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Abstract

We study a fractional-order delayed predator-prey model with Holling–Tanner-type
functional response. Mainly, by choosing the delay time τ as the bifurcation parameter,
we show that Hopf bifurcation can occur as the delay time τ passes some critical values.
The local stability of a positive equilibrium and the existence of the Hopf bifurcations
are established, and numerical simulations for justifying the theoretical analysis are also
presented.
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1. Introduction

The notion of a fractional derivative, one of the most interesting topics in the
mathematical world, is more than 300 years old. The basis of the idea of the
fractional derivative dates back to 1695. Many mathematicians have been involved
in this subject since the idea of fractional derivation emerged. For a long time,
only theoretical mathematicians were involved in this topic, but recently, we have
come across the work of quite a few applied mathematicians and scientists from
various branches of science. Scientists working on fractional derivative calculations
used the classical definition of the derivative and developed it. Riemann, Grünwald,
Letnikov, Liouville, Caputo, Euler, Abel, Fourier, Kobel, Erdelyi, Hadamard, Riesz
and Laplace are major contributors of fractional derivatives [28]. In recent years,
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fractional calculus has attracted much attention. It is well known that the differential
equations with fractional order are generalizations of ordinary differential equations to
non-integer order, and they occur more frequently in different research areas, such as
physics, dynamical control system, biology and so forth. Since fractional calculus is a
powerful tool for more complex phenomena, we do not have more applications. Until
recently, experiments and reality tell us that there are many complex systems in nature
with anomalous dynamics, which can not be characterized by classical integer-order
derivative models.

In contrast, fractional models can present a more vivid and accurate description
over things than integral ones. As most of us know, a lot of biological, physical
and engineering systems have long-range temporal memory and long-range spatial
interactions. Describing such systems with fractional-order differential equations has
more advantages than classical integer-order, since the fractional-order derivative
is an excellent instrument for the description of memory and hereditary properties
of various materials and processes. Fractional differential equations have gained
considerable importance due to their valuable applications [1, 16, 20, 25, 26, 28, 30]
in viscoelasticity, electroanalytical chemistry as well as in various engineering and
physical problems. The combination of time-delay with fractional calculus was used
successfully in many areas of science and engineering, especially when models were
used to describe complex systems with a memory effect [3, 11, 12, 19]. In fact, by using
such a combination, we are able to recover the fractional calculus model by making
the delay zero and by making the order of derivatives one. This specific behaviour
leads us to the conclusion that the combined models can reveal new aspects of a
given complex model. A bifurcation of a dynamical system is a qualitative change
in its dynamics, produced by varying parameters [10, 15, 18, 21]. Bifurcation theory
provides a strategy for investigating the bifurcations that occur within a family. It
does so by identifying ubiquitous patterns of bifurcations. Each bifurcation type or
singularity has a name, for example, Andronov–Hopf bifurcation [24]. No distinction
has been made in the literature between “bifurcation” and “bifurcation type” both
being called “bifurcations.” The Hopf–Hopf bifurcation [24] is a bifurcation of an
equilibrium point in a two parameter family of autonomous ordinary differential
equations (ODEs) at which the critical equilibrium has two pairs of purely imaginary
eigenvalues. This phenemenon is also called the double Hopf bifurcation [10, 15, 18].

In recent years, the dynamical properties of the predator-prey models which have
significant biological background have received much attention from many applied
mathematicians and ecologists. To incorporate various realistic physical effects that
may cause at least one of the physical variables to depend on the past history of the
system, it is often necessary to introduce time delays into these models. Many theoreti-
cians and experimentalists have concentrated on the stability of predator-prey systems
and, more specifically, they investigated the stability of such systems when time delays
are incorporated into the models. A time delay may have a very complicated impact
on the dynamical behaviour of the system such as the periodic structure, bifurcation
and so forth. For references, see [4–9, 13, 14, 17, 22, 23, 27, 31–33]. There have been
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many works which are devoted to the studies of dynamical behaviours for predator-prey
systems with various functional responses. However, recently, many researchers found
that when predators have to search for food and, therefore, have to share or compete
for food, a more suitable general predator-prey theory should be based on the so-called
ratio-dependent theory, which is important, because of their suitability for modelling
the real ecological interactions between predator and prey species.

