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Abstract

In this paper, the robustness of the dynamic instability mitigation mechanism is first examined, and then the instability
mitigation phenomenon is demonstrated in a deuterium–tritium (DT) fuel target implosion by wobbling heavy-ion
beams (HIBs). The results presented here show that the mechanism of the dynamic instability mitigation is rather
robust against changes in the phase, the amplitude and the wavelength of the wobbling perturbation applied. In general
instability would emerge from the perturbation of the physical quantity. Normally the perturbation phase is unknown,
so that the instability growth rate is discussed. However, if the perturbation phase is known, the instability growth can
be controlled by a superposition of perturbations imposed actively: if the perturbation is induced by, for example, a
driving beam axis oscillation or wobbling, the perturbation phase could be controlled and the instability growth is
mitigated by the superposition of the growing perturbations. In this paper, we realize the superposition of the
perturbation by the wobbling HIBs’ illumination onto a DT fuel target in heavy-ion inertial fusion (HIF). Our
numerical fluid implosion simulations present that the implosion non-uniformity is mitigated successfully by the
wobbling HIBs illumination in HIF.
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1. INTRODUCTION

In inertial confinement fusion, non-uniformity implosion
leads a degradation of fusion energy output. Implosion non-
uniformity is introduced by, for example, the Rayleigh–Taylor
instability (RTI), the driver beam illumination non-uniform,
fuel target imperfect sphericity, etc.
The RTI dynamic stabilization was proposed many years

ago (Wolf, 1970; Troyon & Gruber, 1971) in inertial
fusion; the oscillation amplitude of the driving acceleration
should be sufficiently large to stabilize RTI (Wolf, 1970;
Troyon & Gruber, 1971; Boris, 1977; Betti et al., 1993;
Piriz et al., 2010, 2011). In inertial fusion, the fusion fuel
compression is essentially important to reduce an input
driver energy (Nuckolls et al., 1972; Atzeni & Meyer-ter-
Vehn, 2004), and the implosion uniformity is one of critical
issues to release the fusion energy stably (Emery et al., 1982;
Kawata & Niu, 1984). Instability grows from a perturbation
of the physical quantity, and the perturbation phase is un-
known in plasmas. Therefore, usually the instability growth
rate is focused and examined. On the other hand, in an

unstable system there is a well-known feedback control
mechanism in which the perturbation amplitude and phase
are detected, and the growing perturbation is compensated
by the active feedback control. However, in plasmas and
fluids it is difficult to measure the instability phase and
amplitude, and so the perfect active feedback control
cannot be realized.

If we actively impose the perturbation phase by the driving
energy source wobbling or oscillation, and so if we know or
define the phase of the perturbations imposed actively, the
perturbation growth can be controlled in a similar way
(Kawata et al., 1993, 2009; Kawata, 2012) as the feedback
control mechanism. For example, the two-stream instability
growth would be controlled by a time-dependent drift veloc-
ity of the driving beam. When the driving beam longitude ve-
locity is oscillating, the two-stream instability perturbation
phase changes in time. At each time, the driving beam intro-
duces a new perturbation phase, and the actual instability
growth is defined by the superposition of all the growing per-
turbations by the time-dependent drift velocity. The heavy
ion accelerator could provide a beam wobbling about a cen-
tral axis with a high frequency (Moretti, 1982; Kawata et al.,
2013). The wobbling heavy-ion beams (HIBs) also define the
perturbation phase. This means that the perturbation phase is
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known, and so the perturbations successively imposed are su-
perposed in the plasma. The HIBs accelerate the fusion target
fuel with a large acceleration in inertial fusion. The wobbling
HIBs would provide a small oscillating acceleration perturba-
tion in an inertial fusion fuel target during the target implo-
sion. So the RTI growth would be reduced by the
phase-controlled superposition of perturbations in heavy-ion
inertial fusion (HIF) (Kawata et al., 1993, 2009; Kawata,
2012). In this paper, we discuss the robustness of the dynam-
ic mitigation mechanism for instabilities presented in
(Kawata et al., 1993, 2009; Kawata, 2012) and the mitigation
of the implosion non-uniformity for the directly driven iner-
tial fusion target by the wobbling HIBs. The results presented
here show that the mechanism of the dynamic instability mit-
igation is viable and rather robust against changes in the
phase, amplitude, and wavelength of the wobbling perturba-
tion applied.

