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We consider how the shape of a domain affects the number of positive solutions of a
nonlinear elliptic problem. In fact, we show that if a bounded domain {2 is sufficiently
close to a union of disjoint bounded domains 2',..., 2™ the number of positive
solutions of a nonlinear elliptic problem on 2 is at least 2™ — 1.

1. Introduction

In this paper we consider how the shape of the domain (2 affects the number of
solutions of
Au+uP? =0 in (2,
w>0 in £, (1.1)

u=20 on 0f2.

Here, {2 is a bounded smooth domain in RY and 1 < p < (N + 2)/(N — 2) for
N > 3,1 < p< oo for N =2. The main result in this paper is, roughly speaking,
that if 2 is sufficiently close to a union of disjoint domains £2!,..., 2™ (for a
precise description, see conditions (d0)-(d2) in §1), the number of solutions of
problem (1.1) is at least 2™ — 1. In the special case that the domains {2}, are
balls, the same conclusion was obtained by Dancer [3].

When (2 is a ball, it is known that problem (1.1) has a unique solution, which is
linearly non-degenerate (cf. [3,7,11]). Here, a solution v of (1.1) is called linearly
non-degenerate if an equation Au + pvP 'u = 0 has only a trivial solution in
Hy?(2). Let {B?}'™ | be mutually disjoint balls. We define By = U, B¥. Let S(By)
be the set of non-trivial solutions of

Au+uP =0 in By,

w>0  in By, (1.2)

u =0 on 0By.
Then the number of elements of S(By) is exactly 2™ — 1, and each w € S(By) is
linearly non-degenerate. Then, using a degree argument, Dancer proved in [3] that
for each approximate solution w € S(By) of (1.1), there exists a solution u of (1.1)
which is close to w when {2 is sufficiently close to By. This implies that there exist
at least 2™ — 1 solutions of problem (1.1) when {2 is sufficiently close to By. The
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above result was extended by Dancer [6] to some cases using a homotopy-index
(Conley-index) argument instead of a degree argument. On the other hand, it is
not easy to find the exact number of solutions of (1.1) when {2 is close to By. In his
paper [4], Dancer showed that the number of solutions of (1.1) is exactly 2™ —1 for
certain types of 2. On the other hand, for a Zy-symmetric dumbbell-type domain
2 C R?, it is proved in [4,5] that there exists a very large solution of (1.1) which
is not close to any solutions of (1.2) when the dumbbell-type domain is sufficiently
close to a disjoint union of two balls. Thus, in this case, the number of solutions is
strictly greater than three. The result was extended to the high-dimensional case
by the author [1]. Recently, Wei and Zhang proved an existence of a large solution
of (1.1) in [15] without the Zs-symmetry assumption on a dumbbell-type domain
2 C R%

In this paper we will study the structure of solutions of (1.1) when {2 is close to
a disjoint union of general domains 2, ..., 2™. Define 2§ = U:;1 2°. Let w' be
a non-trivial solution of (1.2) when By is replaced by £2¢. Let w = w® + .-+ + w¥
for some 1 < i1 < -+ < 4; < m. Our concern is whether or not there is a solution
of (1.1) close to an approximate solution w when (2 is close to 2. In general, it
is not easy to check whether or not w is linearly non-degenerate or the homotopy
index of a component containing w is not trivial. Thus we cannot apply a degree
argument to show that there exists a solution of (1.1) close to an approximate
solution w when (2 is close to {25. On the other hand, by combining variational
methods developed in [2,10,13], we prove in this paper that, if C% is an isolated
component (containing w® ) of the minimal energy solutions on 2% for j = 1,...,m,
there exists a solution of (1.1) close to C% + - -+ + C% when (2 is close to 2. This
implies that when {2 is close to {2y, there exist at least 2™ —1 solutions of (1.1). This
shows that in our problem we can glue together minimal energy solutions without
any non-degeneracy conditions.

This paper is organized as follows. In § 2, several assumptions and notations will
be stated. Then our main results will be stated. In §3, we prove our main result
via a series of propositions.

