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LIQUIDITY PROVISION AND
BANKING CRISES WITH
HETEROGENEOUS AGENTS

MATÍAS FONTENLA
University of New Mexico

The banking literature following Diamond and Dybvig [Journal of Political Economy 85,
191–206 (1983)] has assumed that all depositors are ex ante identical. This paper relaxes
this assumption by introducing two types of agents. Whereas some agents are uncertain
about their liquidity needs at the time they deposit in banks, other agents know exactly at
what time they will want to withdraw their funds. Agents who know ex ante that they will
want to withdraw in the short term will tend to disrupt the ability of a bank to serve
customers who are uncertain about their timing of withdrawal. An adverse selection
problem arises, where short-term deposits have the incentive to join the financial system
and limit, or completely do away with, banks’ liquidity provision service. On the other
hand, potentially beneficial long-term funds will not be deposited in banks. Further, when
unpredicted short-term withdrawal needs are sufficiently high, bank reserves are
exhausted, and long-term investments need to be disrupted, causing a banking crisis.
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1. INTRODUCTION

Following the models of Bryant (1980) and Diamond and Dybvig (1983), the
banking literature has assumed that all agents who would potentially deposit in
a bank are ex ante identical. In particular, all agents are equally attractive to a
bank as potential customers. This paper examines a simple deviation from this
assumption. Whereas some agents are uncertain about their liquidity needs at the
time they deposit in banks, other agents know exactly at what time they will want
to withdraw their funds. Based on the previous literature, one might conjecture
that the two types would endogenously segregate into separate banks, or banking
contracts, that were designed to meet their unique needs. This paper shows that
this is not the case. Instead, agents who are “less attractive” as depositors, because
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they are more likely to need to withdraw their funds at an earlier time, will tend
to disrupt the ability of a bank to serve more attractive customers.

When depositors face ex ante uncertainty about their timing of consumption,
banks are able to provide insurance against this risk, also known as liquidity
provision. However, when agents with different withdrawal needs are introduced,
an adverse selection problem arises. Short-term deposits, which are less attractive
to banks, have the incentive to join the contract offered to the ex ante uncertain
customers. This will limit the ability of banks to provide insurance against un-
certain withdrawal needs. When these short-term deposits are large enough, the
insurance function of banks will be completely eliminated. On the other hand,
potentially beneficial long-term deposits will stay out of the financial system.

When the quantity of short-term deposits is unpredictable, as in environments
similar to those described by Smith (2002) and Antinolfi and Keister (2006), a
banking crisis may happen. When sufficiently large short-term funds are deposited,
bank reserves are exhausted and long-term investments need to be disrupted. The
resulting crisis then has strong negative consequences for the entire economy.1

Incentive compatibility constraints that produce contracts where short-term funds
choose not to deposit will prevent banking crises, but at the cost of losing the
insurance function of banks. Restricting short-term deposits may not be optimal
at all times, because the cost of doing so may be greater than the expected loss
from allowing crises to occur with positive probability.

The results in this paper may be useful in general to think about financial
contracts when customers differ ex ante, for example, when there are inequalities
in the capacity to access to information, or in the case where agents may form
subcoalitions, such as investment funds that reduce risk by diversification, and
then exploit the insurance function that banks provide.

Other papers have reached related results in different environments. Fecht and
Martin (2005) develop a model in which the degree of liquidity insurance offered
to households through banks’ deposit contracts is restrained by households’ finan-
cial market access. They find that improved financial market access may reduce
welfare by reducing risk sharing. Similarly, Jacklin (1987, 1993) shows that the
insurance function provided by demand deposit contracts completely disappears
if trading opportunities are introduced. Von Thadden (1997) develops a model
where time is continuous, and shows that if agents are allowed to withdraw and
reinvest their funds, the insurance function may not be incentive compatible. In
our model, introducing heterogeneous agents reduces provision of liquidity, but
does not completely eliminate it for small quantities of short-term deposits. For
large quantities, the optimal bank contract will completely eliminate the service
of liquidity provision.