In this study, we examine the fractional-order form of this model [7] by considering
the model that Çelik has previously studied in integer order [7]. So our aim in this paper
is to investigate the fractional form of the following delayed predator-prey system with
Holling–Tanner-type [29] functional response

dN(t)
dt
= N(t)(1 − N(t)) − N(t)P(t − τ)

N(t) + αP(t − τ) ,

dP(t)
dt
= βP(t − τ)

(
δ − P(t − τ)

N(t)

)
,

(1.1)

where α, β and δ are positive constants; N(t) and P(t) can be interpreted as the densities
of prey and predator populations at time t, respectively; and τ ≥ 0 denotes the time
delay for the predator density. In this model, prey density is logistic with time delay and
the carrying capacity proportional to predator density. In many of the studies related
to stability of predator prey models, the authors have considered a constant carrying
capacity; however, in this study, we focus on the carrying capacity proportional to
prey density (ratio dependent), which shows very interesting behaviour in terms of
dynamical structure. We will consider the following fractional-order predator-prey
model:

c
t0 Dq

t N(t) = N(t)(1 − N(t)) − N(t)P(t − τ)
N(t) + αP(t − τ) ,

c
t0 Dq

t P(t) = βP(t − τ)
(
δ − P(t − τ)

N(t)

)
.

(1.2)

2. Preliminaries

In this section, we give the basic definitions related to the fractional order derivative.

DEFINITION 2.1 [28]. The Caputo fractional derivative with order q of a function f (t)
is defined as

c
0Dq

t f (t) =
1

Γ(n − q)

∫ t

0

f (n)(τ)
(t − τ)q−n+1 dτ,

where n is a positive integer such that n − 1 < q ≤ n.

DEFINITION 2.2. The Laplace transform L of a function f (t) for t > 0 is defined by

L{f (t)} =
∫ ∞

0
e−stf (t) dt.
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The resulting expression is a function of s, which we write as F(s). We say “The
Laplace transform of f (t) equals function F of s” and write

L{ f (t)} = F(s).

Similarly, the Laplace transform of a function g(t) would be written as

L{g(t)} = G(s).

DEFINITION 2.3 [28]. The Laplace transform of the Caputo fractional derivative is

L{c0Dq
t f (t); s} = sqF(s) −

n−1∑
k=0

sq−k−1f k(0), n − 1 < q ≤ n,

where F(s) is the Laplace transform of f (t) and f k(0), k = 0, 1, 2, . . . , n − 1 are the
initial conditions. If f k(0) = 0, k = 0, 1, 2, . . . , n − 1, then

L{c0Dq
t f (t); s} = sqF(s).

3. Stability and Hopf bifurcation analysis of a fractional model

System (1.1) has a unique positive equilibrium point E∗0 = (N∗0, P∗0), where

N∗0 =
1 + αδ − δ

1 + αδ
and P∗0 = δ

(1 + αδ − δ
1 + αδ

)
.

To analyse the local stability of the positive equilibrium, E∗0 = (N∗0, P∗0), we first use the
linear transformations n(t) = N(t) − N∗0 and p(t) = P(t) − P∗0, where n << 1 and p << 1
for which the system (1.1) turns out as

dn
dt
= (n(t) + N∗0)(1 − n(t) − N∗0) −

(n(t) + N∗0)(p(t − τ) + P∗0)

n(t) + N∗0 + α(p(t − τ) + P∗0)
,

dp
dt
= β(p(t − τ) + P∗0)

(
δ −

p(t − τ) + P∗0
n(t) + N∗0

)
.

Then using relations

N∗0(1 − N∗0) −
N∗0P∗0

N∗0 + αP∗0
= 0 and βP∗0

(
δ −

P∗0
N∗0

)
= 0,

and ignoring the higher order terms yield the following linear system:
dn
dt
=

(
1 − 2N∗0 −

P∗0
N∗0 + αP∗0

+
P∗0N∗0

(N∗0 + αP∗0)2

)
n(t)

+

(
−

N∗0
N∗0 + αP∗0

+
αP∗0N∗0

(N∗0 + αP∗0)2

)
p(t − τ),

dp
dt
=

(
βδ −

2βP∗0
N∗0

)
p(t − τ) +

β(P∗0)2

(N∗0)2 n(t).
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Now, by replacing integer-order derivatives of the above system with fractional deriva-
tives of order q ∈ (0, 1] in the sense of Caputo [28], we consider the fractional-order
model as follows:

c
t0 Dq

t n(t) =
(
1 − 2N∗0 −

P∗0
N∗0 + αP∗0

+
P∗0N∗0

(N∗0 + αP∗0)2

)
n(t)

