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An analytical method and algorithm for great elliptic sailing (GES) calculations is presented.
The method solves the complete GES problem calculating not only the great elliptic arc

distance, but also other elements of the sailing such as the geodetic coordinates of inter-
mediate points along the great elliptic arc. The proposed formulas provide extremely high
accuracies and are straightforward to be exploited immediately in the development of
navigational software, without the requirement to use advanced numerical methods. Their

validity and effectiveness have been verified with numerical tests and comparisons to ex-
tremely accurate geodetic methods for the direct and inverse geodetic problem.

KEY WORDS

1. Navigation. 2. Sailings. 3. Geodesic. 4. Great elliptic.

1. INTRODUCTION. In traditional navigation, the calculation of the
elements of the shortest navigation path between two points on the surface of the
Earth is usually conducted by the use of a spherical model of the Earth and the as-
sumption that one minute of arc of any great circle is equal to one international
nautical mile. It is well known that more accurate results can be obtained by the
adoption of an ellipsoidal model of the Earth and the calculation of geodesic dis-
tances and azimuths.

The discrepancies between the results of shortest navigational path calculations on
the spherical model of the Earth as great circle arcs and on the ellipsoidal model as
geodesics, are in the order of 0.27% according to Tobler (1964), and in the order of
0.5% according to Earle (2006). In reality these discrepancies can exceed 15 nautical
miles (about 28.5 km). An example of such a discrepancy is shown through the cal-
culation of the shortest navigational distance from a departure location on the east
coast of Australia, such as the entrance to Sydney Harbour (Q : 33x 46.21k S, l : 151x
31.964k E) to a destination point on the west coast of South America such as the
approaches to Valparaiso in Chile (Q : 32x 59.998k S, l : 71x 36.675kW). The calculation
of this distance on the spherical Earth model with the assumption that one minute of
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a great circle arc is equal to the international nautical mile (1852 metres) yields a
distance of 6113 nautical miles1. The calculation of same distance on the WGS-84
ellipsoid, with very accurate geodetic methods of sub-metre accuracy as the method
of Vicenty (1975), yields 6128.4 nautical miles. For this example the difference in
calculated distances on the spherical model from those on the ellipsoid is more than
15 nautical miles (y28.5 km).

In practice very accurate results can be obtained by the execution of the cal-
culations on the great ellipse rather than on the geodesic. The great ellipse is the line
of intersection of the surface of the ellipsoid with the plain passing through its
geometric centre O and the departure and destination points P1 and P2 (Figure 1). For
surface navigation applications the great elliptic arc P1P2 approximates very closely
the geodesic line and even for the longest possible navigational paths the dis-
crepancies between geodesic and great elliptic arc are practically negligible (see
Section 5 of this paper presenting the results of numerical tests and comparisons).
Seeking the higher accuracies of the geodesic for sailing calculations does not have
any practical value for marine navigation and simply adds more complexity to the
calculations. Great elliptic calculations are simpler than those on the geodesic and
much more accurate than the traditional navigation calculations on the great circle
with a spherical earth model.

In the span of the last 25 years many interesting methods and formulas for great
elliptic sailing computations have been proposed from the direct and inverse solutions
of Bowring (1984) up to the vector solutions for azimuths of Earle (2008).Most of these
methods have offered valuable contributions for the complete, straightforward and

Figure 1. Great ellipse and great elliptic arc.

1 In traditional navigation the calculations of shortest navigational distances are carried out on the

‘‘navigational sphere’’ which has the property that one minute of a great circle arc is equal to one nautical

mile (international nautical mile). Theoretically slightly better accuracies could be achieved with the use of

the auxiliary geodetic sphere with radius equal to the semi-major axis of the WGS-84 ellipsoid, and the

calculated results be transformed from metres to international nautical miles. Nevertheless, in practice

there is not significant discrepancy between the calculations on this auxiliary geodetic sphere and the

navigational sphere.
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accurate solution of the great elliptic sailing problem, without the need to use ad-
vanced numerical methods or commercial mathematical software.