The remainder of the paper proceeds as follows. Section 2 describes the environ-
ment and the benchmark first-best allocation problem of the banks. The effect of
short-term funds on the financial system is discussed in Section 3. In Section 4 we
add aggregate uncertainty about withdrawal demand and discuss its implications.
Section 5 concludes.
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2. THE MODEL

2.1. Environment

The model is a two-asset version of the models developed by Bryant (1980) and
Diamond and Dybvig (1983), where two types of agents are introduced.2 The
economy is populated by a continuum of agents. Time is discrete and there are
three periods, indexed by t = 0, 1, 2. Agents are endowed with one unit of a
single good when young, and nothing in periods 1 and 2. They care only about
consumption in periods 1 and 2, and are expected-utility maximizers. Their utility
has the form u(c) = c(1−ρ)/(1 − ρ), with the coefficient of relative risk aversion
ρ > 1.

There are two types of agents, who differ only in when they learn of their
liquidity preference shock. Type a (uninformed) agents are uncertain in period
0, at the time when investment decisions are made, about their preferences over
consumption at dates 1 and 2. They learn whether they will want to consume in
period 1 or 2 at the beginning of period 1. Let πa

1 and πa
2 be the total populations

of type a impatient and patient agents, respectively, with πa
1 +πa

2 = 1. There is no
aggregate uncertainty for the total population or the share of domestic impatient
and patient agents.

In contrast, type b (informed) agents know at the time they are born whether they
will prefer to consume in periods 1 or 2. We label πb

1 , πb
2 as the total populations

of impatient and patient type b agents, respectively.3 Agents’ type (a or b) is
observable. Finally, the liquidity preference shock is private information for both
types of agents.

Both types of agents have access to a linear production technology whereby one
unit of the good invested in period 0 yields R > 1 units of the good at time 2. This
technology is illiquid, in the sense that an investment that is interrupted in period 1
generates r < 1 units of consumption. In addition, there is a liquid storage tech-
nology, whose return is equal to 1 in both periods. In this sense, the liquid asset
dominates the production technology in the short-run, whereas investing in the
production technology dominates the liquid asset in the long-run.

The timing of events follows. At the beginning of period 0, young agents receive
their endowments, and the informed type b agents learn their liquidity preference.
Agents then choose their portfolio allocation, i.e., the mix of storage and the
illiquid investment. In period 1, type a agents learn whether they will want to
consume in periods 1 or 2. Following this, period 1 consumption occurs, where
the illiquid technology may be liquidated in order to be consumed. In period 2,
the long-term investment technology matures, and patient agents consume.

2.2. Banks

Banks arise endogenously in our environment as coalitions of type a agents.
This is because uninformed agents benefit from pooling their resources in order
to overcome idiosyncratic uncertainty, and they gain from insuring themselves
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against their liquidity preference shock. In contrast, informed agents face no
uncertainty at the time the investment decision is made, and thus have no need to
pool their resources, nor do they require insurance.

Banks announce contracts in period 0, which specify returns to depositors that
depend on their liquidity preference (early vs. late withdrawers) reported by agents.
After young agents deposit their endowments, banks use these deposits to save
the liquid asset and make investments in the production technology. In period 1,
type a depositors learn whether they will withdraw in period 1 or 2. Following
this, banks pay to agents who wish to withdraw early. In period 2 the long-term
investment matures, and banks dispense payments to the patient agents.

Consider initially, as a benchmark, a separated world. That is, banks will be
able to offer contracts to type a uninformed agents only, where informed agents
do not participate.

Let γ denote the share of a bank’s liquid reserves. Denote ca
1 and ca

2 as con-
sumption for type a early and late withdrawers, respectively. Then the problem of
the bank is

V a ≡ max
ca

1 ,ca
2

πa
1 u

(
ca

1

) + (
1 − πa

1

)
u
(
ca

2

)
(1)

subject to
πa

1 ca
1 = γ (2)(

1 − πa
1

)
ca

2 = R(1 − γ ) (3)

ca
2 ≥ ca

1 (4)

