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Turbulent dispersion in
a non-homogeneous field
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Department of Chemical Engineering, University of Illinois, Urbana, IL 61801 USA

(Received 19 January 1998 and in revised form 9 February 1999)

Dispersion of fluid particles in non-homogeneous turbulence was studied for fully
developed flow in a channel. A point source at a distance of 40 wall units from the
wall is considered. Data obtained by carrying out experiments in a direct numerical
simulation (DNS) are used to test a stochastic model which utilized a modified
Langevin equation. All of the parameters, with the exception of the time scales, are
obtained from Eulerian statistics. Good agreement is obtained by making simple
assumptions about the spatial variation of the time scales.

1. Introduction
The physics of turbulent transport of heat and mass emerges in a more natural

way by using a Lagrangian, rather than an Eulerian, approach. Such an analysis
has been exploited for turbulent heat transfer in a rectangular channel in which
one wall is heated and one is cooled (Hanratty 1956, 1958; Hanratty & Flint 1958;
Eckelman & Hanratty 1972; Papavassiliou & Hanratty 1997). The temperature field
was calculated by representing the heated wall as a series of sources and the cold wall
as a series of sinks. The results show that the spatial variation of turbulent diffusion
coefficients defined in an Eulerian framework are, to a large extent, a manifestation
of the time-dependence of diffusion from a line source. Furthermore, Papavassiliou
& Hanratty (1995, 1997) have shown that time-averaged temperature fields can be
calculated with Lagrangian techniques, for arbitrarily large Prandtl numbers, from
the turbulent velocity field given by a direct numerical simulation (DNS).

Two problems that exist in exploiting these methods are addressed in this paper:
(i) measurements of Lagrangian statistics are not as plentiful as measurements of
Eulerian statistics; (ii) a theoretical method to represent the behaviour of a source or
sink needs to be established. Results from a study of the dispersion of fluid particles
in a DNS of fully developed turbulent flow in a channel are presented. The source
is located at the edge of the viscous wall layer to emphasize the influence of non-
homogeneities in the turbulent field. These results are interpreted with a modified
Langevin equation.

The classical papers by Taylor (1921, 1935) describe the statistical behaviour of a
large number of particles originating from a point source in a homogeneous isotropic
turbulent field. The time variation of the mean-squared displacements along one

coordinate, x2
i , is calculated in terms of a Lagrangian correlation coefficient and the

mean-square of a component of the turbulent velocity fluctuations, u2
i . For large times

x2
i varies linearly with time and the turbulent diffusion coefficient, E = 1

2
dx2

i /dt, is

found to be equal to u2
i τL where τL is the Lagrangian time scale, equal to the area
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46 I. Iliopoulos and T. J. Hanratty

under the curve defining the Lagrangian correlation coefficient. For smaller times,
E is a function of time. For most turbulent flows, the fluctuating velocity field is
non-homogeneous and anisotropic, and the time-mean velocity varies with spatial
location; the application of Taylor’s theory is not clear-cut. One approach is to use
stochastic methods to calculate possible paths of particles and to average over a large
number of these paths.

Langevin developed a treatment of Brownian motion which considers the change
of the velocity of a particle with time as due to a damping force that is proportional
to the velocity and a random force which has a zero mean and is uncorrelated
for successive times that are arbitrarily close together. Obukhov (1959) applied this
concept to turbulent fluid motions and proposed a stochastic differential equation to
model dispersion of particles in a homogeneous flow. A consideration of the average
behaviour of a large number of particle paths gives the same result as Taylor’s
analysis if the Lagrangian correlation is represented by exp (−t/τL).

The Langevin equation can be written in the following form to define a possible
change of a component of the velocity of a fluid particle in a homogeneous isotropic
field over a time interval dt:

dui = −ui
τ

dt+ α1/2dω, (1)

dxi
dt

= ui, (2)

where ui identifies the velocity component in the i-direction. In all equations, the
tensor convention of summing over repeated indices is not followed. The first term
in (1) is deterministic. It represents the persistence of the motion of the fluid particle.
The term dω is a sequence of random numbers, with a variance 〈dω2〉 = dt, which
is uncorrelated in successive time intervals (a Markovian assumption). The brackets
indicate an ensemble average.

The Markovian assumption is not exact. It is a reasonable approximation for the
acceleration, which has small correlation times. It is not appropriate for the velocities
or positions of the particle. Furthermore, it cannot represent accelerations in the limit
of t → 0. Its usefulness can be determined only by comparisons with experiments.
Equation (1) can be solved to obtain 〈u2

i 〉 for particles which originate from xi = xi0
with a velocity ui(0) at t = 0. In homogeneous turbulence 〈u2

i 〉 = 〈u2
i (0)〉. This requires

that α = 2σ2/τ, where σ2 = u2
i is the mean square of a component of the velocity

fluctuations in an Eulerian framework and u2
i = 〈u2

i 〉. The constant τ is found to be
equal to the Lagrangian time scale, τL.

A number of investigators have explored the application of (1) to a non-
homogeneous field by allowing σi and τi to be functions of location and to be
different in different directions. Hall (1975) and Reid (1979) obtained satisfactory
solutions of (1) and (2) for a constant σi and a spatially varying τi. They considered
dispersion downstream of a ground level source (which was at the bottom of the
log-layer). Hall assumed that σ2 = 1.3u∗, that τ2 is proportional to the Eulerian time
scale, τE , and that the dispersing particles remain in the log-layer, where u∗ is the
friction velocity and subscript 2 indicates the velocity component perpendicular to
the boundary. This assumption leads to the suggestion that τ2 = c x2/U1, where c
is a constant, x2 is the distance from the boundary, and U1 is the local average
velocity. Reid assumed σ2 = 1.3u∗, and estimated τ2(y) from the spatial variation of
the turbulent viscosity. For neutral stratification he obtained τ2 = 0.26 x2/u∗.
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Turbulent dispersion in a non-homogeneous field 47

Wilson, Thurtell & Kidd (1981) showed that (1) and (2) fail when both σi and τi
are allowed to vary with spatial position in that the models predict that fluid particles
drift from regions of high to regions of low turbulence. Legg & Raupach (1982)
remedied this problem by interpreting the first term on the right-hand side of (1) as
a drag force and the second as a randomly varying acceleration. They argued that
a mean force needs to be added which arises from the mean pressure gradient that
exists in the fluid. For a fully developed flow, the following equation would then be
used for the component of the velocity perpendicular to the wall:

du2 = −u2

τ2

dt+ α
1/2
2 dω2 +

∂σ2
2

∂x2

dt. (3)

Wilson et al. (1981) have suggested that a particle trajectory in inhomogeneous
turbulence may be viewed as a motion in homogeneous turbulence in transformed
coordinates. Durbin (1983, 1984) and Thomson (1984) used this concept to write the
following modified form of the Langevin equation for u2:

d

(
u2

σ2

)
= − u2

σ2τ2

dt+

(
2

τ2

)1/2

dω2 +
∂σ2

∂x2

dt. (4)

Wilson et al. (1981) showed that the inclusion of ∂σ2/∂x2 in (4) is equivalent to the
use of ∂σ2

2/∂x2 in (3). They both ensure that a mean force, equal to the mean pressure
gradient in the fluid, is included.