2. Preliminary
We consider the following problem,

Au—+ f(u) =0 in £2,,
w>0  inf2,, (2.1)
u=20 on 02,

where £2,, o > 0, is a bounded smooth domain in R"V. We assume that the function
f satisfies

(fl) f € CY(R), f(t) =0 for t <0,

(£2) |f@®)|+ 1 (t)t] < C|t|P for some C > 0, where p € (1,(N + 2)/(N — 2)) for
N >3 and p € (1,00) for N = 2,

(f3) there exists a constant 6 € (0,1) such that 0 < f(t) < 0f'(t)t for all t > 0.

https://doi.org/10.1017/50308210500001256 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001256

Nonlinear elliptic problems 1025

Let {2}, be mutually disjoint bounded smooth domains in RY. We assume that
for 1 <i#j<m,

(d0) the set £2° N (27 is of capacity zero, that is, there exist {¢n}oe, C C3(RN)
such that ¢, (x) =1 for z € 2°N 7, and that

lim |Von|?dz = 0.

n—00 J N
We define .
o=
i=1

On the 2,, 0 > 0, we assume that there exists a compact set E of measure zero in
RY such that the following properties hold

(d1) for any compact subset K of 2y, K C {2, for sufficiently small o > 0,

(d2) for any open set G containing F U (J, 2%, 2, C G for sufficiently small
o> 0.

We say that the family {2, },~( represents a singular perturbation of £2g when (d0)—
(d2) are satisfied (cf. [3]). From (d2), we can assume that for some C > 0,

U2 cBO,0)=8B

>0

Then we can regard an element u of H&’Q(Qo) as that of H&’Q(B) by defining u = 0
on B\ £2,. Define a norm |ju|| on Hy*(B) by

f||| :/ |Vu|? dz.
B
For each 7 € {1,...,m}, we consider the following problem:
Au+ f(u) =0 in 27,
u>0  in (4-1)
u =0 on 982"

Define an energy functional

F(u)E%/RN |Vu|2dx—/RN F(u)dz

on H&’Q(B), where
F(u) 2/0 f(t)de.

Let S; be the set of solutions of (4-i). By condition (f2) and an estimate [9, equa-
tion [(2.12)], there exists a constant C' > 0 such that, for any u € S;,

(p+1)/2
/ |Vu|?dz < C(/ |Vul? dx) .
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Thus there exists a constant § > 0 such that
[lul| > 25 foranyuwesS;, i=1,...,m. (2.2)
Define

o)
Il

inf{I"(u) | u € S;}
and
S¢={ues; | 'ku)<a}l

We note that the set Sf of minimal energy solutions of (4-7) is not empty for each
i =1,...,m, and that, from condition (f3),

¢t = inf{F(u) ’ / (Vu-Vu— f(u)u)dz =0, ue Hy*(2')\ {o}}. (2.3)
Our last assumption follows.

(b-i) Let L; be a compact subset Sf such that, for some constant €% > 0,

Li|| <2\ L; = 0.

REMARK 2.1. Since I satisfies the Palais—Smale condition, we see that Sf is com-
pact in H&’Q(Ql). Then, taking L; = S;, we see that condition (b-7) holds. Moreover,
if L; is an isolated component of S§ , condition (b—%) holds for some €' > 0.

Now we see our main result in this paper.

THEOREM 2.2. Let {i1,...,41} C {1,...,m}. Assume that conditions (f1)-(f3),
(d0)-(d2) and (b-iy)-(b-i;) hold. Define ¢ = min{d,&,... e%}. Then, for suffi-
ciently small o > 0, there exists a solution u, of (2.1) such that

lug — (Liy + ... Lq,)|| <e.
Moreover, it holds that
hI?% ||ug - (L“ —+ ... L“)H = 0.
From remark 2.1 and theorem 2.2, we easily deduce the following corollaries.

COROLLARY 2.3. Assume that (f1)-(f3) and (d0)-(d2) are satisfied. Then the num-
ber of solutions of (2.1) is at least 2™ — 1 for sufficiently small o > 0.

