds,

as required.
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Case 2: ε′n � |D| � (1/3 − ε′′)n.

In this case we will show that (ii) is satisfied. Set d := |D|/n. So

ε′ � d � 1/3 − ε′′. (8.22)

This implies that

ε′′n/2
(8.22)

� (1/3 − 2ε − d)n
(8.6)

� |A|, |B|
(8.6)

� (1/3 + 8η − d)n. (8.23)

Thus,

|C|
(8.23)

� n − dn − 2(1/3 − 2ε − d)n = (1/3 + 4ε + d)n (8.24)

and

|C|
(8.23)

� n − dn − 2(1/3 + 8η − d)n = (1/3 − 16η + d)n
(8.22)

� (1/3 + ε′/2)n. (8.25)

Hence,

d+
G(x, C), d+

G(y, C)
(8.5),(8.25)

� (2/3 − ε)n − (2/3 − ε′/2)n � ε′n/3. (8.26)

By (α), all but at most 2
√
ηn vertices b ∈ B receive at most

√
ηn edges from A ∪ D = A′

in G. So each such vertex b receives at least

(2/3 − ε)n − √
ηn − |B|

(8.23)

� (1/3 − 2
√
η + d)n

(8.24)

� |C| − 3
√
ηn

edges from C in G. This implies that

e(G[C,B]) � (|B| − 2
√
ηn)(|C| − 3

√
ηn) � |C||B| − 5

√
ηn2. (8.27)

By (α),

e(G[D]) + e(G[A,D]) � 2ηn2 and e(G[D]) + e(G[D,B]) � 2ηn2. (8.28)

Therefore,

e(G[B,D]) � δ−(G)|D| − e(G[A,D]) − e(G[D]) − e(G[C,D]) (8.29)

(8.5),(8.28)

� (2/3 − ε)n|D| − 2ηn2 − |C||D|
(8.24)

� (1/3 − √
η − d)n|D|

(8.23)

� |B||D| − √
ηn2

and

e(G[D,C])
(8.5),(8.28)

� (2/3 − ε)n|D| − 2ηn2 − |D||A| (8.30)

(8.23)

� (1/3 − √
η + d)n|D|

(8.24)

� |C||D| − √
ηn2.

Fix c1 ∈ C \ {y} such that

• xc1 ∈ E(G);
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x

b1

c1

d

c2

b2

y

Figure 3. The connecting structure in Case 2.

• d+
G(c1, B) � |B| − η1/4n;

• d−
G(c1, D) � |D| − η1/4n.

Inequalities (8.26), (8.27) and (8.30) imply that there are at least ε′n/3 − 6η1/4n − 1 � ε′n/4

choices for c1. Next fix b1 ∈ B such that

• c1b1 ∈ E(G);

• d+
G(b1, D) � |D| − η1/4n.

The choice of c1 together with (8.29) implies that there are at least |B| − 2η1/4n � ε′′n/3

choices for b1. Further, b1x ∈ E(G) by definition of B. Thus, {x, b1, c1} spans a copy of C3

in G.

Fix c2 ∈ C \ {c1, x} such that

• yc2 ∈ E(G);

• d+
G(c2, B) � |B| − η1/4n;

• d−
G(c2, D) � |D| − η1/4n.

Again (8.26), (8.27) and (8.30) imply that there are at least ε′n/4 choices for c2. Next fix

b2 ∈ B \ {b1} such that

• c2b2 ∈ E(G);

• d+
G(b2, D) � |D| − η1/4n.

There are at least |B| − 2η1/4n − 1 � ε′′n/3 choices for b2. Since b2y ∈ E(G), {y, b2, c3}
spans a copy of C3 in G.

Finally let

d ∈ (N+
G (b1) ∩ N+

G (b2) ∩ N−
G (c1)N−

G (c2) ∩ D).

There are at least |D| − 4η1/4n � ε′n/2 choices for d. Set X := {b1, b2, c1, c2, d}. By con-

struction X ∪ {x} and X ∪ {y} both span copies of 2C3 in G (see Figure 3).

In total there are at least

ε′n

4
× ε′′n

3
× ε′n

4
× ε′′n

3
× ε′n

2
× 1

5!
� ηn5

choices for X. Therefore (ii) is satisfied, as desired.
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9. Proof of Theorems 5.1 and 5.2

In this section we apply our connection lemmas to prove Theorems 5.1 and 5.2. Following

the ideas in [20, 21], we first show in Lemma 9.1 that in order to find the absorbing

set described in Theorems 5.1 and 5.2, it suffices to prove that there are at least ξn2r2

T -absorbing 2r2-sets for every fixed r-set from V (G).

Lemma 9.1 (Absorbing Lemma). Let 0 < ξ � 1 and let r � 2. Then there exists an n0 ∈ N

such that the following holds. Let T ∈ Tr . Consider a digraph G on n � n0 vertices. Suppose

that any r-set of vertices Q ⊆ V (G) can be T -absorbed by at least ξn2r2
2r2-sets of vertices

from V (G). Then V (G) contains a set M so that

• |M| � ξn;

• M is a T -absorbing set for any W ⊆ V (G) \ M such that |W | ∈ rN and |W | � ξ2n.

The proof of Lemma 9.1 follows the same ideas as other such absorbing lemmas in the

area. In particular, the proof of Lemma 9.1 follows the proof of Lemma 5.2 in [24] very

closely. For completeness, we give the proof in Section 9.1.

Lemma 9.2. Let 0 < 1/n � ε � ξ � γ, α � 1/r, where n, r ∈ N and r � 3, and let T ∈ Tr .
Suppose that G is a digraph on n vertices so that

δ0(G) � (1 − 1/r − ε)n. (9.1)

Further suppose that

• G does not contain any γ-independent set of size at least n/r, and

• if T = C3 then G does not α-contain Ex(n).

Then there are at least ξn2r2
T -absorbing 2r2-sets in V (G) for every r-subset of V (G).

Theorem 5.1 follows immediately from Lemmas 9.1 and 9.2. Similarly, Theorem 5.2

follows immediately from Lemma 9.1 and the following result.

Lemma 9.3. Let 0 < 1/n � ε � ξ � γ � 1/r, where n, r ∈ N and r � 3. Suppose that G

is a digraph on n vertices so that, for any x ∈ V (G),

d+(x) � (1 − 1/r − ε)n or d−(x) � (1 − 1/r − ε)n. (9.2)

Further suppose that G does not contain any γ-independent set of size at least n/r. Then

there are at least ξn2r2
Tr-absorbing 2r2-sets in V (G) for every r-subset of V (G).

The rest of the section is devoted to the proofs of Lemmas 9.1–9.3.

9.1. Proof of Lemma 9.1.

Given an r-set Q ⊆ V (G), let LQ denote the family of all T -absorbing 2r2-sets for Q in(
V (G)
2r2

)
. By assumption,

|LQ| � ξn2r2

.
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Let F be the family of 2r2-sets obtained by selecting each of the
(

n
2r2

)
elements of

(
V (G)
2r2

)
independently with probability p := ξ/n2r2−1. Then

E(|F |) = p

(
n

2r2

)
<

ξ

(2r2)!
n and E(|LQ ∩ F |) � p ξn2r2

= ξ2n

for every set Q ∈
(
V (G)
r

)
.

Since n is sufficiently large, Proposition 3.1 implies that with high probability we have

|F | � 2E(|F |) < 2ξ

(2r2)!
n, (9.3)

|LQ ∩ F | � 1

2
E(|LQ ∩ F |) � ξ2

2
n for all Q ∈

(
V (G)

r

)
. (9.4)

Let Y be the number of intersecting pairs of members of F . Then

E(Y ) � p2

(
n

2r2

)
2r2

(
n

2r2 − 1

)
� ξ2n

(2r2 − 1)!(2r2 − 1)!
.

By Markov’s bound, the probability that

Y � 2ξ2

(2r2 − 1)!(2r2 − 1)!
n

is at least 1/2. Therefore we can find a family F of 2r2-sets satisfying (9.3) and (9.4) and

having at most

2ξ2

(2r2 − 1)!(2r2 − 1)!
n

intersecting pairs. Removing all non-absorbing 2r2-sets and one set from each of the

intersecting pairs in F , we obtain a family F ′ of disjoint T -absorbing 2r2-sets such that

|F ′| � |F | � 2ξ

(2r2)!
n � ξn/2r2

and, for all Q ∈
(
V (G)
r

)
,

|LQ ∩ F ′| � ξ2

2
n − 2ξ2

(2r2 − 1)!(2r2 − 1)!
n >

ξ2

r
n. (9.5)

Let M denote the disjoint union of the sets in F ′. Then |M| = |F ′|2r2 � ξn. Since F ′

consists of disjoint T -absorbing sets and each T -absorbing set is covered by a perfect

T -packing, G[M] contains a perfect T -packing. Now let W ⊆ V (G)\M be a set of at

most ξ2n vertices such that |W | = r	 for some 	 ∈ N. We arbitrarily partition W into

r-sets Q1, . . . , Q	. Because of (9.5), we are able to T -absorb each Qi with a different 2r2-set

from LQi
∩ F ′. Therefore G[M ∪ W ] contains a perfect T -packing, as desired.

