
J. Fluid Mech. (2022), vol. 946, A26, doi:10.1017/jfm.2022.559

Turbulent planar wakes of viscoelastic fluids
analysed by direct numerical simulations

Mateus C. Guimarães1, Fernando T. Pinho2,3 and Carlos B. da Silva1,†
1IDMEC/LAETA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
2CEFT, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
3ALiCE, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal

(Received 3 November 2021; revised 18 April 2022; accepted 21 June 2022)

Direct numerical simulations employing the finitely extensible nonlinear elastic
constitutive model closed with Peterlin’s approximation (FENE-P) are used to investigate
the far-field region of turbulent planar wakes of viscoelastic fluids and to develop the
theory describing these flows. The theoretical results display excellent agreement with
the simulations and provide new scaling laws for the evolution of the shear layer thickness
δ(x) ∼ x1/2, mean velocity deficit ΔU(x) ∼ x−1/2 and, for very high Deborah numbers, of
the maximum polymer shear stresses σ [p]

c (x) ∼ x−2 and averaged polymer chain extension
tr(C̄(x)− I) ∼ x−2, where x is the streamwise distance from the solid body generating the
wake. The theory is able to show the existence of self-similarity for the profiles of mean
velocity, mean polymer shear stress, averaged polymer chain extension and the conditions
for similarity of the turbulent shear stress, and is very well supported by the numerical
simulations. Similarly to the case of viscoelastic turbulent planar jets (Guimarães et al.,
J. Fluid Mech., vol. 899, 2020, p. A11), when the inlet Weissenberg and Deborah numbers
are sufficiently large, turbulent viscoelastic wakes exhibit a considerable reduction of
the spreading rate and of the normalised Reynolds stresses. However, for very large
downstream locations the turbulent viscoelastic wake recovers the classical evolution laws
observed for Newtonian turbulent planar wakes.

Key words: viscoelasticity, turbulence simulation

1. Introduction

The wake of a solid body immersed in a constant free stream velocity field is a classical
problem in fluid mechanics that has attracted the attention of engineers and scientists
for many years. For Newtonian fluids the far field region of the wake is of particular
interest since it admits the existence of self-similar solutions to the equations of motion,
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and because it provides a characteristic signature of the body which ‘remains’ in the
fluid after it has passed through it. For turbulent flows the latter issue is related to the
non-universal character of the large-scale eddies, which has been difficult to model;
nevertheless the theory of the far-field fully developed turbulent region of turbulent wakes
for Newtonian fluids has been established quite some time ago (Schlichting 1930; Tennekes
& Lumley 1972; Townsend 1976; Pope 2000). The situation is very different, however,
when one considers the far-field region of turbulent wakes with viscoelastic fluids, such as
those obtained when a Newtonian solvent carries a small amount of long chain polymer
molecules, and presently no theory exists to describe the evolution of these flows.

The majority of the existing numerical and experimental works addressing wakes from
bluff bodies with viscoelastic fluids have investigated the instability characteristics of
the flow, and a relatively large range of Reynolds numbers has been covered (Gadd
1966; Sarpkaya, Raineyt & Kell 1973; Kato & Mizuno 1983; Cadot & Kumar 2000;
Cressman, Bailey & Goldburg 2001; Coelho & Pinho 2003a,b, 2004; Richter, Iaccarino &
Shaqfeh 2012; Xiong, Bruneau & Kellay 2013). Specifically, these works have addressed:
(i) the influence of the fluid elasticity on the vortex shedding frequency; (ii) the base
pressure in the solid body; (iii) the drag coefficient; (iv) the formation length of the wake;
(v) the emerging vortex structures; and (vi) the critical Reynolds numbers demarcating
the transition between different shedding regimes, as described by Williamson (1996)
for Newtonian fluids. Non-monotone variations of these quantities with the rheological
parameters of the fluid have been found, and different behaviours have been observed
depending on the vortex shedding regime. Another feature which seems to be characteristic
of wakes from viscoelastic fluids, and that has been observed in the majority of these
studies, is the stabilising effect of the viscoelasticity of the fluid on the flow structures,
and the concomitant depletion of small-scale vorticity. Similar effects have been observed
also (for viscoelastic fluids) in turbulent jets (Guimarães et al. 2020), turbulent channel
and pipe flows (Kim et al. 2007; Horiuti, Matsumoto & Fujiwara 2013) and isotropic
turbulence (Perlekar, Mitra & Pandit 2010; Ferreira, da Silva & Pinho 2016).

Until now only a relatively few works investigated the far-field turbulent wake region
from bluff bodies with viscoelastic fluids. Pokryvailo et al. (1973) showed, using laser
Doppler anemometer measurements, that the decay rate of the velocity defect in the near
field region of the flow behind disks and spheres, is smaller for viscoelastic fluids than
in the classical (Newtonian) case. Using pictures obtained with tracers, Borisov et al.
(1990) observed a decrease in all the components of turbulent velocity fluctuations for
viscoelastic fluids compared with the reference (Newtonian) case, which amounts to a
factor of two in the wake behind a falling ellipsoid, and by a factor of 30 % for the
wake behind a falling cup. However, the shape of the normalised mean velocity profiles
was found to be unaffected by the presence of polymers. Pinho & Whitelaw (1991) also
observed considerably smaller values of turbulent velocity fluctuations in the wake region
close to a confined baffle for polymer solutions compared with the Newtonian case, when
the concentration of polymers in the solution was increased above a given threshold.
Finally, Cressman et al. (2001) investigated two-dimensional (2-D) cylinder wakes using
laser Doppler anemometer and observed a dramatic decrease of the transverse velocity
fluctuations for the viscoelastic case, compared with the Newtonian reference case, when
the molecular weight of the polymer additive within the Newtonian solvent is sufficiently
large.

In the present work we perform several direct numerical simulations (DNS) of spatially
evolving turbulent planar wakes with dilute polymer solutions, described by the finitely
extensible nonlinear elastic constitutive equation closed with the Peterlin approximation
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(FENE-P), in order to develop a theory for the far-field fully developed turbulent region
of the flow. The new theory draws from theoretical models originally developed for
viscoelastic turbulent planar jets as described in Guimarães et al. (2020), however,
the present planar wake simulations have a substantially larger computational domain,
extending up to 84 times the initial body length in the streamwise direction, compared with
18 times the inlet slot-width used in the DNS of turbulent viscoelastic jets in Guimarães
et al. (2020), and to 27 times the inlet slot-width discussed in the additional case presented
at the Appendix of that paper. This allows one to clearly observe for the first time the
recovery of the Newtonian evolution laws in the distant far-field region of the wake, where
the local Deborah and Weissenberg numbers have decayed considerably, as anticipated
by Guimarães et al. (2020) for the case of the turbulent viscoelastic jet. This occurs
because, as in the case of the turbulent jet, the local Deborah and Weissenberg numbers
are decreasing functions of the distance x, and the observed viscoelastic effects cease
for very large streamwise distances x. For this reason the turbulent far-field region of
the viscoelastic wake has to be divided into two regions: (i) a far-field region where
viscoelastic effects are present; and (ii) a distant far-field region where viscoelastic effects
vanish.

This paper is organised as follows. In § 2 we present the governing equations, numerical
methods and the physical and computational parameters used in the DNS of viscoelastic
turbulent planar wakes carried out in the present work. Section 3 describes the main
flow features of turbulent viscoelastic wakes, focusing in the far-field region and using a
reference Newtonian DNS and the theory of classical (Newtonian) turbulent planar wakes.
In § 4 a theory describing the far field of turbulent viscoelastic wakes is proposed and
assessed using the new DNS data. Section 5 concludes the work with an overview of the
main results and conclusions.

2. Direct numerical simulations of turbulent viscoelastic wakes

This section describes the governing equations, numerical methods and the physical and
computational parameters of all the simulations carried out in the present work.

2.1. The FENE-P fluid equations
To characterise the rheology of dilute polymer solutions we use the FENE-P model
proposed by Bird, Dotson & Johnson (1980). The momentum equation is given by

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν[s]∇2u + 1
ρ

∇ · σ [p], (2.1)

where u is the velocity field, ρ the solvent density, p the pressure, ν[s] the (Newtonian)
solvent kinematic viscosity and σ [p] is the polymer stress tensor, which is calculated as

𝞼[p] = ρν[p]

τp
[ f (Ckk)C − I], (2.2)

where ν[p] is the zero-shear-rate kinematic viscosity of the solution, τp is the maximum
relaxation time of the polymer chains, I is the identity matrix, f (Ckk) ≡ (L2 − 3)/(L2 −
Ckk) is the Peterlin function and C is the conformation tensor. The model parameter L2

is the square of the maximum extensibility of the polymer molecules normalised by their
equilibrium radius 〈R2〉0 (the brackets denote an ensemble average over all configurations
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of the chain) and the conformation tensor is by definition the normalised covariance matrix
of the polymer chain end-to-end vector r, i.e. C ≡ 〈r′r′〉/〈R2〉0. The conformation tensor
C is governed by the following evolution equation:

∂C

∂t
+ u · ∇C = ∇uT · C + C · ∇u − 1

τp
[ f (Ckk)C − I], (2.3)

where the first two terms on the right-hand side of (2.3) represent the elongation of the
polymer chains caused by the velocity gradients (polymer stretching/distortion term) and
the last term represents the potential elastic energy stored in the polymers (relaxation
term). Finally, the fluid incompressibility condition is imposed by the continuity equation

∇ · u = 0, (2.4)

which closes the set of equations to be solved in the numerical simulations.

2.2. Numerical methods
In the present work the momentum equation is solved with a highly accurate code
using pseudospectral/‘compact’ finite difference schemes, that has been used in several
previous works (see da Silva, Lopes & Raman (2015), Guimarães et al. (2020) and
references therein). The streamwise (x) derivatives are computed with a sixth-order
‘compact’ scheme (Lele 1992) while the derivatives in the normal (y) and spanwise
(z) directions are computed using pseudospectral methods (Canuto et al. 1987), where
dealiasing is performed with the 2/3rd rule. Temporal advancement is computed with an
explicit third-order low storage Runge–Kutta time-stepping scheme (Williamson 1980) and
pressure–velocity coupling is ensured by a fractional step method (Kim & Moin 1985).

Inflow and outflow boundary conditions are imposed in the boundaries facing the
streamwise direction, with a prescribed inlet mean velocity profile superimposed to a
random velocity fluctuation with an energy spectrum characteristic of isotropic turbulence,
and non-reflective outflow boundary conditions at the outlet boundary (Orlanski 1976).

The stretching term in the evolution equation of the conformation tensor field
is calculated with central second-order finite differences, and the convection term
is calculated with the shock-capturing scheme of Kurganov & Tadmor (2000). Cell
area-averaged velocities are obtained as in Guimarães et al. (2020), while time
advancement is performed with the same third-order explicit Runge–Kutta scheme used
for the velocity update and no use is made of any artificial numerical diffusion. As in
Guimarães et al. (2020), we monitored the values of the conformation tensor field for
all points of the computational grid and checked that the symmetric positive-definiteness
character of C was maintained for all time iterations, as well as the six conditions imposed

by the Cauchy–Schwartz inequality, e.g. −
√

|C±
11C±

22| ≤ C±
12 ≤

√
|C±

11C±
22|.