Our proposed analytical method and algorithm solves the complete problem in-
cluding not only the great elliptic arc distance, as in other proposed methods, but also
other elements of the sailing such as the course at the departure and destination
points and the geodetic coordinates of the vertex and the intermediate points along
the great elliptic arc.

The second section of this paper presents the great elliptic sailing (GES) problem
and the basic parameters of the great ellipse that are used for the subsequent calcu-
lations. The third section presents an overview of various methods and formulas
which have been proposed in the span of the last 25 years, from the direct and inverse
solutions of Bowring (1984) up to the vector solutions for azimuths of Earle (2008). The
fourth section presents the proposed equations and the algorithm for the complete sol-
ution of the great elliptic arc sailing, including the coordinates of intermediate points
along the great elliptic arc. The fifth section presents the results of numerical tests for
the evaluation of the proposed algorithm. The sixth section concludes the paper.

2. THE GREAT ELLIPTIC SAILING PROBLEM AND THE
BASIC PARAMETERS OF THE GREAT ELLIPSE. As in other sail-
ing methods, in Great Elliptic Sailing (GES) the calculations are distinguished in
the direct and inverse problem. In the direct problem the known parameters are
the geodetic coordinates of the departure point, the distance and azimuth of the
destination point, the semi major axis and the eccentricity of the ellipsoid; the com-
puted parameters are the geodetic coordinates of the destination point. In the in-
verse problem the known parameters are the geodetic coordinates of the departure
and destination points, the semi major axis and the eccentricity of the ellipsoid; the
computed parameters are the great elliptic arc length (great elliptic sailing distance)
and the course at the departure and destination point.

The navigator is interested only in the solution of the inverse sailing problem.
Nevertheless the solution of the direct problem can be exploited for the derivation
of calculation methods of the coordinates of intermediate points of the great elliptic
arc. (see Section 4.4). These intermediate points are required in order to approximate
the GES by a series of successive rhumb line sailings.

2.1. Calculation of the length of the great elliptic arc. The calculation of the
length of the great elliptic arc can be conducted by the use of standard geodetic
Formula (1) for the length of the arc of the meridian M0

w
(Figure 2) after the proper

modification of the parameters of the meridian ellipse with those of the great ellipse.
This is better understood if we consider the great ellipse as an inclined version of the
meridian ellipse (Figure 3). More specifically the two basic parameters that are re-
quired for the calculation of the length of the great elliptic arc are:

’ The eccentricity ege of the great ellipse. This is equivalent to the eccentricity e of
the reference ellipsoid used in Formula (1).

’ The geodetic great elliptic angle Qge. This is equivalent to the geodetic latitude Q
used in Formula (1).

Another basic element of the great ellipse is the geocentric great elliptic angle hge. This
parameter is a prerequisite for the calculation of the geodetic great elliptic angle Qge.
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Specific formulas for the calculation of these parameters of the great ellipse are pres-
ented in Section 4 of this paper.

Adopting the parameters ege and Qk of the great ellipse into the meridian arc
Formula (1), we obtain Formula (2) that provides the distance along the great elliptic
arc. Many methods have been used for the computation of the integral of Formula
(1). All these methods and formulas can be used for the calculation of the distance
along the great elliptic arc by Formula (2).

M
w
0=

ZQ
0

a(1xe2)

(1xe2 sin Q)
3
2

dQ (1)

M
w
0=

ZQ
0

a(1xe 2
ge )

(1xe2 sin Qge)
3
2

dQge (2)

Equations (1) and (2) can be transformed to an elliptic integral of the second type,
which cannot be evaluated in a closed form. The calculation can be performed either

Figure 3. The geodetic great elliptic angle Qge and the geocentric great elliptic angle hge.

