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The Mullins–Sekerka sharp-interface model for phase transitions interpolates between
attachment-limited and diffusion-limited kinetics if kinetic drag is included in the
Gibbs–Thomson interface condition. Heuristics suggest that the typical length-scale
of patterns may exhibit a crossover in coarsening rate from l(t) ∼ t1/2 at short times
to l(t) ∼ t1/3 at long times. We establish rigorous, universal one-sided bounds on
energy decay that partially justify this understanding in the monopole approximation
and in the associated Lifshitz–Slyozov–Wagner mean-field model. Numerical
simulations for the Lifshitz–Slyozov–Wagner model illustrate the crossover behaviour.
The proofs are based on a method for estimating coarsening rates introduced by
Kohn and Otto, and make use of a gradient-flow structure that the monopole
approximation inherits from the Mullins–Sekerka model by restricting particle
geometry to spheres.

1. Introduction

Phase separation by spinodal decomposition or heterogeneous nucleation produces
complicated patterns whose evolution is driven by dissipation of surface energy
while the volumes of the separate phases are preserved. The spatial structure is
observed to coarsen in ways roughly characterized by a typical length-scale l(t) that
grows as a power law tα for some exponent α > 0. It is a challenge to understand this
kind of transient dynamic behaviour in spatially extended systems with complex
morphology, and to explain how different physical mechanisms yield different values
of the coarsening rate exponent α.
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We study a variant of the Mullins–Sekerka model, a standard sharp-interface
model that describes the late stages of phase-separation dynamics in a two-phase
mixture. This particular variant alters interfacial motions by including a kinetic
drag term that appears in the literature on rapid solidification from a melt. Heuristic
arguments suggest that a phenomenon of temporal crossover occurs in this system.
The length-scale should grow proportional to t1/2 in the (early time) regime of
‘attachment-limited’ kinetics, and proportional to t1/3 in the (late-time) ‘diffusion-
limited’ regime. Our main result is to establish rigorous bounds on energy decay
that partially justify this understanding in the so-called monopole approximation.

The monopole approximation involves constraining the geometry of the minority
phase to be a finite system of spherical particles in R

3. This is a reasonable approx-
imation when the volume fraction of the minority phase is small and its particles
are well separated (see [1,2] for a rigorous treatment). If the ith particle has radius
Ri = Ri(t) > 0 and (fixed) centre xi, the (non-dimensionalized) interface evolution
law reduces to a system of ordinary differential equations (ODEs) in which the time
derivatives Ṙi are determined from the equations

(β + Ri)Ṙi +
∑
j �=i

R2
j Ṙj

|xi − xj |
= θ(t) − 1

Ri
for all i. (1.1)

Here, β > 0 is the kinetic drag coefficient and θ(t) is independent of i and is
determined so that total particle volume is conserved in time:

∑
i

R3
i = const. (1.2)

This system applies until such a time as some particle’s size vanishes. Then the
system is restarted with the remaining particles after relabelling.

The dynamics of the monopole model remain complex due to the arbitrary
arrangement of particles in space. Presumably, spatial correlations between par-
ticles develop in a time-dependent fashion and affect coarsening dynamics in ways
that are not well understood. Our analysis employs the method introduced by Kohn
and Otto [11], who treated two variants of the Cahn–Hilliard equation. The out-
come is to establish rigorous power-law bounds for decay of a normalized energy
E(t) for the system, in a time-averaged sense. These bounds are

(i) universal, in that they apply to every solution;

(ii) one-sided, in that slower coarsening is possible (unstable equilibria may exist,
for example), but faster coarsening is impossible;

(iii) independent of system size and spatial complexity; and

(iv) independent of statistical assumptions about the system.

In the present problem, energy is proportional to surface area, and we let

E =
∑

i R2
i∑

i R3
i

. (1.3)
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This quantity is 1
3 of the ratio of total surface area to total volume of particles, and

it scales as inverse length. Our main results establish two different kinds of lower
bounds on the decay of E that remain valid independent of initial conditions, as
long as particles do not collide. The time of validity of these bounds involves two
different dual quantities, L1(t) and L2(t), which scale as length. (These quantities
are defined in § 4; see (4.3) and (4.13).)

Theorem 1.1.