V a > V aut (5)

ca
1 , c

a
2 ≥ 0,

where (2) and (3) are the resource constraints, and (4) is the incentive compatibility
or truth-telling constraint. Inequality (5) is the participation constraint, where V aut

is the indirect utility of type a agents behaving in autarky. Given constant relative
risk aversion preferences, the solution to this problem sets the share of liquid
reserves as

γ a =
[

1 +
(
1 − πa

1

)
πa

1

R(1−ρ)/ρ

]−1

. (6)

Type b informed agents, in contrast, are able to achieve their optimal outcome
without the need for banks. Young type b agents that know they will want to
withdraw in the first period can simply acquire the liquid asset, whereas late
withdrawers can invest all of their endowment in the illiquid technology in order
to realize higher returns. Thus, consumption for type b agents in a separated world
will be cb

1 = 1 and cb
2 = R.

In contrast, (6) implies that the returns for type a agents will have ca
1 > 1 and

ca
2 < R. The fact that returns differ across types may generate the incentive for

agents to misrepresent their type.
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Uninformed type a agents choose to deposit all of their endowments in
banks, because the expected utility of an agent whose funds are intermediated
will be greater than the expected utility when they behave autarkically; i.e.,
V a > V aut. This is because financial intermediation in this model provides two
services.

First, banks prevent suboptimal holding of assets. A coalition of agents takes
advantage of the law of large numbers. Namely, although for individual agents π is
a probability, for banks it is a known share of agents. Therefore, banks could offer
ca

1 = 1 and ca
2 = R, an allocation not attainable under autarky. Notice that this is

identical to the solution for informed agents. For this instance it is particularly clear
to see that a coalition of agents completely resolves the idiosyncratic uncertainty
about the timing of consumption, which is the distinction between the two types
of agents.

Second, banks provide insurance should agents become early withdrawers. That
is, ca

1 > 1. This is achieved at the cost of foregoing some consumption if they are
late withdrawers, where ca

2 < R. This risk-sharing service that is realized through
financial intermediation is what Diamond and Dybvig define as banks providing
liquidity.

Finally, notice that the higher the level of risk aversion, the more agents value
liquidity provision. This can be seen by noting that γ ′(ρ) > 0. As risk aversion
increases, in the limit (ρ −→ ∞), we have ca

1 = ca
2 , where agents choose to fully

insure against early consumption.

3. CONTRACTS WITH BOTH TYPES OF AGENTS

In this section we examine the more realistic case when type b agents cannot be
prevented from participating in the banking contract, if they wish to do so. Recall
that types are observable. However, if type b agents stand to gain by depositing
in a bank, they can offer to share the profits with a type a agent that is willing
to deposit for them. Although type a agents collectively would like to thwart
these associations from happening, at the individual level agents may consider
these associations beneficial. This is the case as long as the marginal payoff from
“cheating” is greater than its marginal individual cost.4 Given this, the problem of
a bank now becomes

V ∗ ≡ max
c1,c2

πa
1 u(c1) + (

1 − πa
1

)
u(c2) (7)

subject to

λc1 = γ (8)

(1 − λ)c2 = R(1 − γ ) (9)

φb
1 =

{
0 if c1 ≤ 1
πb

1 if c1 > 1
(10)
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φb
2 =

{
0 if c2 ≤ R

πb
2 if c2 > R

(11)

c2 ≥ c1

V ∗ > V aut

c1, c2 ≥ 0,

where λ is the endogenous share of total impatient depositors, given by

λ = πa
1 + φb

1

πa
1 + πa

2 + φb
1 + φb

2

. (12)

In this problem, banks decide whether to allow type b agents to enter by way of
choice of the consumption schedule. This is described by the constraints (10) and
(11), which are the participation constraints of type b agents, where φb

1 and φb
2 are

the numbers of impatient and patient type b’s that choose to enter, respectively.5

We begin the process of solving this problem by showing that an adverse
selection problem arises, where patient type b agents participating in the banking
contract would increase welfare of type a agents, but will never choose to deposit
in banks.

PROPOSITION 1. V ∗′(φb
2 ) > 0, and φb

2 = 0 for ρ > 1.