2. DYNAMIC INSTABILITY MITIGATION

Let us consider an unstable system, which has one mode of
a= a0e

ikx+γt. Here a0 is the amplitude, k= 2π/λ is the
wave number, λ is the wave length, and γ is the growth rate
of the instability. An example initial perturbation is shown
in Figure 1a. At t= 0, the perturbation is imposed. The initial
perturbation grows with γ. After Δt, if another perturbation,
which has an inverse phase, is actively imposed (see

Fig. 1b), the overall amplitude is the superposition of all
the perturbations, and so the actual perturbation amplitude
is well mitigated as shown in Figure 1c. This is an ideal ex-
ample for the dynamic instability mitigation (Kawata et al.,
1993, 2009; Kawata, 2012).
In plasmas the perturbation phase and amplitude cannot be

measured. So the perfect feedback control cannot be realized
in plasmas and fluids. However, an electron beam can pro-
vide its axis wobbling motion or a time-dependent modula-
tion of the beam velocity. A HIB accelerator can also
provide a controlled wobbling or oscillating beam with a
high frequency (Moretti, 1982; Kawata et al., 2013). They
would provide the defined phase and amplitude of
perturbations.
When the instability driver wobbles uniformly in time, the

imposed perturbation for a physical quantity of F at t= τmay
be written as

F = δFeiΩτeγ(t−τ)+i�k·�x. (1)

Here δF is the amplitude,Ω is the wobbling or oscillation fre-
quency defined actively by the driving wobbler, andΩτ is the
phase shift of superimposed perturbations. At each time t, the
wobbler or the modulated driver provides a new perturbation
with the phase and the amplitude actively defined by the
driving wobbler itself. The superposition of the perturbations
provides the actual perturbation at t as follows:

∫t
0

dτ δFeiΩτeγ(t−τ)+i�k·�x ∝
γ+ iΩ

γ2 +Ω2 δFe
γtei

�k·�x (2)

when Ω≫ γ, the perturbation amplitude is reduced by the
factor of γ/Ω, compared with the pure instability growth
(Ω= 0) based on the energy deposition non-uniformity
(Kawata et al., 1993, 2009). When Ω≅ γ, the amplitude mit-
igation factor is still about 50%. The result in Eq. (2) presents
that the perturbation phase should oscillate with Ω≳ γ for
the effective amplitude reduction.
Figure 2 shows an example simulation for RTI, which has

a single mode. In this example, two stratified fluids are super-
imposed under an acceleration of = g0+ δg. The density
jump ratio between the two fluids is 10/3. In this specific
case, the wobbling frequency Ω is γ, the amplitude of δg is
0.1g0, and the results shown in Figure 2 are those at t= 5/γ.
In Figure 2a, δg is constant and drives the RTI as usual,
and in Figure 2b, the phase of δg is shifted or oscillates
with the frequency of Ω as stated above for the dynamic in-
stability mitigation. The RTI growth mitigation ratio is
72.9% as shown in Figure 2. The growth mitigation ratio is
defined by (H0−Hmitigate)/H0 × 100%. Here H is defined
as shown in Figure 2a, H0 shows the deviation amplitude
of the two-fluid interface in the case in Figure 2a without
the oscillation (Ω= 0), and Hmitigate presents the deviation
for the other cases with the oscillation (Ω≠ 0). The example

Fig. 1. An ideal example concept of the dynamic mitigation. (a) At t= 0 a
perturbation is imposed. The initial perturbation grows with γ. (b) After Δt
another perturbation, which has an inverse phase, is actively imposed, so
that (c) the actual perturbation amplitude is mitigated very well after the
superposition of the initial and additional perturbations.
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simulation results support well the effect of the dynamic mit-
igation mechanism.

3. ROBUSTNESS OF DYNAMIC MITIGATION OF
INSTABILITY

In order to check the robustness of the dynamic instability
mitigation mechanism, here we study the effects of the
change in the phase, the amplitude and the wavelength of
the wobbling perturbation δF, that is, δg in Figure 2 on the
dynamic instability mitigation.
When the perturbation amplitude δF= δF(t) depends on

time or oscillates slightly in time, the dynamic mitigation
mechanism is examined first. We consider δF(t)= δF0(1+
ΔeiΩ

′t) in Eq. (1). Here Δ≪ 1. In this case, Eq. (2) is modi-
fied as follows:

∫t
0

dτ δFeiΩτeγ(t−τ)+i�k·�x ∝
γ+ iΩ

γ2 +Ω2 + Δ
γ+ i(Ω+Ω′)
γ2 + (Ω+Ω′)2

{ }
δF0e

γtei
�k·�x

(3)

when Δ≪ 1 in Eq. (3), just a minor effect appears on the
dynamic mitigation of the instability.
We also performed the fluid simulations. In the simula-

tions δF= δg(1− ΔsinΩ′t).