9.2. Proof of Lemma 9.2.

Define η such that ξ � η � γ. Note that (9.1) implies that there are at least

n ×
(

1 − 1

r
− ε

)
n ×

(
1 − 2

r
− 2ε

)
n × · · · ×

(
1 − r − 1

r
− (r − 1)ε

)
n × 1

r!
� 2η2nr (9.6)

r-sets in V (G) that span copies of T in G.
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Claim 9.4. For any x, y ∈ V (G) there are at least η4n2r−1 (2r − 1)-sets X ⊆ V (G) such that

both X ∪ {x} and X ∪ {y} span copies of 2T in G.

Proof. Suppose for a contradiction that Claim 9.4 is false. Then if T = C3, Lemma 8.5(ii)

does not hold. In particular, Lemmas 8.1, 8.3–8.5 imply that, for any x, y ∈ V (G), there

are at least ηnr−1 (r − 1)-sets X ′ ⊆ V (G) such that both X ′ ∪ {x} and X ′ ∪ {y} span copies

of T in G. Fix such a set X ′. Inequality (9.6) implies that there are least

2η2nr − (r + 1)

(
n

r − 1

)
� η2nr

r-sets X ′′ ⊆ V (G) that span copies of T in G and that are disjoint from X ′ ∪ {x, y}. Fix

such a set X ′′ and define X := X ′ ∪ X ′′. By construction both X ∪ {x} and X ∪ {y} span

copies of 2T in G. Further, since η � 1/r, there are at least

ηnr−1 × η2nr × 1(
2r−1
r−1

) � η4n2r−1

choices for X, a contradiction. This proves the claim.

Consider any r-subset

Q := {x1, x2, . . . , xr}

of V (G). Fix some r-subset Y := {y1, y2, . . . , yr} of V (G) that spans a copy of T in G and

that is disjoint from Q. (9.6) implies that there are least

2η2nr − r

(
n

r − 1

)
� η2nr

choices for Y . Next fix a (2r − 1)-set X1 ⊆ V (G) such that both X1 ∪ {x1} and X1 ∪ {y1}
span copies of 2T in G and so that X1 is disjoint from Q ∪ Y . Claim 9.4 implies that

there are at least

η4n2r−1 − 2r

(
n

2r − 2

)
� η4n2r−1/2

choices for X1. Similarly, Claim 9.4 implies that we can iteratively choose (2r − 1)-sets

X2, . . . , Xr ⊆ V (G)

such that, for each 2 � i � r, the following hold.

• Both Xi ∪ {xi} and Xi ∪ {yi} span copies of 2T in G.

• Xi is disjoint from Q ∪ Y .

• Xi is disjoint from Xj for all 1 � j < i.

• There are at least η4n2r−1/2 choices for Xi.

Set S := Y ∪
⋃

1�i�r Xi. Then S is a T -absorbing 2r2-set for Q. Indeed, G[Xi ∪ {yi}]

contains a perfect T -packing for all 1 � i � r so G[S] contains a perfect T -packing.

Furthermore, G[Xi ∪ {xi}] contains a perfect T -packing for all 1 � i � r and Y spans a

copy of T in G so G[S ∪ Q] contains a perfect T -packing.
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In summary, there are at least η2nr choices for Y and at least η4n2r−1/2 choices for

each of the Xi. Since each T -absorbing 2r2-set may be counted(
2r2

r

)(
r(2r − 1)

2r − 1

)(
(r − 1)(2r − 1)

2r − 1

)
. . .

(
2(2r − 1)

2r − 1

)

times, there are at least

η2nr ×
(
η4n2r−1

2

)r

× 1(
2r2

r

)(
r(2r−1)
2r−1

)(
(r−1)(2r−1)

2r−1

)
. . .

(
2(2r−1)

2r−1

) � ξn2r2

T -absorbing 2r2-sets for Q, as desired.

9.3. Proof of Lemma 9.3.

Define η such that ξ � η � γ. By Lemma 8.1, for every vertex x ∈ V (G), there are at

least ηnr−1 (r − 1)-sets X ⊆ V (G) such that X ∪ {x} spans a copy of Tr in G. Thus, there

are at least

n × ηnr−1 × 1

r
� 2η2nr (9.7)

r-sets in V (G) that span copies of Tr in G.

By now following the proof of Lemma 9.2 identically (applying (9.7) and Lemma 8.1)

we conclude that there are at least ξn2r2
Tr-absorbing 2r2-sets in V (G) for every r-subset

of V (G), as required.

10. Tools for the proof of Lemma 5.5

In Sections 11 and 12 we deal with the extremal cases of Theorems 1.3. The proof of

Lemma 5.5 builds on the ideas from the extremal case in [14]. (Note, however, that [14]

concerns embedding powers of Hamilton cycles in graphs.) In this section we give a number

of results that will be applied in the proof of Lemma 5.5.

10.1. Perfect T -packings in the non-extremal case

In the proof of Lemma 5.5 we will apply the following result, which is a direct consequence

of Theorems 5.1 and 5.3 (its proof is implicit in the proof of Theorem 1.3 given in

Section 5).

Theorem 10.1. Let 0 < 1/n � ε � γ � 1/r where n, r ∈ N and r � 3 so that r divides n,

and let T ∈ Tr \ {C3}. Suppose that G is a digraph on n vertices so that

δ0(G) � (1 − 1/r − ε)n.

Further suppose that G does not contain any γ-independent set of size at least n/r. Then G

contains a perfect T -packing.

10.2. Perfect Kr-packings in r-partite digraphs

We will also apply the following immediate consequence of Theorem 1.2.
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Theorem 10.2. Given r ∈ N there exists an n0 ∈ N such that the following holds. Suppose

G is an r-partite digraph with vertex classes V1, . . . , Vr where |Vi| = n � n0 for all 1 � i � r.

If

δ̄+(G), δ̄−(G) � (1 − 1/2r)n + 1,

then G contains a perfect Kr-packing.

Here δ̄+(G) (δ̄−(G)) denotes the minimum outdegree (indegree) of a vertex from one

vertex class Vi to another vertex class Vj .

10.3. Matchings in digraphs

A matching in a (di)graph G is a collection of vertex-disjoint edges M ⊆ E(G). We write

V (M) for the set of vertices covered by the edges from M. We say that M is a d-matching

if |M| = d. We say that M is a perfect matching if V (M) = V (G).

Proposition 10.3. Let d, n ∈ N. Suppose that G is a graph on n � 2d vertices such that

δ(G) � d. Let X ⊆ V (G) such that |X| = d. Then G contains a d-matching that covers all

the vertices in X.

Proof. It is easy to see that G contains a d-matching. Let M be a d-matching in G that

covers the maximum number of vertices from X. Suppose for a contradiction that there is

a vertex x ∈ X uncovered by M. In particular, M covers more vertices in V (G) \ X than

in X. There exist non-negative integers a, b, c such that a + b + c = d and

(i) M contains precisely a edges wz where w ∈ X and z ∈ V (G) \ X;

(ii) M contains precisely b edges with both endpoints in X;

(iii) M contains precisely c edges with both endpoints in V (G) \ X.

Since M covers more vertices in V (G) \ X than in X, b < c (and so c � 1). Suppose x has

a neighbour y ∈ V (G) \ V (M). Then add xy to M and delete an edge wz from M such

that w, z ∈ V (G) \ X. Then M is a d-matching covering more vertices in X than before, a

contradiction. So x only has neighbours in V (M).

Suppose wz is an edge in M such that w ∈ X and z ∈ V (G) \ X. If xw ∈ E(G) then

delete wz from M and add xw to M. So again M is a d-matching covering more vertices

in X than before, a contradiction. Thus, x is not adjacent to w. A similar argument

shows that if wz ∈ M with w, z ∈ V (G) \ X, then xw, xz �∈ E(G). Together with (i)–(iii),

this shows that x has at most a + 2b < a + b + c = d neighbours in G, a contradiction, as

desired.

The following immediate consequence of Proposition 10.3 will be applied in the proof

of Lemma 5.5.

Proposition 10.4. Let d, n ∈ N. Suppose that G is a digraph on n � 2d vertices such that, for

any x ∈ V (G), d+(x) � d or d−(x) � d. Let X ⊆ V (G) such that |X| = d. Then G contains

a d-matching that covers all the vertices in X.
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Let ε > 0. Suppose that G is a (di)graph G on n vertices. Then we say that G is ε-close

to 2Kn/2 if there exists a partition A,B of V (G) such that |A| = 	n/2
, |B| = �n/2� and

eG(A,B) � εn2.

Proposition 10.5. Let γ > 0 and n ∈ N be even such that 1/n � γ. Suppose that G is a

graph on n vertices so that

δ(G) � (1/2 − γ)n. (10.1)

Then at least one of the following conditions holds.

• G contains a 3γ-independent set of size at least n/2.

• G is 3γ-close to 2Kn/2.

• G contains a perfect matching.

