
TLP 6 (4): 451–481, 2006. C© 2006 Cambridge University Press

doi:10.1017/S1471068405002565 Printed in the United Kingdom

451

EPspectra: a formal toolkit for developing
DSP software applications

HAHNSANG KIM, THIERRY TURLETTI

INRIA, Planète Project, 2004, Route des Lucioles BP93, 06902, Cedex France

AMAR BOUALI

Esterel-Technologies, 885, av. Julien Lefèbvre, 06270, Villeneuve, France

submitted 18 March 2002; revised 15 October 2004; accepted 7 February 2005

Abstract

The software approach to developing Digital Signal Processing (DSP) applications brings some

great features such as flexibility, re-usability of resources and easy upgrading of applications.

However, it requires long and tedious tests and verification phases because of the increasing

complexity of the software applications. This implies the need of a software programming

environment capable of putting together DSP modules and providing facilities to debug, verify

and validate the code. The objective of the work is to provide such facilities as simulation

and verification for developing DSP software applications. This led us to developing an

extension toolkit, EPspectra, built upon Pspectra, one of the first toolkits available to

design basic software radio applications on standard PC workstations. In this paper, we

first present EPspectra, an Esterel-based extension of Pspectra that makes the design and

implementation of portable DSP applications easier. It allows the drastic reduction of testing

and verification time while requiring relatively little expertise in formal verification methods.

Second, we demonstrate the use of EPspectra, taking as an example the radio interface

part of a GSM base station. We also present the verification procedures for the three safety

properties of the implementation programs which have complex control-paths. These have to

obey strict scheduling rules. In addition, EPspectra achieves the verification of the targeted

application since the same model is used for the executable code generation and for the

formal verification.

KEYWORDS: real-time application, Esterel, formal verification

1 Introduction

Esterel (Berry 1996) is a synchronous programming language targeted at reactive

systems. Esterel programs perform an input-driven computation: wait for inputs

and compute corresponding outputs in a cyclic manner, referred to as a reaction.

Esterel is also a formal language. The Esterel system provides specification,

simulation, automatic code generation, and verification tools. Taking into account

that most of traditional verification methods are concerned with proving properties

only of abstracted models of programs rather than programs themselves, the Esterel

methodology allows one to directly verify the actual code of Esterel programs that

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

452 H. Kim et al.

corresponds to the targeted implementation. It guarantees that the Esterel programs

satisfy the properties to be proved on condition that all source code is correctly

compiled to the targeted code.

It still holds true that the number of transistors per integrated circuit roughly

doubles every 18 months according to Moore’s law1. Thus, programming environ-

ments for Digital Signal Processing (DSP) applications may no longer be required

to rely on specialized DSP hardware since the performance of general purpose

processors and peripheral equipment increases along with the high-tech curves.

This leads to the shift of hardware-operation functions into software. A software

approach to developing DSP applications allows the following advantages: re-

usability of existing hardware, ease of upgrades, and more flexible applications.

Nevertheless, it makes the implementation of software applications more complex

because of the need for multi-disciplinary knowledge of software architecture, signal

processing, real-time scheduling, networking protocols, validation, etc. Furthermore,

it requires an appropriate development environment accessible to programmers.

The goal of this work is to develop a methodology to make the implementation of

DSP software applications easier by allowing the code for specification, simulation

and verification to be executable. We make the best of the characteristics of Esterel,

a formal as well as programming language.

We have developed an Esterel-based extension toolkit, EPspectra built upon

Pspectra
2 (Bose 1999; Vasconcellos 2000). In the EPspectra system, the control

part of DSP application, which is to be verified eventually, is specified in Esterel

and the data part, which contains DSP computation intensive modules, is specified

in C/C++. The behaviors of the control part are checked out in simulation with

Xes (Berry and team 1999) and its safety properties are verified with Xeve (Bouali

1998). We demonstrate the verification and implementation of an example of DSP

software applications, the radio interface part of a GSM Base Transceiver Station

using EPspectra. We also report the results of performance comparison between

the Esterel based implementation and the generic method based one.

This paper is structured as follows. Section 2 describes the Pspectra software

architecture, which is divided into a data part and a control part. It also describes

an extension toolkit, EPspectra, the control part of which is re-designed and

implemented in Esterel. Section 3 presents the features that are derived from the

Esterel methodology and Section 4 focuses on scheduling techniques considering

two models: the Data-Pull Model and Data-Reactive Model. Once the extension

toolkit has been described, we present in Section 5 the implementation of a practical

example which corresponds to the radio interface part of a GSM Base Transceiver

Station. Three safety properties of the implementation are verified in Section 6. In

Section 7, the performance results between EPspectra and Pspectra are compared

in terms of the capacity of computation and the number of lines of code. Section 8

1 See http://www.intel.com/research/silicon/mooreslaw.htm
2 It provides a signal processing programming environment to implement portable DSP applications on

general-purpose workstations. See http://www.sds.lcs.mit.edu/SpectrumWare/

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 453

discusses the related work and the last section concludes the paper and presents

future directions.

2 Pspectra & EPspectra

Pspectra, developed by the SpectrumWare project at MIT, is a real-time signal

processing programming environment used to implement portable DSP applications

such as software radios on general-purpose workstations. This environment includes

a library of portable (across platforms) DSP functions and an I/O subsystem. With

Pspectra, the hardware part is minimal and the boundary between software and

hardware is shifted right up to the A/D converter. This increases flexibility by

bringing more functions under software control.

The Pspectra software architecture is partitioned into a control part (out-of-

band components) and a data part (in-band components). This partitioning allows

for a maximal re-use of the computationally intensive DSP modules. The data part

takes care of the temporally sensitive and computationally intensive work, while the

control part deals with all code relating to scheduling processing modules.

2.1 Data part

The data part contains the code required to perform specific signal processing

tasks, access functions used by the control part to configure and monitor the DSP

tasks, and I/O functions that read data from and write data into buffer. The data

part consists of two components: DSP modules and connectors. The DSP modules

perform the signal processing tasks and communicate with the control part via the

access functions. A connector can be thought of as a wire that carries signals from

the output of a processing module to the input of the following processing module.

The DSP modules are classified as follows:

• Sources are specialized modules that have one or more output ports and no

input ports.

• Sinks are specialized modules that have one or more input ports and no output

ports.

• Intermediate modules have one or more input ports and one or more output

ports.

Each port must be connected to exactly one connector. Each signal processing path

has at least one source beginning computation and at least one sink ending it.

2.2 Control part

The control part is responsible for the creation of topology, the modification of

current data flow according to the system needs, the control of the communications

between DSP modules, the handling of user interaction, and the monitoring of the

data computation on each DSP module. The data manipulated by the DSP modules

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

454 H. Kim et al.

20 21 22 56 57 58 59

SampleRange :
index : 20
size : 40

I/O buffer

Fig. 1. SampleRange: each data block is referenced with an index and a size.

flow from sources to sinks. A DSP module reads input sample data from the DSP

module(s) directly preceding it, and performs some computation on it.

To refer to the input and output data in the buffer, a parameter called SampleRange

is used in the DSP modules. This parameter keeps track of a position of the data

that each DSP module accesses. As shown in Figure 1, a SampleRange contains two

pieces of information: an index identifying a starting point from which to read data

into the buffer and a size identifying the amount of data to be read.

All DSP modules include an estimating function and a computing function. The

estimating functions in DSP modules specify a SampleRange used by computing

functions with reference to the SampleRange parameter of the preceding modules

and inform the following modules of their SampleRange parameter. In addition,

estimating functions have to ensure that the same data is not computed more than

once. Computing functions start when estimating functions successfully return, and

they manipulate the data that estimating functions have scheduled.

2.3 Esterel-based architecture

Even though Pspectra provides features such as dynamic flexibility, portability, and

re-usability for software implementations, it lacks the functionality of simulation,

testing, and formal models accessible to developers. Data-intensive activities and

control-driven handling activities require different programming techniques.