Durbin (1984) has examined (2) and (4) for large t/τ2. His analysis shows that the
probability function describing the x2-coordinate of the displacement is then given as

∂P

∂t
=

∂

∂x2

(
K(x2)

∂P

∂x2

)
, (5)

whereK = σ2
2τ2. IfK2 were not introduced inside the parentheses in (5) a spurious drift

would be introduced if dK/dx2 6= 0. Thus, Durbin showed that (2) and (4) introduce
a mean drift velocity in a Lagrangian framework that is equal to ∂(σ2

2τ2)/∂x2.
In homogeneous isotropic turbulence dωi is a Gaussian function with a mean of

zero and a variance equal to dt. This is not the case in non-homogeneous turbulence
where dωi is non-Gaussian, even if the Eulerian distribution function for u1 is
Gaussian. Thomson (1984) has developed equations that relate the moments of the
random functions appearing in (3) and (4) to the moments of the Eulerian velocity
fluctuations and to the spatial variance of the Eulerian turbulence.

The results presented in this paper for computer experiments on dispersion from
a point source in a turbulent fluid flowing through a channel are analysed with a
modified version of (4). In § 2 a justification is presented for using this form of the
Langevin equation. In § 3 the moments of the random function are developed by a
more direct method than used by Thomson (1984). This approach has the advantage
of emphasizing the approximations that are made in these analyses.

The computer experiments described in § 5 differ from previous studies in that all
Eulerian properties of the velocity field are known and that the velocity changes of
dispersing fluid particles are directly observed. However, it is not clear how the spatial
variation of the time scale, τi, can be derived directly from the Eulerian properties of
the turbulence. The approach taken is that the analysis is forgiving in specifying this
parameter. Some crude assumptions are, therefore, explored. The rationale behind the
specification of τi is presented in § 4 and in the Discussion Section at the end of the
paper.
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48 I. Iliopoulos and T. J. Hanratty

Most previous applications of the Langevin equation have involved studies of
dispersion in the atmospheric boundary layers for which the behaviour in the viscous
wall region can be neglected. The computer experiments described in this paper were
done at a low enough Reynolds number that a log-layer did not exist, so that the
viscous wall region occupies a large part of the channel. The contribution of this
paper is that it provides results on Lagrangian statistics under conditions where the
non-homogeneities of the velocity field in the viscous wall layer have a significant
influence. Furthermore, the success of the modified Langevin equation is tested not
only by its ability to predict dispersion in a direction perpendicular to the wall but
also by its ability to predict dispersion in the flow direction and the Lagrangian
statistics of the velocity field. A motivation is the need to describe the behaviour of
wall sources of a scalar contaminant for a range of Schmidt (or Prandtl) numbers
and the velocity field seen by solid particles in a turbulent field (Iliopoulos 1998). The
possibility of developing a model for the complicated process of aerosol deposition
by free flight (Brooke, Hanratty & McLaughlin 1994) is of particular interest.

2. Description of the stochastic method
2.1. Homogeneous stationary case

Equation (1) is written as follows by Legg & Raupach (1982):

dui = −ui
τi

dt+ α
1/2
i ξi(t)dt, (6)

where dωi = ξi(t)dt is a random number sequence that has zero mean, τi is a measure
of how long the motion persists in the i-direction and αi is the magnitude of the
random fluctuating term. Although (6) is a stochastic difference equation, a solution
can be obtained by methods developed for linear ordinary differential equations. For
homogeneous isotropic turbulence with ui = 0, αi = α = constant and τi = τ =
constant. The following three properties are postulated (van Kampen 1992):

(i) 〈α1/2ξ〉 = 0 (the average vanishes);
(ii) 〈α1/2ξ(t)α1/2ξ(t′)〉 = αδ(t− t′) (defines the autocorrelation function);

(iii) 〈dω2〉 = dt (obtained by using Ito calculus and the fact that dω is the increment
of a Wiener process).

A term obeying (i), (ii), (iii) is called a Langevin force. Conditions (ii) and (iii)
do not completely specify the stochastic process but only its first two moments. The
Langevin equation is a prototype of a stochastic differential equation, in that its
coefficients are random fluctuations with given statistical properties. The solution of
(6) is

ui(t) = ui(0) exp (−t/τ) + exp (−t/τ)
∫ t

0

exp (t′/τ)α1/2ξ(t′)dt′, (7)

where ui(t) is a fluctuating velocity component and ui(0) is the value of ui at time
zero. After squaring and averaging for a large number of trajectories the following
result is obtained:

〈u2
i (t)〉 = 〈u2

i (0)〉 exp (−2t/τ) + ατ/2− exp (−2t/τ)ατ/2, (8)

where the brackets signify an ensemble average. In homogeneous stationary turbulence
〈u2
i 〉 = 〈u2

i (0)〉 = σ2, so the coefficient in the Langevin equation is found to be
α = 2σ2/τ. Multiplication of (8) by ui(0) and averaging for a large number of paths
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Turbulent dispersion in a non-homogeneous field 49

yields

〈ui(t)ui(0)〉 = σ2 exp (−t/τ). (9)

Thus, the Lagrangian correlation coefficient for a process that obeys the Langevin
equation is

RL(t) =
〈u(0)u(t)〉

σ2
= exp

(
− t
τ

)
. (10)

Since the Lagrangian integral time scale of the fluid, τL, is defined as

τL =

∫ ∞
0

RL(t)dt (11)

it follows that τ = τL. The inexactness of the Langevin equation is reflected in (10),
which does not give the correct behaviour for t→ 0.

The Langevin equation can thus be written as follows for a homogeneous isotropic
field:

dui = − ui
τL

dt+

(
2σ2

τL

)1/2

dω, (12)

where dω = ξ dt, ui is the velocity component in the ith-direction, σ is the root mean
square of a component of the fluctuating velocity and dω is the increment of the
Wiener process.

Equations (3)–(5) can be modified to include the hypothetical case of a homoge-
neous isotropic field for which σ is constant and τ varies with time, by replacing τ
with

τA =
1

t

∫ t

0

τLdt. (13)

Then, α = 2σ2/τA.