COROLLARY 2.4. Assume that (f1)-(f3) and (d0)-(d2) are satisfied. Denote by q;
the number of isolated connected components of S{ and by n, the number of solu-
tions of (2.1). Then it holds that

m
hmlnfng l_[ (g +1)—1.
1=1
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REMARK 2.5. Condition (d0) is inevitable in theorem 2.2. In fact, defining
2 ={(z,y) eR?*|-1<2<0,0<y<1},
P ={(z,y) ER?*|0<z <1, 0<y<1}

and

2, ={(z,y) ER?|-1—-0<2<1+40, —0<y<l+o},

conditions (d1), (d2) are satisfied with m = 2 and E = 0. It is not difficult to see
that the intersection

2PN ={0,y) eR*[0<y <1}

is not of capacity 0 in R?. On the other hand, it is proved in [3] that problem (1.1)
has a unique solution when the domain 2 C R? is convex and invariant under
the reflections (z,y) — (—=z,y), (z,y) — (z,—y). Since {2, is invariant under the
reflections, problem (1.1) with £ = {2, has a unique solution for each o > 0. This
shows that condition (d0) is necessary in theorem 2.2.

3. Proof of theorem 2.2

For any u € H&’Q(B), let Py1(u) € H&’Q(B) be a solution of the equation

Av =0 in .Q(),
v=u in B\ {2.
For each 7 € {1,...,m}, we define

u— Ppy1(u) on £,

H(U)E{O on B\ ¢

Then we see that Pi(u) € Hy?(£2°) for i = 1,...,m. Moreover, we see that
u= P (u)+ -+ Pyn(u) + Pnt1(u), and that

/ VPi(u) - VPj(u)de =0 for1<i#j<m+ 1
B

Thus it follows that
m—+1

[ull® = Z (A (3.1)

Define
L=Ljy+ - +Ly={u1+ - +uw|ux €Ly, k=1,...,1}
and

e =min{d,e", ... "}

We define 7 = §¢ U {0}. Then, from (2.2) and condition (b-j), j = i1,...,4;, we
see that
{ue Hy*(B) | |lu—L| <e}n{S; +--+S;} =L (3.2)

1
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Jr(u) = / (Vu-VP;, (u) — f(uw) P, (u)de, k=1,...,1,
for u € H&’Q(Qo). Then, from (f2), we see that Jj € Cl(Hé’Q(QU)), k=1,...,L
We define

Wy =Wy(it,...,i) ={u€ Hy*(2) |u#0and J, = - = Jy(u) = 0}.
Denote
Qo(d) = {JJ € | |.7J - 890| > d}

For sufficiently small d > 0, £2(d) is an open set in R" with smooth boundary.
For each small d > 0, £2y(d) C 2, if o > 0 is sufficiently small. For each ¢ > 0, we
define
d(o) =inf{d | 29(d) C 2,}.
Then we see that
;iirb d(c)=0 and {2(d(o)) C £2,.

For each u € L, we define Q,(u) the unique solution of

—Av = f(u) in 2y(d(0)),
v=0 on 9f2y(d(0)).
We note that Q,(u) € Hé’Q(QU) and that Q,(u) > 0 in 2y(d(0)). From elliptic

estimates [8], it is easy to see that lim,_¢ [|lu — Q,(u)|| = 0. We note that for each
k=1,....1,

P (Qo(u)) = Qo (u)

where v|4 means a restriction of v on A. Then, from elliptic estimates [8] and the
compactness of L, we see that

ks

lim J(Qo(u)) =0

oc—0

uniformly with respect to u € L. Then, from (2.2) and condition (f3), we deduce
that for each u € L, there exist t*(u) € R, k =1,...,l, such that

oix € Wg,

l
Q) = ) th (1) Qs (w)
k=1
and that
hn%t’;(u) =1, k=1...,1,

uniformly with respect to u € L. Therefore, we conclude the following proposition.
PROPOSITION 3.1. There exists a map Q. : L — W, such that

lim sup [lu — Q7 ()|l = 0,

c—0 e

and that, for each u € L,
Qr(u) =20 in §2,.

ag
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We define

Proposition 3.1 says that
lin% |IL—L°|| =o0. (3.3)

It is easy to see that
Jp(u)(Pi;(u)) = 0

for u € L7 and 1 < k # j < I. Moreover, we see from (3.1) and condition (f3) that,
forue L? and k=1,...,1,

Tpo () (P (u)) = /Q » ))(QIVPu (W)* = f' (W) (P, (w)* = f(u)Py, (u)) dz
= / (f (Pir (W) (Pi, (w) = f'(Pi, (w)) (Py, (u)?) dz
20 (d())

<@-0[ PP @)
£20(d(a))
< 0.