The proofs are contained in the Appendix. In our problem, ρ > 1 entails that
early consumption will be greater than or equal to one, and by feasibility, late
consumption will be less than or equal to R.6 Because the return for patient type
b’s in autarky equals R, they will not enter the banking contract. In contrast,
impatient type b agents may have the incentive to enter, depending on the value
of c1 chosen by banks, as described by the constraint (10).

Having ruled out the participation of patient type b’s, we turn our attention to
the bank’s problem where only impatient type b’s may want to deposit in a bank.
Consider initially the pooling case where banks opt to let type b’s enter, that is,
φb

1 = πb
1 . In this case, the solution to (7) sets the optimal reserve ratio, which we

label γ p, as

γ p =
⎧⎨⎩1 +

[
(1 − λ)

λ

]1−1/ρ
[(

1 − πa
1

)
πa

1

]1/ρ

R(1−ρ)/ρ

⎫⎬⎭
−1

. (13)

PROPOSITION 2. c′
1(φ

b
1 ) < 0, and γ p′(φb

1 ) > 0 for the pooling case.

Proposition 2 says that the bank’s liquidity provision service is reduced when
type b agents participate in the banking contract. However, the actual portfolio
share that banks allocate to liquid reserves does increase with type b’s participation.
This latter effect partially offsets the former. That is, banks will increase reserves
to compensate for the loss of liquidity caused by the larger share of type b

agents.
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However, type a agents may prefer a contract that gives informed impatient
agents the incentive not to deposit in banks. Consider the separating case where
φb

1 = 0. This implies from the participation constraint (10) that period 1 con-
sumption needs to be set to c1 ≤ 1. It follows that from resource constraint (8),
the solution sets

γ s = πa
1 . (14)

PROPOSITION 3. Define the threshold

π̂ b
1 = πa

1 (Rρ−1 − 1). (15)

Then the solution to the bank’s problem is the contract (c1, c2) given by

c1 = 1

λ
γ p

c2 = R

(1 − λ)
(1 − γ p)

⎫⎪⎬⎪⎭ for πb
1 ≤ π̂ b

1

c1 = 1
c2 = R

}
for πb

1 > π̂b
1 . (16)

The solution portrays the trade-off between the bank’s contract providing in-
surance and the loss of resources to type b agents who exploit this service. When
type a agents implement a risk-sharing contract, they redistribute resources from
late to early withdrawers. Therefore, when informed early withdrawers enter this
contract, they are receiving transfers from type a late withdrawers. This unin-
tended transfer of goods reduces the welfare of type a agents. This adds another
layer to the adverse selection problem: detrimental short-term type b deposits
participate in the banking contract, whereas, as noted above, beneficial patient
type b’s choose not to participate. For a small enough share of type b agents, type
a agents will prefer the loss of transferring some resources rather than give up the
insurance service. Conversely, for shares of type b impatient agents greater than
π̂ b

1 , agents will prefer the self-selection outcome. Here the cost of subsidizing type
b’s consumption exceeds the benefits of insurance, so separation is chosen.

Notice that the threshold π̂ b
1 given by (15) is increasing in πa

1 , ρ, and R. That is,
when πa

1 is large, then a bigger share of agents benefit from insurance and thus the
threshold at which they want to give it up is larger.7 Also, the higher the degree of
risk aversion, the more agents value insurance, and thus the less willing to sacrifice
this function of banks. In the limit we have that as ρ → ∞, π̂ b

1 → ∞. Finally, the
higher the return on the production technology, the higher intertemporal transfers,
and thus the threshold at which domestic agents are willing to give up insurance
is raised.

Last, notice that although insurance is reduced in the pooling case, or is com-
pletely lost for the separating case, type a agents still prefer to deposit their
endowments in banks. This is so because the other service banks provide, efficient
intertemporal investment, is still achieved. However, as r → 1, V ∗ → V aut for
πb

1 > π̂b
1 . That is, as the potential cost of holding the production technology

disappears, banks lose their role when they do not provide insurance.
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4. BANKING CRISES

In this section we assume aggregate uncertainty about withdrawal demand, sim-
ilarly to Smith (2002) and Antinolfi and Keister (2006). Here we assume that
the quantity of type b agents, πb

1 , is now a random variable whose realization is
unknown at the time banks make the portfolio decision. As in the previous section,
patient type b agents will never find it optimal to deposit in banks for ρ > 1 .