In the present work we use the same numerical code employed in Guimarães et al.
(2020) with a slight modification, for reasons of computational cost. In Guimarães et al.
(2020) the method of Vaithianathan et al. (2006) is used to calculate the convection term
of the conformation tensor equation, which can yield first- or second-order accuracy to
the approximation of u · ∇C, depending on which option maximises some eigenvalues
of C (see Guimarães et al. (2020) for details). This method is based on the work of
Kurganov & Tadmor (2000) and it is designed to reduce the order of the approximation
used in the computation of the convection term of the conformation tensor equation into
first order, only at locations where shocks (discontinuities) arise in the conformation
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Wi τp Reλ Aδ AΔU Aσc Acii Δx/η42d

0 0 100 0.107 0.37 (NA) (NA) 2.8
1.1 0.8 240 0.150 0.51 (NA) (NA) 2.3
2.1 1.6 259 0.021 0.10 5.10 3.50 1.5
3.2 2.4 263 0.019 0.11 4.90 3.30 1.0
4.3 3.2 248 0.026 0.12 4.40 2.85 0.8

Table 1. Physical and computational parameters of the DNS of viscoelastic turbulent planar wakes: global/inlet
Weissenberg number (Wi = τpΔU0/d); polymer relaxation time (τp); Taylor-based Reynolds number at the
far-field region (Reλ); spreading rate constant Aδ ; centreline velocity deficit decay rate AΔU ; polymer stresses
decay constant Aσc ; polymer extension decay constant Acii ; grid spacing normalised by the Kolmogorov
microscale at the middle of the computational domain (y/d = 0 and x/d = Lx/2d = 42) (Δx/η42d).

tensor field. The full version of the method requires the calculation of the eigenvalues of
54 × Nx × Ny × Nz three by three matrices at each Runge–Kutta time iteration, a number
of order O(1010) for the computational meshes used in the present study. Unlike as in
Guimarães et al. (2020), in the present work the computation of the eigenvalues has been
abandoned in order to reduce the computational costs, so that the approximation used in
the computation of the convection term of the conformation tensor equation was fixed into
first order. This leads to a speed-up of a factor of four in the present code and allows one to
use extremely large domain sizes. Despite the lower order of this approximation compared
with Guimarães et al. (2020), the computational meshes used in the present study remain
considerably fine, of the order of one Kolmogorov microscale for all the viscoelastic cases
at large Wi (Δx/η ≈ 1, see table 1) and thus the simplification has no impact on the
conclusions of the work. This is shown in Appendix B, where one of the simulations used
in the main text of the present work is repeated with the full second-order version of the
method of Vaithianathan et al. (2006). Whereas the wake half-width and velocity deficit
are virtually unchanged by the choice of the numerical method, the Reynolds stresses are
slightly underestimated with the first-order method and the biggest (i, j = 1, 1) component
of the conformation tensor shows the largest differences at the transition region of the
flow, but follows the same qualitative trends everywhere else, i.e. in the fully developed
turbulence region.

2.3. Physical and computational parameters of the simulations
Table 1 lists the physical and computational parameters used in the simulations carried
out in this work (viscoelastic numbers are defined later on). A total of five DNS were
performed: four viscoelastic cases and one reference Newtonian case. The same uniform
grid and computational domain sizes were used for all DNS, with Nx = 4032, Ny = 1152
and Nz = 288 grid points in the streamwise (x), normal (y) and spanwise (z) directions,
respectively, for a corresponding domain size of Lx/d = 84, Ly/d = 24 and Lz/d = 6,
where d is the transverse length scale of the wake generator object. The results discussed
in Appendix A confirm that the normal dimension of Ly/d = 24 used here is sufficiently
large to avoid undesirable confinement effects. To date the present DNS correspond to the
largest simulations of turbulent viscoelastic FENE-P fluids in existence.

The Reynolds number based on the centreline velocity deficit at the inlet ΔU0 was fixed
at ReΔU = ΔU0d/ν[s] = 5000, for all the simulations, which corresponds to a Reynolds
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number based on the free stream velocity U∞,

Re = U∞d
ν[s] , (2.5)

approximately equal to Re ≈ 14 286, which is a definition more commonly used in studies
of turbulent wakes originated at solid bodies. We define also a local Reynolds number
based on the Taylor microscale λ,

Reλ =
√

u′2λ
ν[s] , (2.6)

where
√

u′2 is the root mean square (r.m.s.) velocity in the streamwise direction and the
Taylor microscale λ is calculated using the classical isotropic relation,

λ =
√

15ν[s]u′2

ε[s] , (2.7)

with the mean viscous dissipation rate of the solvent given by

ε[s] = 2ν[s]S′
ijS

′
ij, (2.8)

where S′
ij = (∂u′

i/∂xj + ∂u′
j/∂xi)/2 is the fluctuating component of the rate-of-strain

tensor. For the Newtonian (reference) simulation, the centreline Reλ approaches a constant
value of Reλ ≈ 100 at the far field, which is approximately two times larger than in a
recent experimental study on the self-similar character of cylinder wakes (Tang et al.
2016). The mesh resolution is quantified by the ratio between the grid spacing Δx and the
Kolmogorov microscale η = (ν[s]3

/ε[s])1/4. The values of Δx/η shown on table 1 were
evaluated in the middle of the computational domain, i.e. at the centreline (y/d = 0) and
at x/d = Lx/2d = 42.

For each time step the streamwise velocity u(x, y, z, t) is prescribed at the inlet as the
sum of a mean profile given by

ū(x = 0, y) = U∞ − ΔU0

2

{
1 + tanh

[
d

4Φ

(
1 − 2|y|

d

)]}
, (2.9)

and a fluctuating component u′(x, y, z, t), which is obtained from a pseudorandom number
generator with the resulting fluctuating velocity exhibiting an energy spectrum E(k)
characteristic of isotropic turbulence, with an infrared region following a Batchelor
spectrum, E(k) ∼ k4 (k is the wavenumber vector in the x, z inlet plane) and a prescribed
peak wavenumber kp placed at the small scales of motion. This is done so that no relation
with the ‘natural’ Kelvin–Helmholtz frequencies of the shear layer exists (Michalke 1965;
Monkewitz & Huerre 1982), which allows the momentum equations to ‘naturally select’
the natural instabilities of the flow. The initial inlet artificial noise is then ‘convoluted’ by a
step function that prescribes it in the shear-layer region of the mean velocity profile (100 %
of the generated fluctuations) and at the centre of the wake (25 % of the fluctuations).
Before being imposed to the inlet velocity fluctuations, the instantaneous values of
u′(x, y, z, t) artificially generated are normalised to limit their maximum amplitude to
max|u′| = 0.15U∞. The entire procedure is very similar to the one described in detail
in for example da Silva & Métais (2002), and has no influence in the natural evolution of
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initial instabilities of the flow. The free stream velocity U∞ and the inlet mean velocity
deficit ΔU0 were set to U∞ = 1 and ΔU0 = 0.35U∞, respectively, where the latter is
close to the value obtained in the experiments of Liu, Thomas & Nelson (2002). The
parameter d/Φ in (2.9) dictates the value of the maximum mean velocity gradient at the
inlet and it was fixed at d/Φ = 85, giving dū/dy ∼ 21.25ΔU0/d at the shear layer region
of the profile. The normal and spanwise velocity components, v(x, y, z, t) and w(x, y, z, t),
are treated similarly but have zero mean values, e.g. v(x, y, z, t) = v′(x, y, z, t).

The inlet condition described above is similar to those used in Stanley & Sarkar (1997)
and da Silva et al. (2015) for simulations of turbulent jets and mixing layers and Hickey,
Hussain & Wu (2013) and Zecchetto & da Silva (2021) for simulations of temporal
wakes, but was adapted to the case of a spatially evolving turbulent wake. This method
for simulating turbulent wakes with an imposed inlet velocity profile, instead of actually
calculating the flow around the solid object, was probably used for the first time by Moser,
Rogers & Ewing (1998) and has been shown to be a useful technique for studying the
far-field regions of the flow with an acceptable computational cost.

In the literature of Newtonian turbulent wakes, the distance x from the wake generator
object is usually normalised either by the object transverse length scale d or by the inlet
momentum thickness θ(x = 0), where θ is defined by

θ =
∫ ∞

−∞
ū

U∞

(
1 − ū

U∞

)
dy, (2.10)

which is constant in the far field of a turbulent planar wake with a small velocity deficit.
To simplify the notation, we use θ = θ(x = 0) so when reference is made to θ only the
inlet value is being considered. We have reprocessed the data for turbulent planar wakes
of Newtonian fluids from several works (Pot 1979; Ramaprian 1984; Browne & Antonia
1986; Wygnanski, Champagne & Marasli 1986; Weygandt & Mehta 1989; Aronson &
Löfdahl 1993; Liu et al. 2002; Tang et al. 2016), as obtained behind solid objects with a
variety of different geometries including splitter plates, circular cylinders, airfoils, solid
strips and screens, and concluded that the scaling laws coefficients associated with the
spreading rate of the wake Aδ and centreline velocity deficit decay rate AΔU (see (3.1) and
(3.2) below) cannot be made universal by either normalisation options, i.e. using either d
or θ . However, when d is used instead of θ , the scatter in the values of these constants
is considerably larger. This is particularly true for AΔU , which varies between 0.137 ≤
AΔU ≤ 2.91 when d is used as the normalisation parameter, and between 0.225 ≤ AΔU ≤
0.411 when θ is used instead. For this reason, and following Wygnanski et al. (1986), we
display our DNS results in coordinates of x/θ instead of x/d. The conversion between the
two systems can be easily obtained for our data considering that the value of d/θ for all
the simulations carried out in this work is d/θ = 4.34, for example the total extent of the
domain in the streamwise direction is equal to Lx/θ = Lx/d × d/θ = 84 × 4.34 ≈ 365 in
all the simulations carried out in the present work.

For rheological parameters of the FENE-P model we use L2 = 1002 and β =
ν[s]/(ν[s] + ν[p]) = 0.8 in all the DNS carried out here, while τp is varied in order to
simulate flows with different values of the global (or inlet) Weissenberg number Wi, which
is defined by

Wi = τp

d/ΔU0
. (2.11)

Notice that a definition of Wi based on the actual mean velocity gradient, instead of the
velocity difference, would give values of Wi that are 21.25 times larger than those shown
in table 1. We also define a local Weissenberg number Wiη(x) based on the ratio of the
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maximum relaxation time of the polymer molecules and the Kolmogorov time scale τη =
(ν[s]/ε[s])1/2, which is computed at the centreline, i.e.

Wiη(x) = τp

τη
, (2.12)

and a local Deborah number De(x), which measures the influence of the fluid elasticity on
the large scale energy-carrying eddies, here defined by

De(x) = τp

δ(x)/ΔU(x)
, (2.13)

where δ(x) is the half-width of the wake, defined in the classical way, i.e. Δū(x, y = δ) =
ΔU(x)/2, where Δū(x, y) = U∞ − ū(x, y) is the mean velocity deficit, while ΔU(x) =
Δū(x, y = 0) is the local velocity deficit at the centreline. Notice that (2.13) contains
the centreline velocity deficit instead of the mean velocity (as in the case of jets, e.g.
Guimarães et al. (2020)) because the Deborah number definition is based on a flow time
scale obtained from the mean velocity gradient, whose estimate is given by ∂ ū/∂y ∼
ΔU/δ. Also, notice that because the flow half-width at the inlet is δ(x = 0) ≈ d/2 we
obtain De(x = 0) ≈ 2Wi at this location, as confirmed below in § 3.2.