+

(
−

N∗0
N∗0 + αP∗0

+
αP∗0N∗0

+(N∗0 + αP∗0)2

)
p(t − τ), (3.1)

c
t0 Dq

t p(t) =
(
βδ −

2βP∗0
N∗0

)
p(t − τ) +

β(P∗0)2

(N∗0)2 n(t),

where ai (i = 1, 2, 3, 4, 5) are determined by

a1 = 1 − 2N∗0, a2 = −
1

N∗0 + αP∗0
, a3 =

P∗0N∗0
(N∗0 + αP∗0)2 ,

a4 = βδ −
2βP∗0
N∗0

, a5 =
β(P∗0)2

(N∗0)2 .

By taking the Laplace transform on both sides of system (3.1), we get

L{ct0 Dq
t n(t)} = L{(a1 + a2P∗0 + a3)n(t) + (a2N∗0 + αa3)P(t − τ)}

= a1N(s) + a2P∗0N(s) + a3N(s) + (a2N∗0 + αa3)L{P(t − τ)},

and

sqN(s) − sq−1N(0) = (a1 + a2P∗0 + a3)N(s)

+ (a2N∗0 + αa3)e−sτ
( ∫ 0

−τ
θ(t)e−st dt + P(s)

)
.

Similarly,

L{ct0 Dq
t p(t)} = L{a4P(t − τ) + a5n(t)},

L{ct0 Dq
t p(t)} = a4e−sτ

( ∫ 0

−τ
θ(t)e−st dt + P(s)

)
+ a5N(s),

sqP(s) − sq−1P(0) = a4e−sτ
( ∫ 0

−τ
θ(t)e−st dt + P(s)

)
+ a5N(s).

(3.2)

System (3.2) can be written as

Δ(s)

(
N(s)
P(s)

)
=

(
b1(s)
b2(s)

)
,
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where

Δ(s) =

(
sq − a1 − a2P∗0 − a3 (−a2N∗0 − αa3)e−sτ

−a5 sq − a4e−sτ

)
,

(
b1(s)
b2(s)

)
=

⎛⎜⎜⎜⎜⎜⎝ sq−1N(0) + (a2N∗0 + αa3)e−sτ.
∫ 0
−τ θ(t)e

−st dt

sq−1P(0) + a4e−sτ.
∫ 0
−τ θ(t)e

−st dt

⎞⎟⎟⎟⎟⎟⎠ ,

and

det(Δ(s)) = (sq − a1 − a2P∗0 − a3)(sq − a4e−sτ) + a5(−a2N∗0 − αa3)e−sτ

= s2q + (−a1 − a2P∗0 − a3)sq − sqa4e−sτ

+ (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3)e−sτ. (3.3)

Here, Δ(s) is considered as the characteristic matrix of system (3.1) for simplicity.
Next, we look for the conditions that guarantee that the characteristic equation (3.3)
has a pair of pure imaginary roots s =+− ωi, (ω > 0). Assume that equation (3.3) has a
pure imaginary root s = ωi(ω > 0). Substituting s = ωi into equation (3.3) yields

det(Δ(s)) = (ωi)2q + (−a1 − a2P∗0 − a3)(ωi)q − a4e−(ωi)τ(ωi)q

+ (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3)e−(ωi)τ

= 0.

Since

i2q = cos(qπ) + i sin(qπ),

iq = cos
(qπ

2

)
+ i sin

(qπ
2

)
,

e−iωτ = cos(ωτ) − i sin(ωτ),

we have

det(Δ(s)) = ω2q(cos(qπ) + i sin(qπ)) + ωq(−a1 − a2P∗0 − a3)
(

cos
(qπ

2

)
+ i sin

(qπ
2

))

− a4ω
q
(

cos
(qπ

2

)
+ i sin

(qπ
2

))
(cos(ωτ) − i sin(ωτ))

+ (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3)(cos(ωτ) − i sin(ωτ))

= 0. (3.4)

Separating real and imaginary parts of equation (3.4) gives

ω2q cos(qπ) − ωq(a1 + a2P∗0 + a3) cos
(qπ

2

)

= a4ω
q cos

(
ωτ − qπ

2

)
− (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3)
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× cos(ωτ)ω2q sin(qπ) − ωq(a1 + a2P∗0 + a3) sin
(qπ

2

)

= a4ω
q sin

(qπ
2
− ωτ

)
+ (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3) sin(ωτ).