The timing of events follows. Banks announce contracts in period 0. Based
on the contract banks offer, agents choose whether to deposit or not. Banks then
receive deposits and choose the portfolio allocation. After type a depositors learn
their type, agents who wish to withdraw early report to banks, at which time πb

1
is revealed. Following this, banks pay to agents based on this new information. In
period 2 the production technology matures, and banks dispense payments to the
remaining patient agents.

Define

π1 = πa
1 + πb

1

πa
1 + πa

2 + πb
1

as the total share of impatient agents, its value drawn from a distribution G(π1)

with pdf g(π1), which is common knowledge, and with finite support in the interval
[πa

1 , 1]. Then the bank’s problem is given by

Ṽ ≡ max
c1(π1),c2(π1)

α,δ

1∫
πa

1

[
πa

1 u(c1) + (
1 − πa

1

)
u(c2)

]
g(π1) dπ1 (17)

subject to
λc1 = αγ + δr(1 − γ ) (18)

(1 − λ)c2 = (1 − α)γ + (1 − δ)R(1 − γ ) (19)

φb
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if

1∫
πa

1

u(c1)g(π1)dπ1 ≤ u(1)

πb
1 if

1∫
πa

1

u(c1)g(π1)dπ1 > u(1)

(20)

c2 ≥ c1

Ṽ > V aut

c1, c2 ≥ 0, 0 ≤ α ≤ 1, 0 ≤ δ ≤ 1,

where α and δ represent the fraction of liquid reserves and investments, respec-
tively, that banks liquidate in period one. They capture the fact that with aggregate
uncertainty, banks at times may hold liquid reserves across periods for low real-
izations of πb

1 , or may have to scrap investments in order to meet liquidity needs
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of early withdrawers for high realizations of πb
1 . Equation (20) is the participation

constraint for impatient type b agents.
Here, again, it is feasible for domestic banks to choose a separating contract by

announcing c1 such that the incentive compatibility constraint

1∫
πa

1

u(c1)g(π1)dπ1 ≤ u(1) (21)

is satisfied. Then type b agents choose not to enter, and thus λ = πa
1 . It follows

that with no aggregate uncertainty, (21) becomes u(c1) ≤ u(1), which binds at
c1 = 1, as in the previous section.8

Consider now the pooling case, where type b agents choose to deposit their
endowments. Here we have λ = π1, which implies aggregate uncertainty. That is,
banks learn the share of early withdrawers only after the portfolio decision has
been made.

We start by solving for the optimal fractions of reserves and investments that
banks liquidate, α and δ. Efficiency in holding investments dictates that if α < 1,

then δ = 0, and if δ > 0, then α = 1.

When demand for liquidity is relatively low, banks will have excess reserves,
and some reserves will be forwarded to the next period.

The optimal fraction of reserves that banks liquidate, α, needs to satisfy the
incentive compatibility constraint c2 ≥ c1. Substituting (18) and (19) into this
constraint and solving for α with δ = 0, we arrive at the optimal reserves liquida-
tion strategy,

α =
⎧⎨⎩π1

[
1 + R

(1 − γ )

γ

]
for π1 ≤ π1

1 for π1 > π1

, (22)

where
π1 = γ

γ + (1 − γ )R
(23)

is the threshold below which α < 1, and follows from solving for π1 in the
incentive compatibility constraint, setting α = 1 and δ = 0. π1 is the kink in the
constraint set, above which all reserves are given to impatient agents.