Figure 2. The length of the arc of the meridian.
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by numerical integration methods, such as Simpson’s rule, or by the binomial ex-
pansion of the denominator to rapidly converging series, retention of a few terms
of these series and further integration by parts. This process yields results like
Formula (3).

M
w
0=a(1xe2) 1+

3

4
e2+ � � �

� �
wx

3

8
e2+

15

32
e4 � � �

� �
sin 2w+ � � �

� �
(3)

Equation (3) is the standard geodetic formula for the accurate calculation of the
meridian arc length, which is proposed in a number of textbooks such as in Torge’s
Geodesy using up to sin(2Q) terms.

According to Snyder (1987) and Torge (2001), Simpson’s numerical integration of
Formula (1) does not provide satisfactory results and consequently the standard
computation methods for the length of the meridian arc are based on the use of series
expansion formulas, such as Formula (3).

2.2. Calculation of the forward and inverse azimuth (course at the departure and
destination point). Most of the methods and formulas that have been proposed for
the calculation of the forward and inverse azimuth of the great elliptic arc require
advanced numerical methods and thus they suggest either the use of commercial
mathematical software (Earle 2000, 2008), or the use of the simple formulas for the
calculation on the sphere (Walwyn 1999). A straightforward method for the cal-
culation of the forward and inverse azimuth, that can be easily used in the compi-
lation of algorithms, without recourse to advanced numerical methods, has been
proposed by Bowring (1984). The methodology proposed by Bowring consists of two
steps. Initially the forward and backward azimuths are calculated on the auxiliary
unit sphere as in the classical spherical Earth model of the traditional navigation. The
second and final step is the reduction of the calculated spherical azimuths to their
ellipsoidal values for the great elliptic arc sailing.

3. EXISTING METHODS FOR THE SOLUTION OF THE GREAT
ELLIPTIC SAILING.

3.1. Bowring method for the direct and inverse solutions for the great elliptic
line. Bowring (1984) provides formulas for the solution of the direct and inverse
great elliptic sailing problem. Bowring’s formulas can be used for the calculation of
the great elliptic arc length and the forward and backward azimuths, but no solution
is proposed for the calculation of the coordinates of the vertex and the intermediate
points.

The first set of formulas proposed by Bowring concerns the computation of some
prerequisite parameters, such as the spherical azimuth, the minor eccentricity of the
great ellipse and the parametric latitudes of the departure and destination points. The
proposed parameters are subsequently used for the solution of the direct and inverse
problem.

The method of Bowring for the calculation of the great elliptic arc length employs
the use of an auxiliary geodetic sphere and various types of coordinates, such as,
geodetic, geocentric, Cartesian and polar. These formulas for the great elliptic dis-
tance have been tested and it was proved that they provide very satisfactory results in
terms of obtained accuracy. Nevertheless other simpler computation methods of the
length of the great elliptic arc can be used by the employment of standard geodetic
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formulas for the length of the arc of the meridian, after the proper modification of the
parameters of the meridian ellipse with those of the great ellipse, such as Formulas (1)
and (2). The formulas used by Bowring for the calculation of the forward and back-
ward azimuths, unlike those for the distance, are very much simpler than other
methods of the same accuracy.

3.2. William’s method for the computation of the distance along the great elliptic
arc. Williams (1996) provides formulas for the computation of the sailing distance
along the arc of the great ellipse. These formulas have the general form of the integral
of Formula (2). For the computation of the eccentricity ege and the geodetic great
elliptic angle Qge of Formula (2), Williams provides simple and compact formulas.
For the evaluation of this integral Williams employs the cubic spline integration
method of Plythian and Williams (1985). In his paper Williams (1996) presents the
results of comparative calculations for eight test lines that have been permanently
used by Haiwara (1987) in comparison tests of sailing calculation methods. The
method of Williams does not provide formulas for the computation of azimuths and
coordinates of intermediate points along the great elliptic arc.