Proof. Suppose that G does not contain a perfect matching. Let M be a maximal match-

ing in G. So there exists distinct x, y ∈ V (G) \ V (M). The maximality of M implies that

N(x), N(y) ⊆ V (M). Define SN(x) := {z ∈ V (M) : wz ∈ M for some w ∈ N(x)}. Define

SN(y) analogously. Inequality (10.1) implies that

|SN(x)|, |SN(y)| � (1/2 − γ)n. (10.2)

Suppose for a contradiction that there is an edge zz′ ∈ E(G) such that z ∈ SN(x) and

z′ ∈ SN(y). If zz′ ∈ M then by definition of SN(x) and SN(y), xz′, yz ∈ E(G). Define M ′ :=

(M \ {zz′}) ∪ {xz′, yz} ⊆ E(G). Thus, M ′ is a larger matching than M, a contradiction.

So zz′ �∈ M. Let w,w′ ∈ V (M) such that wz, w′z′ ∈ M. Then by definition of SN(x) and

SN(y), xw, yw′ ∈ E(G). Set M ′ := (M \ {wz, w′z′}) ∪ {xw, yw′, zz′} ⊆ E(G). Then M ′ is a

larger matching than M, a contradiction. This proves that there is no such edge zz′.

Define

SN(x, y) := SN(x) ∩ SN(y).

Suppose that SN(x, y) �= ∅. Consider any z ∈ SN(x, y). Then in G, z does not have any

neighbours in SN(x) ∪ SN(y). So (10.1) implies that |SN(x) ∪ SN(y)| � (1/2 + γ)n. So

together with (10.2) this implies that |SN(x, y)| � (1/2 − 3γ)n. Further, SN(x, y) is an

independent set in G. By adding at most 3γn arbitrary vertices to SN(x, y) we obtain a

3γ-independent set of size at least n/2 in G.

Finally, suppose that SN(x, y) = ∅. So SN(x) and SN(y) are disjoint and

eG(SN(x), SN(y)) = 0.

Together with (10.2), this implies that G is 3γ-close to 2Kn/2, as desired.

We will also apply the following consequence of Proposition 10.5.

Proposition 10.6. Let γ > 0 and n ∈ N be even such that 1/n � γ. Suppose that G is a

digraph on n vertices so that, for every x ∈ V (G),

d+(x) � (1/2 − γ)n or d−(x) � (1/2 − γ)n.
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Then at least one of the following conditions holds.

• G contains a 6γ-independent set of size at least n/2.

• G is 6γ-close to 2Kn/2.

• G contains a perfect matching.

11. Proof of Lemma 5.5

Define constants γ, γ1, γ2, . . . , γr and n0 ∈ N such that

0 < 1/n0 � γ � γ1 � γ2 � · · · � γr � 1/r.

Let T ∈ Tr and G be a digraph on n � n0 vertices as in the statement of the lemma. By

assumption G contains a γ-independent set A1 of size n/r. (So A1 is also a γ1-independent

set in G.) Consider G1 := G \ A1. If G1 contains a γ2-independent set A2 of size n/r set

G2 := G1 \ A2. (Note that A2 is also a γ2-independent set in G.) Otherwise let B := V (G1).

Repeating this process, for some 1 � s � r, we obtain a partition A1, . . . , As, B of V (G)

such that

• Ai is a γi-independent set of size n/r in G (for all 1 � i � s);

• |B| = (r − s)n/r and G[B] does not contain a γs+1-independent set of size n/r.

(The latter condition is vacuous if B = ∅.) If B = ∅, define additional constants α, β′, β so

that

γr � α � β′ � β � 1/r.

If B �= ∅ then define α, β′, β, η so that

γs � α � β′ � β � η � γs+1.

Let δ > 0 and 1 � i � s. We now introduce a number of definitions.

• We say that a vertex x ∈ Ai is (δ, i)-bad if d+
G(x, Ai) � δn or d−

G(x, Ai) � δn. Otherwise

we say that x is (δ, i)-good.

• We say that a vertex x ∈ V (G) \ Ai is (δ, i)-exceptional if d+
G(x, Ai), d

−
G(x, Ai) � δn.

Otherwise we say that x is (δ, i)-acceptable.

• We say that a vertex x ∈ V (G) \ Ai is (δ, i)-excellent if d+
G(x, Ai), d

−
G(x, Ai) � |Ai| − δn.

• Similarly, we say that a vertex x ∈ V (G) \ B is (δ, B)-excellent if d+
G(x, B), d−

G(x, B) �
|B| − δn.

Later on we will modify the vertex classes A1, . . . , As, B. When referring to, for example,

(δ, i)-bad vertices, we mean with respect to the current class Ai and not the original class.

For each 1 � i � s, since Ai is a γi-independent set in G and γi � α � β, there are at

most αn vertices in Ai that are (β, i)-bad. Furthermore, (5.3) implies that there are at least

2δ0(G)|Ai| − 2γin
2 � 2|Ai||V (G) \ Ai| − 2γin

2

edges in G with one endpoint in Ai and the other in V (G) \ Ai. So as γi � α � β′, there

are at most αn vertices x ∈ V (G) \ Ai that are not (β′, i)-excellent. (This implies that there

are at most αn (β, i)-exceptional vertices.)
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Modifying the partition A1, . . . , As, B. Let t be the largest integer such that there exists both

t (β, 1)-bad vertices x1, . . . , xt ∈ A1 and t (β, 1)-exceptional vertices y1, . . . , yt ∈ V (G) \ A1.

Note that t � αn. Move y1, . . . , yt into A1 and remove x1, . . . , xt from A1 so that each xi
replaces yi in their respective classes. (So if originally yi ∈ Aj then we move xi into Aj . If

originally yi ∈ B then we move xi into B.) We call this ‘phase’ Stage 1.

If a vertex x ∈ A1 was initially (β, 1)-good, then after Stage 1, x is still (β + α, 1)-good.

Further, each yi is now (β + α, 1)-good. So if A1 initially contained precisely t (β, 1)-bad

vertices, then A1 no longer contains any (β + α, 1)-bad vertices.

If a vertex y ∈ V (G) \ A1 was initially (β, 1)-acceptable, then after Stage 1, y is still

(β − α, 1)-acceptable. Further, each vertex xi is (β − α, 1)-acceptable. So if initially there

were precisely t (β, 1)-exceptional vertices, then after Stage 1 there are no (β − α, 1)-

exceptional vertices.

Thus, after Stage 1 we have the following.

• Ai is an α-independent set of size n/r in G (for all 1 � i � s).

• If B �= ∅ then G[B] does not contain any (γs+1 − 2αr)-independent set of size n/r.

• There are no (β + α, 1)-bad vertices in A1 or there are no (β − α, 1)-exceptional vertices

in V (G) \ A1.

• Ai contains at most 2αn (β + α, i)-bad vertices (for all 1 � i � s).

• There are at most 2αn vertices in V (G) \ Ai that are not (β′ + α, i)-excellent (for each

1 � i � s).

Suppose that s � 2. We now explain Stage 2 of the switching procedure. Let t′ be the

largest integer such that there exists both t′ (β + α, 2)-bad vertices x1, . . . , xt′ ∈ A2 and t′

(β, 2)-exceptional vertices y1, . . . , yt′ ∈ V (G) \ A2 at the end of Stage 1. Note that t′ � 2αn.

Move y1, . . . , yt′ into A2 and remove x1, . . . , xt′ from A2 so that each xi replaces yi in their

respective classes.

If a vertex x ∈ A2 was (β + α, 2)-good after Stage 1 then x is still (β + 3α, 2)-good.

Further, each yi is now (β + 3α, 2)-good. So if at the end of Stage 1, A2 contained precisely

t′ (β + α, 2)-bad vertices, then A2 no longer contains any (β + 3α, 2)-bad vertices.

If a vertex y ∈ V (G) \ A2 was (β, 2)-acceptable at the end of Stage 1, then y is still

(β − 2α, 2)-acceptable. Further, each vertex xi is (β − 2α, 2)-acceptable. So if at the end

of Stage 1, there were precisely t′ (β, 2)-exceptional vertices, then there are now no

(β − 2α, 2)-exceptional vertices.

Recall that after Stage 1 there are no (β + α, 1)-bad vertices in A1 or there are no

(β − α, 1)-exceptional vertices in V (G) \ A1. Suppose that the former holds. Then (5.3)

implies that after Stage 1 every vertex in A1 is (β + α, 2)-excellent. In particular, A1 is not

modified in Stage 2. Next suppose that after Stage 1 there were no (β − α, 1)-exceptional

vertices in V (G) \ A1. Suppose that x is a vertex that lies in V (G) \ A1 both after Stage 1

and after Stage 2. Then after Stage 2 x is a (β − 3α, 1)-acceptable vertex. Suppose that

x is a vertex in A1 after Stage 1 and a vertex in V (G) \ A1 after Stage 2. Then x ∈ A2

after Stage 2 and so was a (β, 2)-exceptional vertex after Stage 1. Together with (5.3),

this implies that, after Stage 2, x is a (β + 2α, 1)-excellent vertex (in particular, x is not

(β − 3α, 1)-exceptional). Overall this implies that, after Stage 2, there are no (β + 3α, 1)-bad

vertices in A1 or there are no (β − 3α, 1)-exceptional vertices in V (G) \ A1.
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Therefore, after Stage 2 we have the following.