(i) Given 1 < p < 2, there exist positive constants c1 and ĉ1 depending only on p
such that, for any solution {Ri} of the monopole model (1.1), (1.2), we have

∫ T

0
E(t)p dt � c1

∫ T

0

(
β

t

)p/2

dt, provided that
(

T

β

)1/2

� ĉ1L1(0). (1.4)

(ii) Given 1 < p < 3, there exist positive constants c2 and ĉ2 depending only on p
such that, for any solution {Ri} of the monopole model (1.1), (1.2), we have

∫ T

0
E(t)p dt � c2

∫ T

0

(
1
t

)p/3

dt, provided that T 1/3 � ĉ2L2(0). (1.5)

The meaning of these estimates will be discussed later in more detail, but we note
here that they are consistent with the following heuristic expectations. Suppose
that after non-dimensionalization R(t) is a typical length-scale (particle radius); we
expect E(t) ∼ 1/R(t). Suppose that R is initially O(1), while β � 1. Then, as long
as R(t) � β, typically β + Ri ≈ β in (1.1), and formal scaling analysis leads us to
expect R(t) ∼ R(0) + (t/β)1/2 ∼ (t/β)1/2 for t � β. Eventually R(t) � β, whence
typically β + Ri ≈ Ri and formal analysis suggests R(t) ∼ t1/3. Crossover should
occur when (t/β)1/2 ≈ β ≈ t1/3, or t ≈ β3. Within a constant factor independent
of β, the lower bound provided by (1.4) is better than that provided by (1.5) for
T < β3, and vice versa for T > β3.

The Kohn–Otto method has been applied successfully to treat a considerable
number of other models (see [4,7–9,12–14,20,21] for examples and further develop-
ments). One reason for interest in the present results is that they relate to the case
of coarsening by pure attachment-limited kinetics, which has resisted a complete
analysis so far. In this case, the interface motion law states that the normal veloc-
ity v is proportional to the deviation between mean curvature κ and its average κ̄.
With the sign convention we will use, and in appropriate units, this means

v = κ̄ − κ. (1.6)

As Otto has pointed out (personal communication), for this law there is no lower
bound on energy decay that is completely independent of solution morphology. A
system of identical particles and ‘holes’ has average mean curvature zero (κ̄ = 0),
and no universal bound is possible for coarsening by pure mean curvature motion.
Yet there are some positive results for (1.6) that establish bounds like (1.4), con-
sistent with length-scale growth proportional to t1/2 as heuristics suggest. Such
bounds are valid when all particles are spheres, for example (with no ‘holes’). This
follows from the result in [7, theorem 4.3] for systems of either finitely or infinitely
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many spheres; a simple treatment is shown in § 5. The present paper extends this
treatment to study coarsening behaviour in the system (1.1) when crossover to
diffusion-limited kinetics comes into play. (In two spatial dimensions, Dai [6] has
recently established t1/2 bounds when all particles are convex regions with bounded
eccentricity in a certain sense.)

The remainder of the paper is structured as follows. In the next section we
describe the Mullins–Sekerka model with kinetic drag and indicate its connection
with the law of motion by deviation of mean curvature in the limit as β → ∞.
In § 3 we show that the monopole model arises from the gradient-flow structure
of the Mullins–Sekerka model by geometrically restricting particles to be spheres.
The inherited gradient-flow structure plays a key role in establishing the rigorous
coarsening bounds in § 4.

Section 5 deals with the simpler Lifshitz–Slyozov–Wagner (LSW) mean field
model with kinetic drag, given by

Ṙi =
1

β + Ri

(
θ(t) − 1

Ri

)
for all i. (1.7)

This comes from (1.1) by ignoring the cross-interaction terms involving |xi −xj |. It
is a model for very dilute systems in which the distance between particles becomes
large compared with their radii. The ODE (1.7) remains weakly coupled by the
mean field θ(t), which is determined by conservation of total volume

∑
i R3

i as
before.