2.2. Non-homogeneous, stationary turbulence with constant τi

The use of the Langevin equation for homogeneous turbulence is well established.
However, the more interesting applications are for non-homogeneous flows. Fully
developed turbulent flow in a channel is considered, for which 1, 2, 3 correspond to
the streamwise, wall-normal and spanwise coordinates respectively. The mean velocity,
U1, and the root mean squares of the velocity fluctuations, σi, vary with x2. Equation
(2) is rewritten as

dxi
dt

= Ui + ui, (14)

where Ui is the mean velocity defined by Eulerian measurements. For the case
considered in this paper, Ui is non-zero for the streamwise direction only.

One approach is to use equation (3) with τ2, α2 and ξ2 being functions of x2.
However, the specification of α2 = 2σ2

2/τ2 cannot be justified analytically as is done in
§ 2.1 for a homogeneous isotropic field. Furthermore, it is not clear that 〈u2

i 〉 should
be the same for all times in a non-homogeneous field and the ensemble average of
the velocities of all particles at a given location and time, 〈u2

i (x2)〉, is of more interest,
than 〈u2

i 〉. A desirable condition on the stochastic equation is that at very large times
〈u2
i (x2)〉 = σ2

i (x2) where σ2
i is the Eulerian mean square of ui. For this reason, the use

of a scaled velocity 〈ui(u2)〉/σi(x2), rather than ui, was an attractive choice for us. At
time zero 〈(ui/σi)2〉 = 1.
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50 I. Iliopoulos and T. J. Hanratty

A stochastic equation similar to (1) can be written as

d

(
u2

σ2

)
= − u2

σ2τ2

dt+ α
1/2
2 dω2. (15)

If τ2 is considered to be constant, an analysis similar to what is presented in § 2.1
gives 〈(

u2

σ2

)2

t

〉
=

〈(
u2

σ2

)2

0

〉
(16)

for α2 =
〈
u2

2/σ
2
2

〉
2/τ2, where subscript t signifies time t and subscript 0 signifies time

0. Since 〈(u2/σ2

)2

0
〉 = 1 it follows that 〈(u2/σ2

)2

t
〉 = 1.

Equation (4) introduces into (15) the additional complications of a variable τ2 and
a mean drift defined by the term with ∂σ2/∂x2. It is not clear that the integration of
this equation produces the results given in (16) for all times. However, it might only
be necessary that the equation produces the correct behaviour at large times.

The formulation of the Langevin equation both by (1) and (15) indicates a funda-
mental non-uniqueness. This matter has been discussed by several authors. See, for
example, Sawford & Guest (1987) who argue for the use of (15) rather than (1).

3. Properties of the random forcing function for ui
The method for specifying the random forcing function will now be considered. For

homogeneous isotropic turbulence, dωi is Gaussian with zero mean and variance equal
to dt. As already mentioned, dωi might be non-Gaussian for a non-homogeneous
field even if the Eulerian statistics are Gaussian.

This problem is considered by writing the equations for the velocity components
measured in a Lagrangian framework in the following form:

d

(
ui

σi

)
= − ui

σiτi
dt+ dµi, (17)

where dµi = α
1/2
i dωi. By taking the ensemble average of (17) the following result is

obtained:

〈dµi〉 =

〈
d
(
ui/σi

)
dt

〉
dt. (18)

Here, and in the remainder of the paper, 〈 〉 signifies an ensemble average at a given
location, unless specified otherwise. For i = 2

d
(
u2/σ2

)
dt

= − u2

σ2
2

dσ2

dt
+

1

σ2

du2

dt
. (19)

For a fully developed flow, dσ2/dt = u2(∂σ2/∂x2) where (∂σ2/∂x2) is the derivative in
an Eulerian framework. The substantial derivative is related to Eulerian derivatives
as follows:

dui
dt

=
∂ujui

∂xj
+
∂ui

∂t
. (20)

For a stationary field, the substitution of (19) and (20) into (18) gives

〈dµ2〉 = −〈u
2
2〉
σ2

2

∂σ2

∂x2

dt+
1

σ2

∂〈u2
2〉

∂x2

dt, (21a)
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or

〈dµ2〉 =
∂
(〈u2

2〉/σ2

)
∂x2

dt (21b)

if the ensemble average of a derivative is assumed equal to the derivative of the
ensemble average. If 〈u2

2〉 is approximated by σ2
2 the drift term in (4) is obtained. If

(3) were used 〈dµ2〉 is found to be equal to ∂σ2
2/∂x2, if 〈∂u2

2/∂x2〉 = ∂σ2
2/∂x2.

Gardiner (1990) and von Kampen (1992) have suggested that it is better to derive
equations for the moments directly from the Langevin stochastic differential equation,
rather than from a solution of the Langevin equation as is done in § 2.1. Arnold (1974)
showed that if a stochastic variable is defined by

dX = fdt+ dµ (22)

the following relation is valid:

dX2 = 2Xf dt+ 2X dµ+ dµ dµ. (23)

This result can be understood by defining a change in X1X2

d(X1X2) = X1(t+ dt)X2(t+ dt)−X1(t)X2(t) (24)

with X(t+ dt) = X(t) + dX, so that

d(X1X2) = X1dX2 +X2dX1 + dX1dX2. (25)

If equation (25) with X1 = X2 is substituted into (24), equation (23) is obtained if
terms of higher order than dt are ignored. The term dµ dµ is kept because 〈dµ dµ〉 is
of order dt.

Applying (23) to (17) gives

d

(
u2

2

σ2
2

)
= − 2u2

2

σ2
2τ2

dt+ 2
u2

σ2

dµ2 + dµ2 dµ2. (26)

An ensemble average of (26) at some fixed location is taken. From the properties of
dµ2 it follows that 〈u2dµ2〉 = 0, so that

〈dµ2
2〉 = +

2〈u2
2〉

σ2
2τ2

dt+
1

σ2
2

〈
du2

dt

〉
dt−

〈
2u2

2

σ3
2

dσ2

dt

〉
dt. (27)

Substituting u2(∂σ2/∂x2) = (dσ2/dt) and 〈du2
2/dt〉 = 〈∂u3

2/∂x2〉 gives

〈dµ2
2〉 = +

2〈u2
2〉

σ2
2τ2

dt+
1

σ2
2

〈
∂u3

∂x2

〉
dt− 2〈u3

2〉
σ3

2

∂σ2

∂x2

dt. (28)

Again the ensemble average of a spatial derivative is approximated as the derivative
of the ensemble average, so that

〈dµ2
2〉 = +

2〈u2
2〉

σ2
2τ2

dt+
∂
(〈u3

2〉/σ2
2

)
∂x2

dt. (29)

Since αdω2 = dµ2 and 〈dω2〉 = dt the coefficient α2 in (15) can be obtained from
(29) as