• Ai is a 3α-independent set of size n/r in G (for all 1 � i � s).

• If B �= ∅ then G[B] does not contain any (γs+1 − 6αr)-independent set of size n/r.

• There are no (β + 3α, i)-bad vertices in Ai or there are no (β − 3α, i)-exceptional vertices

in V (G) \ Ai for i = 1, 2.

• Ai contains at most 4αn (β + 3α, i)-bad vertices (for all 1 � i � s).

• There are at most 4αn vertices in V (G) \ Ai that are not (β′ + 3α, i)-excellent (for each

1 � i � s).

By applying an analogous switching procedure iteratively for A3, . . . , As, we modify the

partition A1, . . . , As, B of V (G) such that the following conditions hold.

(α1) A1, . . . , As, B remains a partition of V (G) so that Ai is a
√
α-independent set of size

n/r in G (for all 1 � i � s).

(α2) If B �= ∅ then G[B] does not contain any (γs+1/2)-independent set of size n/r.

(α3) There are no (2β, i)-bad vertices in Ai or there are no (β/2, i)-exceptional vertices in

V (G) \ Ai (for all 1 � i � s).

(α4) Ai contains at most
√
αn (2β, i)-bad vertices (for all 1 � i � s).

(α5) There are at most
√
αn vertices in V (G) \ Ai that are not (2β′, i)-excellent (for each

1 � i � s).

Note that if B �= ∅ then (5.3) implies that

δ0(G[B]) �
(

1 − 1

r − s

)
|B|. (11.1)

11.1. The case when |B| �= 2n/r or G[B] is not close to 2Kn/r

In this subsection we will assume that either (i) r − s �= 2 (and so |B| �= 2n/r) or (ii)

r − s = 2 and G[B] is not η-close to 2Kn/r . The case when r − s = 2 and G[B] is η-close

to 2Kn/r is considered in Section 11.2.

Covering the exceptional vertices with matchings. Given any 1 � i � s, let Vex,i denote the

set of (β/2, i)-exceptional vertices in V (G) \ Ai. Condition (α5) implies that ci := |Vex,i| �√
αn for all 1 � i � s. Inequality (5.3) implies that a vertex cannot be both (β/2, i)-

exceptional and (β/2, j)-exceptional for i �= j. So Vex,i and Vex,j are disjoint for all i �= j.

Given 1 � i � s, if Vex,i = ∅, set Gi to be the empty digraph. If Vex,i �= ∅, set Gi :=

G[Ai ∪ Vex,i]. If Vex,i �= ∅ then by (α3), there are no (2β, i)-bad vertices in Ai. Thus, by (5.3)

every vertex in Ai is (2β, j)-excellent for all j �= i. In particular, if x ∈ Ai then x �∈ Vex,j .

Therefore the digraphs G1, . . . , Gs are vertex-disjoint.

If Vex,i �= ∅ then, since |Gi| = n/r + ci, (5.3) implies that δ0(Gi) � ci (for 1 � i � s).

Further, |Gi| � 2ci. So Proposition 10.4 implies that there are disjoint matchings M1, . . . ,Ms

in G such that

(β1) Mi is a ci-matching in Gi that covers all the vertices in Vex,i (for all 1 � i � s).

Note that if Vex,i = ∅ then Mi is empty.

Extending the matchings Mi into T -packings. Our next task is to find vertex-disjoint

T -packings M1, . . . ,Ms in G so that, for each 1 � i � s:
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(γ1) Mi contains precisely ci disjoint copies of T ;

(γ2) Mi covers Mi. In particular, each copy of T in Mi contains a unique edge from Mi;

(γ3) Mi covers precisely ci vertices from Aj (for each 1 � j � s) and precisely (r − s)ci
vertices from B.

Suppose that for some 1 � i � s we have found our desired T -packings M1, . . . ,Mi−1. We

now construct Mi. If Mi is empty then we set Mi = ∅ and then (γ1)–(γ3) are vacuously

true for Mi. So suppose that Mi is non-empty. Since |Vex,i| = ci, (β1) implies that there

exist non-negative integers ai, bi so that ci = ai + 2bi and

(i) Mi contains precisely ai edges with one endpoint in Vex,i and the other in Ai;

(ii) Mi contains precisely bi edges with both endpoints in Vex,i;

(iii) Mi contains precisely bi edges with both endpoints in Ai.

Consider any edge e in Mi with one endpoint x ∈ Ai and one endpoint y ∈ Vex,i. Since

Vex,i �= ∅, (α3) implies that x is (2β, i)-good. In particular, together with (5.3) this implies

that d+(x, Aj), d
−(x, Aj) � |Aj | − 2βn for all j �= i and d+(x, B), d−(x, B) � |B| − 2βn. Since

y is (β/2, i)-exceptional, (5.3) implies that d+(y, Aj), d
−(y, Aj) � |Aj | − βn/2 for all j �= i

and d+(y, B), d−(y, B) � |B| − βn/2. It is easy to see that, together with (11.1), (α4) and

(α5), this implies that we can greedily construct a copy T ′ of T in G such that

• T ′ is vertex-disjoint from M1, . . . ,Mi−1 and Mi \ {e},Mi+1, . . . ,Ms;

• T ′ contains e and contains precisely one vertex from each of A1. . . . , As and r − s

vertices from B.

Further, we can repeat this process for all ai such edges e so that the ai copies of T thus

obtained are vertex-disjoint. Let M′
i denote the set of these copies of T . So M′

i covers ai
vertices from each Aj and ai(r − s) vertices from B.

Next pair off each of the bi edges from (ii) with a unique edge from (iii). Consider one

such pair (e, e′) of edges. So the endpoints x, y of e lie in Vex,i and the endpoints x′, y′ of e′

lie in Ai. Suppose that x, y ∈ Ai′ for some i′ �= i. (The other cases are similar.) Since x, y are

(β/2, i)-exceptional, (5.3) implies that d+(x, Aj), d
−(x, Aj), d

+(y, Aj), d
−(y, Aj) � |Aj | − βn/2

for all j �= i and d+(x, B), d−(x, B), d+(y, B), d−(y, B) � |B| − βn/2. It is easy to see that,

together with (11.1), (α4) and (α5), this implies that we can greedily construct a copy T ′

of T in G such that

• T ′ is vertex-disjoint from M1, . . . ,Mi−1,M′
i and Mi \ {e},Mi+1, . . . ,Ms;

• T ′ contains e and contains two vertices from Ai′ (namely x and y), no vertices from

Ai, one vertex from Aj (for j �= i, i′) and r − s vertices from B.

Similarly we can greedily construct a copy T ′′ of T in G such that

• T ′′ is vertex-disjoint from M1, . . . ,Mi−1,M′
i, T

′ and Mi \ {e′},Mi+1, . . . ,Ms;

• T ′′ contains e′ and contains two vertices from Ai (namely x′ and y′), no vertices from

Ai′ , one vertex from Aj (for j �= i, i′) and r − s vertices from B.

So together T ′ and T ′′ cover precisely two vertices from each Aj and 2(r − s) vertices

from B. Further, we can repeat this process for all such pairs of edges (e, e′) so that the

2bi copies of T thus obtained are vertex-disjoint. Let M′′
i denote the set of these copies

of T . Then by construction M′′
i covers precisely 2bi vertices from each Aj and 2bi(r − s)
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vertices from B. Set Mi := M′
i ∪ M′′

i . So Mi is a T -packing in G. By construction Mi is

vertex-disjoint from M1, . . . ,Mi−1 and satisfies (γ1)–(γ3), as desired.

Covering the remaining vertices. Remove all those vertices covered by M1, . . . ,Ms from

G (and from the classes A1, . . . , As, B). Call the resulting digraph G′. So n′ := |G′| �
(1 − r2

√
α)n by (γ1), |Ai| = n′/r for all 1 � i � s and |B| = (r − s)n′/r by (γ3). Further, (5.3)

and (α1)–(α5) imply that the following conditions hold.

(δ1) δ0(G′) � (1 − 1/r − r2
√
α)n � (1 − 1/r − r2

√
α)n′.

(δ2) A1, . . . , As, B is a partition of V (G′) so that Ai is a 2
√
α-independent set of size n′/r

in G′ (for all 1 � i � s).

(δ3) If B �= ∅ then G′[B] does not contain any (γs+1/3)-independent set of size n′/r.

(δ4) Every vertex in V (G′) \ Ai is (β/3, i)-acceptable (for each 1 � i � s).

(δ5) There are at most
√
αn vertices in V (G′) \ Ai that are not (2β′, i)-excellent (for each

1 � i � s).

In particular, note that (δ4) follows since Mi contains the vertices in Vex,i. If B �= ∅ then

(δ1) implies that

d+
G′ (y, B), d−

G′ (y, B) �
(

1 − 1

r
− r2

√
α

)
n′ − sn′

r
�

(
1 − 1

r − s
− α1/3

)
|B| (11.2)

for all y ∈ V (G′).