To find the investment liquidation strategy, δ, note that it will not be optimal for
banks to liquidate investments as long as

u′(c1)

u′(c2)
≤ R

r
. (24)

This is the point at which the marginal rate of substitution (MRS) between liqui-
dating investments and allowing them to mature is less than or equal the marginal
rate of transformation (MRT). Substituting (18) and (19 ), noting that u′(c1) = c

−ρ

1
for our CRRA utility form, and solving for δ with α = 1 in (24), we have the
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optimal investment liquidation strategy,

δ =
⎧⎨⎩

0 for π1 < π1

π1(1 − γ )r1/ρR − (1 − π1)γR1/ρ

(1 − γ )
[
π1r1/ρR + (1 − π1)rR1/ρ

] for π1 ≥ π1
, (25)

where the threshold
π1 = γ

γ + (1 − γ )R1−1/ρr1/ρ
(26)

is the point at which MRS = MRT with δ = 0 and α = 1. Substituting the optimal
α and δ into the bank’s budget constraints (18) and (19), we arrive at the optimal
return schedule in the pooling case,

c1 = c2 = γ + R(1 − γ ) for π1 ∈ (
πa

1 , π1

)
c1 = 1

π1
γ

c2 = R

(1 − π1)
(1 − γ )

⎫⎪⎬⎪⎭ for π1 ∈ (π1, π1) (27)

c1 = r1/ρη

c2 = R1/ρη

}
for π1 ∈ (π1, 1),

where

η = R[r(1 − γ ) + γ ]

π1r1/ρR + (1 − π1)rR1/ρ
.

We now solve for the optimal reserve ratio γ by substituting the return schedule
above into the objective function (17). Then the bank’s objective function for the
pooling case can be written as

Ṽ ≡ max
γ

π1∫
πa

1

u[γ + R(1 − γ )]

+
π1∫

π1

{
πa

1 u

(
1

π1
γ

)
+ (

1 − πa
1

)
u

[
R

(1 − π1)
(1 − γ )

]}
g(π1)dπ1

+
1∫

π1

[
πa

1 u
(
r1/ρη

) + (
1 − πa

1

)
u
(
R1/ρη

)]
g(π1) dπ1, (28)

where the optimal share of liquid reserves is implicitly defined by the solution to
this problem.

Banks in this case provide full insurance for withdrawal demand in (πa
1 , π1).

Here, α<1 and some liquid reserves will be forwarded to the next period. For
withdrawals in (π1, π1), reserves are exhausted, and impatient get lower returns
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FIGURE 1. Consumption schedule under uncertain withdrawal demand.

than patient agents. However, δ = 0 so that no early liquidation of the production
technology is carried out. Last, when withdrawal demand exceeds π1, δ > 0 where
banks interrupt the production process in order to satisfy the increased share of
early withdrawals.

Similarly to the case where the share of impatient agents is known, expected
utility of type a depositors is reduced as type b agents enter the banking contract.
In this case this is so for two reasons. First, type a agents that value insurance
end up transferring resources to type b agents for low realizations of π1. Second,
here the uncertainty of withdrawal demand potentially forces both assets to be
used suboptimally. That is, liquid assets are held in excess for low realizations of
π1, whereas for high realizations the production technology is liquidated early.
Further, for π1 ∈ (π1, 1), both services that banks provide, insurance and optimal
intertemporal investment, are lost.

Consider a numerical example to illustrate this.9 Specifically, assume a uniform
distribution G(π1) with pdf g(π1) = 1/(1 − πa

1 ), and consider the following
parameters: the coefficient of relative risk aversion is ρ = 4, the share of domestic
impatient agents is πa

1 = 0.5, and the returns to investments are R = 3 and
r = 0.5. In this case the solution to (28) sets γ = 0.82, with π1 = 0.6 and
π1 = 0.7. Figure 1 depicts our example’s consumption schedule as a function
of the uncertain withdrawal demand. Notice that for realizations of π1 > 0.876,

both liquidity provision is lost and the long-term investments are being liquidated
early. In this case even the informed type b agents are ex post worse off.

The following proposition summarizes the above results.