The RTI is simulated again based on the same parameter
values shown in Figure 2 except the perturbation amplitude
oscillation δF(t). Figure 3 shows the example simulation re-
sults for Δ= 0.3 and Ω′ = 3Ω, Ω, and Ω/3. Figure 3a shows
the RTI growth reduction ratio of 72.0% for Ω′ =Ω/3,
Figure 3b shows 54.9% for Ω′ =Ω, and Figure 3c shows
72.9% for Ω′ = 3Ω at t= 5/γ. The results by the fluid sim-
ulations and Eq. (3) demonstrate that the perturbation ampli-
tude oscillation δF= δF(t) is uninfluential as long as Δ≪ 1.

When the oscillation frequency Ω of the perturbation
δF depends on time [Ω=Ω(t)], the time-dependent fre-
quency means that Ω(t) would consist of multiple frequen-
cies: eiΩt = ∑

i
ΔieiΩi t. In this case, Eq. (3) becomes

∫t
0

dτ δFeiΩτeγ(t−τ)+i�k·�x ∝
∑
i

Δi
γ+ iΩi

γ2 +Ω2
i

δFeγtei
�k·�x. (4)

The result in Eq. (4) shows that the highest frequency of Ωi

contributes to the instability mitigation. In a real system,
the highest frequency would be the original wobbling fre-
quency Ω or so, and the largest amplitude of Δi is also that
for the original wobbling mode. So when the frequency
change is slow, the original wobbler frequency of Ω contrib-
utes to the mitigation.

The fluid simulations are also done for the RTI with
Ω(t)=Ω(1+ ΔsinΩ′t) together with the same parameter

Fig. 2. Example simulation results for the RTI mitigation. δg is 10% of the acceleration g0 and oscillates with the frequency of Ω= γ. As
shown above and in Eq. (2), the dynamic instability mitigation mechanism works well to mitigate the instability growth.

Fig. 3. Fluid simulation results for the RTI mitigation for the time-dependent perturbation amplitude δF= δg(1− ΔsinΩ′t) at t= 5/γ. In
the simulations Δ= 0.3, and (a) Ω′ =Ω/3, (b) Ω′ =Ω, and (c) Ω′ = 3Ω. The dynamic mitigation mechanism is also robust against the
time change of the perturbation amplitude δF(t).
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values employed in Figure 2. Figure 4 shows the example
simulation results for Δ= 0.3 and Ω′ = 3Ω, Ω and Ω/3.
Figure 4a shows the RTI growth reduction ratio of
66.9% for Ω′ =Ω/3, Figure 4b shows 70.9% for Ω′ =Ω,
and Figure 4c shows 72.0% for Ω′ = 3Ω at t= 5/γ. The
little oscillation of the imposed perturbation oscillation fre-
quency Ω(t) has a minor effect on the dynamic instability
mitigation.
When the wobbling wavelength λ= 2π/k depends on

time, one can expect as follows in a real system: k(t)=
k0+ ΔkeiΩ

′
k t and k0≫ Δk. In this case, the wobbling wave-

length changes slightly in time, and Eq. (3) becomes as
follows:

∫t
0

dτ δFeiΩτeγ(t−τ)+ik·x

∝ δFeγt+ik0·x
∫t
0

dτe(iΩ−γ)τ ∑∞
m=−∞

imJm(Δk · x)eimΩ′
kτ

∝
∑∞

m=−∞

imJm(Δk · x)
∫t
0

dτei(Ω+mΩ′
k )τ−γτ

∝
∑∞

m=−∞

imJm(Δk · x)
γ+ i Ω+ mΩ′

k

( )
γ2 + Ω+ mΩ′

k

( )2 .

(5)

Here Jm is the Bessel function of the first kind. The result in
Eq. (5) demonstrates that the instability growth reduction
effect is not degraded by the small change in the wobbling
wavelength. In actual situations the mode m= 0 contributes
mostly to the instability mitigation, and in this case the orig-
inal reduction effect shown in Eq. (2) is recovered.
The fluid simulations are also performed for this case

k(t)= k0+ ΔkeiΩ
′
k t. Figure 5 shows the example simulation

results for Δk/k0= 0.3 and Ω′
k= 3Ω, Ω and Ω/3. Figure 5a

shows the RTI growth reduction ratio of 61.3% for Ω′
k=Ω/

3, Figure 5b shows 68.0% for Ω′
k=Ω and Figure 5c shows

93.3% for Ω′
k= 3Ω at t= 5/γ. For a realistic situation

Ω′
k∼Ω, where Ω is the wobbling or modulation frequency.
All the results shown above demonstrate that the dynamic

instability mitigation mechanism proposed is rather robust
against the changes in the amplitude, the phase and the wave-
length of the wobbling or modulating perturbation of δF in
general or δg in RTI.