The coarsening-rate estimates (1.4) and (1.5) are easy to establish for this LSW
model (see § 5). Our main reason for considering (1.7) regards its tractability for
numerical simulation. In § 5.2 we will present numerical simulations for this model
that exhibit crossover of length-scale coarsening from (t/β)1/2 to t1/3. It would
be desirable to compute solutions of the monopole model (1.1) to see whether
such crossover behaviour occurs as predicted heuristically. However, observing such
behaviour by direct simulation of (1.1) appears to be quite difficult due to the
large numbers of particles needed for good statistics, the global coupling of the
equations and the great length of time anticipated for power-law coarsening to
increase length-scales sufficiently (at least two orders of magnitude).

2. Mullins–Sekerka model with kinetic drag

The model that we start from is formulated as follows for a two-phase mixture in
a domain Ω ⊂ R

n. Let Gt ⊂ Ω denote the region occupied by one of the phases
at time t, and let Γt = ∂Gt denote the interface separating the two phases. The
system in non-dimensional form is then

∆u = 0 in Ω \ Γt, (2.1)
[n · ∇u] = v, u = κ + βv on Γt. (2.2)

Here u is a normalized chemical potential or concentration difference, n is the
outward unit normal to the interface Γt, v is the normal velocity of the interface
Γt, κ is the mean curvature of Γt (taken to be positive when Gt is convex) and
β > 0 is a constant kinetic drag coefficient. The jump of the normal derivative of u
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across Γt is [n · ∇u] = n · ∇u+ − n · ∇u−, where u+ and u− are the limits of u on
Γt coming along n from the outside and inside, respectively. One should also apply
an appropriate boundary condition on ∂Ω, for example, the no-flux condition

n · ∇u = 0 on ∂Ω.

For this model, the total volume of Gt is conserved in time.
The standard Mullins–Sekerka system has β = 0. Including kinetic drag in the

Gibbs–Thomson relation (2.2) provides a formal interpolation between a (faster)
regime in which the main rate-limiting mechanism of domain growth is the attach-
ment of monomers at the boundary, and a (slower) regime in which diffusion
between different components (particles) becomes dominant. We can illustrate the
effect of β by the following heuristic scaling argument. We rescale the chemical
potential u, length x and time t in terms of typical scales U , X and T for these
quantities by

u = Uũ, x = Xx̃, t = T t̃. (2.3)

Under this scaling we find that (2.2) becomes (after dropping tildes)

[n · ∇u] =
X2

UT
v, u =

κ

UX
+

βX

UT
v on Γt. (2.4)

Presuming u, κ and v are now O(1) quantities, it is reasonable to take U = 1/X.
Then we can distinguish two limiting cases: X � β and X � β.

Case 1 (X � β). Here we may take T = βX2 and find X2/UT = X/β ≈ 0.
Then [n · ∇u] ≈ 0, where the harmonic function u should be approximately a
constant in space, equal to the average mean curvature κ̄, since total volume of
Gt is conserved. That is, the dynamics are given approximately by mean-curvature
fluctuation, as in (1.6). This limiting model is then invariant under rescaling with
X = (T/β)1/2, which is the length/time-scale relation one then expects heuristically
for ‘statistically self-similar’ coarsening.

Case 2 (β � X). Here it is reasonable to take T = X3. Then βX/UT ≈ 0 and
the model reduces to the usual Mullins–Sekerka model, which is invariant under
rescaling with X = T 1/3.

3. Gradient-flow structure

In this section we aim to explain the gradient-flow structure of the monopole model
in (1.1). Following [5], we show that this structure is obtained by restriction of a
corresponding one for the full Mullins–Sekerka model with kinetic drag, to interfa-
cial geometry consisting of a collection of spheres with fixed centres. This method of
geometric restriction seems a rather powerful way of obtaining reduced or simplified
models while preserving useful structure. For example, it was used in a study of
diblock copolymers to model the evolution of radii and centres [10]. The gradient-
flow structure of the monopole model will be used in the next section to obtain the
coarsening estimates that we seek.
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3.1. Mullins–Sekerka model as gradient flow

The Mullins–Sekerka model was described formally as gradient flow for surface
area on a ‘manifold’ of sets with smooth boundary in [17] for the case without
kinetic drag (β = 0) and with periodic boundary conditions. Here we recall how
this works and indicate an extension to the case β > 0 without boundary conditions,
meaning one phase comprises finitely many particles in all of R