Finally, as in Ferreira et al. (2016), we define a solvent dissipation reduction parameter
(SDR) evaluated at the centreline of the turbulent viscoelastic wake by

SDR(x) = ε[p]

ε[p] + ε[s] , (2.14)

where ε[p] = σ ′[p] : ∇u′/ρ is the viscoelastic stress power and represents the flux of
kinetic energy transported from the eddy motions into the fluid microstructure (and vice
versa).

2.4. Validation
As described in Guimarães et al. (2020) and references therein, the present code has
been used in several previous works where it has been thoroughly validated. In particular
the work leading to that paper involved extensive validations in both laminar and
turbulent jet configurations, using both Newtonian and viscoelastic (FENE-P) fluids. The
solutions of the laminar cases were compared with the semianalytical solutions of the
laminar viscoelastic jet recently derived by Parvar, da Silva & Pinho (2020), while the
turbulent solutions were extensively compared with statistics obtained in experimental
and numerical results available in the literature. A similar approach has been used here
for the reference turbulent Newtonian planar wake. Part of the extensive comparison is
described in Appendix A in which the present results are compared with the experimental
and numerical data from Townsend (1949), Uberoi & Freymuth (1969), Narasimha &
Prabhu (1972), Browne & Antonia (1986), Wygnanski et al. (1986), Weygandt & Mehta
(1989), Aronson & Löfdahl (1993), Zhou & Antonia (1995), Moser, Kim & Mansour
(1999), Schenck & Jovanovic (2002), Hickey et al. (2013) and Tang et al. (2016). The
influence of the lateral (Ly) size of the computational domain was also investigated (see
Appendix A) and showed that no undesired confinement effects exist in the very large
simulations used here.
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Figure 1. Contours of vorticity magnitude in the midplane (z = 0) of the computational domain for turbulent
planar wakes of viscoelastic fluids with different values of the Weissenberg number Wi = 1.1, 2.1 and 3.2,
together with the reference (Newtonian) case (Wi = 0). Each simulation contains the entire domain (with 0 ≤
Lx/d ≤ 84), however, different values of the vorticity magnitude threshold had to be used for each simulation
in order to allow the visualisation of the flow in the entire computational domain (every subdomain using the
same threshold is delimited by a vertical line). The figures do not show the total extent of the computational
domain used in the lateral (y) dimension.

3. Characteristics of turbulent planar wakes of viscoelastic fluids

In this section we analyse the results obtained from the present DNS of turbulent
viscoelastic planar wakes. We start the analysis describing the flow structure before
moving into the turbulent wake statistics. In this process the Newtonian (Wi = 0) planar
wake described in table 1 is used as reference.

3.1. Contours of instantaneous vorticity magnitude
Figure 1 shows contours of instantaneous vorticity magnitude |ω| for the DNS listed
in table 1 with Weissenberg numbers equal to Wi = 1.1, 2.1 and 3.2, together with the
reference (Newtonian) case (Wi = 0). Because the values of |ω| decay in the streamwise
direction x, different colormap ranges were used at different regions of the computational
domain in order to properly visualise the flow. Furthermore, since |ω| considerably decays
when Wi is increased, the colormaps range is also different for the different Weissenberg
number cases. For example, the maximum |ω| shown for the Newtonian case at the far
field is |ω| = 10, while we have set |ω| = 4 for Wi = 3.2. The case with Wi = 4.3 is very
similar to that with Wi = 3.2 (not shown).

For the Newtonian wake (Wi = 0 – figure 1a), Kelvin–Helmholtz instabilities arising in
the upper and lower shear layers lead to the appearance of two rows of spanwise vortex
rollers rotating in opposite directions – quasi-2-D Kármán vortices – and the formation of
streamwise large vortex pairs due to the deformation of the primary vortices (4 � x/d �
12). Farther downstream, the flow structures are distorted by small-scale instabilities and
by x/d � 25 (or x/θ � 100) the flow becomes highly disorganised and with a broad range
of eddy scales, characteristic of fully developed turbulence.

The results from the viscoelastic simulations are considerably different from the
Newtonian case (figure 1b–d). Increasing the value of Wi has a stabilising effect on the
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Figure 2. Streamwise evolution of the (a) squared shear layer thickness δ(x)2 normalised by the inlet
momentum thickness θ and (b) centreline velocity defect ΔU(x) normalised by the free stream velocity U∞, for
the DNS of viscoelastic turbulent planar wakes with Weissenberg numbers equal to Wi = 1.1, 2.1, 3.2 and 4.3
(Wi = 0 is the reference Newtonian simulation). The solid lines indicate straight line fits to the cases Wi = 0
(Newtonian) and Wi = 4.3.

flow structures; the roll-up process of the shear layers appears to be delayed and there is a
significant suppression of the small-scale vorticity, consistent with results obtained from
earlier experiments (Cadot & Kumar 2000; Cressman et al. 2001), numerical simulations
(Richter et al. 2012) and linear stability analyses (Azaiez & Homsy 1994; Richter, Shaqfeh
& Iaccarino 2011). In particular, the vortex sheet structure for Wi = 2.1 at 10 � x/d � 50
(or 50 � x/θ � 200) is very similar to the structure observed in the soap film experiment
of Xiong et al. (2013) with the highest polymer concentration, and for x/d � 60 (or x/θ �
250) the roll-up of these vortex sheets leads to a structure which resembles the Newtonian
case, but without much small-scale vorticity. Consistent with this, the next section shows
that for Wi = 2.1 the statistical quantities mainly associated with the large-scale structures,
such as the first and second moments of the velocity field, are greatly modified by the
presence of the polymers at 10 � x/d � 50 but seem to recover a Newtonian appearance
at x/d � 60.

3.2. Classical statistics
Figure 2(a,b) shows the streamwise evolution of the normalised shear layer thickness δ(x)
and centreline velocity deficit ΔU(x) for the DNS of viscoelastic planar wakes with Wi =
1.1, 2.1, 3.2 and 4.3. The reference Newtonian solution (Wi = 0) is also shown. In all cases
the shear layer thickness follows a power law given by[

δ(x)
θ

]2

= Aδ

(
x − x0

θ

)
, (3.1)

where Aδ is the spreading rate constant and x0 is the virtual origin of the wakes.
This is observed only after a given initial distance from the wake origin, which is
approximately x/θ � 60 for the Newtonian wake, and which increases up to x/θ � 100
for the viscoelastic case with the larger Wi. It is well known that Newtonian turbulent
planar wakes follow this power law, which is consistent with the existence of a fully
developed self-similar regime (see the discussion below in § 4), however, this power
law has rarely been observed in turbulent wakes of viscoelastic fluids. The value of the
spreading rate Aδ for all the simulations is displayed on table 1. It is clear that for Wi ≥ 2.1
the presence of the polymers substantially decreases the value of Aδ: we obtain Aδ = 0.107
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for the reference Newtonian turbulent wake, which is very close to the experimental
value of Aδ = 0.102 from Wygnanski et al. (1986) for the wake behind an airfoil, while
Aδ is considerably smaller for Wi ≥ 2.1, reaching a value as low as Aδ = 0.026 for the
viscoelastic case with the highest Weissenberg number, Wi = 4.3. The strong attenuation
of the spreading rates of turbulent viscoelastic wakes is consistent with the decrease of
the turbulent entrainment flow rate across the turbulent/non-turbulent interface recently
investigated in Abreu et al. (2022).

Interestingly, the initially strong reduction of the spreading rate observed for the
viscoelastic cases is, however, ‘temporary’ since very far from the inlet a Newtonian
behaviour is recovered, i.e. in the far field of fully developed turbulent viscoelastic wakes
with large Wi two different regions with power law δ(x) ∼ x1/2 and different Aδ , can be
identified. An initial region where the spreading rate constant Aδ is substantially reduced
when compared with the reference Newtonian case, followed by a second region where
the Newtonian spreading rate is recovered. Moreover, the Weissenberg number strongly
influences not only the (reduced) value of Aδ in the initial region, as well as its spatial
extent. This can be appreciated by comparing the cases with Wi = 2.1 and Wi = 4.3,
where one can see that the extent of the (initial) region with a strong spreading rate
reduction increases with the inlet Weissenberg number (see the discussion in Appendix C).
While the simulation with Wi = 2.1 shows a clear reversal back into the Newtonian value
of Aδ ≈ 0.11 at the far field, the computational domain used for Wi = 4.3 is still not
long enough to reach a definite conclusion for that particular case. A straight line fit to
δ2(x) at x/θ � 270 gives Aδ = 0.08, suggesting that a similar (Newtonian recovery) effect
will be observed farther downstream. The case with Wi = 1.1 displays relatively small
viscoelastic effects, however, it seems to display an incipient increased spreading rate
region at 100 � x/θ � 180, but this region is quickly followed by a region (for x/θ � 200)
where the spreading rate is equal to the Newtonian value Aδ ≈ 0.1. This situation is similar
to that of viscoelastic turbulent jets for low Weissenberg numbers (Guimarães et al. 2020).

The streamwise evolution of the centreline velocity deficit, ΔU(x), is consistent with
the results for δ(x) discussed above, and shows that in all cases (after a given distance x),
again the usual scaling law observed for turbulent Newtonian planar wakes is observed,
i.e. [

ΔU(x)
U∞

]−2

= AΔU

(
x − x0

θ

)
, (3.2)

where AΔU is the velocity deficit decay rate, whose values are listed in table 1. For the
Newtonian wake simulation we obtain AΔU = 0.374, which is in very good agreement
with the value of AΔU = 0.365 measured by Weygandt & Mehta (1989) for a splitter plate,
and with the values AΔU = 0.411 and AΔU = 0.359 obtained for an airfoil and a solid
screen with 70 % solidity, respectively, measured by Wygnanski et al. (1986). Consistent
with the results discussed for δ(x), initially there is a drastic reduction of the velocity deficit
decay rate when Wi ≥ 2.1 (AΔU = 0.124 for Wi = 4.3) but a Newtonian behaviour seems
to be recovered very far from the wake generator object. As before, increasing the value
of the inlet Weissenberg number Wi increases the extent of the initial region with strong
viscoelastic effects and strong reduction of AΔU . The case with Wi = 1.1 shows a small
initial increase of AΔU but it later returns to the Newtonian value very far downstream,
evidencing the existence of small viscoelastic effects for this case.