(3.5)

By squaring and adding both sides of equation (3.5),

ω4q − 2ω3q(a1 + a2P∗0 + a3) cos
(qπ

2

)
+ ω2q(a1 + a2P∗0 + a3)2 − a2

4ω
2q

+ 2a4ω
q(a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3) cos

(qπ
2

)

− (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3)2 = 0.

Since cos(qπ/2) > 0, ωq > 0 and 0 < q < 1. Put v = ωq, then this yields h(v) = v4 +

av3 + bv2 + cv + d = 0. Since h(0) = d < 0 and limv→∞ h(v) = ∞, there exists a v0 > 0
such that h(v0) = 0. Finally, we calculate the delay τ0, which guarantees the existence
of pure imaginary roots in this equation. Since

det(Δ(s)) = s2q + (−a1 − a2P∗0 − a3)sq − sqa4e−sτ

+ (a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3)e−sτ,

we have

C1 = −a1 − a2P∗0 − a3,

C2 = −a4,

D = a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3,

and also

det(Δ(s)) = s2q + C1sq + (C2sq + D)e−sτ = 0,

A = s2q + C1sq,

E = C2sq + D,

A + Ee−sτ = 0.

Let s = ωi, (ω > 0) and Aj, Ej (j = 1, 2) be the real and imaginary parts of A, E,
respectively. Thus,

(A1 + iA2) + (E1 + iE2)(cos(ωτ) − i sin(ωτ)) = 0,

where

A1 = ω
2q cos(qπ) + C1ω

q cos
(qπ

2

)
,

A2 = ω
2q sin(qπ) + C1ω

q sin
(qπ

2

)
,
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E1 = C2ω
q cos

(qπ
2

)
+ D,

E2 = C2ω
q sin

(qπ
2

)
.

Separating the real and imaginary parts of this equation yields

A1 + E1 cos(ωτ) + E2 sin(ωτ) = 0,

A2 + E2 cos(ωτ) − E1 sin(ωτ) = 0.

Simplifying,

H1(ω) = sin(ωτ) =
E1A2 − E2A1

E2
1 + E2

2

,

H2(ω) = cos(ωτ) = −E1A1 + E2A2

E2
1 + E2

2

,

tan(ωτ) =
sin(ωτ)
cos(ωτ)

=
E1A2 − E2A1

−(E1A1 + E2A2)
,

ωτ = arctan
( E1A2 − E2A1

−(E1A1 + E2A2)

)
,

ωτ = arctan
(H1(ω)
H2(ω)

)
,

which lead to

τk =
arctan(H1(ω)/H2(ω))

ω
+ 2kπ for k = 0, 1, 2, . . . .

Let s(τ) = α(τ) + iω(τ) denote the root of equation (3.3) near τ = τk, satisfying
a(τk) = 0 and ω(τk) = ω1, k = 0, 1, 2, . . . . Then we have the following result.

LEMMA 3.1. Suppose g′(z1) � 0, then the following transversality condition is satis-
fied:

d(Re(s(τk)))
dτ

� 0, k = 0, 1, 2, 3, . . . ,

and g′(z1), d(Re(s(τk)))/dτ have the same sign.

PROOF. Suppose that for τ = τk, let s = iω be a root of equation (3.3) with ω real, and
without loss of generality ω > 0. Differentiating the characteristic equation (3.3) with
respect to τ,

2qs2q−1 ds
dτ
+ C1qsq−1 ds

dτ
+

(
C2qsq−1 ds

dτ

)
e−sτ − e−sτ

(
τ

ds
dτ
+ s

)
(C2sq + D) = 0,
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that is,

dτ
ds
=

2qs2q−1 + C1qsq−1

s(C2sq + D)
esτ +

C2qsq−1

s(C2sq + D)
− τ

s
.