We define a map J : Hy*(2,) — Rl by J(u) = (Jy(u), . .., Ji(u)). Then there exists
a constant R > 0, independent of small ¢ > 0, such that a map

VJ(u): Hy?(2,) — R

is surjective for any u € {v € W,||v — L?|| < R}. This implies the following
proposition.

PROPOSITION 3.2. There exists a constant R > 0, independent of small o > 0, such
that {u € W, | |lu— L?|| < R} is a smooth (C*) Hilbert manifold of codimension I.

We define
r“={uec Hy*(B) | I'u) < a}
and
19 =max{I'(u) |u € L%}.

It is not difficult to see that

We also define
F={uveW,||u—-L°| <R}
and

D% = {u€ Hy*(2,) | |u— L7|| < R}.
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From (3.2) and proposition 3.1, we see that, for 0 <r < R < ¢,
(DE\NDIYN{ST+...55,} =10

if o > 0 is sufficiently small. Then we have the following proposition.

PROPOSITION 3.3. Let 0 < r < R < e. Then there exists a positive constant o such
that, if o > 0 is sufficiently small,

[T (u)] = o
forue (DE\DZ)NTY.
Prior to proving proposition 3.3, we prove the following lemma.

LEMMA 3.4. Let u € Hé’Q(Q). Suppose that u = 0 on B\ 2. Then its restriction
qi to £2° belongs to Hé’Q(Qi) for eachi=1,...,m.

Ui = U

Proof. Let (2’ be the set of interior points of 2. Then we see that u € H&’Q(Q’)
(cf. [9, lemma 3.3]). Take ¢, € C§°(£2'), k =1,2,..., such that

i [lu =[] = 0.

Since the capacity of Uy« jzj< 21N (27 is 0, there exist functions {¢y, }, C C§(RY)
such that ¢, (z) =1 for any = € U1< itj<m 2* N 2, and that

lim |Vn|?dz = 0.
RN

n—oo

We can assume that the support of ¢,, is contained in B for each n. Then we see
that for some constant c(k),

[k = (1 = n)lI? = [renll?
= [ (V0P + 2V Tt + () Vi) do

<) [ (ol + (o)
Thus, from Poincaré’s inequality, we see that
Jim [k = ¢hr(1 = @n)[ = 0
for each k. This implies that for some n(k),
Jim lw = ¥i(1 = on@)ll = 0.

We note that 0, = ¢ (1 — @) € C§(B) and 0y (x) = 0 for = ¢ 2. Hence we see
that for each i = 1,...,m, the restriction of 6 on §2*, 0} = 0;|q:, is continuously
differentiable in ¢ and vanishes on 9£2°. The function v} can be approximated by
functions in C§°(§2%) with respect to the norm

1/2
ull = ( / |Vw|2dx) |
N
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Therefore, u; is contained in C§°(£2¢) = Hé’Q(.Qi), i =1,...,m. This completes the
proof. O

Proof of proposition 3.3. We argue by contradiction. First assume that, for some
0 <7 < R <e¢, there exist {uq;}32; C H,*(B) such that

lim 05 = 0,
Jj—00 Jj—00

lim I"(uy,) =0 and wuy, € (DY \DZ)NIT".
J J R

Taking a subsequence if necessary, we can assume that the u,; converges weakly
to some ug € Hé’Q(B). For the sake of convenience, we write simply o for o;. Since
the {f2,} represents a singular perturbation of 2y, we see that ug(xz) = 0 for any

x ¢ (2. From lemma 3.4, we see that the restricted function u} = ug|p: belongs
to Hé’Q(Qi) for each i = 1,...,m. Since limy_o I’ (u,) = 0, we see that for each
1=1,...,m,

Aud + f(uh) =0 in 0.