We now split the proof into cases depending on the size of B.

Case 1: B = ∅.

In this case s = r and A1, . . . , Ar is a partition of V (G′). Then G′ contains a T -packing M′

such that the following hold.

(ε1) M′ contains at most r
√
αn copies of T .

(ε2) If x ∈ V (G′) \ Ai is not (2β′, i)-excellent then x is contained in a copy of T in M′

(for any 1 � i � r).

(ε3) Each copy of T in M′ covers exactly one vertex from Ai (for each 1 � i � r).

To see that such a T -packing M′ exists, suppose that we have found a T -packing M∗ in

G′ that satisfies (ε1) and (ε3). Suppose that for some 1 � i � r, x ∈ V (G) \ Ai so that x is

not (2β′, i)-excellent and x is not covered by M∗. (By (δ5) there are at most r
√
αn such

vertices x.) Without loss of generality assume that x ∈ A1. Then by (δ1) and (δ4) there

exist 2 � i′ �= i′′ � r such that

• d+
G′ (x, Ai′ ) � βn/3;

• d−
G′ (x, Ai′′ ) � βn/3;

• d+
G′ (x, Aj), d

−
G′ (x, Aj) � βn/3 for all 2 � j � r such that j �= i′, i′′.

Without loss of generality assume that i′ = 2 and i′′ = 3. Write V (T ) = {x1, . . . , xr} where

x1x2, x3x1 ∈ E(T ). Since d+
G′ (x, A2) � βn/3, (δ5) implies that there is a vertex y2 ∈ A2 \

V (M∗) such that xy2 ∈ E(G′) and y2 is (2β′, i)-excellent for all 3 � i � r. Further, since

d−
G′ (x, A3) � βn/3, the choice of y2 together with (δ5) ensures that there is a vertex y3 ∈
A3 \ V (M∗) such that y3x, y2y3, y3y2 ∈ E(G′) and y3 is (2β′, i)-excellent for all 4 � i � r.

In particular, {x, y2, y3} spans a copy of T [x1, x2, x3] in G′ that is vertex-disjoint from

M∗. Continuing in this way, we obtain vertices y2, . . . , yr such that yi ∈ Ai \ V (M∗) and
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{x, y2, . . . , yr} spans a copy of T in G′ where x, y2, . . . , yr play the roles of x1, . . . , xr
respectively. This argument shows that we can indeed find a T -packing M′ that satisfies

(ε1)–(ε3).

Remove all those vertices covered by M′ from G′ (and from the classes A1, . . . , Ar).

Call the resulting digraph G′′. So n′′ := |G′′| � (1 − 2r2
√
α)n by (ε1) and |Ai| = n′′/r for all

1 � i � r by (ε3). Further, (ε2) implies that, given any x ∈ V (G′′) \ Ai, x is (2β′, i)-excellent

(for all 1 � i � r). So Theorem 10.2 implies that G′′ contains a perfect Kr-packing and

thus a perfect T -packing M′′. Set

M := M′ ∪ M′′ ∪ M1 ∪ · · · ∪ Mr.

Then M is a perfect T -packing in G, as required.

Case 2: B �= ∅.

In this case s � r − 1. Given any 1 � i � s, (δ1) and (δ2) imply that there are at least

2|B||Ai| − r2
√
αn2 − 4

√
αn2 � 2|B||Ai| − α1/3n2

edges in G′ with one endpoint in Ai and the other endpoint in B. Since α � β � 1/r,

this implies that there are at most α1/4n/r vertices in Ai that are not (β, B)-excellent. Let

Vex,B denote the set of all those vertices in V (G′) \ B that are not (β, B)-excellent. So

|Vex,B | � α1/4n.

Then G′ contains a T -packing M′ such that we have the following.

(ε′
1) M′ contains m′ � 2r

√
αn + 2α1/4n � 3α1/4n copies of T .

(ε′
2) If x ∈ V (G′) \ Ai is not (β, i)-excellent then x is contained in a copy of T in M′ (for

any 1 � i � s). Similarly, if x ∈ V (G′) \ B is not (β, B)-excellent then x is contained

in a copy of T in M′.

(ε′
3) M′ covers exactly m′ vertices from Ai (for each 1 � i � s) and m′(r − s) vertices

from B.

To prove that such a T -packing M′ exists, we will use the following three claims.

Claim 11.1. Let x ∈ V (G′) \ B be such that x is not (β, B)-excellent and let W ⊆ V (G′) \
{x} where |W | � α1/5n. Then there are two vertex-disjoint copies T ′, T ′′ of T in G′ so that

(i) V (T ′) ∪ V (T ′′) contains two vertices from Ai (for each 1 � i � s) and 2(r − s) vertices

from B;

(ii) x ∈ V (T ′) ∪ V (T ′′) and V (T ′) ∪ V (T ′′) is disjoint from W .

Proof. To prove the claim consider a vertex x ∈ V (G′) \ B that is not (β, B)-excellent. If

s = 1 then x ∈ A1. Further, since x is not (β, B)-excellent, (δ1) implies that

• d+
G′ (x, A1) � βn − r2

√
αn′ � βn/2 or d−

G′ (x, A1) � βn/2.

Without loss of generality assume that d+
G′ (x, A1) � βn/2.

Fix a vertex y in A1 such that

• xy ∈ E(G′);

• y is (β, B)-excellent;

• y �∈ W .
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Note that there are at least βn/2 − α1/4n − α1/5n � βn/4 choices for y since |Vex,B | � α1/4n

and |W | � α1/5n. Then by repeatedly applying (11.2) we can greedily extend xy to a copy

T ′ of T in G′ containing two vertices from A1 (namely x and y) and r − 2 vertices from

B so that T ′ is disjoint from W .

Next suppose that s � 2. Since x is not (β, B)-excellent, (δ1) and (δ4) imply that there

exist 1 � i′ �= i′′ � s such that

• d+
G′ (x, Ai′ ) � βn/3;

• d−
G′ (x, Ai′′ ) � βn/3;

• d+
G′ (x, Aj), d

−
G′ (x, Aj) � βn/3 for all 1 � j � r such that j �= i′, i′′.

Without loss of generality assume that x ∈ A1, i′ = 1 and i′′ = 2 (the other cases are

similar).

Write

V (T ) = {x1, . . . , xr},

where x1x2, x3x1 ∈ E(T ). Since d+
G′ (x, A1) � βn/3, |Vex,B | � α1/4n and |W | � α1/5n, (δ5)

implies that there is a vertex y2 ∈ A1 such that

• xy2 ∈ E(G′);

• y2 is (2β′, i)-excellent for all 2 � i � s;

• y2 is (β, B)-excellent;

• y2 �∈ W .

Since d−
G′ (x, A2) � βn/3, the choice of y2 together with (δ5) ensures that there is a vertex

y3 ∈ A2 such that

• y3x, y2y3, y3y2 ∈ E(G′);

• y3 is (2β′, i)-excellent for all 3 � i � s;

• y3 is (β, B)-excellent;

• y3 �∈ W .

In particular, {x, y2, y3} spans a copy of T [x1, x2, x3] in G′. Continuing in this fashion and

then repeatedly applying (11.2), we can greedily find a copy T ′ of T in G′ that covers two

vertices in A1 (namely x and y2), one vertex from Aj (for 2 � j � s) and r − s − 1 vertices

from B so that T ′ is disjoint from W . So in both cases we have found a copy T ′ of T

in G′ that covers two vertices in A1 (including x), one vertex from Aj (for 2 � j � s) and

r − s − 1 vertices from B.

Let T ∗ be a subtournament of T of size r − s + 1. Let B′ denote the set of vertices

x ∈ B \ (V (T ′) ∪ W ) that are (2β′, j)-excellent for all 1 � j � s. Then |B′| � |B| − r
√
αn −

r − α1/5n by (δ5). Together with (11.2), this implies that

δ0(G′[B′]) �
(

1 − 1

r − s
− α1/6

)
|B′|.

Moreover, (δ3) then implies that G′[B′] does not contain any (γs+1/4)-independent set of

size |B′|/(r − s). Proposition 6.4 (with G′[B′], |B′|, α1/6, T ∗, r − s + 1 playing the roles of

G, n, ε, T , r respectively) implies that G′[B′] contains a copy T ∗
1 of T ∗. The choice of

B′ ensures that we can greedily extend T ∗
1 to a copy T ′′ of T in G′ that is disjoint from

V (T ′) ∪ W and that covers no vertices from A1, one vertex from Aj (for 2 � j � s) and
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r − s + 1 vertices from B. So together T ′ and T ′′ satisfy (i) and (ii). This completes the

proof of Claim 11.1.

Claim 11.2. Let x ∈ V (G′) \ (Ai ∪ B) be such that x is not (β, i)-excellent (for some 1 �
i � s) and let W ⊆ V (G′) \ {x} where |W | � α1/5n. Then there are two vertex-disjoint copies

T ′, T ′′ of T in G′ so that

(i) V (T ′) ∪ V (T ′′) contains two vertices from Aj (for each 1 � j � s) and 2(r − s) vertices

from B;

(ii) x ∈ V (T ′) ∪ V (T ′′) and V (T ′) ∪ V (T ′′) is disjoint from W .