The decay of strong viscoelastic effects at the very far regions of viscoelastic wakes
can be explained by analysing the streamwise evolution of the local Deborah number
De(x), which is shown in figure 3(a). The initially large values of De(x) rapidly decay
and at the end of the computational domain are approximately one order of magnitude
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Figure 3. Streamwise evolution of the (a) local Deborah number De(x) = τpΔU/δ, (b) solvent dissipation
reduction SDR and (c) local Weissenberg number Wiη = τp/τη (computed at the centreline) for all the
viscoelastic wake simulations carried in the present work.

smaller than their maximum value (for each case). It is thus not surprising that statistical
quantities characteristic of the large scales such as δ(x) and ΔU(x) will be less affected by
the polymers at very large distances downstream.

Figure 3(b,c) shows the streamwise evolution of the solvent dissipation reduction
SDR(x) and local Weissenberg number Wiη, respectively, both evaluated at the centreline
of the wakes. The SDR initially increases and attains a maximum at x/θ ≈ 50–100,
depending on the value of the inlet Weissenberg number Wi, and starts to decay farther
downstream with a decay rate which is smaller as the value of Wi is increased. The
case with Wi = 4.3 shows SDR > 0.8 throughout all the computational domain, which
implies that in this case the majority of the turbulent kinetic energy is dissipated by
interactions between the polymers and velocity gradients, and not by molecular viscosity
effects. Even the simulation with Wi = 2.1 shows an initially very high SDR ≈ 0.8 at
50 � x/θ � 100 that decays to SDR ≈ 0.6 for x/θ � 200. This important observation is
used in the development of the theory exposed in § 4, which rests on the assumptions
that for flows with large Wi, the viscous dissipation of turbulent kinetic energy plays
only a minor role on the dynamics of the turbulent kinetic energy. A similar assumption
was used in Guimarães et al. (2020) to develop the theory for viscoelastic turbulent
planar jets.

Finally, it is noteworthy that for Wi ≥ 3.2, the local Weissenberg number Wiη is also
considerably larger at x/θ � 90 than farther downstream and for most of the simulations
we have Wiη > 3 at these initial regions. In particular, for Wi = 3.2 and Wi = 4.3 the
maximum values of Wiη are Wiη ≈ 6 and Wiη ≈ 9, respectively, which is already above
the range of values of Wiη ∼ 3–5 where the coil-stretch transition occurs, as suggested
by Watanabe & Gotoh (2010), and where a sharp increase in elongational viscosity is
observed (Metzner & Metzner 1970; Tirtaatmadja & Sridhar 1993; Horiuti et al. 2013).
However, even the cases with the larger inlet Weissenberg number have Wiη < 3 for
x/θ � 150, implying a strong decrease of the viscoelastic effects on the small-scale eddies
of the distant far field. The only viscoelastic simulation where Wiη < 3 throughout the
whole computational domain is for Wi = 1.1, and therefore it is possible that for this
case most of the polymer chains have not yet transitioned from the coiled to the stretched
configuration. This explains the qualitatively different behaviour observed for this case
compared with the cases with larger Wi described above. The coil-stretch transition
explains also the non-monotonic behaviour of the integral quantities, δ(x) and ΔU(x) as
Wi is increased. As discussed in the introduction, similar non-monotonic observations
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Figure 4. Streamwise evolution of the r.m.s. velocity components
√

u′2,
√
v′2 and

√
w′2 normalised by the

mean velocity deficit ΔU(x) (at the centreline) for the viscoelastic turbulent wakes with different Weissenberg
numbers. The reference Newtonian case (Wi = 0) is also shown.

have been reported in the literature. The explanation is likely associated with the fact that
in the case Wi = 1.1 the polymers have not undergone a coil-stretch transition, while for
the case Wi = 2.1 they have likely transitioned. Comparing the integral quantities δ(x)
and ΔU(x) for the cases Wi = 2.2, 3.2 and 4.3, i.e. where the polymers have undergone
a coil-stretch transition, shows that the results for these three cases display a monotonic
behaviour, which is consistent with this explanation.

Figure 4(a–c) shows the downstream evolution of the r.m.s. of the velocity components√
u′2,

√
v′2 and

√
w′2, normalised by ΔU(x) and evaluated at the wake centreline,

for the viscoelastic planar wakes with Wi = 1.1, 2.1, 3.2 and 4.3, together with the
reference Newtonian wake. For the Newtonian wake, all components reach an approximate
plateau for x/θ � 100 which is consistent with a fully turbulent self-similar regime. The
viscoelastic simulations show an attenuation of the turbulent intensities as the value of
the inlet Weissenberg number is increased, especially at regions where De(x) is large, but
show also a tendency for approaching the Newtonian values farther downstream. This is
particularly evident for the cases with Wi < 3.2. In fact, for Wi = 1.1, the initially weaker
r.m.s. velocities are slightly higher for x/θ � 150 than those of the Newtonian simulation.
The data suggests a similar trend for larger values of Wi, but as Wi is increased the extent
of the initial region with strong viscoelastic effects also increases, consistent with the
discussion above related to δ(x) and ΔU(x).

To complement the description of the turbulent classical statistics, figure 5 shows
transverse (y) profiles of mean velocity deficit and streamwise (normal) Reynolds stresses
at two different stations. The two stations, x/θ = 200 and x/θ = 315, approximately
correspond to the two locations where the scaling laws δ(x) ∼ x1/2 and ΔU(x) ∼ x−1/2 are
observed for the cases with Wi ≥ 2.1: (i) the region where we observe strong reductions in
Aδ and AΔU (x/θ = 200); and (ii) near the end of the computational domain (x/θ = 315)
where those two slopes are similar to the Newtonian slopes. In agreement with the
experimental study of Borisov et al. (1990) the normalised mean velocity deficit Δū/ΔU
is not substantially changed by the presence of the polymers (figure 5a,b). In contrast,
and consistent with the decrease in Aδ discussed before all components of the Reynolds
stress tensor are substantially reduced at x/θ = 200 as Wi is increased (figure 5c) (only
one component is shown here for brevity). The drastic reduction of the values of the
normalised Reynolds stresses, in particular for the cases with large Wi, is in qualitative
agreement with the experimental results of Pokryvailo et al. (1973), Borisov et al. (1990),
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Figure 5. Transverse profiles of (a,b) mean (streamwise) velocity deficit Δū and (c,d) streamwise Reynolds

stresses
√

u′2 at (a,c) x/θ = 200 and (b,d) x/θ = 315 for the simulations with Wi = 0 (Newtonian), Wi =
1.1, 2.1, 3.2 and 4.3, normalised with the velocity defect ΔU(x) and the half-width δ(x).

Pinho & Whitelaw (1991) and Cressman et al. (2001). These earlier experimental studies
were limited to the near field region of the wake (x/d ≤ 20), while in the present study
we attain x/d ≤ 84, which possibly explains why none of them observed the return to an
(approximately) Newtonian behaviour very far downstream of the wake generating object
reported here (in the case of Pinho & Whitelaw (1991), the experiment involved a disk
inside a pipe so that only the near wake region could be studied). This is again confirmed
by the Reynolds stresses from the viscoelastic simulations at x/θ = 315 (figure 5d) which
become much closer to the Newtonian profiles. In fact, the lower Wi case shows a slight
increase of the Reynolds stresses in comparison with the Newtonian case.

The results discussed above for the normal Reynolds stress components show that
viscoelasticity has the analogous effect for all three components simultaneously. This is
different from other flow configurations, for example flows in the proximity of solid walls
at the low drag reduction regime, where the streamwise velocity component increases with
Wi, while the other two components decrease, and only at the high drag reduction regime
do all velocity components decrease together, as Wi increases (White & Mungal 2008). To
explain the behaviour of the turbulent velocity fluctuations in more detail we consider the
turbulent kinetic energy budgets, κ = u′ · u′/2.

For this statistically stationary flow the balance equation for κ is given by

ū · ∇κ = − 1
ρ

∇ · p′u′ − 1
2
∇ · u′u′ · u′ + ν[s]∇2κ − u′u′ : ∇ū − ν[s]∇u′ : ∇u′

+ 1
ρ

∇ · σ ′[p] · u′ − 1
ρ

σ ′[p] : ∇u′. (3.3)

The last two terms in (3.3) are absent in Newtonian fluids and represent the viscoelastic
turbulent transport and the viscoelastic stress power, respectively. The transverse profiles
of all the terms from this equation, at a fixed station x/θ , are shown in figure 6. Comparing
the Newtonian case with the viscoelastic case at low De(x) (figure 6a with 6b) it can
be seen that the viscoelastic fluid has a larger gain of turbulent kinetic energy from the
advection term ū · ∇κ , especially at the flow centreline y/δ(x) = 0, but part of this energy
is not dissipated by the solvent and is transferred to the polymer microstructure through

the viscoelastic stress power term σ ′[p] : ∇u′/ρ, thus leading to slightly higher values of
turbulent velocity fluctuations for that case. Other terms of the equation do not change
significantly. However, for the high Deborah number case (figure 6c) we observe a large
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Figure 6. Budgets of turbulent kinetic energy (3.3) for (a) the Newtonian wake, (b) a viscoelastic wake at low
Deborah number and (c) a viscoelastic wake at high Deborah number. In these figures all the terms in (3.3)
have been normalised by ΔU(x)3/δ(x).

depletion of all terms of the equation, including the production term −u′u′ : ∇ū, which
results in the much lower levels of turbulent velocity fluctuations discussed above for high
De(x). Two additional observations for the high De(x) case are (i) the advection term
becomes a sink of turbulent energy in all the turbulent core region of the flow; and (ii)
the dissipation of κ is done almost entirely by the polymers, since the solvent dissipation
becomes negligibly small in comparison with the viscoelastic stress power.

The streamwise evolution of the viscous dissipation rate of the solvent ε[s] (computed at
the centreline) is shown in figure 7(a) for different values of Wi and allows one to see in
even more detail how the viscoelastic cases relate to the Newtonian reference simulation.
While for the Newtonian case ε[s] attains a local maximum and starts to decay for x/θ �
100, for the viscoelastic cases (with Wi ≥ 2.1) the corresponding local maxima are located
slightly earlier and are much smaller (by one order of magnitude) than in the Newtonian
case. Interestingly, after the local maximum is attained ε[s] reaches a local minimum and
starts to increase towards the Newtonian value at the very far regions of the wake. The
position of the local minimum moves downstream as the inlet Weissenberg number is
increased and is located roughly at the centre of the region with reduced spreading and
decaying rates described above. At these locations ε[s] for the viscoelastic cases with Wi ≥
3.2 is reduced by two orders of magnitude in comparison with the Newtonian flow. The
reduction in ε[s] caused by the viscoelastic effects is therefore quite impressive. The shape
of the curve for Wi = 1.1 is much different from the other viscoelastic cases, since it is
similar to the Newtonian case but with a delayed position of the local maximum. There
is also a strong reduction of ε[s] for Wi = 1.1 compared with the Newtonian case, but at
the end of the computational domain we have a complete return to the Newtonian values.
The results strongly suggest that the same trend would also be observed for the other
simulations had the computational domain been longer in those cases.