PROPOSITION 4. The separating case sets the return vector (c1, c2) = (1, R)

with optimal reserves γ s = πa
1 . For the pooling case, the optimal return schedule

and the objective function are given by (27) and (28). Finally, define Ṽ pand Ṽ sas
the values to the pooling and separating indirect utilities. Then the solution to the
problem given in (17) satisfies Ṽ = max{Ṽ p, Ṽ s}.
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For certain parameters, type a agents will ex ante prefer the pooling contract
where banking crises may occur, whereas for others they will prefer the separat-
ing contract. To illustrate this welfare trade-off, consider our previous numerical
example. Given these parameters, the indirect utilities are Ṽ p = −0.172 and
Ṽ s = −0.173, where the pooling contract is preferred. In contrast, if we lower
the return to investments to R = 2, leaving all other parameters unchanged, we
get Ṽ p = −0.209 and Ṽ s = −0.188. It follows that for this case the separating
contract is chosen. Similarly, decreasing the coefficient of relative risk aversion ρ

reduces the parameter set at which the pooling contract is preferred.
The contract where agents self-select comes at the cost of losing the service of

liquidity provision but allows for optimal intertemporal holding of assets, and a
banking crisis will be ruled out. In contrast, the pooling contract will not be able
to prevent suboptimal holding of assets, and may or may not be able to provide
insurance. That is, for low quantities of type b agents it will provide insurance,
but will not be able to for large quantities of unpredicted early withdrawals.

5. CONCLUSION

This paper studies the effects that heterogeneous agents have on the financial
system in the context of a demand deposit banking model. When banks are not
able to distinguish among agents, informed impatient agents have the incentive to
enter the banking contract to take advantage of the insurance service that banks
provide, at the expense of uninformed agents. Banks are able to restrict these
deposits by way of an incentive compatibility constraint, but at the cost of losing
the insurance function of banks. Finally, when the quantity of informed agents is
unknown, then a banking crisis may occur. In this case an incentive compatible
contract will curtail liquidity provision but also prevent banking crises. Still, the
cost of imposing a self-selection constraint may outweigh its benefits. Given this, it
would be interesting to look at ways in which deposits could be restricted without
losing the insurance service that banks provide.

NOTES

1. See Ennis and Keister (2003) for the effect of crises on growth, and Caprio et al. (2005) for
evidence on the costs of banking crises.

2. Bencivenga and Smith (1991) first introduce two assets in an OG–Diamond–Dybvig environ-
ment.

3. Alternatively, we can think of the πb
1 agents as Diamond–Dybvig agents with a larger share of

impatient agents relative to type a agents, where here we look at the limiting special case where all are
impatient. Likewise, the πb

2 agents have a lower probability than type a’s of becoming impatient, set
here at zero.

4. The marginal individual cost is the marginal social cost divided by the number of type a agents.
Because we have a continuum of type a agents, the individual marginal cost −→ 0. Therefore, whatever
their relative bargaining power, as long as the share a cheating type a receives is greater than zero, they
will find associating beneficial.
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5. Truly, when c1 = 1, φb
1 ∈ [0, πb

1 ], where type b’s are indifferent between entering or not. In
this case we assume for simplicity that they choose not to enter.

6. This result is reversed for ρ ∈ (0, 1), where c1 < 1 and c2 > R, and thus patient type b’s choose
to enter the banking contract, whereas the impatient choose not to participate.

7. However, as πa
1 increases, the amount of insurance they obtain is smaller, which works in the

opposite direction.
8. Also, with no aggregate uncertainty, the term in brackets in the objective function (17) can be

pulled out of the integral, and α = 1, δ = 0 in the constraints (18) and (19), and thus assets are held
optimally.

9. All computations are performed in Mathematica. Code available upon request.
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APPENDIX
A.1. PROOF OF PROPOSITION 1

To show that utility is increasing in the number of patient type b agents, V ∗′(φb
2 ) > 0,

first notice that λ′(φb
2 ) < 0, so that V ∗′(λ) < 0 entails V ∗′(φb

2 ) > 0. Next notice that the
first-order condition to our problem given by (7) sets

γ =
⎧⎨⎩1 +

[
(1 − λ)

λ

]1−1/ρ
[(

1 − πa
1

)
πa

1

]1/ρ

R(1−ρ)/ρ

⎫⎬⎭
−1

. (A.1)
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Now taking V ∗′(λ) from (7) , and setting it to < 0, we have

V ∗′(λ) = −
πa

1 γ
(m

λ

)−ρ

λ2
+

(
1 − πa

1

)
(1 − γ )R

[
(1 − γ )R

(1 − λ)

]−ρ

(1 − λ)2
< 0. (A.2)

After some algebra, substituting in (A.1) and taking the natural log to the remaining
expression, we have

(2ρ − 1)

ρ
ln

[
πa

1

λ

(1 − λ)(
1 − πa

1

)]
>

(1 − ρ)

ρ
ln (R) .