In an Esterel-based approach, as shown in Figure 2, the architecture is composed

of an extended part and the data part on the whole. The extended part is partitioned

into the control part in Esterel and the interface part in C/C++. In the control

part, the components of DSP modules are instantiated, initialized and scheduled.

The interface part is represented as an interface to link the Esterel-written control

part to the C++-written data part. The data part in C++ is where DSP algorithms

are run.

As a whole, as shown in Figure 3, the Esterel-based Pspectra software environ-

ment (EPspectra) contains the following: the component package that provides a

library of computational functions for the data part and the General Purpose PCI

Interface (GuPPI3). It allows the sampled signal data to be directly transferred in

and out of memory of the workstation via Direct Memory Access (DMA).

3 See http://www.sds.lcs.mit.edu/SpectrumWare/guppi.thml

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 455

Module2Module1Source Sink

Interface in C/C++

Extended Part

Control Part in Esterel

Data Part in C++

Fig. 2. Architecture of an Esterel-extension.

Control Part

Data Part

GuPPI &
Operating SystemDMA DMA

Pspectra
Esterel−based

Source Coding

Modulation Summation

Sink

16−QAM

Component Package

Fig. 3. The Esterel-based Pspectra environment.

2.4 Esterel implementation of the control part

Figure 4 shows the architecture of EPspectra in more detail. In all the modules, the

computing functions follow the estimating functions. A scheduler first triggers the

estimating function on the source by sending a control signal. When the estimating

function is completely performed, the source emits an ack-signal to the scheduler

that will allow it to perform the estimating function on the next module. At the same

time, the computing function on the source is performed to compute the sample

data. Afterwards, the source is required to wait until the ack-signal coming from

the next module is received. As soon as the next module is ready to compute the

corresponding sample data, the source repeats the same procedure to manipulate

the continuous sample data.

When each intermediate module gets a control signal from its preceding module(s)

via the scheduler, it starts computation and then transmits the computed sample

data to the next modules while it sends an ack-signal to the preceding modules. The

sinks perform the same operation as intermediate modules except that there is no

next module.

3 The Esterel methodology

Esterel belongs to the family of synchronous reactive languages, such as Lustre

(Halbwachs et al. 1992), Signal (Benveniste et al. 1991) and StateCharts (Harel

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

456 H. Kim et al.

call

Compute

call call call

Compute Compute Compute

writing

reading reading readingreading

buffer buffer buffer
writing writing sending

Sink

Output
SamplesSamples

Input

scheduler

Scheduling

Interconnection

in C/C++

in Esterel

Computing

in C++

computing

estimating estimating

computing computing

estimating

computing

estimating
Source DSP moduleDSP module

data flow

signal

reaction

signal

reaction reaction

signal signal

reaction

Fig. 4. Architecture of the control part of EPspectra.

1987). Esterel provides powerful constructs to express sequencing, parallel beha-

vior, and preemption. It also provides a communication mechanism with signal

broadcasting. These constructs are particularly suited for the programming of a

reactive system containing the control-dominated part. The Esterel language has

clean mathematical semantics that interpret an Esterel program as a Finite State

Machine (FSM), a state-graph model with labels over the graph edges. The FSM

model represents exhaustively all the possible states that the program can be in

and all the behaviors that the program can perform between the states. The main

features brought by the Esterel methodology are:

• Specification: although Esterel is relatively simple, it is expressive and concise

enough to program complex controllers.

• Simulation: the Esterel system provides symbolic debugging simulation with

the symbolic debugging simulator Xes. The simulation environment is based

on the Finite State Machine (FSM) model. The simulator is coupled with the

formal verification environment.

• Automatic code generation: the Esterel system compiles an Esterel program

into an executable C program with a C interface that is easy to connect with

hand-written C code. The C code represents the FSM model exactly.

• Formal verification: the FSM model allows one to perform model-checking to

verify its properties. When any property is not satisfied, the verifier generates

the corresponding counter-example input-sequence. This counter-example can

be played back using Xes. More details of model-checking are given in

section 6.

Hence, Esterel is not only a programming language, but also provides a formal

method, which means there is no gap between specification or simulation and

execution. Using the Esterel methodology, the procedure verifying the properties

of an Esterel program is the following:

(i) describe the properties satisfying the correctness of an Esterel program,

(ii) compile the Esterel program in parallel with observer, the program that

describes properties and

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 457

(iii) check for satisfaction or violation of the properties using the Esterel model-

checker Xeve.

4 Scheduling techniques

It is useful to review existing definitions of real-time systems before describing the

statistical real-time model. Although there are many different definitions of real-time

constraints in the literature, we can generally classify them into hard real-time and

soft real-time constraints (Jensen 1997). In hard real-time systems, the overall time

consumption of DSP modules is strictly limited. In other words, all the time critical

functions have deadlines which must always be met in order for the system to

function properly. This domain includes safety-critical real-time applications such

as space rockets, aircraft automatic pilots, air traffic control, car vital systems, and

some medical equipment. On the other hand, soft real-time systems are not well

defined. They are generally thought of as real-time systems that can still function

reasonably well even if deadlines are occasionally missed. Indeed, the reliability of a

system relies on the accuracy of the estimates.

EPspectra and Pspectra run on general purpose workstations in an operating

system (Linux OS) without explicit real-time support. Instead, by taking advantage

of the ability to sometimes process data faster than in real-time, jitter in the

computation time of some functions can be absorbed. This provides a real-time

scheduling mechanism for dealing with frequent small-scale time variability. Resource

unpredictability may result in the processing time occasionally exceeding the real-

time rate, but the average processing rate can still be well below the real-time

threshold. Thus, there is a trade-off between higher average throughput and jitter

in the computation time. In order to deal with the larger variations, the concept of

statistical real-time performance is introduced with the following characteristics:

• the cumulative distribution of the number of cycles required to complete a

task,

• a desired real-time bound and

• a specification of the action that must be performed when the deadline is not

met.

This is a kind of soft real-time constraint since deadlines can be missed without

disastrous consequences. The probability that the task will be completed within

the desired time bound can be expressed from the cumulative distribution of cycles

required to a given application. This is possible since the statistics associated with the

execution time are consistent. Note that if the task is completed with a probability

of one, then the system will provide hard real-time constraints.

Different actions are possible when a deadline is missed. For example, one can

abort computation and drop the remaining data, replace the remaining data by a

special value or partially estimated data from the result, or start processing the next

slice of data while the current processing job continues in parallel.

Instead of extending the real-time paradigm across the whole system, EPspec-

tra and Pspectra extend the boundaries of the virtual time environment by

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

458 H. Kim et al.

scheduler

signal signal signalsignal signal signal signal signal

source module 1 module 2 sink

Fig. 5. Data-Reactive Model.

(i) time-stamping and temporally decoupling sampled information at the edge of

the system and (ii) providing a virtual time programming environment in which it is

possible to implement applications that process temporally sensitive information.

4.1 DPM: Data-Pull Model

Let us account for the Data-Pull Model (DPM) on which the control part of

Pspectra is based before looking into the Data-Reactive Model (DRM). The DPM

relies on a “lazy evaluation approach” (Johnsson 2004). Lazy evaluation so-called

call by need has been proposed as a method for executing functional programs.

The advantages of using the DPM in Pspectra include: improved computational

efficiency resulting from the benefits of lazy evaluation, the rapid response to changes

in the processing requirements, and the caching benefits with a good locality of data

reference by means of lazy evaluation. Further details concerning these advantages

are described in Bose (1999).

Pspectra performs parallel processing for data computation of DSP modules,

generating multiple threads. However, the overhead of synchronization between

threads which share the same data may degrade the performance of parallel

processing. Suppose that there is an application composed of two sources, two

sinks, and several intermediate modules. The two independent sinks are connected

to the same intermediate module. According to the DPM, the two sinks are only

processed alternately. In addition, when the sequential processing chain is created,

sample data is processed by passing it through this chain, but the next sample data is

not processed before the process of the sample data is completed. More specifically,

it is not possible to interleave the computation chain of the current sample data and

that of the next sample data.