3.3. Earle’s method for Vector Solutions (2000 and 2008). Earle (2000) has pro-
posed a method of computing distance along a great ellipse that allows the integral
for distance to be computed directly using the built-in capabilities of commercial
mathematical software. This obviates the need to write code in arcane computer
languages. According to Earle, his method has been prepared with the syntax of a
particular commercial mathematics package in mind. This work of Earle (2000) has
been recently updated for the calculation of azimuth (Earle 2008). The first paper of
Earle (2000) also presents the results of comparative calculations for the great elliptic
arc distance using the same eight test lines used by Williams (1996) and Haiwara
(1987). Earle does not provide numerical results for the computation of azimuth
(course) and the coordinates of the intermediate points along the great elliptic angle.

3.4. Walwyn’s great ellipse algorithm. Walwyn (1999) presented an algorithm
for the computation of the arc length along the great ellipse and the initial heading
to steer. The algorithm uses various formulas for the calculation of distance and
azimuths (courses). In some cases, probably for the sake of simplicity, these formulas
are not the right ones used in standard geodetic computations, as the formulas for the
transformation of the geodetic latitudes to geocentric. Walwyn does not provide
numerical results for the computation of azimuth (course) and the coordinates of the
intermediate points along the great elliptic angle.

4. THE PROPOSED NEW ALGORITHM FOR THE GREAT
ELLIPTIC SAILING. Our proposed algorithm was initially developed as a
supporting tool in another research work of the first author on the implementation
of sailing calculations in GIS navigational systems (ECDIS and ECS). The com-
plete great elliptic sailing problem is solved including, in addition to the great ellip-
tic arc distance, the geodetic coordinates of an unlimited number of intermediate
points along the great elliptic arc. The algorithm has been developed having a mind
to avoid the use of advanced numerical methods, in order to allow for the con-
venient implementation even in programmable pocket calculators. Numerical tests
and results showed that the accuracy achieved is a little higher than other methods
(see Section 5).
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The algorithm starts with the calculation of the eccentricity of the great ellipse and
the geocentric and geodetic great elliptic angles (Figure 3) of the points of departure
and destination. For this part of the algorithm we used the formulas proposed by
Williams (1996) because they are simple, straightforward and provide accurate re-
sults. For the calculation of the length of the great elliptic arc we used the standard
geodetic series expansion formulas for the meridian arc length that are presented in
basic geodesy textbooks like Torge (2001) after their proper modification for the
great ellipse.

For the calculation of the initial and final course we adopted the methodology
proposed by Bowring (1984). Initially the forward and backward azimuths are cal-
culated on the auxiliary unit sphere as in the classical spherical earth model of the
traditional navigation. Then the calculated spherical azimuths are reduced to their
ellipsoidal values for the great elliptic arc. These parameters are required for the
subsequent calculation of the geodetic coordinates of the intermediate points along
the great elliptic arc.

The calculation of the geodetic coordinates of the intermediate points along the
great elliptic arc is conducted by successive solutions of the direct great elliptic
problem using the formulas proposed by Bowring (1984). In these successive calcu-
lations, in order to avoid propagation of errors, the initial point is always the point of
departure and the destination point is the intermediate point concerned. The known
parameters in these direct problem solutions are : the geodetic coordinates of the
point of departure, the calculated initial course at this point and the distance of the
intermediate point from the point of departure. The method can be implemented for
the calculation of the coordinates of the intermediate points either at a given suc-
cessive distance along the great elliptic arc, or for any desired number of waypoints at
equally spaced distances. Examples of calculations are presented in Section 5 of this
paper. The complete set of the proposed new algorithm is :

4.1. Part I: Calculation of basic parameters on the great ellipse.
Geocentric latitudes h1, h2 :

h1= tanx1 ((1xe2) tan (Q1)) (4)

h2= tanx1 ((1xe2) tan (Q2)) (5)

Where:

Q1 and Q2 are the geodetic latitudes of the departure and destination points P1

and P2.
h1 and h2 are the corresponding geocentric latitudes.