The behaviour of ε[s] is strongly related to the behaviour of Wiη, since from the
definition of Wiη we have Wiη = τp/τη = τp

√
ε[s]/ν[s], and naturally figures 7(a) and

3(c) are similar. The sudden peaks observed for ε[s]θ/U∞ (and for Wiη) in the near field
region (x/θ � 100) seem to be connected with the coil-stretch transition, as if a sudden
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Figure 7. (a) Streamwise evolution of the normalised centreline viscous dissipation rate of the solvent
and (b) 2-D kinetic spectrum of turbulent kinetic energy E(k2d) at a fixed station x/θ = 200 for different
Weissenberg numbers.

increase of small-scale activity associated with an initial increase in the solvent dissipation
triggers the coil-stretch transition, and results in the polymers strongly attenuating the local
nonlinearity within the solvent and thus the solvent dissipation.

Finally, the dramatic reduction of ε[s] observed at regions with large values of the local
Deborah number De(x) is a result of the different energy cascade mechanism that is
known to exist for viscoelastic turbulence (Valente, da Silva & Pinho 2014, 2016). This
results in spectra with an inertial-elastic region with E(k) ∼ k−3, instead of the typical
E(k) ∼ k−5/3 of classical (Newtonian) turbulence. The present DNS also recover these
two cases as can be attested in figure 7(b) showing the 2-D kinetic energy spectra E(k2d)

obtained at x/θ = 200, for the Newtonian and Wi = 2.1 cases, where k2d = (k2
2 + k3

3)
1/2

and k2 and k3 are the wavenumbers in the normal and spanwise directions, respectively.
The spectrum is computed in the 2-D directions of the plane normal to the streamwise
direction (y, z) using the usual procedure to compute a 2-D spectrum, as if the flow were
homogeneous in these two directions. Although this is not the case and the resulting
spectrum will not be physically realistic in the smallest wavenumbers, associated with
the larger scale flow features, it will still be representative of the intermediate and small
scales of motion, which are the ones that interest us in this figure. As can be seen, while
the Newtonian spectrum follows the classical −5/3 power law at the inertial subrange, a
−3 power law can be identified for the viscoelastic simulation, which is the same power
law obtained in experiments of turbulence generated by a grid with polyethylene oxide
solutions (Vonlanthen & Monkewitz 2013), viscoelastic jets (Yamani et al. 2021) and in
simulations of forced homogeneous isotropic turbulence with the FENE-P model (Valente
et al. 2014, 2016).

To complete the characterisation of the new DNS of turbulent viscoelastic wakes, and
to give further insight into the interplay between the dynamics of the polymer chains and
the turbulent flow, figure 8 shows streamwise profiles of the mean diagonal components
of the conformation tensor (see also Appendix B where a comparison between two cases
that use first- or second-order discretisation for the u · ∇C advection term show some
quantitative differences for the Cij components at the transition region, especially for C11,
but the same physical trends are obtained everywhere else, regardless of the order of the
numerical method employed). As expected, the values of all C̄ components increase with
Wi at a given particular location and, for Wi ≥ 2.1 the normal component on the principal
(x) direction of the flow C11 is initially much larger than the other components, indicating
that on average the polymer chains are considerably more stretched in that direction. This
is also observed in the transverse (y) profiles of C̄ (not shown). However, for x/θ � 100
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Figure 8. Streamwise evolution of the (mean) diagonal terms of the conformation tensor (computed in the
centreline) for the present DNS of viscoelastic turbulent wakes.

the component C11 decays faster than the other components and very far downstream there
is a tendency for approaching a state where C11 ≈ C22 ≈ C33 � C12, which is similar
to the behaviour observed in a turbulent jet (Guimarães et al. 2020). The transverse
profiles showed also that at regions where De(x) is small and C11 ≈ C22 ≈ C33 � C12 the
maximum values of the C̄ components are located at the centreline of the wake y/δ = 0,
although the mean velocity gradient ∂ ū/∂y is zero at these locations. This can be explained
as follows: for small values of De(x) the large turbulent eddies are poorly oriented with
polymer molecules and the polymer stretch is predominately imposed by the small-scale
eddies, which tend to be nearly isotropic, i.e. without a preferential direction, which
explains why C̄ is approximately isotropic when De(x) is small. When De(x) is large,
however, the strain rate is imposed by the anisotropic large scale eddies and has a bigger
influence on the polymer elongation and on the maximum values of the C̄ components,
which attain a maximum at y/δ ≈ 0.8, where ∂ ū/∂y attains its peak.

4. The theory of viscoelastic turbulent planar wakes

This section proposes a (new) theory for the description of turbulent planar wakes with
viscoelastic solutions, valid at the far-field region of the flow. The theory is based
on the classical analysis of Newtonian turbulent wakes and uses the thin shear layer
approximation applied to the equations for the transport of mass, momentum and turbulent
kinetic energy, properly modified to take into account the polymeric additives. The scaling
law for the polymer shear stress is based on the ideas put forward by Guimarães et al.
(2020) and also adopts the time criterion of Lumley (1973) and Seyer & Metzner (1969),
while no use of the FENE-P rheological model is made in the derivations. Finally, the
theory allows the computation of the averaged polymer chain extension by using a simple
viscoelastic fluid model to relate the polymer stresses and the conformation state of the
polymeric chains.

4.1. Thin shear layer approximation
Under the thin shear layer approximation the mean momentum equation in the streamwise
(x) direction can be written as

ū
∂Δū
∂x

+ v̄
∂Δū
∂y

= ∂u′v′

∂y
− 1
ρ

∂σxy
[p]

∂y
, (4.1)
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Figure 9. Transverse profiles of the terms from the mean streamwise momentum equation, with the thin shear
layer approximation (4.1), for the reference Newtonian simulation at x/θ = 200 (a), and for the viscoelastic
simulation with Wi = 3.2 at x/θ = 200 (b) and x/θ = 315 (c). The terms are normalised by the velocity deficit
ΔU(x) and by the thickness of the shear layer δ(x), and the dotted lines represent the sum of all the terms shown
in the figures excluding the term ρ−1∂σxx

[p]/∂x, which is neglected in the thin shear layer approximation.

where again Δū(x, y) = U∞ − ū(x, y) is the mean velocity deficit, u′v′ is the turbulent
shear stress, and σxy

[p] is the mean polymer shear stress, while the mean continuity
equation is

∂ ū
∂x

+ ∂v̄

∂y
= 0. (4.2)

In (4.1) and (4.2) the classical assumptions of (i) high Reynolds number (viscous stresses
can be neglected) and (ii) negligible gradients in the streamwise (x) direction compared
with the normal (y) direction (∂/∂y � ∂/∂x) have both been used. The momentum
equation in the normal direction is treated in a similar way leading one to conclude that the
mean pressure is constant in the flow domain, thus eliminating the mean pressure gradient
term (∂ p̄/∂x = 0) originally in (4.1).

In order to assess the robustness of this (thin-shear layer) approximation in the present
turbulent viscoelastic free flow configuration figure 9 shows all the terms from (4.1), for
the Newtonian simulation at x/θ = 200 (figure 9a) and for the viscoelastic simulation
with Wi = 3.2 at two different locations, x/θ = 200 (figure 9b) and x/θ = 315 (figure 9c).
Additionally, the term neglected in the approximation, ρ−1∂σxx

[p]/∂x (streamwise gradient
of the first normal polymer stress), and the sum of all the terms in the equation (denoted
by ‘sum’) are also shown for comparison. It is clear that the thin shear layer approximation
is very accurate in the present case. Inertia is balanced by the gradient of total (polymer
plus turbulent) shear stress and the ‘sum’ is close to zero. The influence of viscoelasticity
on the budget of momentum is also apparent from the figures. At x/θ = 200, transport
of momentum by turbulent velocity fluctuations is decreased in comparison with the
Newtonian case by a factor larger than two and the gradient of polymer shear stress is an
important term in the equation. However, at x/θ = 315, where the local Deborah number
De(x) has decayed considerably, the budgets for the viscoelastic and Newtonian cases are
very similar, the normalised Reynolds shear stress term has increased to the Newtonian
values and the polymer stress term is very small in comparison with the other terms in
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the equation. This is in agreement with the observations made on § 3 that describe the
decay of the viscoelastic effects as the wake evolves downstream, and shows also that the
polymer stresses decay faster than the turbulent stresses.

4.2. Self-similarity analysis
Rewriting (4.1) in conservative form and integrating in the transverse (y) direction yields

d
dx

∫ ∞

−∞
ū(x, y)Δū(x, y) dy = 0, (4.3)

where boundary conditions of zero velocity deficit and zero turbulent and polymer
shear stresses far from the wake centreline have been applied, i.e. Δū(x, y → ±∞) = 0,
u′v′(x, y → ±∞) = 0 and σxy

[p](x, y → ±∞) = 0, respectively. We now introduce the
normalised velocity deficit,

ψ = Δū(x, y)
ΔU(x)

(4.4)

and the similarity coordinate,

ξ = y
δ(x)

. (4.5)

The hypothesis of self-similarity of the mean velocity deficit implies that the function
ψ only depends on the similarity coordinate ξ , and does not vary with the streamwise
distance x, i.e. ψ = ψ(ξ). Inserting the hypothesis of self-similarity in (4.3) leads to

d
dx

[ΔU(x)δ(x)] = 0, (4.6)

where the term of order ΔU2(x) has been neglected, an approximation that becomes
asymptotically exact in wakes in the limit of small velocity deficits.

Up to this point, the analysis is very similar to the classical theory of (Newtonian) wakes,
and (4.6) is the usual momentum integral constraint. The classical theory derivation would
continue by assuming self-similarity of u′v′ when scaled by ΔU(x)2 (Townsend 1976).
However, for the viscoelastic wake this assumption is not valid because the presence of
the elasticity introduces an extra time scale that breaks the similarity of the profiles of
u′v′/ΔU(x)2 (this matter is discussed in detail on § 4.4), which is also observed in a
viscoelastic turbulent jet (Guimarães et al. 2020). Here we take a different strategy and
consider the equation for the mass conservation (4.2), which after a first integration and
further algebraic manipulations can be rewritten in the following form:

φ = −U∞v̄(x, y)
ΔU2(x)

= dδ2(x)
dx

[
U∞/2

ΔU(x)δ(x)

]
{ξψ(ξ)} . (4.7)

The quantity −U∞v̄(x, y) is the entrained momentum flux (by the normal velocity v̄)
from the free stream into the turbulent core of the wake, and φ is this momentum flux
normalised by ΔU2(x). It results from the momentum integral constraint (4.6) that the
term inside square brackets in (4.7) is constant. Furthermore, the term inside curly brackets
is a function of ξ only, and does not vary with x. The conclusion is that the assumption
of self-similarity φ = φ(ξ) can only be satisfied for all values of ξ if the spreading rate
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Figure 10. Transverse profiles of normalised mean velocity deficit at several stations x/θ for the Newtonian
(Wi = 0) and viscoelastic simulations with Weissenberg numbers Wi = 1.1, 2.1 and 4.3.

parameter dδ2/dx reaches a constant value at the far field, which gives the following
scaling law for the evolution of the half-width of the wake,

δ(x) ∼ x1/2. (4.8)

Substitution of (4.8) into (4.6) gives the scaling law for the velocity deficit,

ΔU(x) ∼ x−1/2. (4.9)

These scaling laws are, of course, the same laws obtained for the evolution of turbulent
planar wakes with Newtonian fluids (Schlichting 1930), and have been observed here when
discussing figure 2 in § 3. However, the coefficients in these scaling laws are very different
for Newtonian and viscoelastic wakes, especially when the Deborah number is large, as
demonstrated before in § 3 (see the values of Aδ and AΔU in table 1).