Thus uf is a solution of (4-i) or, identically, 0 on 2. Since u, converges weakly to
ug in H&’Q(RN) as 0 — 0, it holds that

oc—0

liméf(ug)uodxzéf(uo)uo dx

(cf. [12, proposition B.10 in appendix B]). Since

/|Vu0|2dx=/f(u0)u0dx
B B

and
lim (|Vug|* = f(ug)uy) dz = 0,
o—0 N

o

it follows that

oc—0

lim |Vuo|2dx=/ |Vuo|? dz.
o

o

This implies thlat Uy converges to ug in H&’Q(B) as 0 — 0. Then ug € H&’Q(QO)
and I'(ug) =¢* +---+¢' . From (3.3), we see that

uo = L]l = lim [[us — L[| < R.
o—0

Since R < e < 4, it follows that u} =0 for i € {1,...,m}\ {i1,...,4;}. Then,
from (2.2) and conditions (b-i1 )—(b-;), it follows that ||ug—L|| = 0. This contradicts
that for sufficiently small ¢ > 0, u, ¢ DZ. This completes the proof. O

Denote
Mg =inf{I'(u) | u e L}

Then we have the following estimate on MF.
PROPOSITION 3.5. For sufficiently small R > 0, it holds that

lim Mg = c" 4+ + ™.
oc—0
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Proof. From conditions (b-i1)—(b-i;), we easily see that

limsup Mg < ¢ + -+ 4™,

oc—0

Thus it suffices to show that, for sufficiently small R > 0,
liminf M7 > SRR S
Since 0 is a local minimum of I" on H&’Q(B), there exists a constant R’ € (0, ¢) such

that
I(u) =0 foranyu€ {ve Hy*(B)||lv]| < R'}.

Suppose that, for sufficiently small R € (0, R’),
limi(l)lfMj'% <M
We take a u, € L% such that

liminf I'(u,) = limi(l)lf Mg.

o—

Since {u,}, is bounded in H&’Q(B), we can assume that, taking a subsequence if
necessary, u, converges weakly to some ug in H&’Q(B) aso — 0. Since u € Hé’Q(Qo)
and {2, } represents a singular perturbation of 2y, it follows that

up(z) =0 for x & £.

Then we see that Py, 1(u,) converges weakly to 0 in Hy*(B) as o — 0. We note
that the imbedding Hy*(B) < L(B) is compact for 1 < ¢ < 2N/(N — 2). Thus
we see that

lirr%) F(uy)dx = lirr%) F(Pi(ug) + -+ Pn(ug) + Pryi(ug)) dz
g — Qa‘ g — Qa‘

o—=0Jgn,

and that for eachi =1,...,m,

lim fug)Pi(ug)de = lim f(Pi(ug) + Pryi(ue)) Pi(ue) de

o—0 2. o—0 2.

= lim F(Pi(uy))P;(uy) dz
fo

oc—0

(see also [12, proposition B.10 in the appendix]). Thus it follows that

1 m—+1
lim I'(uy) = lim (5 Z |VP¢(uU)|2 —F(Pi(ug)+ -+ Pm(ug))> dz,
24

o—0 o—0
i=1

and that

lim [ (IVPi, (uo)* = f(Piy (u)) Py (ug)) d
g— on

= lirr%) (Vue - VP, (uy) — f(ue)Pi, (uy)) dz = 0.
ag— Q(l)k

https://doi.org/10.1017/50308210500001256 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001256

Nonlinear elliptic problems 1033
From (3.1), we see that, for any u € Hé’Q(B),

/|VPm+1(u)|2dx</ |Vul? de.
B B

Thus P; is a continuous linear map from H&’Q(B) to H&’Q(B). We note that for
k=1,...,land v € L7, P;, (u) = u|gi,. Then, since L? is bounded away from 0,
it follows that for sufficiently small R > 0, {P;, (us)}o is bounded away from 0 for
each ¢ = 1,...,l. Then, from condition (f3), there exists a tx(c) € R, k =1...,1,
such that, for each £ =1,...,1,

lim (o) =1

o—0
and
/Q, (IVtr(0) Pir (uo)|* = f(tr(0) Pir (o)) tx(0) Py (o)) daz = 0.

*k
0
Moreover, if R > 0 is sufficiently small,
1P (uo) || < B
fori € {1,...,m}\ {i1,...,4}. Thus, from (2.3), we see that

o—0 o—0

1 m—+1
lim I"(u,) = lim (5 > IVPi(uo)l” = F(Pi(ug) + -+ + Pm(ua))> da
2 i=1

oc—0

l
> 1im Y [ GIVPL (o) = F(Py(u0) o
k=1 g

tim Y[ QIVR@P - PR )

0
i€{1,..,mMN\{ir,....ix} * 0

!
> i Y. [ V0P (o) P = F(0(0) (P (1))
k=1" {2

o—0
>t et
> lim i(l]lf Mz.
This is a contradiction. This completes the proof. O

We will show that the energy functional I" restricted to W, has a critical point
in L N 'Y for small ¢ > 0. Prior to showing this, we need the following result.