Because πa
1 > λ in this case, and R > 1, both expressions inside the logs are greater than

one, and thus their log expressions are positive. Thus the above expression is always true
for ρ > 1, because the lhs > 0 and the rhs < 0. Hence V ∗′(φb

2 ) > 0 always.
To show that φb

2 = 0 for ρ > 1, suppose the opposite, that is, that type b patient agents
choose to deposit in a bank. Then φb

2 = πb
2 , and by (11) c2 > R. It follows that c1 < 1 by

the feasibility constraints. Also, c1 < 1 implies m < λ by (8). Thus we have⎧⎨⎩1 +
[

(1 − λ)

λ

]1−1/ρ
[(

1 − πa
1

)
πa

1

]1/ρ

R(1−ρ)/ρ

⎫⎬⎭
−1

< λ. (A.3)

After some algebra and taking the natural log to the remaining expression, we have

ln

[
(1 − λ)(
1 − πa

1

) πa
1

λ

]
< (1 − ρ) ln(R), (A.4)

which is a contradiction for ρ > 1, because both expressions inside the logs are greater
than one, and thus their log expressions are positive. �

A.2. PROOF OF PROPOSITION 2

For c1, first notice that λ increases with φb
1 , and thus we can evaluate c′

1(λ), where c1 = γ p/λ

and γ p is given by (13). Then evaluate c′
1(λ) at lambda’s lower bound, λ → πa

1 . After
some algebra on this first derivative, we arrive at

R
(
R1/ρ − R

)[
πa

1 R + (
1 − πa

1

)
R1/ρ

]2 ,

which is less than zero for ρ > 1. Thus we have c′
1(λ) < 0 at the lower bound. Also notice

that c1 > 1 in this case. Next notice that when

λ → λ̂ =
[

1 +
(
1 − πa

1

)
πa

1

R1−ρ

]−1

we have c1 = 1. λ̂ is lambda’s upper bound; beyond it type a agents will choose to self-
select. Because c′

1 does not change signs, and c1 goes from greater than one to equal to one
as lambda increases, we have c′

1(λ) < 0 always.
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For the second part of the proposition, it is straightforward to sign the derivative of γ p,

so that γ p′(φb
1 ) > 0 always. �

A.3. PROOF OF PROPOSITION 3

The optimal reserve ratios that solve for the pooling and separating outcomes are γ p and
γ s , given by (13) and (14), respectively. Then the threshold π̂ b

1 given by (15) follows from
setting c

p

1 = cs
1 and solving for πb

1 , such that V ∗pool = V ∗sep is satisfied.
Consider first the pooling case. Then

λ = πa
1 + πb

1

1 + πb
1

.

Further suppose that πb
1 is small enough so that λ is arbitrarily close to πa

1 . It follows that
γ p is arbitrarily close to the benchmark γ a given by (6). Thus V ∗pool is arbitrarily close
to V a , and the pooling contract is preferred to a separating contract. Then, by continuity,
the threshold π̂ b

1 satisfies φb
1 = πb

1 (pooling) for πb
1 ≤ π̂ b

1 , and φb
1 = 0 (separating) for

πb
1 > π̂b

1 . �

A.4. PROOF OF PROPOSITION 4

The derivation of the separating and pooling cases closely follows the discussions in the
body of the paper. For the remaining part, consider a degenerate distribution G(π1) that
places mass 1 to an arbitrarily small πb

1 , such that Ṽ p is arbitrarily close to V a, the
benchmark indirect utility. Then Ṽ p > Ṽ s, and pooling is preferred. Then, by continuity
of the von Neumann–Morgenstern expected utility function, a threshold exists at which
Ṽ p = Ṽ s . Beyond this threshold, the probability of large πb

1 is such that Ṽ p < Ṽ s . �
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