Then for s = iω,

Re
(dτ

ds

)∣∣∣∣∣
s=iω
= Re

[2q(iω)2q−1 + C1q(iω)q−1

(iω)(C2(iω)q + D)
eiωτ +

C2q(iω)q−1

(iω)(C2(iω)q + D)
− τ

iω

]
,

Re
(dτ

ds

)∣∣∣∣∣
s=iω
= Re

[ (2q(iω)2q−1 + C1q(iω)q−1)(cos(ωτ) + i sin(ωτ)) + C2q(iω)q−1

(iω)(C2(iω)q + D)

]
,

and using the expressions for cos(ωτ) and sin(ωτ) above,

Re
(dτ

ds

)∣∣∣∣∣
s=iω

=
−(ω3q2q + DC1ω

qq)(cos(qπ/2) + ωτ) − (C1C2ω
2qq + Dω2q2q)(cos(qπ) + ωτ)

(C2 cos(qπ/2)ωq+1 + Dω)2 + (C2 sin(qπ/2)ωq+1)2

+
−C2

2qω2q−2 − DC2qωq−2 cos(qπ/2)

(C2 cos(qπ/2)ωq + D)2 + (C2 sin(qπ/2)ωq)2 .

Here, since the denominators are positive, it can be continued with the numerators.
Note that

sgn
(
Re

(dτ
ds

)∣∣∣∣∣
s=iω

)
= −(ω3q2q + DC1ω

qq)
(

cos
qπ
2
+ ωτ

)

− (C1C2ω
2qq + Dω2q2q)(cos(qπ) + ωτ)

− C2
2qω2q−2 − DC2qωq−2 cos

qπ
2

,

where 0 < q < 1, ωq > 0, cos(qπ/2) > 0, sin(qπ/2) > 0 and −1 < cos(qπ) < 1, so,

Re
(dτ

ds

)∣∣∣∣∣
s=iω
� 0.

This completes the proof of the lemma. �

Summarizing the above results, we have the following theorem on stability and
Hopf bifurcation of system (3.1).

THEOREM 3.2. For system (3.1), the following results hold.

(i) If τ ∈ [0, τ0), then the equilibrium point (0,0) of system (3.1) is asymptotically
stable.

(ii) If g
′
(z1) � 0, then system (3.1) undergoes Hopf bifurcation at the equilibrium

point (0,0) when τ = τk, (k = 0, 1, 2, . . .).
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4. A numerical example

In this section, some numerical simulations are presented to verify the theo-
retical results that we obtained in the previous sections for the existence of Hopf
bifurcation. To perform the simulations, we modified the Adama–Bashforth–Moulton
predictor-corrector scheme using Matlab programming as in [2].

We simulate the fractional predator-prey system (1.2) by choosing the parameters,
α = 0.7, β = 0.9, δ = 0.6 and q = 0.98. We consider the following system:

c
t0 D0.98

t N(t) = N(t)(1 − N(t)) − N(t)P(t − τ)
N(t) + 0.7P(t − τ) ,

c
t0 D0.98

t P(t) = 0.9P(t − τ)
(
0.6 − P(t − τ)

N(t)

)
,

N∗0 =
1 + αγ − γ

1 + αγ
=

1 + (0.7).(0.6) − 0.6
1 + (0.7).(0.6)

= 0.5775,

P∗0 = γ
(1 + αγ − γ

1 + αγ

)
= 0.6

(1 + (0.7).(0.6) − 0.6
1 + (0.7).(0.6)

)
= 0.3465.

It has only one positive equilibrium E∗0 = (N∗0, P∗0) = (0.5775, 0.3465),

a1 = 1 − 2N∗0 = −0.155, a2 = −
1

N∗0 + α, P∗0
= −1.2194,

a3 =
P∗0N∗0

(N∗0 + α, P∗0)2 = 0.2975, a4 = βδ −
2βP∗0
N∗0
= −0.54,

a5 =
β(P∗0)2

(N∗0)2 = 0.3240.

Taking α = 0.7, N∗0 = 0.5775, P∗0 = 0.3465, q = 0.98, a1 = −0.155, a2 = −1.2194,
a3 = 0.2975, a4 = −0.54 and a5 = 0.3240 in equation (3.5), for v = ω0.98, the following
equation is obtained:

v4 + 0.0175v3 − 0.2132v2 − 0.0105v − 0.0972 = 0.

Solving this equation, we obtain v = 0.6625 and ω = 0.6570, and then

C1 = (−a1 − a2P∗0 − a3) = 0.28,

C2 = −a4 = 0.54,

D = a1a4 + a2P∗0a4 + a3a4 − a2a5N∗0 − a5αa3 = 0.3119,
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E1 = C2ω
q cos

(qπ
2

)
+ D = 0.3231,

E2 = C2ω
q sin

(qπ
2

)
= 0.3576,

A1 = ω
2q cos(qπ) + C1ω

q cos
(qπ

2

)
= −0.4322,

A2 = ω
2q sin(qπ) + C1ω

q sin
(qπ

2

)
= 0.2130,

τ0 =
1
ω

arctan
( E1A2 − E2A1

−(E1A1 + E2A2)

)
,

τ0 =
1

0.6570
arctan

( (0.3231).(0.2130) + (0.3576).(0.4322)
−((−0.3231).(0.4322) + (0.3576).(0.2130))

)

= 1.9693.