PROPOSITION 3.6. Let I, be a restriction of I' to W,. Assume that a positive
constant R is sufficiently small. Then, for each r € (0, R), there exists a constant
@ > 0 such that, for sufficiently small o >0 and v € (L% \ L7) N v,

|F1/u(u)| Z Q.

Proof. From the continuity of P;, i = 1,...,m, we see that, for sufficiently small
R > 0, there exists a constant 8 > 0, independent of ¢ > 0, with the following
property: for any v € Lg and k=1,...,1,

1Pi (w)]| = 5.
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We note that if R > 0 is sufficiently small,

Ji(u) (P, (u)) # 0
for any v € L% and k= 1,...,l. Thus we see that
Pil(u)a"'apil(u) %TULUR

for any u € L%. Here, T, L% means a tangent space of LG at u € Lg. It is easy to
see that the {P;, (u),..., P, } are linearly independent. This implies that

Tu(Hy?(25)) = TuL% & ({ Py, (u), ..., Py, (u)}),

where (A) means a space spanned by elements of A. Since we have I''(u)P;, (u) = 0,
k=1,...,1, we conclude from proposition 3.3 that there exists a constant ay, > 0
such that |I, (u)| = v, for any u € (LL\ LZ)N T, O

PROPOSITION 3.7. For sufficiently small R € (0,¢), there exists a constant oo > 0
such that Iy, has a critical point u, € LE N 'Y for each o < oy.

Proof. From the above propositions, we can take sufficiently small R € (0,¢) so
that L% is a C'-manifold, and that

111%M§=C“+---+C“.

Suppose that there exist no critical points of I, on L% N I for sufficiently small
o > 0. Then there exists a pseudo-gradient vector field V for I, such that, for any
we LgNIrY,
V(u) € T,LE, V(W) <21 W)
and
L)V (u) > |11 ()2
(cf. [12, appendix A]). Set

lu — CLE|

g(u) = — —,
llu = CLE| + [lu = LF, |l

where CLg, = W, \ L%. Define

We set
O(u) = g(wh([|V(u)[)V (u).

Then we consider a Cauchy problem

D=6, n0u)=u (3.4)

The Cauchy problem (3.4) has a unique global solution. By proposition 3.6, there
exists a constant «,, € (0, 1), independent of o > 0, such that

|O()] > aw for ue (L \ L) NI
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We takedvg €L’ C L‘I’%/4 such that I, (v,) = 1. Since I, has no critical points in
L% NTIY and satisfies the Palais-Smale condition (cf. [14]), there exists a constant
¢(o) > 0 such that

Ty (u)| > e(o) forue L NI
We note that I'(n(t,v,)) < 17 for any ¢t > 0. If n(¢,v,) lies in L% ), forallt e (0, 00),

it follows that
lim I'(n(t,vs,)) = —o0.

t—o00

This contradicts proposition 3.5. Hence there exist t1,t2 € (0,00) with ¢; < t3 such
that
n(tlavo) € ang/Ap U(tQan) € aL(]T%/Qa

and that .
n(t,vo) € (Lyg \ LEg) NI for t € (t1, t).

Then it follows that

I(n(t2,v5)) = I'(vs) < T'(n(t2;00)) = I'(n(t1, v5))

tzd
= | S, v,))dt
[ et

- / I mem) dr
-/ " min{1, 7% (1t vo)) | HITS (n(t, v0)) |

N

N

to
e [Tt w )
t

1

N

ta
la, / IV (n(t, o))l dt
t1

VA
|
N
Q

S

ta
| 16ttt w0
t1
t
2 d77
_ _1 1
= 2aw~/t1 dt(t,vo)

—la, (AR - 1R)

dt

N

|

|

I
Iay
Q
g

Thus we see that
I'(n(ta,vs)) < I'(ve) — %Raw =107 - %Raw.
This implies that

liminf I'(n(t2,v5)) < ¢ 4+ + ¢ — 2 Ray,.

o—0

This contradicts proposition 3.5. Therefore, there exists a constant oy > 0 such
that the functional I, has a critical point u, € LG N I'" for each ¢ < og. This
completes the proof. O
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Completion of the proof for theorem 2.2. Since we have that I''(u)P;, (u) = 0 for
k=1,...,0 and that