The proof of Claim 11.2 is essentially identical to the proof of Claim 11.1, so we omit it.

Claim 11.3. Let x ∈ B be such that x is not (β, i)-excellent (for some 1 � i � s) and let

W ⊆ V (G′) \ {x} where |W | � α1/5n. Then there is a copy T ′ of T in G′ so that

(i) V (T ′) contains one vertex from Aj (for each 1 � j � s) and r − s vertices from B;

(ii) x ∈ V (T ′) and V (T ′) is disjoint from W .

It is easy to see that (δ1), (δ4) and (11.2) imply that we can greedily construct a copy

T ′ of T as in Claim 11.3.

Recall that |Vex,B | � α1/4n. Together with (δ5), this implies that we can repeatedly apply

Claims 11.1–11.3 to obtain a T -packing M′ in G′ satisfying (ε′
1)–(ε′

3).

Remove all those vertices covered by M′ from G′ (and from the classes A1, . . . , As, B).

Call the resulting digraph G′′. So n′′ := |G′′| � (1 − α1/5)n by (ε′
1) and |Ai| = n′′/r for all

1 � i � s and |B| = (r − s)n′′/r by (ε′
3). Further, (ε′

2) implies that, given any x ∈ V (G′′) \ Ai,

x is (β, i)-excellent (for all 1 � i � s) and every vertex y ∈ V (G′′) \ B is (β, B)-excellent.

Suppose that |B| = n′′/r. Then as in Case 1, Theorem 10.2 implies that G′′ contains a

perfect Kr-packing and thus a perfect T -packing M′′. Set

M := M′ ∪ M′′ ∪ M1 ∪ · · · ∪ Ms.

Then M is a perfect T -packing in G, as required.

Next suppose that |B| � 2n′′/r. Let T ∗ be a subtournament of T on r − s vertices

such that T ∗ �= C3. (Note that if r − s = 3 then r � 4. Every tournament on at least four

vertices contains T3, so we indeed may choose T ∗ �= C3.) By (11.2) and (ε′
1) we have that

δ0(G′′[B]) � (1 − 1/(r − s) − α1/5)|B|.

Moreover, (δ3) implies that G′′[B] does not contain any (γs+1/4)-independent set of size

n′′/r = |B|/(r − s). Further, if |B| = 2n′′/r (and so r − s = 2) then by assumption G′′[B] is

not η/2-close to 2Kn′′/r . Thus, by Theorem 10.1 and Proposition 10.6, G′′[B] contains a

perfect T ∗-packing M∗.

Define an auxiliary digraph G∗ from G′′ as follows. G∗ has vertex set A1 ∪ · · · ∪ As ∪ B∗

where |B∗| = n′′/r and each vertex x ∈ B∗ corresponds to a unique copy T ∗
x of T ∗ from

M∗. The edge set of G∗ consists of every edge wz ∈ E(G′′) such that w ∈ Ai and z ∈ Aj for

some i �= j together with the following edges. Suppose that x ∈ B∗ and y ∈ V (G∗) \ B∗.

Then
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• yx ∈ E(G∗) precisely if y sends an edge to every vertex in T ∗
x in G′′;

• xy ∈ E(G∗) precisely if y receives an edge from every vertex in T ∗
x in G′′.

Note that G∗ is an (s + 1)-partite digraph with vertex classes of size n′′/r. Further,

δ̄+(G∗), δ̄−(G∗) � n′′/r − βrn.

So by Theorem 10.2, G∗ contains a perfect Ks+1-packing. By construction of G∗ this

implies that G′′ contains a perfect T -packing M′′. Set

M := M′ ∪ M′′ ∪ M1 ∪ · · · ∪ Ms.

Then M is a perfect T -packing in G, as required.

11.2. The case when |B| = 2n/r and G[B] is close to 2Kn/r

In this subsection we consider the case when |B| = 2n/r and G[B] is η-close to 2Kn/r .

Thus, there exists a partition B1, B2 of B such that |B1| = |B2| = n/r and eG(B1, B2) � η|B|2.

Inequality (11.1) implies that δ0(G[B]) � |B|/2 = n/r.

For i = 1, 2 and δ > 0 we say that a vertex x ∈ Bi is (δ, Bi)-excellent if

d+
G(x, Bi), d

−
G(x, Bi) � |Bi| − δn.

(Later on we will modify the classes B1, B2. When referring to, for example, (δ, B1)-excellent

vertices, we mean with respect to the current class B1 and not the original class.) Note

that there are at most η1/2|B| vertices x ∈ Bi that are not (η1/2, Bi)-excellent for i = 1, 2.

Let V 1
ex denote the set of vertices x ∈ B1 that are not (η1/2, B1)-excellent. Define V 2

ex

analogously. Given a vertex x ∈ V 1
ex, if d+

G(x, B2) � n/2r then move x into B2. Similarly, if

x ∈ V 2
ex and d+

G(x, B1) � n/2r then move x into B1. Thus, the following conditions hold.

(ζ1) n/r − η1/2n � |B1|, |B2| � n/r + η1/2n.

(ζ2) eG(B1, B2) � 5η1/2|B|2.

(ζ3) There are at most 2η1/2|B| vertices x ∈ Bi that are not (2η1/2, Bi)-excellent (for

i = 1, 2).

(ζ4) Given any x ∈ Bi, d
+
G(x, Bi) � n/3r (for i = 1, 2).

Actually, there is slack in conditions (ζ1) and (ζ2). Indeed, if we move a single vertex from

B2 to B1 (or vice versa) then (ζ1) and (ζ2) still hold.

Since |B| = 2n/r is even, either |B1| and |B2| are even or |B1| and |B2| are odd. Suppose

that |B1| and |B2| are odd. Without loss of generality assume that |B2| � n/r. Fix a vertex

b1 ∈ B1 such that

(i) b1 is (2β′, i)-excellent for all 1 � i � s.

(Such a vertex b1 exists by (α5).) Then by (5.3) there is a vertex b2 ∈ B2 such that

b1b2 ∈ E(G). Further, (5.3) implies that

(ii) d+
G(b2, Ai), d

−
G(b2, Ai) � ηn for all 1 � i � s or

(iii) d+
G(b2, B1) � n/3r or d−

G(b2, B1) � n/3r.

If (iii) holds then move b2 into B1. Otherwise, we leave the partition B1, B2 of B unchanged.

Thus, the following conditions hold.

(η1) n/r − η1/2n � |B1|, |B2| � n/r + η1/2n.
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(η2) eG(B1, B2) � 5η1/2|B|2.

(η3) There are at most 3η1/2|B| vertices x ∈ Bi that are not (3η1/2, Bi)-excellent (for

i = 1, 2).

(η4) Given any x ∈ Bi, d
+
G(x, Bi) � n/4r or d−

G(x, Bi) � n/4r (for i = 1, 2).

Additionally, one of the following conditions holds.

(η5) |B1| and |B2| are even, or

(η6) |B1| and |B2| are odd. Further, there exist b1 ∈ B1 and b2 ∈ B2 such that

• b1b2 ∈ E(G);

• b1 is (2β′, i)-excellent for all 1 � i � s;

• d+
G(b2, Ai), d

−
G(b2, Ai) � ηn for all 1 � i � s.

If (η6) holds then we will extend the edge b1b2 into a copy of T in G. First, however, we

will cover the ‘exceptional vertices’ in G with T -packings.

Covering the exceptional vertices with T -packings. Given any 1 � i � s, let Vex,i denote the

set of (β/2, i)-exceptional vertices in V (G) \ Ai. (Note that if (η6) holds then b1, b2 �∈ Vex,i.)

(α5) implies that ci := |Vex,i| � √
αn for all 1 � i � s. Then there exist vertex-disjoint T -

packings M1, . . . ,Ms in G so that, for each 1 � i � s, we have the following.

(θ1) Mi contains precisely ci disjoint copies of T .

(θ2) Each vertex from Vex,i lies in a copy of T in Mi.

(θ3) Mi covers precisely ci vertices from Aj (for each 1 � j � s) and precisely 2ci vertices

from B.

(θ4) Mi covers an even number of vertices from B1 and an even number of vertices from

B2.

(θ5) If (η6) holds then Mi does not cover b1 or b2.

Note that the same argument used to construct M1, . . . ,Ms in Section 11.1 shows that

we can construct M1, . . . ,Ms here so that (θ1)–(θ3) hold. It is not difficult to see that we

can additionally ensure that (θ4) and (θ5) hold.

Extending the edge b1b2 to a copy of T . If |B1| and |B2| are even set T := ∅. Otherwise,

(η6) holds. In this case, we can greedily construct a copy T ′ of T in G such that

• T ′ is vertex-disjoint from M1, . . . ,Ms;

• T ′ contains b1b2 (and so one vertex from each of B1 and B2) and precisely one vertex

from each of A1, . . . , As.

Set T := {T ′}.