α2 =
2〈u2

2〉
σ2

2τ2

+
∂
(〈u3

2〉/σ2
2

)
∂x2

. (30)

Now 〈dµ2〉 is the sum of a mean plus a deviation around the mean so that

〈dµ2〉 = 〈dµ− 〈dµ〉〉2 + 〈dµ〉2. (31)
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Since 〈dµ〉2 is of order dt2 (see equation (21)) and 〈dµ2〉 is of order dt (see equation
(29)), it follows for small dt that

〈dµ2〉 = 〈dµ− 〈dµ〉〉2. (32)

An equation for 〈dµ3
2〉 can be obtained in the same way as for 〈dµ2

2〉. Let

X1 =
(
u2/σ2

)2
, X2 =

(
u2/σ2

)
. (33)

From (17)

dX2 = −X2

τ2

dt+ dµ2. (34)

From (25), (33) and (34)

dX2
2 = dX1 = −2X1

τ2

dt+ 2X2dµ2 +
X1

τ2
2

(dt)2 − 2X2dt dµ2

τ2

+ dµ2
2. (35)

From (25), (34) and (35) the following relation is obtained if terms of order dt2 are
ignored:

dX1X2 = −3X1X2

τ2

dt+ 3X1dµ2 − 4X1dt dµ2

τ2

+ 3X2dµ
2
2 − 2X1

τ2

dµ2 dt+ dµ3. (36)

An ensemble average is taken and it is recognized that u2 is uncorrelated with dµ2

and that terms with 〈dµ2〉dt are of order (dt)2:〈
d

(
u3

2

σ3
2

)〉
= −3

u3
2

τ2σ
3
2

dt+ 3

〈
u2

2

〉
σ2

2

〈dµ2〉+
〈
(dµ2)

3
〉
. (37)

Thus 〈
dµ3

2

〉
=
∂
(〈u4

2〉/σ3
2

)
∂x2

dt+
3〈u3

2〉
τ2σ

3
2

dt− 3〈u2
2〉

σ2
2

∂
(〈u2

2〉/σ2

)
∂x2

dt. (38)

An equation for 〈dµ4
2〉 can be obtained by letting

X = X1 = X2 = (u2/σ2)
2, (39)

where dX is given by (35). From (25) and (35) an equation for
〈
d
(
u4

4/σ
4
2

)〉
can be

derived, analogous to (37):〈
dµ4

2

〉
=

4
〈
u4

2

〉
σ4

2τ2

dt− 4
〈
u3

2

〉
σ3

2

∂
(〈u2

2〉/σ2

)
∂x2

dt

−12
〈u2

2〉2
σ4

2τ2

dt− 6
〈u2

2〉
σ2

2

∂
(〈u3

2〉/σ2
2

)
∂x2

dt+
∂
(〈u5

2〉/σ4
2

)
∂x2

dt. (40)

Changes in the streamwise velocity fluctuations are given by

d

(
u1

σ1

)
= − u1

σ1τ1

dt+ dµ1. (41)

The following equations are derived for the moments of dµ1:

〈dµ1〉 =
∂
(〈u1u2〉/σ1

)
∂x2

dt, (42)

〈dµ2
1〉 =

[
2〈u2

1〉
σ2

1τ1

+
∂
(〈u2

1u2〉/σ2
1

)
∂x2

]
dt, (43)
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〈dµ3
1〉 =

[
3

τ1

〈u3
1〉
σ3

1

+
∂
(〈u3

1u2〉/σ3
1

)
∂x2

− 3〈u2
1〉

σ2
1

∂
(〈u1u2〉/σ1

)
∂x2

]
dt, (44)

〈dµ4
1〉 =

[
4〈u4

1〉
σ4

1τ1

− 4〈u3
1〉

σ3
1

∂
(〈u1u2〉/σ1

)
∂x2

− 12
〈u2

1〉2
σ4

1τ1

− 6
〈u2

1〉
σ2

1

∂
(〈u2

1u2〉/σ2
1

)
∂x2

+
∂
(〈u4

1u2〉/σ4
1

)
∂x2

]
dt. (45)

Thompson (1984) derived results for dµm2 by a different approach than used above.
Equations (21), (29), (38) and (40) agree with his results if the ensemble averages are
replaced by time averages.

Equation (41) gives the change of the values of the fluctuations around the average,
not the increment in the instantaneous velocity. Therefore, the change in the mean
velocity, at a particular x2, should be added in order to get the change in the
instantaneous streamwise velocity. Using the definition of the substantial derivative
and the assumption of a fully developed flow that has only one non-homogeneous
direction, x2, the following equation is obtained for the evolution of the mean
streamwise velocity:

dU1

dt
=
∂U1

∂xj
uj +

∂U1

∂t
=

(
∂U1

∂x2

)
u2, (46)

where (∂U1/∂x2) is the derivative of the mean Eulerian velocity at x2.

4. Solution of the Langevin equation
4.1. Specification of τi

The time scale appearing in the Langevin equation can be rigorously defined only for
homogeneous isotropic turbulence. For non-homogeneous turbulence, the integral in
(11) need not converge so researchers have interpreted τi as the local decorrelation rate,
that is the persistence of motion in a certain direction. However its exact definition is
unclear. We have followed the lead of previous researchers (Hall 1975; Reid 1979) to
estimate the spatial variation of τi from the spatial variation of an Eulerian time scale.
From numerous studies of wall turbulence one can, therefore, anticipate that τi scales
with outer variables over most of the channel, τiu∗/H = f1(x2/H). Close to the wall τi
would scale with wall parameters, τiu

2∗/ν = f2(x2u∗/ν). For a large enough Reynolds
number a matching region (the log-layer) would exist in which τiu∗/x2 = constant.

Some guidance in selecting values for τi can be obtained from mixing studies
in pipes. In a review of such work, Vames & Hanratty (1988) suggested that the
measurements can be represented by a constant value of τL2 = 0.093a/u∗, where a is
the radius of the pipe and u∗ is the friction velocity. If the dimensionless half-height
of the channel, H = 150, is substituted for the pipe radius a, one obtains τ2u∗/ν = 14.
However, if the hydraulic radius is used, τ2u∗/ν = 28 is obtained. A dimensionless
τ2 in the neighbourhood of 14–28 seems like a reasonable choice for calculations in
which τ2 is taken constant.