T.(Hy®(25)) = TuL% ® ({Piy (u), ..., Py (w)})

for each v € L%, it follows that the u, obtained in proposition 3.7 is a critical point
of I on Hé’Q(QU). Thus, by a maximum principle, u, is a solution of (2.1) such
that

lug = (Liy +---+ L)l <e and I'(u,) <1°.
It remains to show that
}ii% lug — (Liy +---+ Ly,)|| = 0.
Suppose that there exist {u,, }32; such that

lim o, =0 and klim o, — (Liy +---+ Ly,)|| > 0.

k—oo

Taking a subsequence if necessary, we can assume that us, converges W?akly to
some ug in Hy?(B) as k — oo. Then it follows that I'(ug) < ¢ + -+ ¢ . Thus,
from lemma 3.4 and conditions (b-i1)—(b-i;), we deduce that ug € L;, + -+ - + Ly, .
Since

Vg, - Vg, de = fug, )ug, do
fo o

— fup)ug dx
20

= Vug - Vug dz
0

as k — o0, it follows that

lim ||ug, — ugl = 0.
k—o0

This implies that
khm ||ugk —(Liyy +---+ Liz)” = 0.

This is a contradiction. Thus it holds that

hI?% ||uo - (Lu + Lu)” =0.
This completes the proof of theorem 2.2. O
Acknowledgments

This work was partly supported by POSTECH research fund and grant no. 1999-
2-102-003-5 from the Interdisciplinary Research Program of the KOSEF.

https://doi.org/10.1017/50308210500001256 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001256

Nonlinear elliptic problems 1037

References

1 J. Byeon. Existence of large positive solutions of some nonlinear elliptic equations on sin-
gularly perturbed domains. Cormprumn. PDFEs 22 (1997), 1731-1769.

2 V. Coti-Zelati and P. H. Rabinowitz. Homoclinic type solutions for a semilinear elliptic
PDE on R". Cormmran. Pure Appl. Math. 45 (1992), 1217-1269.

3 E. N. Dancer. The effect of the domain shape on the number of positive solutions of certain
nonlinear equations. J. Diff: Eqns 74 (1988), 120-156.

4 E. N. Dancer. On the influence of the domain shape on the existence of large solutions of
the superlinear problems. Math. Anniln 285 (1989), 647-649.

5 E. N. Dancer. On the number of positive solutions of some weakly nonlinear equations on
annular regions. Math. Z. 206 (1991), 551-562.

6 E. N. Dancer. Domain variations for certain sets of solutions and applications. Zbpolog.
Meth. Nonlinear Analysis T (1996), 95-113.

7 B. Gidas, W. N. Ni and L. Nirenberg. Symmetry and related properties via the maximum
principle. Comrrun. Math. Phys. 68 (1979), 209-243.

8 D. Gilbarg and N. S. Trudinger. Elliptic partial differential equations of second order; 2nd
edn (Springer, 1983).

9 O. A. Ladyzhenskaya and N. N. Ural’tseva. Linear elliptic and quasilinear elliptic equations
(Academic, 1968).

10 M. Musso and D. Passaseo. Multibump solutions for a class of nonlinear elliptic problems.
Calc. Var. PDEs 7 (1998), 53-86.

11 W. M. Ni and R. D. Nussbaum. Uniqueness and non-uniqueness for positive radial solutions
of Au+ f(u,r) =0. Cormmrun. Pure Appl. Math. 38 (1985), 67-108.

12 P. H. Rabinowitz. Minérmax methods in critical point theory with application to differential
equations. CBMS Regional Conference Series in Mathematics, vol. 65 (Providence, PA:
American Mathematical Society 1986).

13 E. Séré. Existence of infinitely many homoclinic orbits in Hamiltonian systems. Math. Z.
209 (1992), 27-42.

14 M. Struwe. Variational methods; application to nonlinear partial differential equations and
Hayrrultorian systerns (Springer, 1990).

15 J. Wei and L. Zhang. On the effect of the domain shape on the existence of large solutions

of some superlinear problems. (Preprint.)

(Issued 19 October 2001)

https://doi.org/10.1017/50308210500001256 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500001256