Covering the remaining vertices. Remove all those vertices covered by M1, . . . ,Ms, T from

G (and from the classes A1, . . . , As, B and from B1, B2). Call the resulting digraph G′. So

n′ := |G′| � (1 − 2r2
√
α)n by (θ1), |Ai| = n′/r for all 1 � i � s and |B| = 2n′/r by (θ3) and

the choice of T .

Further, (5.3) and (α1)–(α5) imply that the following conditions hold.

(ι1) δ0(G′) � (1 − 1/r − 2r2
√
α)n � (1 − 1/r − 2r2

√
α)n′.

(ι2) A1, . . . , As, B is a partition of V (G′) so that Ai is a 2
√
α-independent set of size n′/r

in G′ (for all 1 � i � s).
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(ι3) Every vertex in V (G′) \ Ai is (β/3, i)-acceptable (for each 1 � i � s).

(ι4) There are at most
√
αn vertices in V (G′) \ Ai that are not (2β′, i)-excellent (for each

1 � i � s).

In particular, note that (ι3) follows from (θ2). Further, (η1)–(η6) and (θ1)–(θ5) together

with the choice of T implies the following.

(κ1) n/r − 2η1/2n � |B1|, |B2| � n/r + η1/2n and |B1| and |B2| are even.

(κ2) There are at most 4η1/2|B| vertices x ∈ Bi that are not (3η1/2, Bi)-excellent (for

i = 1, 2).

(κ3) Given any x ∈ Bi, d
+
G′ (x, Bi) � n/5r or d−

G′ (x, Bi) � n/5r (for i = 1, 2).

Note that (ι1) implies that

d+
G′ (y, B), d−

G′ (y, B) �
(

1

2
− α1/3

)
|B|

for all y ∈ V (G′).

Let Vex,B denote the set of all those vertices in V (G′) \ B that are not (β, B)-excellent.

By arguing as in Case 2 from Section 11.1 we see that |Vex,B | � α1/4n.

G′ contains a T -packing M′ such that the following hold.

(λ1) M′ contains m′ � 2r
√
αn + 2α1/4n � 3α1/4n copies of T .

(λ2) If x ∈ V (G′) \ Ai is not (β, i)-excellent then x is contained in a copy of T in M′ (for

any 1 � i � s). Similarly, if x ∈ V (G′) \ B is not (β, B)-excellent then x is contained

in a copy of T in M′.

(λ3) M′ covers exactly m′ vertices from Ai (for each 1 � i � s) and 2m′ vertices from B.

Further, M′ covers an even number of vertices from B1 and an even number of

vertices from B2.

To prove that such a T -packing M′ exists, we will use the follow three claims.

Claim 11.4. Let x ∈ V (G′) \ B be such that x is not (β, B)-excellent and let W ⊆ V (G′) \
{x} where |W | � α1/5n. Then there are two vertex-disjoint copies T ′, T ′′ of T in G′ so that

(i) V (T ′) ∪ V (T ′′) contains two vertices from Ai (for each 1 � i � s) and four vertices

from B;

(ii) x ∈ V (T ′) ∪ V (T ′′) and V (T ′) ∪ V (T ′′) is disjoint from W ;

(iii) V (T ′) ∪ V (T ′′) contains an even number of vertices from B1 and an even number of

vertices from B2.

Proof. To prove the claim consider a vertex x ∈ V (G′) \ B that is not (β, B)-excellent.

Without loss of generality suppose that x ∈ A1. By arguing precisely as in Claim 11.1 we

can find a copy T ′ of T in G′ that covers two vertices in A1 (including x), one vertex

from Ai (for 2 � i � s) and one vertex from B so that T ′ is disjoint from W .

Without loss of generality suppose that T ′ covers a vertex from B1. Then by applying

(κ2) and (ι4) it is easy to see that we can greedily construct a copy T ′′ of T so that

T ′′ covers three vertices from B1, no vertices from A1 and one vertex from Aj (for all

2 � j � s) and so that T ′′ is disjoint from V (T ′) ∪ W . Together T ′ and T ′′ satisfy (i)–(iii).

This completes the proof of Claim 11.4.
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Claim 11.5. Let x ∈ V (G′) \ (Ai ∪ B) be such that x is not (β, i)-excellent (for some 1 �
i � s) and let W ⊆ V (G′) \ {x} where |W | � α1/5n. Then there are two vertex-disjoint copies

T ′, T ′′ of T in G′ so that

(i) V (T ′) ∪ V (T ′′) contains two vertices from Ai (for each 1 � i � s) and four vertices

from B;

(ii) x ∈ V (T ′) ∪ V (T ′′) and V (T ′) ∪ V (T ′′) is disjoint from W ;

(iii) V (T ′) ∪ V (T ′′) contains an even number of vertices from B1 and an even number of

vertices from B2.

The proof of Claim 11.5 is essentially identical to the proof of Claim 11.4, so we omit it.

Claim 11.6. Let x ∈ B be such that x is not (β, i)-excellent (for some 1 � i � s) and let

W ⊆ V (G′) \ {x}, where |W | � α1/5n. Then there is a copy T ′ of T in G′ so that

(i) V (T ′) contains one vertex from Aj (for each 1 � j � s) and two vertices from either B1

or B2;

(ii) x ∈ V (T ′) and V (T ′) is disjoint from W .

It is easy to see that (κ3), (ι3) and (ι4) imply that we can greedily construct a copy T ′

of T as in Claim 11.6.

Recall that |Vex,B | � α1/4n. Together with (ι4), this implies that we can repeatedly apply

Claims 11.4–11.6 to obtain a T -packing M′ in G′ satisfying (λ1)–(λ3).

Remove all those vertices covered by M′ from G′ (and from the classes A1, . . . , As, B

and from B1 and B2). Call the resulting digraph G′′. So n′′ := |G′′| � (1 − α1/5)n by (λ1)

and |Ai| = n′′/r for all 1 � i � s and |B| = 2n′′/r by (λ3). Condition (λ2) implies that, given

any x ∈ V (G′′) \ Ai, x is (β, i)-excellent (for all 1 � i � s) and every vertex y ∈ V (G′′) \ B

is (β, B)-excellent.

Moreover, (κ1) and (λ3) imply that |B1| and |B2| are even. Conditions (κ1)–(κ3) and (λ1)

imply the following.

• |B1|, |B2| � n/r − 3η1/2n.

• There are at most 5η1/2|B| vertices x ∈ Bi that are not (3η1/2, Bi)-excellent (for i = 1, 2).

• Given any x ∈ Bi, d
+
G′′ (x, Bi) � n/6r or d−

G′′ (x, Bi) � n/6r (for i = 1, 2).

It is easy to see that this implies that G′′[B] contains a perfect matching P .

Define an auxiliary digraph G∗ from G′′ as follows. G∗ has vertex set A1 ∪ · · · ∪ As ∪ B∗,

where |B∗| = n′′/r, and each vertex x ∈ B∗ corresponds to a unique edge ex from P . The

edge set of G∗ consists of every edge wz ∈ E(G′′) such that w ∈ Ai and z ∈ Aj for some

i �= j together with the following edges: Suppose that x ∈ B∗ and y ∈ V (G∗) \ B∗. Then

• yx ∈ E(G∗) precisely if y sends an edge to both vertices on ex in G′′;

• xy ∈ E(G∗) precisely if y receives an edge from both vertices on ex in G′′.

Note that G∗ is an (r − 1)-partite digraph with vertex classes of size n′′/r. Further,

δ̄+(G∗), δ̄−(G∗) � n′′/r − 2βn.
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So by Theorem 10.2, G∗ contains a perfect Kr−1-packing. By construction of G∗ this

implies that G′′ contains a perfect T -packing M′′. Set

M := M′ ∪ M′′ ∪ M1 ∪ · · · ∪ Ms ∪ T .

Then M is a perfect T -packing in G, as required.

12. Proof of Lemma 5.6

Let 0 < 1/n0 � α � β � γ � 1. Suppose that G is as in the statement of the lemma and

let A1, A2, A3 denote the partition of V (G) corresponding to the vertex classes of Ex(n).

Given any 1 � i � 3, any x ∈ Ai and any δ > 0, we say that x is externally δ-excellent

if x sends out at least (1 − δ)|Ai+1| edges to Ai+1 in G and receives at least (1 − δ)|Ai−1|
edges from Ai−1 in G. (Here indices are taken mod 3.) Otherwise we say that x is externally

δ-bad. Since G α-contains Ex(n) and α � β � γ, there are at most βn vertices in G that

are externally γ-bad.

We also require analogous definitions corresponding to edges inside our vertex classes.

Indeed, given any 1 � i � 3, any x ∈ Ai and any δ > 0, we say that x is internally δ-

excellent if x sends out at least (1 − δ)|Ai| edges in G[Ai] and receives at least (1 − δ)|Ai|
edges in G[Ai]. Otherwise we say that x is internally δ-bad. Since G α-contains Ex(n) and

α � β � γ, there are at most βn vertices in G that are internally γ-bad. Throughout the

proof we will modify the classes A1, A2 and A3. When referring to, for example, internally

excellent vertices, we mean with respect to the current classes A1, A2 and A3 rather than

the original partition of V (G).