4.2 DRM: Data-Reactive Model

In contrast to the DPM, the DRM makes use of a software pipelining method

(Allan et al. 1995). It allows the reduction of the idle time between the beginning

and the end of computation operations. It accelerates computation operations as

well as computation-intensive scheduling. Figure 5 shows the architecture of the

DRM specified in Esterel. All the modules wait for input signals and compute the

corresponding output signals. The DRM allows the benefit of the well-formed

semantic properties of Esterel such as parallel composition and hierarchical

automata, introduced in (Berry 1996).

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 459

M1 M2 M3 M4

1

1

1

12

2

23

T
IM

E

(b)

M4: d = C4(c);
M3: c = C3(b);
M2: b = C2(a);

for i=1; ++i:

end for

(a)

M1: a = C1(Di);

Fig. 6. (a) Loop body code. (b) Execution schedule of iterations.

The data processed on the source is pushed into the sink through the operations

of the intermediate modules. Since all DSP modules react on available data, a

scheduler determines the relation among DSP modules, and activates or deactivate

them according to the relation. The scheduling approach is the following:

• data computation starts on the source,

• whenever data on DSP modules are available, they start computing it, and

• the corresponding data is consumed on the sink.

The scheduler monitors and controls the communications of DSP modules. As soon

as the sources finish computing the data, they emit certain signal(s) triggering the

computation of the corresponding data on the following modules and then wait

for ack-signals from them. The DSP modules wait for two events: available data

from the preceding modules and ack-signals from the following modules. Here,

receiving ack-signals implies the completion of computation of the previous data.

When receiving both of them, the DSP modules compute the available data, and

then convey the computed data to the following modules. At the same time, they

emit ack-signals to the preceding modules simultaneously. The corresponding data

are finally consumed on the sinks. The DRM has two features of scheduling: a

software pipelining scheduling method and the data dependencies.

4.2.1 Software pipelining schedule

The software pipelining scheduling method makes use of parallel processing among

DSP modules at the operation-scheduling level, not at the instruction level. Let us

look at the loop body of Figure 6(a). Each set M4 of an iteration depends on

the previous set of operations as well as the previous iteration. As shown by the

execution schedule of Figure 6(b), the set of operations of the 2nd iteration of M1

depends on, and must follow the set of operations of the 1st iteration of M2. From

4 Note that M represents a set of operations of each module, not an operation itself.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

460 H. Kim et al.

AM
Demod

FM
Demod

MUXFilter

(3)

(4)(2)

(1)

Sink
(5)

Fig. 7. A diagram showing dependencies.

this basic software pipelining scheduling method, speed-up of the execution rate can

be expected.

4.2.2 Data dependencies

DSP modules of a DSP application based on the DRM are dependent on data

associated with its topology. A dependence (Allan et al. 1995) exists between two

operations if interchanging their order affects the results. Dependencies constrain

what can be done in parallel. Let O1 and O2 be operations such that O1 precedes O2.

O2 must follow O1 if O2 reads data written by O1. O2 is said to be data dependent

on O1. Data dependence between two operations is extended to data dependence

between two operational modules. There is another reason that one operation must

wait for another operation. A control dependence exists between S1 and S2 if the

execution of statement S1 determines whether or not statement S2 is executed.

Therefore, even though S2 is able to execute because of the available data, it may

not execute because it is not known whether it is needed.

The DRM considers data dependencies, not control dependencies. Figure 7 gives

an example of this. It shows part of an audio application that switches between

Amplitude Modulation (AM) and Frequency Modulation (FM) demodulators,

consisting of the filter, AM demodulation, FM demodulation,multiplex and sink

modules. The audio application has data dependencies represented as (1), (2), (3),

(4), and (5) and all the statements pertaining to the execution of modules. The

control program is required to change the execution topology with the establishment

of either (1) and (3), or (2) and (4) after the Channel Filter operation. Thus, it is

necessary to have control dependencies as well as data dependencies between the

Channel Filter and the AM demodulator, or between the Channel Filter and the

FM demodulator. It implies the need of the dynamic reconfiguration that enables

the execution topology to be adapted to the changeable environment.

5 An example of application: the radio interface part of a GSM BTS

As an example of implementation using EPspectra, this section describes the

general architecture of a GSM network and the radio interface part of a GSM

base station. The following sections describe the verification procedure of the three

safety properties of the implementation that should be satisfied. In addition to

the verification, the performance comparison between automatically generated code

programs and hand-written code programs is analyzed.

As shown in Figure 8, the GSM network can be generally divided into three

main parts: the Mobile Station (MS), the Base Station Subsystem (BSS), and the

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 461

Fig. 8. Architecture of GSM network.

Network SubSystem (NSS). The MS is the physical equipment used by a subscriber,

most often a normal hand-held cellular telephone. The BSS connects the MS and

the NSS. It is in charge of transmission and reception. The BSS consists of a Base

Transceiver Station (BTS) and a Base Station Controller (BSC). The BTS comprises

radio transmission and reception devices and also manages the signal processing

related to the air interface. Each BTS has one to sixteen transceivers, depending on

the density of users in the cell. The BSC controls a group of BTS and manages

its radio resources, mainly through the allocation, release and hand-over of radio

channels. The Mobile Switching Center (MSC) is the central component of the NSS.

It performs the switching functions of the network and also provides connection to

other networks. In addition, there are several kinds of registers, namely the Home

Location Register (HLR), the Visitor Location Register (VLR), Equipment Identity

Register (EIR), and the Authentication Center (AuC). The further description of

the GSM system is given in (Mouly and Pautet 1993).

We focus on the implementation of the GSM radio interface part between the MS

and the BTS, particularly on the BTS side. It provides a multiple-access scheme and

operations for the transformations between source information and radio waves.

The implementation of the multiple access scheme has been excluded from our

work. Instead, we present and implement the operations that have to be performed

to pass from the speech source to radio waves and vice-versa.

5.1 Sequence of operations between source information and radio waves

The sequence of operations for the radio interface of a GSM BTS is shown in

Figure 9. Basically, after having transformed speech into compressed data blocks in

speech coding, channel coding adds redundancy to the data blocks. The data blocks

are interleaved and spread into pieces in interleaving, which are combined with flags

to build up the bursts. Ciphering is applied to these bursts and then the resulting

data is used to modulate the carriers in modulation. The reverse transformations

are performed on the other side.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

462 H. Kim et al.

Speech

Coding
Speech

Channel
Coding

Interleaving

Ciphering

Modulation RF
Signal

Speech

Deciphering

Channel

Speech
Decoding

Demodulation

Decoding

Deinterleaving

Fig. 9. Sequence of operations from speech to radio waves and back to speech.

• Speech coding algorithm, Regular Pulse Excitation with Long Term Prediction

(RPE/LTP) (Lorenz 1998) produces data blocks of 260 bits every 20ms.

• Channel coding introduces redundancy into the data flow, increasing its rate

by adding information calculated from the source data, in order to allow the

detection or the correction of signal errors introduced during transmission. It

forms a complete coded speech frame of 456 bits.

• Interleaving consists in mixing up the bits of several code words, which in the

modulated signal are spread over several code words. GSM coding blocks are

interleaved on 8 bursts each of which consists of 57 bits.

• Ciphering performs an exclusive or (XOR) operation between 2 bursts of each

block and a secret recipe known only by the mobile station and BTS.

• Modulation transforms the binary signal into a Gaussian Minimum Shift

Keying (GMSK) (Murota and Hirade 1981).

• Once radio waves are captured by the antenna, the portion of the received

signal which is of interest to the other side corresponding to radio waves to

source information is determined by the multiple access rules. Demodulation

takes place in this portion.

• Deciphering performs the same operations by reversing the ciphering algorithm.

• Deinterleaving merges two different 8-burst blocks into a 456-bit code word.