Measurements of spectra of streamwise and normal velocity fluctuations in a
channel for a range of Reynolds numbers from 5100 to 48 000, by Warholic (1997),
support the suggestion of Vames & Hanratty, in that the median frequency was found
to scale approximately with H and u∗ for 0.1 < x2/H < 1. Lyons (1989) used his direct
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Figure 1. Eulerian time-scale dependence on the distance from the wall.
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Figure 2. Non-Gaussian case: Lagrangian time-scale variation with wall distance.

numerical simulation for turbulent flow in a channel at H = 150 to calculate Eulerian
temporal correlation coefficients for x2 = 0 − 45. Since the calculations were made
over a limited range of times the area under the curve representing the correlation
coefficients at a given x2 could not be calculated. Instead, τEi is defined as twice the
value of the time at which RE is equal to e−1/2 = 0.606. Eulerian time scales obtained
this way are plotted in figure 1. It is noted that τE1 is approximately (2 – 2.5)τE2 . More
importantly, these Eulerian time scales are found to vary only by a factor of about
2 from x2 = 0 to x2 = 45 for the small Reynolds number used in these calculations.
However, one would expect that as x2 → 0, the length scales characterizing mixing
should go to zero. This is consistent with the time scales shown in figure 1 since
the velocity fluctuations become quite small for x2 → 0 and the length scale is the
product of a velocity and a time.

The results discussed above were used as a guideline for initial calculations in which
a spatially varying τi was used. This simply involved the definition τi = βτEi , where τEi
are the Eulerian time scales given in figure 1 and β is a constant which was selected as
equal to 5. Calculations showed that this choice was not satisfactory because it gives
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time scales close to the wall which are too large. Consequently, the final calculations
were done with the spatially varying time scales shown in figure 2.

This approximation involves the use of a relation which assumes that τi can be
approximated by constant values (which vary with outer scales) farther away from
the wall, and that τi equals the Eulerian time scales (which vary with inner variables)
in the immediate vicinity of the wall. The rationale for this is that the length scales
characterizing the motion (particularly in a direction perpendicular to the wall) are
so small that fluid particles are not displaced appreciably over a time period. As a
consequence, the Eulerian and Lagrangian time scales are approximately equal.

For the low Reynolds number being considered, the outer region begins at x2 = 40.
For x2 > 40, τ1, τ2 and τ3 are, respectively, set equal to 70, 28 and 33. At the wall
they are set equal to the Eulerian scales given in figure 1 at x2 = 0. A signoidal curve
was used to interpolate between the values specified for small and large x2.

Finally, it should be pointed out that the use of the assumption that τi depends
only on local Eulerian time scales appears flawed. In the simple flow field being
considered, spatially varying time scales result in a variation of τi with time, for a
given trajectory, since the particle sees regions which are characterized by different
τEi , as it moves around the field. Consequently an attractive hypothesis is to define
τA(t) for a given trajectory, by (13). We have found, for the situations considered, that
results obtained in this way are not different from those obtained by using τi(y). For
simplicity, the effect of previous history on τi has been ignored in the calculations.

4.2. Numerics

The equation defining the change of velocity along a path is of the form

dui = fidt+ dµ′i + 〈dµi〉, (47)

where dµ′i = dµi − 〈dµi〉. This is solved numerically by specifying a value of ui at
x2 = 40 for t = 0. This initial value could be obtained from the Eulerian probability
distribution representing ui at x2 = 40. For the calculations presented in this paper
the initial conditions for the model were the same as for the 16 129 paths studied in
the computer experiment.

An Adams–Bashforth explicit scheme, that is accurate to second order, was used
to solve equation (47). The turbulent velocity of a particle, which was at location x0

at time zero, was calculated as follows:

ui(x0, tn+1) = ui(x0, tn) + 3
2
dui(x0, tn)− 1

2
dui(x0, tn−1). (48)

A fourth-order Runge–Kutta was tested; the difference was too small to justify the
higher computational cost. A Milstein scheme (Kloeden & Platen 1992) was also
used, but the results showed no appreciable difference. A well-known difficulty with
multistep methods, like the Adams–Bashforth, is that they are not self-starting. In
order to extrapolate to the next point information is needed from previous points,
which is not normally available at the beginning of the computation. The Euler
method, which is first-order accurate and can be viewed as the simplest Runge–Kutta
method, was used for the first time step:

ui(x0, tn+1) = ui(x0, tn) +
dui(x0, tn)

dt
∆t. (49)

The same schemes were used to solve the equation of motion to get a new position
for the particle:

xi(x0, tn+1) = xi(x0, tn) + [ 3
2
ui(x0, tn)− 1

2
ui(x0, tn−1)]∆t. (50)
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Again, for the first time step, an Euler scheme is used:

xi(x0, tn+1) = xi(x0, tn) + ui(x0, tn)∆t. (51)

In general, the probability density function of the random irregular term is not
Gaussian. The selection of the random number in (47) needs to take this into account.
This is achieved by using a method developed by Baerensten & Berkowicz (1984).
Two Gaussian distributions, that have means of µι1 and µι2 and variances of σ2, are
summed with different weights. The probability of selecting a number from N(µι1, σι

2)
is p and from N(µι2, σι

2) is 1-p, so that

dµ = pN(µι1, σι
2) + (1− p)N(µι2, σι

2). (52)

To O(dt), the average value of dµ is 0. Parameters µι1, µι2, σι
2 and p are functions

of the distance from the wall, x2. They are selected so as to satisfy the following
equations which are accurate to first order of dt:

pµι1 + (1− p)µι2 = 0, (53a)

p(µι21 + σι2) + (1− p)(µι2 + σι2) = 〈dµ2〉, (53b)

p(µι31 + 3µι1σ
2) + (1− p)(µι32 + 3µι2σι

2) = 〈dµ3〉, (53c)

p(µι4 + 6µι21σι
2 + σι41) + (1− p)(µι4 + 6µι22σι

2 + σι42) = 〈dµ4〉. (53d)

Since 〈dµmi 〉 is O(dt) for all values of m, the selected random numbers, dµi, could
satisfy conditions of higher order than given in (53). However, this is not practical
since Eulerian data are not available to evaluate higher-order moments. One could
argue that it is meaningless to use 〈dµmi 〉 up to m = 4 and that only the specification
of 〈dµ2

i 〉 can be justified. Our reason for considering 〈dµ3
i 〉 and 〈dµ4

i 〉 is to examine
the effects of the skewness and flatness of the velocity fluctuations, which can be quite
large close to the wall.

The Gaussian distributions N(µι1, σι
2) and N(µι2, σι

2) are specified by selecting
random numbers in the interval [0,1). By using the Box–Muller transformation (Press
et al. 1989), the outcome was changed into a Gaussian deviate. The Box–Muller
scheme was chosen over the Brent transformation (Press et al. 1989) because it can
be much faster on parallel machines (Convex 1990).

The uniform random number generator that was used is a standard function of the
mlib mathematical library of the HP-Convex Company. All uniform random number
generators suffer from the drawback that the sequence produced is repeated after a
certain number of steps. In order to avoid this problem in a single run and have the
maximum period possible, an integer *8 (the maximum length of an integer that can
be accommodated by the machine) was used to seed the uniform random number
generator. Then the period of the sequence was 264.