Since δ0(G) � 2n/3 − 1, given any vertex x ∈ V (G) there is an 1 � ix � 3 such that x

sends out at least n/10 edges to Aix in G and receives at least n/10 edges from Aix in G.

For each vertex x ∈ V (G) that is internally γ-bad we move x into the class Aix . Thus, we

now have the following.

(a) |Ai| = n/3 ± 2βn for each 1 � i � 3.

(b) δ0(G[Ai]) � n/20 for each 1 � i � 3.

(c) All but at most βn vertices in G are internally 2γ-excellent.

(d) All but at most 2βn vertices in G are externally 2γ-excellent.

Actually there is some slack in these conditions. Indeed, (a)–(d) hold even if we remove

three vertices from G (and thus from A1, A2 and A3).

Changing the parity of the class sizes. Our next task is to remove (the vertices of) at most

one copy of C3 from G to ensure that |A1| ≡ |A2| ≡ |A3| (mod 3). If |A1| ≡ |A2| ≡ |A3|
(mod 3) already then we do not remove a copy of C3. Recall that n ≡ 0 (mod 3). Therefore,

without loss of generality we may assume that |A1| ≡ 0, |A2| ≡ 1 and |A3| ≡ 2 (mod 3).

(The other cases follow analogously.)

In this case there exists a 1 � j � 3 such that |Aj | � n/3 + 1. Suppose that |A2| �
n/3 + 1. Fix some a ∈ A1 that is externally 2γ-excellent. (Such a vertex exists by (a) and

(d).) Since d−(a) � 2n/3 − 1 there exists a vertex b ∈ A2 such that ba ∈ E(G). Further,

since a is externally 2γ-excellent and d−
G[A2](b) � n/20 by (b), there is a vertex c ∈ A2 such

that ac, cb ∈ E(G). Thus, a, b and c together span a copy C ′
3 of C3 in G. Remove V (C ′

3)
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from G (and thus from A1 and A2). So now |A1| ≡ |A2| ≡ |A3| ≡ 2 (mod 3). In all other

cases, we can similarly remove three vertices from G that span a copy C ′
3 of C3 so that

|A1| ≡ |A2| ≡ |A3| (mod 3). As outlined earlier, (a)–(d) still hold.

Covering the externally bad vertices and balancing the class sizes. (b)–(d) ensure that we

can greedily construct a collection C1 of at most 2βn vertex-disjoint copies of C3 in G that

together cover all those vertices in G that are externally 2γ-bad. In particular, (b) and (c)

ensure that we can choose each such copy of C3 to lie in one of G[A1], G[A2] and G[A3].

So after removing the vertices in C1 from G we still have that |A1| ≡ |A2| ≡ |A3| (mod 3).

Further, n/3 − 8βn � |Ai| � n/3 + 2βn for each 1 � i � 3.

These last two properties together with (b) and (c) ensure that we can greedily construct

a collection C2 of at most 7βn vertex-disjoint copies of C3 in G such that the following

hold.

• The copies of C3 in C2 are vertex-disjoint from the copies of C3 in C1.

• Each copy of C3 in C2 lies in one of G[A1], G[A2] and G[A3].

• By removing the vertices in C1 ∪ C2 from G we have that |A1| = |A2| = |A3| � n/3 −
8βn.

Covering the remaining vertices. Remove the vertices in C1 ∪ C2 from G (and thus from A1,

A2 and A3). The choice of C1 ensures that every vertex now in G is externally 3γ-excellent

and the choice of C2 ensures that now |A1| = |A2| = |A3| � n/3 − 8βn. Let

G′ := G[A1, A2] ∪ G[A2, A3] ∪ G[A3, A1].

By ignoring the orientations of the edges in G′, we can (for example) apply Theorem 1.2

to find a perfect C3-packing C3 in G′. (Indeed, the underlying graph of G′ satisfies the

minimum degree condition in Theorem 1.2 since every vertex in V (G′) is externally 3γ-

excellent.) The union of C1, C2, C3 and C ′
3 (if it exists) is a perfect C3-packing in G, as

desired.

13. Concluding remarks

In this section we raise a number of open questions concerning perfect packings in

digraphs.

13.1. Minimum degree conditions forcing perfect tournament packings

In [3], Czygrinow, DeBiasio, Kierstead and Molla proved the following minimum degree

result for perfect transitive tournament packings.

Theorem 13.1 (Czygrinow, DeBiasio, Kierstead and Molla [3]). Let n, r ∈ N such that r

divides n. Then every digraph G on n vertices with

δ(G) � 2(1 − 1/r)n − 1

contains a perfect Tr-packing.
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Note that Conjecture 1.4 would imply Theorem 13.1. At first sight one may ask

whether Tr can be replaced by any T ∈ Tr in Theorem 13.1. However, the following result

of Wang [25] shows that one requires a significantly larger minimum degree condition in

the case when T = C3.

Theorem 13.2 (Wang [25]). Let n ∈ N such that 3 divides n. If G is a digraph on n vertices

and

δ(G) � 3n − 3

2
,

then G contains a perfect C3-packing. Moreover, if n/3 is odd, then there is a digraph G′ on

n vertices with

δ(G′) =
3n − 5

2
,

which does not contain a perfect C3-packing.

Together with Zhang [26], Wang also characterized the minimum degree threshold that

ensures a digraph contains a perfect C4-packing. (Here C4 denotes the directed cycle on

four vertices.) Czygrinow, Kierstead and Molla [4] showed that the degree condition in

Theorem 13.2 can be relaxed to δ(G) � (4n − 3)/3 if we instead seek a perfect packing

consisting of a fixed number of cyclic triangles and at least one transitive triangle.

In light of Theorems 13.1 and 13.2 we ask the following question.

Question 13.3. Let n, r ∈ N such that r divides n. Let T ∈ Tr \ {C3}. Does every digraph G

on n vertices with δ(G) � 2(1 − 1/r)n − 1 contain a perfect T -packing?

Czygrinow, DeBiasio, Kierstead and Molla [3] have answered Question 13.3 in the

affirmative under the additional assumptions that r is sufficiently large and δ(G) �
2(1 − 1/r + o(1))n.

13.2. Packing other directed graphs

It is also natural to seek minimum degree conditions which ensure a digraph contains

a perfect H-packing, where H is some digraph other than a tournament. Let Kr denote

the complete digraph on r vertices, and write K−
r to denote Kr minus an edge. (In

the undirected setting we also use Kr to denote the complete graph on r vertices.) The

following result is a simple consequence of the Hajnal–Szemerédi theorem.

Proposition 13.4. Let n, r ∈ N such that r divides n. Suppose that G is a digraph on n

vertices such that

δ(G) � (2 − 1/r)n − 1.

Then G contains a perfect Kr-packing.
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Proof. Let G′ denote the graph on V (G) whose edge set consists of all those pairs xy

such that both xy, yx ∈ E(G). Since δ(G) � (2 − 1/r)n − 1, we have that δ(G′) � (1 − 1/r)n.

Thus, Theorem 1.1 implies that G′ contains a perfect Kr-packing. By definition of G′ this

implies that G contains a perfect Kr-packing.

Note that the minimum degree condition in Proposition 13.4 is best possible. Let n ∈ N

such that r divides n. Suppose A and B are disjoint vertex sets where |A| = n/r + 1 and

|B| = (1 − 1/r)n − 1. Let G1 be the digraph with vertex set A ∪ B such that G1 contains

all possible edges between A and B, all edges in B and so that A induces a tournament.

Then δ(G1) = (2 − 1/r)n − 2 and G does not contain a perfect Kr-packing since every

copy of Kr in G1 contains at most one vertex from A.

Proposition 13.4 implies that a digraph G whose order n is divisible by r and with

δ0(G) � (1 − 1/2r)n − 1/2 contains a perfect Kr-packing. Further, in the digraph G1

above, set n/r to be even and G1[A] to be a regular tournament. Then G1 does not contain

a perfect Kr-packing but δ0(G1) = (1 − 1/2r)n − 1. Thus, together with Theorem 1.3, this

shows that the minimum semidegree threshold that forces a perfect Kr-packing is much

higher than the threshold that forces a perfect T -packing for any tournament T on r

vertices. It would be interesting to establish the minimum semidegree threshold that forces

a perfect K−
r -packing in a digraph. In particular, is this threshold significantly lower than

the corresponding threshold for perfect Kr-packings?

Let m ∈ N be divisible by 6 and set n := 2m + 3. Suppose that G is a digraph on n vertices

with the following properties: V (G) = V1 ∪ V2 where |V1| = m + 1 and |V2| = m + 2; G[V1]

and G[V2] are complete digraphs; the edges between V1 and V2 in G form a bipartite

tournament that is as regular as possible. Note that, since |V1| and |V2| are not divisible by

3, G does not contain a perfect K−
3 -packing. Further, δ0(G) = m/2 + 1 + m = (3n − 5)/4.

Question 13.5. Let n ∈ N be divisible by 3. Does every digraph G on n vertices with δ0(G) �
3n/4 contain a perfect K−

3 -packing?
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