4. MITIGATION OF IMPLOSION
NON-UNIFORMITY BY SPIRAL WOBBLING
HIBS

The oscillating non-uniform acceleration field would be
obtained by the HIBs’ axes oscillation. We used the heavy
ion wobbling beams as the irradiation beams onto a
deuterium–tritium (DT) fuel target. Figure 6 shows a sche-
matic diagram for the spiral wobbling beam. For the spiral

Fig. 4. Fluid simulation results for the RTI mitigation for the time-dependent wobbling frequency Ω(t)=Ω(1+ ΔsinΩ′t) at t= 5/γ. In
the simulations Δ= 0.3, and (a) Ω′ =Ω/3, (b) Ω′ =Ω, and (c) Ω′ = 3Ω. The dynamic mitigation mechanism is also robust against the
time change of the perturbation frequency Ω(t).

Fig. 5. Fluid simulation results for the RTI mitigation for the time-dependent wobbling wavelength k(t)= k0+ ΔkeiΩ
′
k t at t= 5/γ. In the

simulations Δk/k0= 0.3, and (a) Ω′
k=Ω/3, (b) Ω′

k=Ω, and (c) Ω′
k= 3Ω. The dynamic mitigation mechanism is also robust against the

time change of the perturbation wavelength k(t).
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wobbling beam, the beam radius changes from 3.1 to 3.0 mm
at 1.3 twb (Fig. 6b). Here twb is the time for one rotation of the
wobbling beam axis. The beam rotation radius becomes
2.0 mm at t= 2.0 twb (Kawata et al., 2013) (Fig. 6a). After
that, the beam rotation radius is 2.0 mm. When we employ
the spiral motion of each HIB axis, the initial imprint of
the HIBs illumination non-uniformity is significantly re-
duced. Figure 7 shows the HIB input pulse and the DT
fuel target structure. The Pb beam particle energy is

8 GeV. The total HIB number is 32. The HIB temperature
is 100 MeV in the Maxwell distribution.

Figure 8 shows a non-uniformity history of the target tem-
perature, Figure 9 shows a non-uniformity history of the
target mass density. The rotation frequency is 200 MHz in
this example case. The non-uniformity is evaluated by the
total relative root mean square (RMS) as follows:

σRMS =
∑
k

wkσ
RMS
k . (6)

Fig. 6. (a) Schematic diagram for the spiral wobbling beam and (b) Beam radius.

Fig. 7. (a) Target structure and (b) the HIB input pulse.

Fig. 8. Non-uniformity histories of the temperature in the Al and DT layers.
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Here

σRMS
k = 1

Fk

																∑
l(Fk,l − Fk)2
θmesh

√
, wk =

∑
l Fk,l∑

k

∑
l Fk,l

,

where Fk is the physical quantity (temperature, density, etc.),
Fk is the averaged physical quantity, and wk is the weight
function.
Figures 8 and 9 demonstrate that the implosion non-

uniformity of the DT fuel target is reduced with time by
the spiral wobbling HIBs. For example, the non-uniformity
of the temperature at t= 34 ns is relaxed to 19.7% from
72.1% by the wobbling HIBs.
Figure 10 shows the spatial mode of the ion temperature in

the DT layer based on the Legendre functions. Figure 10a
shows the results without the wobbling motion, and
Figure 10b shows the results without the spiral wobbling.
It is found that the amplitude of the mode 0 increases sig-
nificantly by the spiral wobbling HIBs. It means that the
implosion symmetry is improved and the implosion non-
uniformity was mitigated well.

5. CONCLUSIONS AND DISCUSSIONS

We have discussed the dynamic mitigation method and the
mitigation of the implosion non-uniformity for the DT fuel
target in HIF. The theoretical and simulation results demon-
strate that the dynamic instability mitigation mechanism is
viable and rather robust against the changes in the perturba-
tion frequency, the amplitude, and the wavelength of the
driver wobbling motion or the driver modulation. We also
confirmed the mitigation of the implosion non-uniformity
by the spiral wobbling beam by the fluid implosion simula-
tions. It should be mentioned that if the focused beam spot
radius becomes smaller for the wobbling beam compared
with that for the non-wobbling HIB, the phase space density
increases for the HIB particles, and so the additional require-
ment for the beam quality is imposed (Bangerter et al. 2013).
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