Figure 10 shows profiles of ψ = Δū(x, y)/ΔU(x) from Newtonian and viscoelastic
simulations at several x/θ stations. The excellent collapse of all the profiles validates
the hypothesis of self-similarity of the mean velocity deficit. This is no surprise for the
Newtonian case, while for viscoelastic cases it agrees with the experimental study of
Borisov et al. (1990). The slightly less good collapse in the first profile for the case
Wi = 4.3 (close to the wake edge) merely indicates that self-similarity is attained later
for that case, as described before in § 3.2 when the evolutions of δ(x) and ΔU(x) were
analysed. The case with Wi = 3.2 is virtually equal to that with Wi = 4.3, and is not shown
in the figure for reasons of space.

Transverse profiles of φ = −U∞v̄(x, y)/ΔU2(x) at several stations are shown in
figure 11 for the Newtonian (Wi = 0) and the viscoelastic cases with Weissenberg numbers
equal to Wi = 1.1, 2.1 and 4.3. For the Newtonian case all the profiles collapse into
one single curve when x/θ � 150. The viscoelastic case with Wi = 1.1 shows a similar
collapse of the profiles for x/θ � 210, while the profiles at x/θ = 150 and 180 are shifted
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Figure 11. Transverse profiles of normalised normal mean velocity v̄(x, y) at several stations x/θ for the
Newtonian (Wi = 0) and viscoelastic simulations with Weissenberg numbers Wi = 1.1, 2.1 and 4.3.

upwards due the increased spreading rate observed for that case. For the viscoelastic case
with Wi = 2.1, two different similarity curves can be identified. The profiles within the
region 90 � x/θ � 135 collapse into a curve which has a maximum value of φ ≈ 0.02
while the profiles at 240 � x/θ � 315 collapse into a different curve that has a maximum
of φ ≈ 0.062 and is much closer to the Newtonian curve. According to (4.7), this means
that the spreading rate parameter dδ2/dx assumes constant values in these two different
regions, although with a much lower value at 90 � x/θ � 135 than at 240 � x/θ � 315.
This is precisely what was observed for this case in § 3 when the streamwise evolution
of δ2 was analysed. At intermediate locations between these two regions of the flow,
i.e. at 135 � x/θ � 240, the corresponding profiles of φ do not collapse (not shown for
clarity) and dδ2/dx is not constant, as it can be seen from figure 2 discussed before. For
Wi = 4.3 we observe similarity of the profiles at 125 � x/θ � 225, which is the region
where dδ2/dx was found to be constant when figure 2 was analysed. The similarity curve
for Wi = 4.3 has a maximum of φ ≈ 0.028, consistent with a much smaller spreading
rate compared with the Newtonian case. The extent of the first similarity region with a
strong decrease of the spreading rate is clearly longer when Wi is increased (approximately
100θ for Wi = 4.3 compared with 45θ for Wi = 2.1). We were unable to find a second
similarity curve for Wi = 4.3 in the present simulations, but the discussion in § 3.2
strongly suggests that with a longer computational domain we would be able to observe
the φ profile approaching the Newtonian curve at the distant far-field region for that
case too.

The derivation outlined above in (4.3)–(4.7) is also interesting for the simpler case of a
Newtonian wake, because it shows that the scaling laws δ(x) ∼ x1/2 and ΔU(x) ∼ x−1/2

can be obtained without making any assumption regarding the turbulent shear stress u′v′,
whose scaling has been subject to some controversy over the last years (George 2008).
New theories of free turbulent flows often make assumptions about several other quantities,
including the normal turbulent stresses and the viscous dissipation rate of turbulent kinetic
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energy. The derivation discussed above clarifies that in fact, self-similarity of the mean
velocities alone is sufficient to derive the classical scaling laws in the form of (4.8) and
(4.9).

4.3. Similarity laws for the polymer shear stress and averaged polymer chain elongation
Guimarães et al. (2020) showed that in turbulent viscoelastic planar jets the profiles of
mean polymer shear stress σxy

[p](x, y) are self-similar when properly normalised. A similar
result holds also in the present configuration of viscoelastic planar wakes as we now
describe.

We proceed in a similar fashion by deriving an expression for the characteristic scale
of the polymer shear stress σ [p]

c (x) = max|σxy
[p](x, y)|, which can be obtained from the

transport equation for the turbulent kinetic energy κ = u′ · u′/2, which for a steady mean
flow is given by (3.3) discussed before. The explicit influence of viscoelasticity appears
in the last two terms of this equation, which are the viscoelastic turbulent transport ∇ ·
σ ′[p] · u′/ρ and the viscoelastic stress power σ ′[p] : ∇u′/ρ. For wakes with sufficiently
large Deborah numbers it is likely that at least one of these two terms will dominate, and
will then need to be balanced by the remaining leading-order terms of the equation. An
order of magnitude analysis of (3.3) shows that this leading-order term is the production
term, which for the planar wake is of order (as shown further below)

− u′u′ : ∇ū ∼ U∞ΔU2

δ2
dδ2

dx
. (4.10)

On the other hand, the orders of magnitude of the two viscoelastic terms mentioned above
are

1
ρ

∇ · σ ′[p] · u′ ∼ σ
[p]
c (x)
ρ

(
u∗

r∗

)[
r∗

δ(x)

]
(4.11)

and

− 1
ρ

σ ′[p] : ∇u′ ∼ σ
[p]
c (x)
ρ

(
u∗

r∗

)
, (4.12)

respectively, where u∗ and r∗ are the velocity and length scales associated with the
interaction between the fluctuating polymer stress and the velocity gradients within the
solvent. Similarly as in Guimarães et al. (2020) simple scaling arguments suggest that
these scales are none other than the so-called Lumley (length and velocity) scales (Lumley
1973) which are defined by

r∗ =
√
τ 3

p ε
[s] (4.13)

and

u∗ =
√
τpε[s], (4.14)

respectively. Since r∗/δ(x) is a very small quantity, the viscoelastic stress power is the
most important of the two viscoelastic terms in (3.3), and consequently it is the one that
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Figure 12. Streamwise evolution of (a) the maximum value of the normalised mean polymer shear stress and
(b) the maximum value of the normalised averaged extension of the polymeric chains, for the simulations with
Wi = 3.2 and 4.3. Both evolutions are compared with the scaling relations expressed in (4.18) and (4.21). The
profiles for Wi = 4.3 have been shifted downwards by (a) 800 units and (b) 600 units for clarity. The results
from the additional simulations of Appendix B are also shown, vertically shifted by 1200 units, accessing the
influence of the discretisation scheme of u · ∇C on these quantities.

has to balance the production term, i.e.

− u′u′ : ∇ū ∼ − 1
ρ

σ ′[p] : ∇u′. (4.15)

By using the order of magnitudes in (4.10) and (4.12), one can estimate the magnitude of
σ

[p]
c (x), which is

σ [p]
c ∼ ρ

U∞ΔU2(x)
δ2(x)

r∗

u∗
dδ2

dx
. (4.16)

Substitution of the scaling laws for δ(x) and ΔU(x) in (3.1) and (3.2), into (4.16) and
considering that, from the definitions of r∗ and u∗, the ratio r∗/u∗ is a constant given by
r∗/u∗ = τp, the new scaling law for the decay of the characteristic scale of the polymer
shear stress becomes

σ
[p]
c (x)
ρU2∞

∼ WiU∞d
ΔU0AΔUθ

(
x − x0

θ

)−2

. (4.17)

By defining a Weissenberg number based on the momentum thickness Wiθ = τpU∞/θ ,
and introducing a non-dimensional scaling factor Aσc we can write[

σ
[p]
c (x)

WiθρU2∞/AΔU

]−1/2

= Aσc

(
x − x0

θ

)
. (4.18)

Figure 12(a) shows the streamwise evolution of σ [p]
c (x) = max|σxy

[p](x, y)| for the cases
with Wi = 3.2 and 4.3, compared with the theoretical result expressed in (4.18). It is clear
that for both cases the results from the DNS agree very well with the power law described
in (4.18) for a wide range of stations x/θ . Specifically, the scaling law σ

[p]
c (x) ∼ x−2 is

recovered between 20 � x/θ � 290 for the case with Wi = 4.3 and between 20 � x/θ �
230 for the case with Wi = 3.2. Unsurprisingly in both cases this power law is not observed
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for very large distances from the wake origin x/θ � 300 which is consistent with the small
values of De(x) at these stations. Indeed, at these very large distances from the wake origin
the values of the local Deborah number have decayed considerably (see § 3.2) and the
assumption of large De(x) is no longer valid. This can be assessed also by analysing the
solvent dissipation reduction SDR(x), which is a direct measure of the relative amount of
turbulent energy dissipated by the polymers, which has decayed to SDR(x) ≈ 0.75 at the
end of the computational domain for Wi = 3.2, meaning that the influence of the molecular
viscous dissipation of the solvent in (3.3) can no longer be neglected at x/θ � 230 for
the case with Wi = 3.2. Notice, however, that the new theoretical scaling law holds for
a wider region for the case with Wi = 4.3 than for Wi = 3.2 (x/θ ≈ 270 against x/θ ≈
210), which shows that the domain of validity of the scaling law σ

[p]
c (x) ∼ x−2 increases

with the inlet Weissenberg number. Appendix C discusses the evolution of a viscoelastic
characteristic length Xelastic marking the start of the decay of the viscoelastic effects in
turbulent viscoelastic wakes, and thus the start of the return into a Newtonian evolution.

Another quantity of interest is the trace of C̄ since it is a measure of the average extension
of the polymer chains and of the elastic energy stored by the polymers. If we consider
the scaling relation σ [p] ∼ ρν[p]/τp[ f (Ckk)C̄ − I], which is an exact result only for fluid
models with an essentially constant Peterlin function (e.g. the Oldroyd-B model), and
assume that the analysis given above is valid for the trace of the polymer stress tensor,
we can obtain the following result:

tr(C̄ − I) ∼ 3τpU∞ΔU2(x)
ν[p]δ2(x)

r∗

u∗
dδ2

dx
, (4.19)

which can be rewritten as

tr(C̄ − I) ∼ 3β
1 − β

Wi2Re
AΔU

(
d
θ

) (
U∞
ΔU0

)2 (
x − x0

θ

)−2

, (4.20)

where the approximation f (Ckk) ∼ 1 has been used, because it was observed that f (Ckk)
is not very different from unity for the cases considered here. As before, a scaling factor
of order unity Acii can also be introduced in the expression above in order to write this
equation in a similar way as for σ [p]

c (x),{
tr(C̄ − I)

3βWi2θReθ /[(1 − β)AΔU]

}−1/2

= Acii

(
x − x0

θ

)
, (4.21)

where Reθ = U∞θ/ν[s].
Figure 12(b) shows the streamwise evolution of tr(C̄ − I) for the cases with Wi = 3.2

and 4.3, compared with the theoretical result expressed in (4.21). Clearly, there is a
wide range of stations x/θ in which the power law expressed in (4.21) displays excellent
agreement with the DNS results while, similarly to σ [p]

c (x), the power law is not recovered
very far from the wake origin, which can be explained with the same arguments used for
σ

[p]
c (x). Thus, the DNS confirms the theoretical result expressed in (4.21).
Some of the results discussed in detail in Appendix B are also shown in figure 12(a,b),

and evidence a slight underestimation of [σ [p]
c (x)]−2 and [tr(C̄ − I)(x)]−2 at the far field of

the wake when using a first-order discretisation scheme for u · ∇C, in comparison with a
second order one, but the values of the scaling law coefficients Aσc and Acii are unaffected
by the choice of the numerical method employed.
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Figure 13. Transverse profiles of mean polymer shear stress σxy
[p](x, y) for the simulation with Wi = 4.3

normalised by ρU2∞ (a) and by σ [p]
c , the characteristic scale of the polymer shear stress as derived in expression

(4.16) (b). The inset shows the influence of the discretisation scheme of u · ∇C for the additional simulations
discussed in Appendix B.