5. Results of computer experiments
5.1. Description of the computer experiments

All of the results are presented in a non-dimensional form, using the friction velocity
and the kinematic viscosity. The system considered is fully developed turbulent flow
between two smooth walls, separated by a distance 2H , that extend to infinity in
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Figure 3. Plots of the root-mean-square velocity components (a), and Reynolds stress
(b) x2 = 0 is the bottom wall and 150 is the centreline.

the streamwise and spanwise directions. The space between the plates is filled with
a fluid flowing at a Reynolds number of 4520 based on the average fluid velocity
and the distance between the plates, 2H . Dimensionless H has a value of 150. The
three-dimensional, time-dependent, fluctuating velocity field is obtained by solving
numerically the Navier–Stokes equations on a three-dimensional grid, as described
by Lyons, Hanratty & McLaughlin (1991). Calculated values of the mean squares
of the velocity components and of the Reynolds shear stress are given in figure 3.
Skewness and flatness factors, plotted in figure 4, are used to evaluate 〈dµ3

i 〉 and
〈dµ4

i 〉. The straight horizontal lines represent Gaussian behaviour. Large departures
are noted, so a consideration of the effects of skewness and flatness in specifying dµi
is of interest.

Fluid particles that were released at a distance x2 = 40 from the bottom wall
were tracked in time in the flow field. The position of each particle was continuously
updated by numerically integrating its equation of motion in time:

∂xi(x0, tn)

∂t
= Vi(x0, tn). (54)

The velocity of the particle at some later time, t + ∆t, is the velocity determined by
the DNS at xi + ∆xi, t+ ∆t. The method for tracking fluid particles is an extension of
the algorithm developed by Kontomaris (1991).
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Figure 4. Plots of the velocity skewness (a), and velocity flatness (b) from the DNS. 0 is
the bottom wall, 150 the centreline. The straight lines show a Gaussian behaviour.

5.2. Results of computer experiments

Concentration profiles obtained from the computer experiments are shown in figures
5–8 as data points. The curves are solutions of the Langevin equations. The particles
spread as a cloud in the x1-, x2- and x3-directions. The abscissa, x2, is the dimensionless
distance from the wall. The channel is divided into 30 bins equally spaced in the x2-
direction. The number of particles in each bin is divided by the volume to give the
concentration. Averages over x1 and x3 are taken at fixed x2.

At t = 0 all the particles are at x2 = 40. Over the period t = 0–20 the particles
spread symmetrically. The root-mean-squared displacement increases roughly as the
product of the root mean square of the normal velocity fluctuations at x2 = 40 and the
time. As time increases, the profile becomes more asymmetric, in that particles spread
to larger distances in the positive x2-direction. Particles moving to the wall region see
smaller velocities and move shorter distances when they reverse their direction. As a
consequence, the maximum in the concentration profile moves closer to the wall. The
calculations suggest that for larger times a broad maximum will exist at the wall. It
is expected that this maximum would decrease with increasing time. At large enough
time the particles would be uniformly spread over the channel section.

Averages of the concentration over x2 and x3, from the computer experiment, are
presented as a function of x1 and of time in figure 9. Again for t = 0–20 the particles
spread symmetrically in the x1-direction. As time proceeds, particles diffuse into the
region close to the wall, where the mean velocity in the x1-direction is smaller than
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Figure 5. Comparison between concentration profiles of fluid particles at (a) small and (b) large
times for case 1 (table 1). x2 = 0 is the bottom wall and 300 is the top wall. The symbols are results
from the DNS and the lines results from the model.

in the central region. As a result, the concentration profiles show a large tail, whose
extent, at a given time, depends on profiles in the x2-direction at earlier times. The
peak in the profile is convected downstream at a velocity of c = 15.8, which is roughly
equal to the bulk velocity, Ub = 15.4.

Values of the ensemble average of the mean square of the velocity fluctuations in
the normal direction, 〈u2

2〉1/2, are shown in figure 10. The curve represents the Eulerian
values of σ2. At t = 0, 〈u2

2〉1/2 = σ2 and all the particles are at x2 = 40. For small
times, particles with larger velocities are displaced larger distances from x2 = 40.
As a result, the intensity at x2 = 40 drops below the Eulerian value. The profile of
〈u2

2〉 around x2 = 40 tends to be asymmetric because the skewnesses at x2 > 30 are
positive. Particles that are close to the wall are seen to adjust more rapidly to the local
Eulerian values than the particles at larger distances from the wall. At very large
times the Lagrangian and Eulerian values are equal. Values of 〈u3

2〉 are presented

in figure 11. Again, it is seen that these are not equal to u3
2, the solid curve. The

very large values of positive skewness for the Lagrangian velocities arise because the
region of large x2 is populated by particles which had a large u2 at t = 0. Close to

the wall 〈u3
2〉 adjusts to u3

2 more rapidly than in the central region of the channel.
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Figure 6. As figure 5 but for case 2 (table 1).

Correlation coefficients, defined as Rii = 〈ui(t)ui(0)〉/σi(0)σi(t), are given in figure 12.
It should be noted that the ensemble average in this case is for all the particles in
the field at a given time; that is, particles at all x2 locations are included in the
average. The correlation coefficient decays to zero much faster for the normal velocity
fluctuations than for the streamwise velocity fluctuations. The time scale, defined as
twice the value of the time t at which the Lagrangian correlation coefficient is equal
to e−1/2 = 0.606, gives values of τ1 = 70, τ2 = 28 and τ3 = 33. A comparison with
the results for τE1 at x2 = 40, given in figure 1, reveals that both τ1/τ2 and τE1 /τ

E
2 are

approximately equal to 2.2.

6. Results of the stochastic model
6.1. Outline

The stochastic equation that is used to calculate a possible change of the fluctuating
velocity components ui along a fluid particle trajectory is

d

(
ui

σi

)
= − ui

σiτi
dt+ Āidt+ dµi, (55)
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Figure 7. As figure 5 but for case 3 (table 1).

where Āidt represents 〈dµi〉, dµi is a random variable with a mean of zero, and repeated
indices do not imply summation. In all of the calculations the ergodic approximation
is used so that the ensemble average at a given x2 (denoted by 〈 〉) is replaced by
Eulerian time averages (denoted by an overbar), obtained from the DNS by Lyons
(1989). Thus

〈A1〉 = Ā1 =

∂

(
u1u2

σ2

)
∂x2

, (56)

〈A2〉 = Ā2 =
∂σ2

∂x2

, (57)

〈A3〉 = Ā3 = 0. (58)

Values of σ1(x2), σ2(x2), u1u2(x2) are given in figure 3.
Table 1 summarizes the conditions for which results of calculations are presented.