• Channel decoding involves reconstructing the source information from the

output of the demodulator, using the added redundancy to detect or correct

possible errors in the output from the demodulator.

• Speech decoding reconstructs the speech by passing the residual pulse first

through the long-term prediction filter, and then through the short-term

predictor.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 463

6 Formal verification

In this section, we explain what formal verification of Esterel programs means.

As mentioned, Esterel is both a formal modeling language and a programming

language. Esterel benefits from clear mathematical semantics that characterize a

program as an FSM model. The Esterel FSM model is defined as a structure

(I, O, S , s0, T) where I is a set of input signals, O a set of output signals, S a set

of states, s0 the initial state, and T a transition relation. T is a set of 4-tuple

(s, i, o, s′), which represents a transition from s to s′ whenever the input event i

is true, generating the output event o. The FSM model is the one that is used

for simulation, execution and formal verification. A state of the FSM model is

a stable configuration of the control points of the program. A transition from a

system state is a reaction to some input event: the reaction leads to a new stable

system. The FSM model has the advantage of exhaustively exhibiting the program

behaviors. Formal verification is the activity of proving properties of programs and

systems in a mathematical sense. In other words, verification consists in verifying

the satisfaction of a set of properties over a FSM model of the program or system

behavior.

Generally speaking, there are two types of properties that can be expressed:

safety properties (Alpern et al. 1986) and liveness properties (Alpern and Schneider

1985). Safety properties express the fact that “something bad will never happen.”

Liveness properties express the fact that “something good will eventually happen.”

For example, a typical safety property is “the elevator will never move while the

door is open” and a typical liveness property is “if someone calls the elevator, then

the elevator will eventually come”. In our experience, most of the properties are

safety ones. When liveness is concerned, it is often reducible to bounded liveness,

which is fundamentally a particular form of safety properties. Bounded liveness

properties express the fact that “something good will eventually happen in at

most k times units,” where k is a constant. For example, we can transform

the liveness property of the elevator into a bounded liveness as follows: “if

someone calls the elevator, then the elevator will eventually come in less than 5

minutes.” Let us look into a way to directly apply these properties to the Esterel

system.

6.1 Observer properties

In the Esterel system, the users directly express the properties using the Esterel

language. Let us consider a simple property that requires the following condition:

“at each state, if signal A and B are present, then signal C in the next state should be

present unless signal R is present. Otherwise it falls into an error state”. In Esterel,

this property is written as follows:

module OBSERVER:

input A, B, C, R;

output BUG;

loop

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

464 H. Kim et al.

present [A and B] then

pause;

abort

present C else emit BUG end

when R

else

pause

end present

end loop

end module

The pause statement waits for one time unit. The abort ... when cond construct

kills its body as soon as the condition cond is true. This formal verification consists in

checking if the signal properties such as BUG above can be emitted in some reachable

states and for some input events. If the property is violated, the Xeve model-checker

generates an input sequence of events that would have produced the error state.

6.2 Xeve

Xeve takes as inputs the FSM model expressed as a set of boolean equations in Blif

format generated by the Esterel compiler. It makes use of the symbolic state space

construction algorithm by means of Binary Decision Diagrams (BDDs) (Bryant

1986), the internal representation of an FSM model for the reachable state space.

Xeve provides two verification functions: minimising the number of states of the

FSM model and checking the emission status of output signals. The first function

is performed with respect to an equivalence notion called symbolic bisimulation

(Simone and Ressouche 1994). The second function checks two states for output

signals: possibly emitted, which means there exists a reachable configuration that

some inputs lead to the emitted output signals, and never emitted, which means

there exists no reachable configuration that some inputs lead to the emitted output

signals. More details on Xeve’s verification technique can be found in Bouali (1998).

6.3 Properties of the GSM programs

Basically, all processing modules do their behaviors in parallel. Let us take a look

at the following example.

module GSMsource2wave

...

run source/SOURCE

||

run speechcoding/P_MOD

||

run channelcoding/P_MOD

||

run interleaving/P_MOD

||

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 465

await Ack_from_Down;
run Estimate_Data;

emit cancel;
await S_Compute_from_Up;
run Compute_Data;

emit E_Compute_to_Down;

run Rendez_Vous;

...
end loop
emit Ack_to_Up;

end loop end loop
emit Ack_to_Up;
end loop

...
emit E_Compute_to_Down;

run Rendez_Vous;

run Compute_Data;
await S_Compute_from_Up;
emit cancel;

run Estimate_Data;
await Ack_from_Down;
...

loop
emit take;

...
loop
emit take;
...

loop
...module P_MOD :

...loop
...
module P_MOD :

[Channel Coding][Speech Coding]

*

Fig. 10. Signal passing diagram between two adjacent modules.

run ciphering/P_MOD

||

run modulation/P_MOD

||

run sink/SINK

...

end module

Unless carefully programmed, the process of a module may prevent the process of

the other modules from running due to missing signals. Let us look at Figure 10.

The performance of parallelism can be enhanced as the process of an inside module

is partitioned into two parts (i.e. the estimating and the computing function parts)

running in parallel. It requires the cautious synchronization between the process of

a module and that of another.

In Figure 10, the ‘Ack from Down’ signal of the speech coding module is

synchronized with the ‘Ack to Up’ signal emitted by the channel coding module. As

soon as ‘Ack from Down’ is received, the estimating function is performed on the

speech coding module (i.e. run Estimate Data). The ‘S Compute from Up’ signal on

the channel coding module is synchronized with the ‘E Compute to Down’ signal

emitted in the speech coding module. This synchronization activates the computing

function on the channel coding module (i.e. run Compute Data). However, Estim-

ate Data and Compute Data submodules contain loop statements including ticks5,

the number of which being consumed is determined at the run time execution. It

may cause a deadlock to happen by the channel coding module to miss the signal

5 Tick introduced in Esterel is thought of as logical time which represents the activation clock of a
reactive program.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

466 H. Kim et al.

coming from the speech coding module (which corresponds to the asterisked arrow

(∗) in Figure 10). There are occasions when the number of ticks being consumed

are not transparent to programmers. We, therefore, add an explicitly synchronizing

mechanism called Rendez-Vous. As shown in Figure 10, the ‘take’ signal on the

channel coding module validates the Rendez-Vous submodule on the speech coding

module, which results in suspending the successive process of the speech coding

module. This delays in emitting the ‘E Compute to Down’ signal on the speech

coding module. Afterwards, on receiving the ‘cancel’ signal coming from the channel

coding module, Rendez-Vous kills this suspension.

The GSM programs process sample data; the data processed on the sources ends

up being consumed on the sinks. All modules contain loop statements, which means

that the programs may stall or may be in a situation in which some critical stage of

a task is unable to finish. This fact must be verified for the safety of the programs.

Accordingly, the requirements that should be satisfied by the above model are the

following:

R1 The signal emitted by a module is always caught by the opposite modules

(referred to as Rendez-Vous).

R2 The computed sample data on the source(s) will eventually be consumed on

the sinks.

R3 Whenever the modules receive input signals, they emit the corresponding

output signals within a bounded time-period.

Each safety property is then translated into an Esterel observer. The safety

properties and the corresponding translations are as follows:

S1 Deadlock freedom: an important safety property is deadlock freedom. In

the GSM program, a deadlock occurs when one misses signals that should

be received. The Rendez-Vous mechanism aims to avoid this synchronization

deadlock by establishing an explicit synchronization between at least two

signals of modules running in parallel. To guarantee that the program will

never deadlock, it is sufficient to verify the Rendez-Vous mechanism, namely,

by checking the satisfaction of the following safety property: any state at

which the module emits ‘E Compute to Down’ is preceded by a state at which

the opposite ones are ready to receive ‘S Compute from Up’. This is stated by

the following Esterel observer:

module S1:

input ReadytoReceive, E_Compute_to_Down;

output S1_VIOLATED;

loop

await E_Compute_to_Down;

abort

emit S1_VIOLATED

when pre(ReadytoReceive);

end loop

end module

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 467

S2 Correctness: a major scheduling task of the GSM programs is to correctly

deliver certain sample data computed on a source up to a sink by applying

a sequence of operations to the corresponding data. The procedure begins

from the source receiving ‘Ack from Down’ and ends when the sink emits

‘Ack to Up’. However, we note that all sample data computed on the source

is not always consumed by the sink in the end. In fact, a certain amount of

sample data can be skipped, depending on the specific conditions, e.g. a missed

deadline happens since it is scheduled based on soft real-time constraints, there

are changes to a type of modulation algorithm or an event, such as reset, occurs

from the outside environment.