Here, we will calculate using the result we got in Lemma 3.1. From Lemma 3.1, we
know the following:

Re
(dτ

ds

)∣∣∣∣∣
s=iω

=
−(ω3q2q + DC1ω

qq)(cos(qπ/2) + ωτ) − (C1C2ω
2qq + Dω2q2q)(cos(qπ) + ωτ)

[(C2 cos(qπ/2)ωq+1 + Dω)2 + (C2 sin(qπ/2)ωq+1)2]

+
−C2

2qω2q−2 − DC2qωq−2 cos(qπ/2)

[(C2 cos(qπ/2)ωq + D)2 + (C2 sin(qπ/2)ωq)2]
.

Using all these values, we obtain the following:

Re
(dτ

ds

)∣∣∣∣∣
s=iω
= −6.4459.

With this result, it has been shown that Re(dτ/ds)|s=iω is non-zero.
As we stated at the beginning of this section, by modification of Adama–Bashforth–

Moulton predictor-corrector method [2] for our fractional model in equation (1.2)
with the parameters τ0 and ω, we also perform the graphs of our predator and prey
functions to show the dynamical behaviour. In these simulations, we take the initial
conditions (N0, P0) = (0.8, 0.5) and we first take τ = 1.4 < τ0 and plot the prey and
predator functions N(t) and P(t) in Figures 1, 2 and 3, respectively, which shows that
the positive equilibrium is asymptotically stable for τ < τ0. However, in Figures 4,
5 and 6, we take τ = 1.97 sufficiently close to τ0, which illustrates the existence of
bifurcating periodic solutions from the equilibrium point E∗0.
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FIGURE 1. Trajectory of prey density versus time with the initial conditions N0 = 0.8, P0 = 0.5, when
q = 0.98 and τ = 1.4 < τ0 = 1.9693 where the equilibrium point E∗0 is asymptotically stable.
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FIGURE 2. Trajectory of predator density versus time with the initial conditions N0 = 0.8, P0 = 0.5, when
q = 0.98 and τ = 1.4 < τ0 = 1.9693 where the equilibrium point E∗0 is asymptotically stable.
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FIGURE 3. Phase portrait of predator density versus prey density for the same parameters as in Figure 1,
when τ = 1.4 < τ0.
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FIGURE 4. Trajectory of prey density versus time with the initial conditions N0 = 0.8, P0 = 0.5, when
τ = 1.97 is the system periodic structure.
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FIGURE 5. Trajectory of predator density versus time with the initial conditions, N0 = 0.8, P0 = 0.5, when
τ = 1.97 is the system periodic structure.
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FIGURE 6. Phase portrait of predator density versus prey density for the same parameters as in Figure 1.
When τ = 1.97, the system shows the bifurcating periodic solutions from E∗0.
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5. Conclusion

In this paper, a fractional-order delayed predator-prey model with Holling–Tanner-
type functional response is studied. By taking the time delay τ as the bifurcation
parameter, we show that Hopf bifurcation can occur as the time delay τ passes
some critical values which is determined by analysing the characteristic equation.
Finally, we perform a numerical example to illustrate the theoretical results. For our
numerical example, we determine E∗0 = (N∗0, P∗0) = (0.5775, 0.3465), ω = 0.6570 and
τ0 = 1.9693. To show the existence of Hopf bifurcation, we also determine the suitable
fractional order q. We first take q = 0.98 and τ = 1.4 < τ0 and plot the prey and
predator functions N(t) and P(t) in Figures 1 and 2, respectively, which shows that the
positive equilibrium is asymptotically stable for τ < τ0. However, in Figures 4 and 5,
we take q = 0.98 and τ = 1.97 sufficiently close to τ0, which illustrates the existence
of bifurcating periodic solutions from the equilibrium point E∗0. For the validity of
our theoretical and numerical results, we also check the case q = 1, where there is
no fractional derivative which was studied by Çelik [7]. Moreover, we observed that
figures for τ = 1.8 and τ = 2.3 as in [7] are obtained similarly by using our Matlab
program for q = 1.
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