For the cases in which a Gaussian distribution was explored, dµi is given by a Gaussian
distribution, with a variance 〈dµ2

1〉 = 2dt/τi. When a non-Gaussian distribution was
used the moments of dµ2 were defined from (29), (38), (40) by replacing the ensemble
averages with the time averages. Because measurements of the gradient of the fifth
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Figure 8. As figure 5 but for case 4 (table 1).

Case τ1 Āi Random forcing

1 τ1 = constant Āi = 0 Gaussian
τ2 = constant

2 τ1 = constant Āi 6= 0 Gaussian
τ2 = constant

3 τ1 = constant Āi 6= 0 Non-Gaussian
τ2 = constant

4 τ1 6= constant Āi 6= 0 Non-Gaussian
τ2 6= constant

Table 1. Value of the parameters for different runs of the stochastic model.

moment of the velocity are not available the third term on the right-hand side of (40)
was set equal to zero. The moments of dµ1, obtained from (43), (44), (45), again are

obtained by replacing ensemble averages with time averages. Terms u2
1u2, u

3
1u2, u

4
1u2

were set equal to zero since data for these quantities are not available. Justification
for this is obtained from DNS calculations of ∂

(〈u2
1u2〉/σ2

1

)
/∂y. These are found to
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Figure 9. Comparison between streamwise dispersion of fluid particles for case 4 at (a) small and
(b) large times. x1 = 0 is the initial location of the particles. The symbols are results from the DNS
and the lines results from the model.

be close to zero. The terms ∂
(〈u3

1u2〉/σ3
1

)
/∂x2 and ∂

(〈u4
1u2〉/σ4

1

)
/∂x2 are expected to

be less important.

6.2. Case 1: τ2 = 28, Āi = 0, Gaussian forcing function

Figure 5 compares calculated concentration profiles at different dimensionless times
with measurements from the DNS. The model calculations were done for τ2 = 28, and
Āi = 0. The random term dµi was defined by a Gaussian distribution. The turbulent
intensities (root-mean-square fluctuating velocities, σi) are not constant but a function
of the distance from the walls. If a particle hit the wall (an infrequent happening) it
was bounced off through an elastic collision, (no flux).

Good agreement between the model and the experiments is observed for t = 10
and t = 20. For larger t the model predicts an accumulation of particles at the wall,
which is not observed in the calculations with the DNS.

6.3. Case 2: τ2 = 28, Āi 6= 0, Gaussian forcing function

The only difference between case 2 and case 1 is that the parameters Āi appearing in
(56) are not equal to zero. They are now defined by (57) and (58). As indicated in §§ 1
and 3, these are included to oppose the tendency of particles to drift from regions
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Figure 10. Intensity of normal fluid velocity fluctuations obtained from the DNS at
(a) at small times and (b) at large times.

of high turbulence to regions of low turbulence; that is, they allow for a pressure
gradient in the fluid to oppose the drift. Figure 6 shows calculated concentration
profiles. An improvement is noted over case 1 at large times. The fluid particles do
not accumulate at the bottom wall and more particles spread toward the centreline.
However the model overpredicts the dispersion for x2 < 40 and underpredicts it for
x2 > 40.

6.4. Case 3: τ2 = 28, Āi 6= 0, non-Gaussian forcing function

Case 3 differs from case 2 in that the p.d.f. of the random term is not Gaussian: it
has both skewness and flatness. It should be noted that the values of the third and
fourth moments of the random term are not the Eulerian skewness and flatness.

The inclusion of skewness and flatness improves the agreement between the DNS
and the model, as shown in figure 7. The particles, now, spread farther away towards
the top wall. For large times (t > 100), the model is in good agreement with the
computer experiment throughout the channel. For intermediate times (30 < t < 50)
the model overpredicts the dispersion: the peaks of the profiles obtained from the
model are low compared to the peaks obtained from calculations with the DNS. It
should be noted that in this case none of the particles actually reached the walls.
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Figure 11. Skewness of normal velocity fluctuations obtained from the computer experiments
(a) at small times and (b) at large times.

6.5. Case 4: τi 6= constant, Āi 6= 0, non-Gaussian forcing function

The calculations considered in cases 1, 2 and 3 illustrate the need to consider drift
terms, Āi, and to include effects associated with skewness and flatness of the velocity
fluctuations. Further improvements require a consideration of the influence of the
time scales, τi, which are not known a priori.

Different values for the normal time scale, τ2, than used in case 3 were explored.
A value half that used for cases 1, 2 and 3, that is τ2 = 14, produces no difference
in the calculated concentrations profiles from t = 0 until t = 15. This suggests that
the spread for small times is dictated mainly by the initial values of the velocities of
the particles. Differences in calculations from case 3 were noted for t > 15, in that
better agreement was noted close to the wall between the calculated concentration
profiles and the profiles obtained from the DNS. When the larger time scale was
used, τ2 = 28, the agreement was improved in the centre of the channel. These results
showed that the assumption of a constant time scale, τ2, needs to be abandoned if
better results are desired. In particular, smaller values of τ2 need to be used close to
the wall.

A reasonable approach is to assume that τ1 and τ2 are proportional to the Eulerian
time scales obtained from temporal autocorrelations and from frequency spectra. This
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Figure 12. Comparison between fluid velocity correlation graphs over time,
(a) for case 2 and (b) for case 4.

was pursued in the thesis by Iliopoulos (1998). This gives larger time scales close to
the wall than in the centre regions of the channel and, therefore, a poorer agreement
than obtained for case 3. As discussed in § 4.1, this led to the use of the functions for
τi shown in figure 2.

Figure 8 compares concentration profiles obtained from the DNS and the model
calculations for case 4. Very good agreement is noted. For small times the shapes of
the concentration profiles are exactly the same. For intermediate times, the particles
approach the bottom wall, but do not have a tendency to accumulate there. The
shape of the profiles is the same at t = 50, where a significant difference was noted
for case 3. For large t the model does not overpredict results from the DNS, as it
did at t = 400 around x2 = 40 for cases 1, 2 and 3. Figure 13 gives values of the
ensemble averages 〈u2

2〉1/2 calculated from the stochastic model for case 4. Very good
agreement is noted with the computer results in figure 10. For small times the model
not only predicts correctly that the intensities deviate from the Eulerian values, but
it also gives the correct values. The main reasons for the scatter is that the bins at
large x2 have few particles and that the skewness is affecting the behaviour in this
region. The predictions of the skewness of the normal velocity fluctuations with the
stochastic model for case 4 (in figure 11) are also in very good agreement with the
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Figure 13. Intensity of normal fluid velocity fluctuation obtained from the model case 4,
(a) at small times and (b) at large times.

results of the DNS experiment in figure 14. At small times the model predicts the
trend and the values of the skewness, surprisingly well. For longer times the model is
still quite satisfactory.