Transformation of geodetic to Cartesian coordinates:

x1=R1 cos (Q1) cos (l1) (6)

y1=R1 cos (Q1) sin (l1) (7)

z1=R1(1xe2) sin (Q1) (8)

x2=R2 cos (Q2) cos (l2) (9)

y2=R2 cos (Q2) sin (l2) (10)

z2=R2(1xe2) sin (Q2) (11)
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Where:

R1=
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1xe2 sin2 (Q1)
q (12)

R2=
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1xe2 sin2 (Q2)
q (13)

Parameters lw, mw that define the equation z=lwx+mwy of the plain of the great
ellipse containing points O, P1 and P2 :

lW=
y1z2xy2z1
x2y1xx1y2

(14)

mW=
x1z2xx2z1
x1y2xx2y1

(15)

Geocentric coordinates of the vertex V:

lV= tanx1 mW
lW

� �
(16)

bV= tanx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(l 2

W+m 2
W )

1xe2

s0
@

1
A (17)

hV= cosx1 cos (bV)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1xe2 sin2 (bV)

q
0
B@

1
CA (18)

Eccentricity ege of the great ellipse:

ege=
e sin (hV)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1xe2 cos2 (hV)
p (19)

Longitude of the point E where the great ellipse crosses the equator (see Figure 3) :

lE=lVx
p

2
(20)

Geocentric great elliptic angles h1, h2 :

hge1= cosx1 ( cos (h1) cos (l1xlE)) (21)

hge2= cosx1 ( cos (h2) cos (l2xlE)) (22)

Geodetic great elliptic angles Qge1, Qge2 :

Qge1=tanx1 tan(hge1)

1xe 2
ge

 !
(23)

Qge2=tanx1 tan(hge2)

1xe 2
ge

 !
(24)
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4.2. Part II: Calculation of the great elliptic distance.
Length of the great elliptic arc:

S12=
ZQge2
Qge1

a(1xe 2
ge )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1xe 2
ge sin

2 (Qge))
3

q dx � a(1xe2)

�
1+

3

4
e2+ � � �

� �
Qge

x
3

8
e2+

15

32
e4 � � �

� �
sin2Qge+ � � �

�Qge2
Qge1

up to sin(8Q) terms

(25)

4.3. Part III: Calculation of the initial and final course (forward and backward
azimuths).
Spherical azimuths:

A0(1x2)= tanx1 sin (Dl)

cos (h1) tan (h2)x sin (h1) cos (Dl)

� �
(26)

A0(2x1)= tanx1 xsin (Dl)

cos (h2) tan (h1)x sin (h2) cos (Dl)

� �
(27)

Where Dl=l2xl1
Reduction of spherical azimuths to elliptic :

A1x2= tanx1 ( tan (A0(1x2)) cos (Q1xh1)) (28)

A2x1= tanx1 ( tan (A0(2x1)) cos (Q2xh2)) (29)

4.4. Part IV: Calculation of the coordinates of intermediate points.
Number of intermediate points :

([x]: Integer part of x) N=[S12=DS] (30)

New Cartesian coordinates of the point of departure:

x1=R1 cos (Q1) (31)

z1=R1(1xe2) sin (Q1) (32)

Auxiliary parameters of the great ellipse :

e0=ege( sin
2 (h1)+ cos2 (h1) cos

2 (A0(1x2))) (33)

b0=
affiffiffiffiffiffiffiffiffiffiffiffi
1+e0

p (34)

n0=
axb0
a+b0

(35)

A=
a 1+ 1

8 n
2

0

� �2
1+n0

(36)
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Parametric latitude of the point of departure:

u1= tanx1 a

b0

z1
x1 cos (A0(1x2))

� �
(37)

Auxiliary angle H :

H1=u1x 1x
3

8
n 2
0

� �
r
2=3
1 sin

2

3
y1

� �
(38)