Each module consumes one or two ticks for an iteration of the loop statement

from the input sample data to the corresponding output sample data. The

GSM programs are divided into the operations of the transmission from

source to radio wave and back. Each of them consists of five modules plus

a source and a sink (see Figure 9). Suppose that each module consumes two

ticks for a sample data, the sink finishes computing the sample data in no

more than fourteen ticks (= D). The correctness property is as follows: for a

state receiving ‘Ack from Down’ on the source, a state emitting ‘Ack to Up’

on the sink follows no more than D position. This is stated by the following

Esterel observer:

module S2:

constant D;

input Ack_to_Up, Ack_from_Down;

output S2_VIOLATED;

await Ack_from_Down;

abort

await D tick;

emit S2_VIOLATED

when Ack_to_Up;

end module

S3 Safety-liveness: every module behaves like a sub-reactive program which waits

for inputs and computes corresponding outputs in a cyclic manner. Each

module contains a loop statement with a certain condition to exit. There is

possibly a situation where some critical stage of a task is unable to finish,

referred to as livelock. If one module is livelocked, the other modules would

be blocked. The number of ticks being consumed for a period of receiving

and responding to inputs is proportional to the length of a path between the

module and the sink.

Figure 11 shows a signal-passing scenario of the GSM program performing

operations from source information to radio waves. All the modules except

the source and the sink wait for two input signals from the previous and next

modules: await AckfromUp&Dwn. In an initial state, the signal coming from the

next module is given as on. We consider quantifying the total number of ticks

being consumed to compute given sample data on the source up to the sink.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

468 H. Kim et al.

await AckfromDwn
pause;
emit MarktoDwn

pause;

await AckfromUp&Dwn
pause;
emit MarktoDwn
...
await CompfromUp
pause;
emit ComptoDwn
emit AcktoUp

await AckfromUp&Dwn
pause;
emit MarktoDwn
...
await CompfromUp
pause;
emit ComptoDwn
emit AcktoUp

await AckfromUp&Dwn
pause;
emit MarktoDwn
...
await CompfromUp
pause;
emit ComptoDwn
emit AcktoUp

emit ComptoDwn
...

...

await AckfromUp
...
pause;
...
await CompfromUp
...
pause;
...
emit AcktoUp

Source Speech Coding Channel Coding Modulation Sink

Fig. 11. A signal-passing scenario of the GSM program corresponding to from source to

radio waves.

Each module contains two ‘pause’ identified by ‘await tick’ and seven modules

compose a sequence of operations. Therefore, fourteen ticks are consumed in

total, which is maximum number because the courses of operations for one

sample data and another are interleaved.

Considering that each module consumes two ticks in an iteration of a loop

statement, the source receives an ack-signal in no more than fourteen ticks

(=D) and yet D is also proportional to the length of the signal passing chain.

The general form of the property is as follows: if Is holds at position j, then

Os holds at position k, for j � k � j + D. This is stated by the following

Esterel observer:

module S3:

constant D;

input Is, Os;

output S3_VIOLATED;

loop

await Is;

abort

await D tick;

emit S3_VIOLATED

when Os;

end loop

end module

This property can be applied separately to the source, the sink and the others.

For example, (AckfromDwn, ComptoDwn) for the source, (AckfromUp, AcktoUp)

for the sink, and (AckfromUp&Dwn, AcktoUp) for intermediate modules are

event predicate pair (Is, Os) being observed.

At the phase of combining the GSM programs with observers in the properties

verifying procedure, the following program is defined consisting of the GSM program

to be verified and three observers, S1, S2 and S3 to verify. In Xeve, the occurrence

of S1 VIOLATED, S2 VIOLATED, and S3 VIOLATED is checked. We note that the GSM

program is compiled directly into an executable code without modification. We will

analyze the performance of the GSM program in section 7.

module VERIFY_PROGRAM:

constant D:=14 : integer;

input <the program inputs>;

output <the program outputs>,

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 469

Fig. 12. Screen-shot of a verification result of checking the status of output signals.

S1_VIOLATED,

S2_VIOLATED,

S3_VIOLATED;

run GSM

||

run S1

||

run S2

||

run S3

end module

6.4 Verification process

We verified the satisfaction of the properties in the GSM programs by con-

firming never emitted the property-signals including violated deadlockfreedom,

violated correctness, and violated liveness using Xeve. Figure 12 shows the

result of verifying the status of the property-signals of the GSM program containing

the operations of the transmission from source to radio waves in Xeve.

Generated reachable state space of two GSM Esterel programs (one describing

the operations from source to radio waves and the other describing those of

backward) amounts to 127622 and 116972 states, respectively.

The number of nodes of the BDD graphs representing these reachable state spaces

are 66965 and 63390 respectively. It takes each program about 273 and 236 seconds-

CPU time on Linux machine with 600 Mhz Pentium processor and 516 RAM to

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

470 H. Kim et al.

Fig. 13. CPU requirement (%) for seven logical channels in EPspectra.

Fig. 14. CPU requirement (%) for seven logical channels in Pspectra.

generate the reachable state space. Note that these amounts were generated by the

combination of the properties and the implementation of the Esterel programs.

7 Performance results

Our performance analysis in the verification process was carried out on a Pentium

600MHz machine with 512MB of core memory and 516MB of swap space on Linux

kernel 2.2.15. Esterel programs are compiled with the version 6.03 of the Esterel

compiler into Blif formats6 and then optimized by Remlatch (Sentovich et al.

1996) and Sis (Sentovich et al. 1992). The Remlatch processor is used to optimize

the state encoding of the circuit and Sis is used to reduce the combinational logic

introduced by the sequential optimisation of Remlatch. The optimized Blif code is

translated into standard C code by the Esterel compiler. The executable code7 is

built up by integrating the C++ code of the data part and the above C code.

7.1 Performance comparison

We provide the performance comparison of GSM applications built on EPspectra

and Pspectra. Figure 14 and Figure 13 show the CPU requirement for the GSM

programs to operate seven logical channels, respectively. Each logical channel

6 Berkeley Logical Interchange Format is an ASCII format developed at the university of Berkeley to
describe a logic-level hierarchical circuit in textual form.

7 The executable code is obtained by gcc version egcs-2.91.66 with the -O2 optimisation flag.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 471

Table 1. Comparison of loc

code\model EPspectra Pspectra

Esterel code 1434 not used

Esterel-generated C code 10876 not used

C/C++ code for interface part 3181 not used

C++ code for control part not used 8045

Assembly code 64310 13024

includes the operations of the transmission from source information to radio waves

and back. With respect to the scheduling segment, the GSM program implemented

in EPspectra consumes CPU four times more than in Pspectra. It is because

of the interface part which provides no scheduling functionality but connection

between Esterel code and C++ code. Partially, the scheduling performance also

varies to a large extent of the optimization of automatically generated code from

Esterel. However, this overhead has no effect on the channel handling capability

of signal processing process. For example, in Figure 13, 11.98 percent of CPU are

still available as free. Therefore, the performance in terms of the number of handled

channels is the same.

7.2 Comparison of LoC (Lines of Code)

Table 1 makes the comparison of the loc of the control part of EPspectra and

Pspectra for the GSM programs8. The control part of EPspectra contains 1434

lines of the Esterel code and the Esterel code is translated into the C code

corresponding to 10876 lines. The code used for the interface contains the C code

for the access to the control part and the C++ code for the access to the data part.