3.
First, we recall generally that the ingredients of a gradient flow involve a Rieman-

nian manifold M with metric g and a functional A : M → R. A solution trajectory
is a curve t 	→ y(t) ∈ M with tangent vector ∂ty ∈ Ty(t)M that satisfies

gy(t)(∂ty, z) + 〈dA(y(t)), z〉 = 0 for all z ∈ Ty(t)M. (3.1)

Here dA(y) is the cotangent vector induced by the differential of A at y.
For Mullins–Sekerka flow, we consider M to be the ‘manifold’ of all bounded

sets G ⊂ R
3 with smooth boundaries and having a prescribed volume. Elements

of the tangent space TGM correspond formally to (smooth) normal-velocity fields
v : ∂G → R with zero mean. To any such v ∈ TGM we associate a harmonic
potential u = JGv defined as the unique solution for the Neumann jump boundary-
value problem

∆u = 0 in R
3 \ ∂G, (3.2)

[n · ∇u] = v on ∂G, (3.3)
u(x) → 0 as |x| → ∞. (3.4)

Technically, u can be found as the minimizer of

I(u) = 1
2

∫
R3

|∇u|2 dx +
∫

∂G

vu dS

in the Hilbert space H = {u ∈ L6(R3) | ∇u ∈ L2(R3)3}, which is complete by a
critical Sobolev embedding theorem. Here we omit discussing details [5].

We describe a metric as follows. Given v and ṽ ∈ TGM, we let u = JGv and
ũ = JGṽ and define

gG(v, ṽ) =
∫

R3
∇u · ∇ũ dx + β

∫
∂G

vṽ dS. (3.5)

Note that integration by parts using (3.3) for ṽ yields

gG(v, ṽ) =
∫

∂G

(−u + βv)ṽ dS. (3.6)

As energy functional A : M → R we take half of the total surface area:

A(G) = 1
2 |∂G| = 1

2

∫
∂G

dS. (3.7)

Then the differential dA(G) (formally an element of the cotangent space T ∗
GM)

is well known to correspond to the mean curvature of ∂G: for any smooth curve
s 	→ Gs with G0 = G and arbitrarily specified normal velocity field ṽ on ∂G0,

〈dA(G), ṽ〉 =
d
ds

A(Gs)
∣∣∣∣
s=0

=
∫

∂G

κṽ dS.
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Suppose that t 	→ Gt is a solution trajectory for gradient flow of A on M with
the metric in (3.5), with normal velocity field v on ∂Gt. By (3.1) and (3.6) this
means that with u = JGtv,∫

∂Gt

(−u + βv + κ)ṽ dS = 0 for all ṽ ∈ TGt
M. (3.8)

Since ṽ is arbitrary with zero mean on ∂Gt, we can infer that the quantity

θ = −u + βv + κ (3.9)

is constant on ∂Gt, and θ = θ(t) is a function of time alone. Averaging (3.9) over
∂Gt, since v has zero mean we may write

θ =
1

|∂Gt|

∫
∂Gt

(−JGt
v + κ) dS = −JGt

v + κ̄. (3.10)

It then follows that with u = JGv + θ instead, equations (2.1) and (2.2) of
the Mullins–Sekerka model with kinetic drag are satisfied. Note that the spatial
constant θ is then the limit of u(x) as |x| → ∞.

3.2. Monopole model as constrained gradient flow

Interfaces can develop singularities during Mullins–Sekerka dynamics: for exam-
ple, pinch-off of dumb-bell shaped regions and coalescence of neighbouring domains.
To avoid the difficulties caused by such singularities, we now consider a constrained
simpler geometry: one phase consisting of finitely many non-overlapping spherical
particles. Note that singularities can still occur, as small particles can vanish in
finite time and growing spheres collide. When one or more particles vanish, the sys-
tem simply evolves from its current state with fewer particles. We will not address
collisions here, since they can be neglected if particles are well separated (see [19]
for a study of the effect of collisions).

In this section we aim to describe the monopole model (piecewise in time between
vanishing events) as gradient flow for the restriction of the energy function A to a
finite-dimensional submanifold N of M. The submanifold consists of sets G that
consist of the union of a finite number of non-overlapping balls Bi = B(xi, Ri) with
fixed centres xi and variable radii Ri, with total volume prescribed as before.