The fact that σ [p]
c (x) is the characteristic scale of the mean polymer shear stress

σxy
[p](x, y), as implied in the discussion leading to (4.16), is confirmed by the

self-similarity of the transverse profiles of σxy
[p](x, y) for the DNS with Wi = 4.3. This

is demonstrated in figure 13 that shows profiles of the mean polymer shear stress without a
particular normalisation (figure 13a) and normalised by σ [p]

c (x) (figure 13b). As expected,
there is a considerable decay and spreading of the profiles of σxy

[p]/(ρU2∞) vs y/θ , as the
flow evolves downstream (figure 13a), however, when the mean polymer shear stress is
normalised by σ [p]

c (x) all the profiles collapse into the same curve (figure 13b). A similar
result is observed for the other high Weissenberg number case (Wi = 3.2) (not shown).

Similarly, the results displayed in figure 14 attest that the characteristic scale of the
polymer extension tr(C̄ − I) is the one expressed in (4.19) described above. The figures
show transverse mean profiles of tr(C̄ − I) for the simulation with highest Weissenberg
number (Wi = 4.3) using different normalisations. When no normalisation is employed
the mean profiles of the polymer extension spread and decay as the flow evolves in the
streamwise direction (figure 14a), however, when the same profiles are normalised with the
characteristic scale of the polymer extension from (4.19) the profiles collapse into a single
curve (figure 14b). The collapse is slightly less impressive for the case with Wi = 3.2 (not
shown) but is excellent for the case with Wi = 4.3, which is consistent with the size of
the self-similar region obtained in these cases: whereas for Wi = 3.2 self-similarity of the
normalised mean polymer extension profiles is observed for 130 � x/θ � 190, it extends
into the region between 130 � x/θ � 230 for the case with Wi = 4.3.

The insets of figures 13(a) and 14(a) show comparisons between profiles obtained from
the simulations with lower Re that are discussed in detail in Appendix B that use first-
or second-order discretisation for the u · ∇C advection term. Overestimation is obtained
with first order but the same qualitative trends are observed when using either one of the
discretisation schemes.

In summary, the new theoretical results derived in this section, establishing the
similarity laws governing the polymer conformation tensor and the polymer shear stress,
are indeed well supported from the present DNS. The next section addresses the similarity
of the Reynolds shear stresses.
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Figure 14. Transverse profiles of mean extension of the polymer chains tr(C̄ − I) for the simulation with Wi =
4.3 with no normalisation (a) and normalised using the characteristic scale derived in expression (4.19) (b).
The inset shows the influence of the discretisation scheme of u · ∇C for the additional simulations discussed
in Appendix B.
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Figure 15. Transverse profiles of Reynolds shear stresses u′v′ from the DNS with Wi = 2.1, 3.2 and 4.3: (a) at
the same station x/θ = 315 (and with different values of local De(x)) normalised according to the classical
theory for turbulent (Newtonian) wakes; (b) with the same value of the local De(x) = 2 (so at different stations
x/θ ) and normalised as in (4.23).

4.4. Similarity laws for the Reynolds shear stress

We now turn into the self-similarity of the Reynolds shear stress u′v′ in turbulent
viscoelastic wakes, a problem that has been addressed before for viscoelastic turbulent
jets by Guimarães et al. (2020). We start by noting that the classical scaling used for
Newtonian wakes does not lead to self-similarity of the Reynolds shear stresses in turbulent
viscoelastic wakes. This can be appreciated in figure 15(a) which shows profiles of
u′v′(x, y)/ΔU2(x), i.e. using the classical (Newtonian) scaling, for different simulations
at the same location x/θ = 315. Clearly, the profiles of u′v′/ΔU2(x) do not collapse into
the same curve.

The lack of similarity for the u′v′(x, y)/ΔU2(x) profiles of the viscoelastic wake
described above can be explained by analysing the x momentum equation, which, after
a first integration can be written as

u′v′(x, y)
ΔU2 = 1

δ

dδ2

dx

{∫ ξ

0

ψ2(ξ̃ )

2
dξ̃

}
− U∞

ΔU
1
δ

dδ2

dx

{
ξψ(ξ)

2

}
+ 1
ρ

σ
[p]
c

ΔU2 {ϕ(ξ)} , (4.22)
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where ϕ(ξ) = σxy
[p](x, y)/σ [p]

c (x) and σ
[p]
c (x) = max|σxy

[p](x, y)|, as defined in § 4.3.
Notice that all the terms inside curly brackets ‘{}’ on (4.22) are O(1) functions of
ξ only, and do not vary with either x or Wi. Note also that U∞/(ΔUδ) is constant
because of the momentum integral constraint (4.6). Moreover, for wakes with small
velocity deficits, U∞/ΔU(x) � 1, therefore the first term on the right-hand side of (4.22)
is negligible compared with the second term. It follows that the lack of similarity of
the profiles of u′v′(x, y)/ΔU2(x) can be explained by variations of the values of the
spreading rate dδ2/dx or by variations of the normalised maximum polymer shear stress
σ

[p]
c (x)/(ρΔU(x)2). The normalised maximum polymer shear stress, on the other hand,

varies along the flow domain, as shown by the scaling derived in § 4.3 where we obtained
σ

[p]
c (x)/(ρΔU(x)2) ∼ x−1.
The self-similarity condition for the Reynolds shear stresses in the turbulent viscoelastic

wake can be obtained by using the large Deborah number scaling relations described in
§ 4.3. Specifically, by introducing (4.16) into (4.22) we can rewrite it as

u′v′(x, y)
U∞ΔU(dδ2/dx)/δ

= ΔU(x)
U∞

{∫ ξ

0

ψ2(ξ̃ )

2
dξ̃

}
−

{
ξψ(ξ)

2

}
+ De(x) {ϕ(ξ)} , (4.23)

where the scaling factor in expression (4.16) has been omitted for simplicity. Self-similar
profiles of Reynolds shear stresses are recovered, for any given value of the local
Deborah number De(x), when normalising these profiles by U∞ΔU(x)(dδ2/dx)/δ(x), by
considering turbulent viscoelastic wakes with small velocity deficits. It is noteworthy that
the scaling of the Reynolds shear stresses given by (4.23) has already been considered
in George & Arndt (1989) for turbulent planar wakes of Newtonian fluids, and has been
shown to provide a more universal character for the similarity of the profiles of normalised
Reynolds shear stresses, because the influence of initial conditions on the spreading rate
is absorbed into the scaling variables.

Equation (4.23) shows that the local Deborah number De(x) appears as a new
‘equilibrium’ parameter for the viscoelastic wake, in the sense that it defines families
of Reynolds shear stresses profiles. Since De(x) decays in the downstream direction, it
is not possible to obtain complete similarity of the Reynolds shear stresses in this flow
configuration unless at regions where De(x) is so small that viscoelastic effects are no
longer important. This is consistent with the physical idea that self-preservation is only
possible in a flow with only one characteristic (velocity and length) scale. The introduction
of the Lumley scales u∗ and r∗ described in § 4.3 and the corresponding time scale
τp = r∗/u∗ – which is a measure of the fading memory of the viscoelastic solution –
in addition to the time scale δ/ΔU, precludes the possibility of complete similarity for
the viscoelastic turbulent wake, unless in the limits of De(x) → 0 and possibly also
De(x) → ∞, where the mechanism associated with one of the two different time scales
dominates the flow dynamics.

Figure 15(b) shows the profiles of Reynolds shear stresses for the simulations with Wi =
2.1, 3.2 and 4.3 at different stations x/θ where the local Deborah number has been fixed
to De(x) = 2. All the Reynolds shear stress profiles collapse into the same curve when
normalised by U∞ΔU(x)(dδ2/dx)/δ(x).

5. Conclusions

This work focuses on the far field fully developed region of turbulent viscoelastic planar
wakes. The work is based on spatially developing DNS carried out with a high-order code
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that has been used by the authors in similar investigations of turbulent viscoelastic planar
jets, that employs the FENE-P rheological model (Guimarães et al. 2020).

The DNS show that increasing the value of the inlet Weissenberg number results in a
strong attenuation of the Reynolds stresses, viscous dissipation rate of the solvent, and of
the spreading and velocity deficit decay rates in the far field of the wake, in agreement with
results from previous experimental studies (Pokryvailo et al. 1973; Borisov et al. 1990;
Pinho & Whitelaw 1991; Cressman et al. 2001). However, in the distant far-field region
the viscoelastic effects die out and the turbulent wake statistics show a clear tendency
to approach the corresponding Newtonian values. This return to Newtonian tendency is
explained by the drastic decrease of the local Deborah number at the distant far-field
regions of the wake, and the extent of the initial far-field region where viscoelastic effects
are strong increases with the inlet Weissenberg number Wi.

A new theory was developed to describe the far-field of turbulent planar wakes with
viscoelastic fluids. The theory is based on the thin shear layer approximation and on
a similarity analysis of the equations governing the fluid motion and identifies the
reference length and time scales characterising turbulent wakes of viscoelastic fluids,
which explains the self-similarity of the profiles of mean velocity, mean polymer shear
stress, averaged polymer chain extension and the conditions for similarity of the Reynolds
shear stress, which is observed in results from the simulations. Scaling laws for the wake
shear layer thickness and mean velocity deficit have been derived yielding δ(x) ∼ x1/2

and ΔU(x) ∼ x−1/2, respectively. Additionally, scaling relations have been derived for
maximum polymer shear stresses and averaged polymer chain extension decay, σ [p]

c ∼
x−2 and tr(C̄ − I) ∼ x−2, respectively. All the new theoretical results display excellent
agreement with the results from the DNS.

As in Guimarães et al. (2020) the new theoretical results described here have been based
on classical similarity analysis and simple scaling arguments, supplied with the theory of
Lumley (1973) to describe viscoelastic turbulent flows. Therefore, a similar approach can
probably be used to describe the far-field of other free turbulent flows with viscoelastic
fluids such as turbulent jets and wakes in axisymmetric configuration, as well as mixing
layers.
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Appendix A. Assessment of the lateral sizes Ly and Lz used in the simulations

As described in § 2.3 the present work uses DNS of turbulent viscoelastic wakes carried
out in a computational domain which is very long in the streamwise direction (Lx = 84d)
while the size of the lateral dimension remains comparatively small (Ly = 24d). For this
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reason, and given the fact that the present numerical scheme employs periodic boundary
conditions along this (lateral) direction, it is important to demonstrate that in all cases the
lateral boundary conditions are placed sufficiently far away from the turbulent core region
of the wake in order to avoid any undesirable confinement effects.