Where :

r1=1x
3

4
n0 cos (2u1) (39)

(polar coordinates) y1=
3

4
n0 sin (2u1) (40)

Distance of the point of departure from the major axis of the great ellipse :

M1=H1A (41)

For the nth intermediate point (n=1, 2, …, N) :

Distance from the point of departure:

S1n=nDS

Distance from major axis and auxiliary angle H :

Mn=M1+S1n (42)

Hn=
Mn

A
(43)

Parametric latitude of the nth intermediate point :

un=Hn+
5

4
1x

9

16
n 2
0

� �
r
8
33
n sin

8

33
yn

� �
(44)

Where :

rn=1x
33

20
n0 cos (2Hn) (45)

(polar coordinates) yn=
33

20
n0 sin (2Hn) (46)

Angle between great ellipse’s semi-major axis and X axis :

mB= tanx1 sin (A0(1x2)) sin (h1)

cos (A0(1x2))

� �
(47)

Cartesian coordinates of the nth intermediate point :

xn=a cos (un) cos (mB)+b0 sin (un) sin (mB) cos (h1) sin (A0(1x2)) (48)

yn=xa cos (un) sin (mB)+b0 sin (un) cos (mB) cos (h1) sin (A0(1x2)) (49)

zn=b0 sin (un)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 (h1)+ cos2 (h1) cos2 (A0(1x2))

q
(50)
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Geodetic coordinates (Qn, ln) of the n
th intermediate point:

Qn= tanx1 zn

(1xe2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x 2
n +y 2

n

p
 !

(51)

ln=l1+ tanx1 yn
xn

� �
(52)

5. NUMERICAL TESTS AND COMPARISONS. For our numerical
tests and comparisons we used as a basis older numerical tests and comparisons
conducted by Williams (1996) and Earle (2000). These tests and comparisons use
eight specific routes (lines) that were initially used by Haiwara (1987) for the com-
parison of great circle and geodesic sailing calculations. These eight lines lie on the
successive parallels 10x, 20x … 80x and all of them have the same difference of
longitude equal to 100x. For better visual perception, these eight routes are shown
over the geographical area of the Pacific Ocean in Figure 4.

The numerical tests and comparisons of Williams (1996) and Earle (2000) are re-
stricted to the calculations of the sailing distance only and do not include other
computed elements of the great elliptic sailing, such as the coordinates of inter-
mediate points. The assessment of the accuracy in the calculated elliptic arc distance
in these older numerical tests and comparisons is conducted by their comparison

Figure 4. The Haiwara Dataset superimposed over the Pacific Ocean.
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to the results of the Lambert correction method for the computation of the corre-
sponding distances on the geodesics.

The weakness of these older tests employing the Haiwara dataset (Figure 3) is not
only the lack of computations for the coordinates of intermediate points but also that
they have not employed the most accurate methods for the calculation of the length
of geodesics as a basis for their comparison tests, since they use the old Lambert
correction method and not newer more accurate methods and algorithms such as
those of Sodano (1965) and Vicenty (1975). This weakness was also reported by
Zukas (1994).

For the above mentioned reasons, in the first stage of our numerical tests we re-
calculated the lengths of the Haiwara’s eight lines on the Bessel ellipsoid using
Vicenty’s algorithm for the precise calculation of the length of the corresponding
geodesic with sub-metre accuracy and compared these results with those obtained by
the Lambert correction method for the length of the geodesic, as well as Williams’
method, Earle’s method and our proposed algorithm for the length of the great el-
liptic arc (see Figure 5 and Table 1).

The results of these comparison tests showed that :

’ The average discrepancy between the calculated geodesic length by the Lambert
Correction Method and Vicenty’s algorithm is 12.6 metres, which is twice the
discrepancy of the results of Williams and Earle. In other words the calculation
of the sailing distance on the great elliptic arc by Williams and Earle is more
accurate than the calculation of corresponding sailing distance along the geo-
desic conduced by the Lambert correction method. In view of this finding the
comparison tests have to be re-evaluated on the basis of their comparison to
Vicenty’s algorithm rather than to the Lambert correction method.