With comparison of the assembly code composed of only the executable code,

the loc corresponding to EPspectra is 4.9 times larger than the loc corresponding

to Pspectra. Nevertheless, given that the advantage of a general purpose system

is to use the large amount of memory, the loc is not an important issue for these

applications, as opposed to embedded applications. Instead, the cost of extra loc can

be absorbed by the benefit of the Esterel methodology: simulation and verification.

Difficulties: programmers with EPspectra need to be familiar with programming

in Esterel. In addition, in terms of a degrading performance, this may be a

fundamental constraint that results from automatically generated codes. It needs

efficient techniques such as innovative scheduling techniques.

Advantages: EPspectra, whose features include the simulation and verification

phases, facilitates the design and implementation of DSP applications. Moreover, it

8 The code corresponding to the data part of EPspectra is the same as is used in Pspectra.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

472 H. Kim et al.

allows one to directly verify the actual code of Esterel programs that are compiled

into an executable code. It guarantees that the Esterel programs satisfy the safety

properties so long as all source code is proved correct and compiled to the targeted

code.

8 Related work

Halbwachs et al. (1992, 1993) presented an example of specifying and verifying a real-

time program using the synchronous data-flow language, Lustre. They introduced a

subway control system which operates in a U-turn section. First, the subway control

system, in which two verifiable problems, collision and derailment may happen, is

specified in Lustre. Next, the critical properties are expressed as the invariance

of some boolean Lustre expression. Temporal properties are handled with the

allowance of references to the past with respect to the current instant. Once the

environment representing behaviors of the subway control system and its properties

to be verified are done in Lustre, they are verified whether the assertions are true

or false using Lesar, its associated verification tool. The verification process runs

relying on ‘standard’ model checking (Clarke et al. 1986) which leads to explicitly

enumerating the reachable states and symbolic model checking (Burch et al. 1990)

which starts from a boolean formula and iteratively computes a sequence of formulas.

The advantage of the work is that there is no manual transformation between the

program that is verified and the code that is executed.

Halbwachs et al. (1997) presented linear relation analysis applied to the verification

of quantitative time properties of both synchronous programs and linear hybrid

systems.

Jeannet et al. (1999) proposed to dynamically select a suitable partitioning

according to the property to be proved, avoiding exponential explosion of the

analysis caused by in-depth detailed partitioning.

Raymond et al. (1998) and Halbwachs and Raymond (1999) proposed to use

synchronous observers to express both the relevance and the correctness of the

test sequences. The relevance observer is used to randomly choose inputs satisfying

temporal assumptions about the environment.

Benveniste et al. (1992) and Borgne et al. (1996) presented an example of

verification of real-time applications, using a synchronous language, Signal. The

overall procedure from programming to verification is similar to that using Lustre.

Signal approach provides the ease of implementing distributed systems including

the features of proof and compilation.

9 Discussion

We have presented EPspectra for DSP applications development and verification.

EPspectra methodology achieves a substantial principle of what we prove is what we

execute (Berry 1989) straightforwardly; there is no gap between the program which

is verified and the code which is executed. All specification, simulation, verification

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 473

and execution are performed in it. We have also demonstrated the implementation

and verification of the radio interface part of a GSM BTS using EPspectra.

The performance results are promising in that the benefit from the verification

functionality absorbs the impact on the overhead of automated generated code.

In future work, we shall experiment with the automatic test-generation feature.

The Esterel model-checker Xeve provides an automatic test-cases generation feature

that can further reduce the time cost of the testing phase (Arditi et al. 1999): the

generated test-cases are such that the Esterel FSM model’s states are totally

covered, that is, every state of the model is visited and stimulated at least once by

the test cases. With these test cases, the developers can detect more potential tricky

bugs called corner cases, which are particularly hard to write a test case for.

We shall also attempt to verify timing constraints considering that the applications

developed by EPspectra correspond to time-sensitive systems based on either hard

real-time constraints or soft real-time constraints. The method introduced in Closse

et al. (2001) can be used to verify quantitative timing constraints by using a time-

driven automata.

Acknowledgements

We gratefully acknowledge discussions about Pspectra with John C. Ankcorn at

MIT and about Esterel Verification Techniques with Robert de Simone at INRIA

and about Timing Constraints Verification Techniques with Daniel Weil and Jacques

Pulou at France Telecom R&D and about Software Development Methodology

with Thierry Saunier at Thales. This research was supported by the DESS project

associated with Information Technology for European Advancement (ITEA).

Appendix A: Glossary

MS The GSM mobile station (or mobile phone) communicates with other

parts of the system through the base-station system.

GSM Global System for Mobile communications is the European standard for

digital cellular telephone service.

BTS The Base Transceiver Station handles the radio interface to the mobile

station. The base transceiver station is the radio equipment (transceivers

and antennas).

BSS GSM Base Station Subsystem provides the interface between the GSM

mobile phone and other parts of the GSM network. It consists of one

or more base transceiver station (BTS) and one or more base station

controller (BSC).

NSS Network SubSystem performs the switching of calls between the mobile

users, and between mobile and fixed network users.

MSC Mobile Switching Center performs the telephony switching functions of

the system. It also performs such functions as toll ticketing, network

interfacing, common channel signalling, and others.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

474 H. Kim et al.

BSC Base Station Controller provides the control functions and physical links

between the MSC and BTS. It provides functions such as handover, cell

configuration data and control of RF power levels in base transceiver

stations.

HLR Home Location Register database is used for storage and management

of subscriptions. The home location register stores permanent data about

subscribers, including a subscriber’s service profile, location information,

and activity status.

VLR Visitor Location Register database contains temporary information about

subscribers that is needed by the MSC in order to service visiting

subscribers.

EIR Equipment Identity Register database contains information on the iden-

tity of mobile equipment to prevent calls from stolen, unauthorized or

defective mobile stations.

AuC Authentication Center provides authentication and encryption paramet-

ers that verify the user’s identity and ensure the confidentiality of each

call.

DSP Digital Signal Processing are specialized computer chips designed to

perform speedy and complex operations on digitized waveforms. It is

used in processing sound, such as voice phone calls, and video.

RPE/LTP Regular Pulse Excitation with Long Term Prediction is used by GSM

for full rate speech coding.

GMSK Gaussian Minimum Shift Keying is the modulation technique used in

GSM networks. It employs a form of FSK (Frequency Shift Keying).

GuPPI General Purpose PCI I/O is the PCI appliance base for the Spectrum-

Ware project. Its function is to provide an efficient means for moving

a continuous stream of sampled data between a workstation’s main

memory and an application-specific analog daughtercard.

See URL: http://www.sds.lcs.mit.edu/SpectrumWare/guppi.html.

QAM Quadrature Amplitude Modulation is a method for encoding digital

data in an analog signal in which each combination of phase and

amplitude represents one of sixteen four bit patterns. This is required

for fax transmission at 9600 bits per second. This constellation, and

therefore the number of bits which can be transmitted at once, can

be increased for higher bit rates and faster throughput, or decreased

for more reliable transmission with fewer bit errors. The number of

“dots” in the constellation is given as a number before the QAM, and

is always two to the power of an integer from one (2QAM) to twelve

(4096QAM). 64QAM is often used in digital cable television and cable

modem applications.

Appendix B: Source code

The complete source code of EPspectra is available in a public domain for the

purpose of research. See http://www.inria.fr/planete/hkim/epspectra/. The

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 475

GSM radio interface implementation consists of the downlink and uplink part. We

present main Esterel and C code of the downlink part, respectively, in Appendix

B.1 and B.2. The Esterel code in Appendix B.1 is the one that is verified and

compiled/executed. Once it is translated into the corresponding C code with Esterel

compiler, main function in Appendix B.2 calls the DNLINK function originated

from the Esterel code. Each time DNLINK() is called in main function, a logical

unit that is identified by the statement from a ‘tick’ to the next is executed in Esterel

code.