For this purpose we compared results from three additional (Newtonian) DNS using
different values of Ly/d, and correspondingly different number of grid points in this
direction Ny, so that the grid size Δy/d was kept constant and equal in all cases.
Specifically, we carried out DNS using lateral domain lengths of Ly = 16d, 24d, and
48d, for a total number of grid points (in the y direction) equal to Ny = 512, 768 and
1536, respectively, while the number of points in the remaining directions is Nx = 2688
and Nz = 192 and the size of the computational domain in these directions is the same
as before, i.e. Lx = 84d and Lz = 6d. The decrease in the number of points in these
(streamwise and spanwise) directions was imposed by the very high computational cost
of the simulations, and naturally imposed restrictions in the Reynolds number of these
simulations. Whereas in the core of the article the Reynolds number used was set to
ReΔU = 5000 (and Re = 14 286) for a Taylor based Reynolds number of Reλ ≈ 100, in the
simulations used in this Appendix we limited these Reynolds numbers to ReΔU = 2000
(Re ≈ 5714) and Reλ ≈ 70, while the resolution approaches Δx/η42d ≈ 2. All remaining
numerical and physical parameters were the same as those described at § 2. The assessment
of the lateral boundary conditions was investigated using Newtonian cases because these
lead to higher spreading rates than in viscoelastic wakes and consequently are more useful
to investigate the possible existence of lateral confinement effects.

Figure 16 shows the streamwise (x) evolution of several classical statistics obtained
in these four new DNS of Newtonian turbulent wakes. The results obtained with
different values of Ly/d are almost indistinguishable, confirming that Ly/d = 24 is indeed
appropriate for the lateral size of the computational domain. In fact, the figures indicate
that Ly/d = 16 would be already sufficiently large. Additionally, it can be seen that the
influence of the Reynolds number on the flow statistics is only quantitative, and in any
case very mild, at least for the normalised first- and second-order moments of velocity
and for the viscous dissipation rate. This suggests that the Reynolds number chosen for
the DNS used in the present work is sufficiently high, however, the final confirmation can
only be gained when comparing the present numerical results with the available literature
data, as shown next.

Figure 17 shows transverse profiles of the mean velocity deficit, and of the Reynolds
stresses for the four Newtonian DNS, compared with the experimental and numerical
results obtained by Townsend (1949), Uberoi & Freymuth (1969), Narasimha & Prabhu
(1972), Browne & Antonia (1986), Wygnanski et al. (1986), Weygandt & Mehta (1989),
Aronson & Löfdahl (1993), Zhou & Antonia (1995), Moser et al. (1999), Schenck &
Jovanovic (2002), Hickey et al. (2013) and Tang et al. (2016).

The mean profile of the velocity deficit is virtually the same in all the numerical
and experimental data available (figure 17e), and differences can be observed only in
the profiles of the Reynolds stresses (figure 17a–d). It is noteworthy that the curves
corresponding to the DNS discussed in this Appendix (with different domain sizes and
Reynolds numbers) and the curves for the reference Newtonian DNS used in the present
work, are all virtually equal. This again confirms that (i) the domain lateral size Ly used
in the present DNS has no influence on the results and (ii) the Reynolds numbers used in
all the present DNS is sufficiently high to attain the far-field fully developed (self-similar)
region of the wake.

The observed differences between the present DNS and the various experimental and
numerical data in the literature are smaller than the differences observed between the
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Figure 16. Streamwise evolution of several statistics from the three Newtonian turbulent wakes with different
computational domain heights Ly/d, and different Reynolds numbers (see inset in panel (d) for details):
(a) wake half-widths; (b) wake velocity deficits; (c) viscous dissipation rate; (d–f ) normal Reynolds stresses.

literature data themselves. This confirms the well known lack of universality of the
turbulent wake statistics caused by the different initial/inlet conditions available in each
experiment/simulation. Nevertheless, the profiles show that the results from the present
DNS are in general agreement with the data previously obtained by different authors,
which again validates the present DNS.

We have carried out one extra (new) simulation with Lz/d = 12, i.e. using a domain
width that is two times larger than that of the other simulations, while keeping the same
resolution as before by increasing the number of grid points by a factor of two in that
direction (Nz = 576 instead of Nz = 288). The new simulation uses the full second-order
Kurganov–Tadmor scheme and a Weissenberg number of Wi = 4.3. The case with the
largest Wi was selected because the structures are typically larger in the spanwise direction
when Wi is high. Figure 18 shows this new simulation (Lz/d = 12) together with an
additional comparison regarding the discretisation scheme of the advection term of the
conformation tensor, to be discussed in Appendix B. Virtually no differences are found
between the statistics obtained from the cases with Lz = 6d and Lz = 12d, attesting that
Lz = 6d is already sufficiently large for all the simulations presented in this work.

Appendix B. Assessment of the simplification used in computation of the advection
term of the conformation tensor

In this Appendix we assess the influence of the discretisation scheme for the
advection term of the conformation tensor evolution equation (first- or second-order
Kurganov–Tadmor scheme) as discussed in the main text of the paper (§ 2.2). To assess this
we compare the results of two new (additional) DNS of turbulent viscoelastic wakes with
the highest Wi number used in the present work (Wi = 4.3). The additional simulations
use β = 0.8 and L2 = 1002 for the remaining rheological parameters, while the lateral
domain size is Ly/d = 16 and differs only on the numerical scheme used to compute the
advection term in the conformation tensor transport equation. While in one simulation the
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Figure 17. Profiles of the Reynolds stress and mean velocity deficit at the far-field region for the three
Newtonian planar wakes discussed in this Appendix, using different inlet conditions, normalised with the
classical theory. The results are compared also with the numerical and experimental data available from the
literature (described in the main text), and with the reference Newtonian DNS used in the present work.

Kurganov–Tadmor scheme is used in a first-order configuration the other simulation uses
a second-order Kurganov–Tadmor scheme for this purpose. Two cases with the highest Wi
used in this work have been chosen because the advection term is a dominant term of the
Cij equation when Wi is large, and so larger differences are to be expected in these cases.
The results are also compared with one of the Newtonian simulations described above (in
Appendix A) with Ly/d = 16, and a viscoelastic simulation with a larger spanwise domain
width Lz/d = 12.

The comparison between several turbulent wake statistics is shown in figure 18, and
includes the streamwise evolution of the integral wake parameters, and of the Reynolds
stresses, as well as the mean values of the components of Cij. It is clear that the evolution of
the integral wake parameters, i.e. δ(x) and ΔU(x) is virtually equal in the two viscoelastic
simulations, and even the Reynolds stresses display mild quantitative differences that
do not alter in any way the conclusions of this study. Specifically, both viscoelastic
simulations display drastic decrease of the spreading and velocity deficit decaying rates
compared with the Newtonian case, at regions where De(x) is large, and the subsequent
attenuation of these viscoelastic effects when De(x) has decayed, regardless of the choice
for the numerical scheme for the advection term of Cij. Regarding the evolution of the
mean conformation tensor components, figure 18 shows that the differences between the
components of Cij obtained with the two numerical schemes are actually very small once
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Figure 18. Streamwise evolution of several turbulence statistics from three DNS of turbulent viscoelastic
wakes (for Weissenberg number Wi = 4.3) carried out with different numerical schemes for the advection term
of the conformation tensor transport equation and different domain widths Lz. The results from one Newtonian
turbulent wake are also shown for comparison: (a) wake half-width; (b) wake velocity deficit; (c–e) square root
of the normal Reynolds stresses; ( f –i) mean conformation tensor components (see inset in panel(g) for details).

an intermediate region of the flow has been crossed, i.e. differences are small at the
far-field. For instance, larger differences in C11 are obtained at a small portion of the
domain, at the transition region where velocity gradients are more intense, but similar
values are obtained at the far-field. For the C12 component, the differences are small
everywhere and for C22 and C33 the same qualitative trend can be observed. Thus one
concludes that the differences between the results obtained using the original method for
computing the advection term of the conformation tensor (as used in Guimarães et al.
(2020)) and the one used here are very small and do not affect the results and conclusions
of the present work.

Appendix C. The viscoelastic characteristic length, Xelastic

The results from the present simulations show that turbulent viscoelastic wakes, although
exhibiting different characteristics than the classical (Newtonian) turbulent wakes, will
eventually revert to the Newtonian evolution laws, for example the wake spreading rate,
provided a sufficient large distance from the wake origin is attained. This Appendix
discusses a possible method to estimate the viscoelastic characteristic length Xelastic, as
measured from the wake origin, where strong viscoelastic effects cease to be observed,
thereby implying a recovery of the Newtonian wake characteristics. We define Xelastic as
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Figure 19. Viscoelastic characteristic length Xelastic, marking the start of the return to a Newtonian spreading
rate, i.e. the end of the flow region where a strong spreading rate reduction caused by viscoelasticity can be
observed in turbulent viscoelastic wakes.

the coordinate in the streamwise direction where the reduction of the viscoelastic effects
starts, so that by x � Xelastic the wake statistics are similar to the typical Newtonian values.
We focus on the simplest integral quantity – the wake half-width δ(x) – and compute
Xelastic using the following method. For each curve of (δ(x)/θ)2 with Wi ≥ 2.1 shown in
figure 2 we obtain two best fit lines at two different regions of the flow: the first far-field
region where the spreading rate is reduced by the viscoelasticity; and the second far-field
region where it has a value close to Newtonian. The non-dimensional distance Xelastic/θ is
obtained from the interception of these two lines.

The results are shown in figure 19, where an approximately linear dependence with
Wi can be observed. This linear dependence can be justified using the following scaling
arguments. Since the definition of δ(x) is based on the mean velocity ū, it is natural to
consider the x momentum equation for an estimate of Xelastic. We assume that at x = Xelastic
viscoelastic effects are still important so that the viscoelastic term is of the same order of
the turbulent stress term, i.e. ρ−1∂σxy

[p]/∂y ∼ ∂u′v′/∂y. Notice that this is not valid for all
x stations but only at the vicinity of x = Xelastic. Using the scaling relations for the polymer
and turbulent stresses that have been derived in § 4.3, and taking x = Xelastic leads to

WiU3∞d[(Xelastic − X0)/θ ]−5/2

θ2ΔU0A1/2
δ AΔU

∼ U2∞A1/2
δ [(Xelastic − X0)/θ ]−3/2

θAΔU
, (C1)

and by introducing a proportionality constant α and solving for Xelastic we can write

Xelastic

θ
= αWi + X0

θ
, (C2)

where the scaling law coefficients in (C1) have been absorbed by the constant α, and where
we have also replaced Wiθ by Wi without loss of generality (X0 is a virtual origin for this
law). It is plausible that Xelastic is also a function of other rheological and flow parameters
such as L, β and Re. Presently, only the dependence with Wi has been considered and we
must stress that this expression is not applicable to flows with low Wi as no spreading rate
reduction is observed for these cases.
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