’ The average error of our proposed method in the calculation of the great elliptic
arc distances is 4.38 metres which is smaller than the 6.54 metres average errors
of the methods of Williams and Earle.

Figure 5. Average discrepancies between the evaluated method and the precise length of the

geodesic distance computed by Vincenty’s algorithm.
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The maximum error of our proposed method in the calculation of the great elliptic
arc distances is 10.85 metres which is smaller than the 15.72 metres maximum error
of the methods of Williams and Earle. This maximum error occurs in the line on the
10x parallel. This line has a length of 5526.95 geographical miles.

The second stage of our numerical tests was the solution (in WGS-84) of the
complete great elliptic sailing (GES) problem including the computation of the co-
ordinates of intermediate points along the great ellipse for two very long navigational
routes.

The first numerical example of very long navigational route with difference of
longitude greater than 130x is the sailing from the approaches of Sydney Harbour-
Australia (33x 46.21k S, 151x 31.964k E) to the approaches of Valparaiso-Chile
(32x 59.998k S, 71x 36.675k W). The results of these calculations are shown in Table 2.
In this calculation we selected a distance of 50 nautical miles between successive
intermediate points along the great ellipse (the distance between intermediate points
is selected by the user and can be as short as desired). Comparing the calculated with
our algorithm value of great elliptic sailing distance between Sydney and Valparaiso
(6129.12 nautical miles) with the corresponding geodesic distance calculated by
Vicenty’s algorithm (6128.41 nautical miles) we see that even for this extremely long
distance with difference of longitude of some 137x, the bigger discrepancy (0.71
nautical miles) is still negligible for the practical purposes of marine navigation.

Table 1. Geodesic and great elliptic arc numerical tests using the Haiwara eight testlines.

Geodesic Vicenty Great Ellipse Earle Great Ellipse Williams

Sv Se De De (m) Sw Dw dw (m)

Line 1 Q 10x 5877,3304 5877,33 x0,0004 0,7408 5877,33 x0,0004 0,7408

Line 2 Q 20x 5526,9515 5526,96 0,0085 15,7420 5526,96 0,0085 15,7420

Line 3 Q 10x 4991,2077 4991,21 0,0023 4,2596 4991,21 0,0023 4,2596

Line 4 Q 40x 4317,6179 4317,62 0,0021 3,8892 4317,62 0,0021 3,8892

Line 5 Q 50x 3546,7150 3546,72 0,0050 9,2600 3546,71 x0,0050 9,2600

Line 6 Q 60x 2709,2864 2709,29 0,0036 6,7413 2709,29 0,0036 6,7413

Line 7 Q 70x 1828,0620 1828,06 x0,0020 3,7040 1828,06 x0,0020 3,7040

Line 8 Q 90x 920,2957 920,30 0,0043 7,9636 920,30 0,0043 7,9636

Average errors 0,0029 6,5376 0,0017 6,5376

Geodesic Lambert Correction Great Ellipse Palikaris-Latsas

Sl Dl Dl (m) Sp Dp Dp( m)

Line 1 Q 10x 5877,33 x0,0004 0,7408 5877,332973 0,0026 4,7659

Line 2 Q 20x 5526,96 0,0085 15,7420 5526,957359 0,0059 10,8511

Line 3 Q 10x 4991,21 0,0023 4,2596 4991,213202 0,0055 10,1893

Line 4 Q 40x 4317,62 0,0021 3,8892 4317,621131 0,0032 5,9829

Line 5 Q 50x 3546,71 x0,0050 9,2600 3546,716310 0,0013 2,4254

Line 6 Q 60x 2709,27 x0,0164 30,2987 2709,286702 0,0003 0,6336

Line 7 Q 70x 1828,05 x0,0120 22,2240 1828,062115 0,0001 0,2121

Line 8 Q 90x 920,29 x0,0057 10,5564 920,295707 0,0000 0,0124

Average errors x0,0033 12,1213 0,0024 4,3841

Sv, Se, Sw, Sl, Sp are computed distances. De, Dw, Dl, Dp are errors computed as discrepancies from the