Appendix B1: Downlink Esterel code

%##

%# This module is downlink application with data flow model.

%##

module DNLINK:

type StrlSampleRange;

type UnsignedLL;

type UnsignedLong;

constant INITIAL_RANGE:StrlSampleRange;

constant INITIAL_UNSIGNEDLL:UnsignedLL;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% parameter of modules

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

constant RATE1 = 32000 : integer; %{160*50}%

constant RATE2 = 6600 : integer; %{33*50}%

constant RATE3 = 91200: integer; %{456*50}%

constant RATE4 = 118400: integer; %{592*50}%

constant RATE5 = 177600: integer; %{148*6*50}%

input on_TimeConstraint:integer;

input IP_Addr:string;

input User_Quit;

input InitRange:StrlSampleRange; %{0 1600}%

inputoutput FileSource_module:string;

inputoutput SpeechCoder_module:string;

inputoutput ChannelCoder_module:string;

inputoutput Interleaver_module:string;

inputoutput Cipher_module:string;

inputoutput Modulator_module:string;

inputoutput UDPSink_module:string;

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

476 H. Kim et al.

function GET_FILESOURCE(string,integer):string;

function GET_SPEECHCODER():string;

function GET_CHANNELCODER():string;

function GET_INTERLEAVER():string;

function GET_CIPHER():string;

function GET_MODULATOR():string;

function GET_UDPSINK(string,integer):string;

procedure CONNECT_MODULES()(string,string,integer,integer);

procedure INITIAL_SINK()(string);

%

% body part

%

signal Mark_src2spcoder:=INITIAL_RANGE:StrlSampleRange,

Mark_spcoder2chcoder:=INITIAL_RANGE:StrlSampleRange,

Mark_chcoder2inleaver:=INITIAL_RANGE:StrlSampleRange,

Mark_inleaver2cipher:=INITIAL_RANGE:StrlSampleRange,

Mark_cipher2mod:=INITIAL_RANGE:StrlSampleRange,

Mark_mod2snk:=INITIAL_RANGE:StrlSampleRange,

Compute_src2spcoder, Compute_spcoder2chcoder,

Compute_chcoder2inleaver, Compute_inleaver2cipher,

Compute_cipher2mod, Compute_mod2snk,

Ack_snk2mod:=INITIAL_RANGE:StrlSampleRange,

Ack_mod2cipher:=INITIAL_RANGE:StrlSampleRange,

Ack_cipher2inleaver:=INITIAL_RANGE:StrlSampleRange,

Ack_inleaver2chcoder:=INITIAL_RANGE:StrlSampleRange,

Ack_chcoder2spcoder:=INITIAL_RANGE:StrlSampleRange,

Ack_spcoder2src:=INITIAL_RANGE:StrlSampleRange,

RDV_snk2mod, RDV_mod2cipher, RDV_cipher2inleaver,

RDV_inleaver2chcoder, RDV_chcoder2spcoder,

RDV_spcoder2src,Ready2Receive

in

%%%%%%%%%%%%%%%%%%%%%

% create modules

%%%%%%%%%%%%%%%%%%%%%

abort

await IP_Addr;

emit FileSource_module(GET_FILESOURCE("papin2.au",0));

emit SpeechCoder_module(GET_SPEECHCODER());

emit ChannelCoder_module(GET_CHANNELCODER());

emit Interleaver_module(GET_INTERLEAVER());

emit Cipher_module(GET_CIPHER());

emit Modulator_module(GET_MODULATOR());

emit UDPSink_module(GET_UDPSINK(?IP_Addr,5001));

%%%%%%%%%%%%%%%%%%%%%%%%%%

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 477

% make topology

%%%%%%%%%%%%%%%%%%%%%%%%%%

call CONNECT_MODULES()(?UDPSink_module,?Modulator_module,RATE5,8);

call CONNECT_MODULES()(?Modulator_module,?Cipher_module,RATE4,8);

call CONNECT_MODULES()(?Cipher_module,?Interleaver_module,RATE4,8);

call CONNECT_MODULES()(?Interleaver_module,?ChannelCoder_module,

RATE3,8);

call CONNECT_MODULES()(?ChannelCoder_module,?SpeechCoder_module,

RATE2,8);

call CONNECT_MODULES()(?SpeechCoder_module,?FileSource_module,

RATE1,8);

call INITIAL_SINK()(?UDPSink_module);

await InitRange;

%%%%%%%%%%%%%%%%%%%%%%%%%%

% initialize parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%

[

emit Ack_spcoder2src(?InitRange);

||

run FileSource/

SOURCE[signal FileSource_module/Name;

signal Mark_src2spcoder/E_Mark_to_Down;%{mark1}%

signal Compute_src2spcoder/E_Compute_to_Down;

signal Ack_spcoder2src/Ack_From_Down;

signal RDV_spcoder2src/snooping%{;

signal FileSource_COMPUTEDSR/ComputedSRange}%];

||

run SpeechCoder/

P_MOD[signal SpeechCoder_module/Name;

signal Mark_src2spcoder/S_Mark_from_Up;%{mark1}%

signal Compute_src2spcoder/S_Compute_from_Up;%{}%

signal Ack_spcoder2src/Ack_to_Up;%{}%

signal RDV_spcoder2src/sig_on;%{}%

signal Ready2Receive/Ready2Receive;

signal Mark_spcoder2chcoder/E_Mark_to_Down;%{mark2}%

signal Compute_spcoder2chcoder/E_Compute_to_Down;%{wire2}%

signal Ack_chcoder2spcoder/Ack_From_Down;%{wire3}%

signal RDV_chcoder2spcoder/snooping%{;

signal SpeechCoder_COMPUTEDSR/ComputedSRange}%];

||

run ChannelCoder/

P_MOD[signal ChannelCoder_module/Name;

signal Mark_spcoder2chcoder/S_Mark_from_Up;%{mark2}%

signal Compute_spcoder2chcoder/S_Compute_from_Up;%{wire2}%

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

478 H. Kim et al.

signal Ack_chcoder2spcoder/Ack_to_Up;%{wire3}%

signal RDV_chcoder2spcoder/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_chcoder2inleaver/E_Mark_to_Down;%{snk1}%

signal Compute_chcoder2inleaver/E_Compute_to_Down;%{}%

signal Ack_inleaver2chcoder/Ack_From_Down;%{from sink1}%

signal RDV_inleaver2chcoder/snooping%{;

signal ChannelCoder_COMPUTEDSR/ComputedSRange}%];

||

run Interleaver/

P_MOD[signal Interleaver_module/Name;

signal Mark_chcoder2inleaver/S_Mark_from_Up;%{mark2}%

signal Compute_chcoder2inleaver/S_Compute_from_Up;%{wire2}%

signal Ack_inleaver2chcoder/Ack_to_Up;%{wire3}%

signal RDV_inleaver2chcoder/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_inleaver2cipher/E_Mark_to_Down;%{snk1}%

signal Compute_inleaver2cipher/E_Compute_to_Down;%{}%

signal Ack_cipher2inleaver/Ack_From_Down;%{from sink1}%

signal RDV_cipher2inleaver/snooping%{;

signal Interleaver_COMPUTEDSR/ComputedSRange}%];

||

run Cipher/

P_MOD[signal Cipher_module/Name;

signal Mark_inleaver2cipher/S_Mark_from_Up;%{mark2}%

signal Compute_inleaver2cipher/S_Compute_from_Up;%{wire2}%

signal Ack_cipher2inleaver/Ack_to_Up;%{wire3}%

signal RDV_cipher2inleaver/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_cipher2mod/E_Mark_to_Down;%{snk1}%

signal Compute_cipher2mod/E_Compute_to_Down;%{}%

signal Ack_mod2cipher/Ack_From_Down;%{from sink1}%

signal RDV_mod2cipher/snooping%{;

signal Cipher_COMPUTEDSR/ComputedSRange}%];

||

run Modulator/

P_MOD[signal Modulator_module/Name;

signal Mark_cipher2mod/S_Mark_from_Up;%{mark2}%

signal Compute_cipher2mod/S_Compute_from_Up;%{wire2}%

signal Ack_mod2cipher/Ack_to_Up;%{wire3}%

signal RDV_mod2cipher/sig_on;%{wire4}%

signal Ready2Receive/Ready2Receive;

signal Mark_mod2snk/E_Mark_to_Down;%{snk1}%

signal Compute_mod2snk/E_Compute_to_Down;%{}%

signal Ack_snk2mod/Ack_From_Down;%{from sink1}%

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 479

signal RDV_snk2mod/snooping%{;

signal Modulator_COMPUTEDSR/ComputedSRange}%];

||

run UDPSink/

SINK[signal UDPSink_module/Name;

signal Mark_mod2snk/S_Mark_from_Up;%{snk2}%

signal Compute_mod2snk/S_Compute_from_Up;

signal Ack_snk2mod/Ack_to_Up;

signal RDV_snk2mod/sig_on;

signal Ready2Receive/Ready2Receive%{;

signal UDPSink_COMPUTEDSR/ComputedSRange}%];