Calculated concentration profiles in the streamwise direction are compared with
results obtained with the DNS. These profiles are a more severe test of the accuracy
of the model than the ones in figure 8, because streamwise positions are very sensitive
to the previous history of the particles. Therefore, one can see a slight difference
between the DNS and the model. It is more noticeable in the peaks and in the tails
of the clouds after t = 50.

Figure 12 compares calculations of Lagrangian correlations for the normal and
streamwise velocity fluctuations for cases 2 and 4. The velocity correlations in figure
12(a) compare results from the DNS and the model calculations for case 2. In figure
12(b) the comparison is made between the DNS and the model calculation for case 4.
It should be noted that the ensemble average is for all the particles in the field. The
calculated normal velocity correlation for case 2 drops below the data from the DNS
experiment. This could result from the selection of a time scale that is too large for the
region below x2 = 40. The particles start at x2 = 40 and some of them move towards
the bottom wall. The persistence of their motion in the normal direction increases
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Figure 14. Skewness of normal velocity fluctuations obtained from model case 4,
(a) at small times and (b) at large times.

with increasing τ2. As pointed out earlier, the time scale near the wall is overestimated
in case 2. This could also explain why the model for case 2 overpredicts concentrations
close to the wall. Another possible source of error is the Gaussian assumption. The
Eulerian skewness profile across the channel, figure 3, shows that the skewness is
negative below x2 = 40 and positive above x2 = 40. Since the particles are released at
x2 = 40, the assumption of a Gaussian behaviour causes the correlation to overshoot
zero at intermediate times, for which the population for x2 < 40 is overpredicted.
A comparison of figures 12(a) and 12(b) shows that calculations based on case 4
produce better agreement with the DNS experiments than do calculations based on
case 2. The inability of the model calculations to capture the correct behaviour close
to t = 0 reflects a limitation of the Markovian assumption.

7. Discussion
This paper uses studies of the dispersion of fluid particles in a DNS of turbulent

channel flow to test theories that have been developed to apply the Langevin equation
to non-homogeneous fields. The particular case that is examined is a point source
at x2 = 40, where x2 is the distance from the wall made dimensionless with wall
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parameters. The agreement between the Langevin models and the calculations with
the DNS is quite good.

All of the statistical parameters of the turbulence used in the model, with the
exception of the time scales, were obtained from Eulerian properties of the field. In
this sense, the Langevin equation relates Lagrangian properties of the turbulence to
Eulerian properties. For the case considered, the Eulerian time scales, such as those
obtained from spectra or correlations, vary by only a factor of four from the centre
of the channel to the wall. Therefore, we felt justified to carry out calculations that
use constant time scales.

These confirmed previous studies which showed that particles tend to move from
regions of high turbulence to regions of low turbulence. The inclusion of a mean
drift in the forcing term in the Langevin equation is needed to counteract this effect
(as suggested by a number of previous researchers). This term can be interpreted as
a time-mean pressure gradient which is related to spatial variation of the Reynolds
stresses.

The calculations with a constant time scale also reveal the need to take into
consideration the non-Gaussian properties of the turbulent field. The skewness of
the velocity fluctuations in the normal direction is positive outside the viscous wall
region and negative inside. Because of this, particles moving away from the point
source, at x2 = 40, toward the centreline can have larger positive velocities than is
predicted with a Gaussian distribution. Likewise, particles moving toward the wall
will have larger negative velocities. Consequently, the extent of the dispersion is larger
than predicted with a Gaussian distribution. This is seen in figure 6 where the values
of the maxima are predicted to be too large for t = 100 – 400. The time constants
used in this calculation are Lagrangian scales; they are larger than the Eulerian time
constants, such as shown in figure 2 for x2 > 40.

Further improvements to the calculations required a consideration of the spatial
variation of the time scales. One approach would be to assume that they vary with
the distance from the wall in the same way as the Eulerian time scales and are larger
by a factor of about four. This does not improve the results, which are worse than for
case 3 where the time scales were kept constant. Consideration of figure 7 shows that,
for intermediate times, t = 40–100, the model for case 3 predicts large concentrations
of particles close to the wall that are not observed in the DNS experiments. This
behaviour has been explained as being the result of the use of a time scale that is
too large close to the wall. A physical explanation is that particles moving toward
the wall persist in their motion for too long a time period. This led to the argument
that the Lagrangian time constants are equal to the Eulerian time constants right at
the wall.

Calculations using this assumption agree with experiments done in a DNS, apart
from a slight disagreement in the calculation of concentration profiles in the stream-
wise direction. This comparison is a severe test because dispersion in the streamwise
direction is strongly dependent on the mean streamwise velocities that the particles
saw during the period that they were followed. Therefore c(x, t) reflects the accuracy
with which concentration profiles in a direction perpendicular to the wall have been
predicted at previous times.

The understanding of the influence of spatially varying time constants emerges as
a central problem. One of the questions that arises is how to introduce this variation
into the Langevin equation. This paper simply substitutes τi(y) for a constant τi.
(However, as pointed out in § 2, the previous history of a particle might have to
be taken in to account.) From previous studies of wall turbulence, one can assume
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Figure 15. Time scale defined from the ratio of σ2
2 and the dissipation of turbulent energy.

that τi scales with wall parameters in the viscous wall region and with outer flow
parameters in the outer region. An increase in Reynolds number would, therefore, be
accompanied by an increase in the ratio of the scales in the centre of the channel
to the scales at the wall. From experience in scaling mean velocities, the matching
of scaling relations for the outer region to scaling relations in the viscous wall layer
could involve a ‘log-layer’ assumption in which τi would depend only on y and u∗.
The Reynolds number was so small, for the case considered in this paper, that no
log-layer existed. Therefore a simple matching was used.

The main conclusion is that recent equations developed by Thomson (1984) and
Durbin (1983, 1984) to introduce influences of non-homogeneities into the Langevin
equation produce a good stochastic representation of the dispersion of fluid particles.
For an accurate representation, though, information is required not only on the
higher-order moments of the velocity distribution (namely skewness and flatness), but
also on the variation of the Lagrangian time scale in the flow field. Clearly, more
work needs to be done on this problem.

One possibility is to use the local turbulent viscosity, νT . Figure 15 presents the
ratio of νT to σ2

2 , made dimensionless with wall parameters. It is noted that there is
a very rough similarity between this time scale and the values of τ2 shown in figure
2. Clearly, this is a possible alternative to the approach suggested in figure 2.
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