results of Vicenty’s algorithm.
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The second numerical example of very long navigational route with difference of
longitude greater than 145x is the sailing from Valparaiso-Chile (32x 59.998k S, 71x
36.675k W) to Hokohama-Japan (34x 26.178k N, 139x 51.39k E). In this example the
discrepancy between the great elliptic distance computed with our algorithm (9242.80
nautical miles) and the geodesic distance computed by Vicenty’s algorithm (9241.92
nautical miles) is a little bigger (0.88 nautical miles) but still acceptable for the prac-
tical purposes of marine navigation.

It is noted that even for these two extreme cases where the difference of longitude
between departure and destination points is greater than 130x and 145x the resulting
discrepancies, that are still less than one nautical mile, are practically diminished in
the process of the computation of the coordinates of the intermediate points. Our
algorithm computes very easily these coordinates for as many intermediate points as
desired (see Table 2).

6. CONCLUSIONS. Numerical tests and comparisons showed that great
elliptic sailing distances are practically the same with the equivalent geodesic dis-
tances. Even for extremely long navigational paths (B9.000 nautical miles) with dif-
ference in longitude greater than 135x the bigger discrepancy in the computed
distances between the geodesic and the great elliptic arc is still negligible for the
practical purposes of marine navigation.

The extremely high accuracy of the proposed new method and algorithm for the
complete solution of the great elliptic sailing problem has been verified with Vicenty’s
algorithm which is one of the most accurate geodesic methods for the computation of
long geodesics with sub-metre accuracy. Comparison tests showed that the proposed

Table 2. Calculating route from Sydney to Valparaiso.

G.E. Arc Distance (N.M.): 6129.11699

Forward Azimuth (degrees): 143.99463

Inverse Azimuth (degrees) : 215.64240

Calculation of intermediate Waypoints, at a given leg distance.

Leg distance in N.M.:50

WP latitude longitude azimuth leg distance total distance

1 x34.44411 152.12531 143.66402 49.99965 49.99965

2 x35.11504 152.72716 143.32226 49.99972 99.99936

3 x35.78288 153.33892 142.96903 49.99979 149.99915

4 x36.44749 153.96095 142.60400 49.99986 199.99902

5 x37.10875 154.59363 142.22683 49.99994 249.99895

… …

…

…

118 x36.07879 x74.35492 37.19179 50.00030 5899.99971

119 x35.41237 x73.73863 36.83336 50.00037 5950.00008

120 x34.74279 x73.13241 36.48653 50.00044 6000.00052

121 x34.07018 x72.53590 36.15100 50.00051 6050.00102

122 x33.39465 x71.94873 35.82645 50.00057 6100.00160

123 x33.00000 x71.61100 * 29.11539 6129.11699
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algorithm compared to the methods of Williams and Earle for the computation of the
great elliptic distance, yields slightly better accuracies.

The main advantages of the proposed algorithm for the great elliptic sailing cal-
culations, is not the above mentioned slightly better accuracy but the capacity to
solve the complete sailing problem and not only the great elliptic arc distance as in
other proposed methods. Other elements of the great elliptic sailing are also calcu-
lated, such as the geodetic coordinates of the vertex and those of an unlimited number
of intermediate points along the great elliptic arc. The proposed algorithm does not
require the use of advanced numerical integration methods as is the case in other
methods that have been proposed in the past. The simplicity of the method also
permits its implementation on programmable pocket calculators for the complete
solution of the great elliptic arc sailing.
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