]

when User_Quit

end signal

end module

Appendix B2: Downlink main C code

#include <stdio.h>

#include <sys/time.h>

#include "GSM_DNLINK.h"

main(int argc,char** argv){

char *addr=(char *)malloc(sizeof(char[16]));

if (argc < 2)

strcpy(addr,"localhost");

else

strcpy(addr,argv[1]);

DNLINK();

DNLINK_I_IP_Addr(addr);

DNLINK();

DNLINK_I_InitRange("0 1600");

while(1)

DNLINK();

}

References

Allan, V. H., Jones, R. B., Lee, R. M. and Allan, S. J. 1995. Software pipeling. ACM

SIGPLAN Not. 27(3), 367–432.

Alpern, B., Demers, A. J. and Schneider, F. B. 1986. Safety without stuttering. Infor. Process.

Lett. 23(4), 177–180.

Alpern, B. and Schneider, F. B. 1985. Defining liveness. Infor. Process. Lett. 21(4), 181–185.

Arditi, L., Boufaieed, H., Hadj-Chaib, M., Clave, G., Bouali, A. and Simone, R. D. 1999.

Using esterel and formal methods to increase the confidence in the functional validation

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

480 H. Kim et al.

of a commercial dsp. 4th Int. Workshop on Formal Methods for Industrial Critical Systems,

Trento, Italy.

Benveniste, A., Borgne, M. L. and Guernic, P. L. 1992. Signal as a model for real-time and

hybrid systems. In 4th European Symposium on Programming, Rennes, France. Vol. LNCS

582. Springer, 20–38.

Benveniste, A., Guernic, P. L. and Jacquemot, C. 1991. Synchronous programming with

events and relations: the signal language and its semantics. Elsevier Sci. Comput. Prog. 16(2),

103–149.

Berry, G. 1989. Real time programming: Special purpose or general purpose languages. IFIP

Congress. North-Holland, San Francisco, 11–17.

Berry, G. 1996. Constructive semantics of esterel: From theory to practice (abstract). 5th Int.

Conf. on Algebraic Methodology and Software Technology, Munich, Germany. Vol. LNCS

1101. Springer, 225.

Berry, G. and team, E. 1999. The Esterel v5.92 System Manual. INRIA, http://www.

esterel.org.

Borgne, M. L., Marchand, H., ric Rutten and Samaan, M. 1996. Formal verification

of signal programs: Application to a power transformer station controller. 5th Int. Conf.

on Algebraic Methodology and Software Technology, Munich, Germany. Vol. LNCS 1101.

Springer, 271–285.

Bose, V. G. 1999. Design and implementation of software radios using a general purpose

processor. PhD thesis, MIT.

Bouali, A. 1998. Xeve: an esterel verification environment. 10th Int. Conf. on Computer Aided

Verification, Vancouver, Canada. Vol. LNCS 1427. Springer, 500–504.

Bryant, R. E. 1986. Graph-based algorithms for boolean function manipulation. IEEE Trans.

Comput. C-35(8), 677–691.

Burch, J. R., Clarke, E. M., McMillan, K. K., Dill, D. L. and Hwang, J. 1990. Symbolic

model checking: 1020 states and beyond. 4th Symposium on Logic in Computer Science.

Marseille, France, 428–439.

Clarke, E. M., Emerson, E. A. and McMillan, K. L. 1986. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM Trans. Prog. Lang.

Syst. 8(2), 244–263.

Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D. and Yovine, S. 2001.

Taxys: a tool for developing and verifying real-time properties of embedded systems.

13th Int. Conf. on Computer Aided Verification, Paris, France. Vol. LNCS 2102. Springer,

391–395.

Halbwachs, N., Lagnier, F. and Ratel, C. 1992. Programming and verifying real-time

systems by means of the synchronous data-flow programming language lustre. IEEE Trans.

Softw. Eng. 18(9), 785–793.

Halbwachs, N., Lagnier, F. and Raymond, P. 1993. Synchronous observers and the

verification of reactive systems. 3rd Int. Conf. on Algebraic Methodology and Software

Technology. Springer-Verlag, 83–96.

Halbwachs, N., Proy, Y. and Roumanoff, P. 1997. Verification of real-time systems using

linear relation analysis. Kluwer For. Meth. Sys. Des. 11(2), 157–185.

Halbwachs, N. and Raymond, P. 1999. Validation of synchronous reactive systems: from

formal verification to automatic testing. 5th Advances in Computing Science Conf., Phuket,

Thailand. Vol. LNCS 1742. Springer, 1–12.

Harel, D. 1987. Statecharts: a visual formalism for complex systems. Elsevier Sci. Comput.

Prog. 8(3), 231–274.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

EPspectra: a formal toolkit for developing DSP software applications 481

Jeannet, B., Halbwachs, N. and Raymond, P. 1999. Dynamic partitioning in analyses

of numerical properties. 6th Static Analysis Symposium, Venice, Italy. Vol. LNCS 1694.

Springer, 39–50.

Jensen, E. D. 1997. Eliminating the hard/soft real-time dichotomy. Comput. and Cont.

Eng. 8(1), 15–19.

Johnsson, T. 2004. Efficient compilation of lazy evaluation. ACM SIGPLAN Not. 39(4),

125–138.

Lorenz, D. 1998. Digital cellular telecommunications system (phase 2) (gsm); full rate speech;

part 2: Transcoding (gsm 06.10 version 4.1.1).

Mouly, M. and Pautet, M. B. 1993. The GSM System for Mobile Communications. ISBN

2-9507190-07. Telecom Publishing.

Murota, K. and Hirade, K. 1981. Gmsk modulation for digital radio telephony. IEEE Trans.

Commun. com-29(7), 1044–1050.

Raymond, P., Weber, D., Nicollin, X. and Halbwachs, N. 1998. Automatic testing of

reactive systems. 19th Real-Time Systems Symposium. Madrid, Spain. IEEE, 200–209.

Sentovich, E. M., Singh, K. J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H.,

Stephan, P. R., Brayton, R. K. et al. 1992. Sequential circuit design using synthesis and

optimization. 2th Int. Conf. on Computer Aided Design. Berlin, Germany. IEEE, 328–333.

Sentovich, E. M., Toma, H. and Berry, G. 1996. Latch optimization in circuits generated from

high-level descriptions. 6th Int. Conf. on Computer Aided Design. Kaiserslautern, Germany.

IEEE, 428–435.

Simone, R. D. and Ressouche, A. 1994. Compositional semantics of esterel and verification

by compositional reductions. 5th Int. Conf. on Computer Aided Verification. Vol. LNCS 818.

Springer, 441–454.

Vasconcellos, B. W. 2000. Parallel signal-processing for everyone. MS thesis, MIT.

https://doi.org/10.1017/S1471068405002565 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068405002565