The tangent space TGN corresponds to zero-mean normal velocity fields constant
on the boundary of each ball. Thus v = vi = Ṙi on ∂Bi, and∑

i

4πR2
i vi = 0.

We may identify elements of TGN with vectors v = (vi) with components vi ∈ R,
and write

TGN =
{

v = (vi) :
∑

i

R2
i vi = 0

}
. (3.11)

The metric is identified as follows. In this situation, we can represent the harmonic
potential u = JGv as a superposition of monopoles, having the form

u(x) =
∑

i

ai

|x − xi|
, x /∈ G. (3.12)
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To be precise, let ψ(x) = min(1, 1/|x|) and let ψi(x) = Riψ((x − xi)/Ri). Then

∆ψi = 0, |x − xi| = Ri, [n · ∇ψi] = −1, |x − xi| = Ri,

and ψ(x) → 0 as |x| → ∞. By superposition, the harmonic potential u = JGv for
G =

⋃
i Bi takes the form

u(x) = −
∑

j

vjψj(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

aj

|x − xj |
, x /∈ G,

∑
j �=i

aj

|x − xj |
+

ai

Ri
, x ∈ Bi,

(3.13)

where, for all i,
ai = −R2

i vi. (3.14)

We write the metric using (3.6) and the fact that by the mean value theorem we
have ∫

∂Bi

−u(x) dS = −4πR2
i u(xi)

= 4πR2
i

(
Rivi +

∑
j �=i

R2
jvj

|xi − xj |

)
.

Then it follows that

gG(v, ṽ) =
∑

i

4πR2
i ṽi(−u(xi) + βvi)

=
∑

i

4πR2
i ṽi

(
(Ri + β)vi +

∑
j �=i

R2
jvj

|xi − xj |

)
. (3.15)

On N , the energy functional takes the form

A(G) = 1
2

∑
i

4πR2
i (3.16)

and the differential acting on an arbitrarily given velocity ṽ is

〈dA(G), ṽ〉 =
∑

i

∫
∂Bi

1
Ri

ṽi dS

=
∑

i

4πRiṽi. (3.17)

The general equation of gradient flow (3.1) is now written

∑
i

4πR2
i ṽi

(
(Ri + β)vi +

∑
j �=i

R2
jvj

|xj − xi|
+

1
Ri

)
= 0 (3.18)

for all ṽ ∈ TGN , meaning all ṽ for which∑
i

R2
i ṽi = 0.
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We conclude that the quantity

θ = (Ri + β)vi +
∑
j �=i

R2
jvj

|xj − xi|
+

1
Ri

(3.19)

is independent of i and depends only on t.
Since vi = Ṙi this yields exactly the monopole approximation (1.1) to the

Mullins–Sekerka model with kinetic drag. Voorhees [22] gives a detailed discussion
of the monopole approximation without kinetic drag (β = 0). With u = JGv + θ
instead, we note that the equations governing this approximation may be written

∆u = 0 in R
3 \

⋃
i

∂Bi, (3.20)

[n · ∇u] = Ṙi on each ∂Bi, (3.21)

1
4πR2

i

∫
∂Bi

u dS =
1
Ri

+ βṘi for each i. (3.22)

An interesting implication of the present analysis is that θ and all the velocities
vi are indeed determined uniquely by (3.19) together with the constraint∑

i

R2
i vi = 0,

whenever the balls Bi are non-overlapping. It may not be easy to see from direct
examination that the governing linear system of equations is non-singular. However,
the gradient structure makes it evident: the metric is a positive definite quadratic
form on the finite-dimensional tangent space. Thus, the gradient-flow equation,
requiring

gG(v, ṽ) + 〈dA(G), ṽ〉 = 0 for all ṽ ∈ TGN , (3.23)

clearly determines v = (vi) ∈ TGN uniquely from G = Gt, the collection of balls
with centres xi and radii Ri.

4. Coarsening rates for the monopole model

In this section we establish the coarsening-rate estimates (1.4) and (1.5) for the
monopole approximation of the Mullins–Sekerka model with kinetic drag, in the
setting of finitely many disjoint spherical particles. We will also discuss the meaning
of these estimates, with the aim to describe conditions under which coarsening-rate
crossover might be expected to occur and might be observed either in computation
or experiment.

We will apply the strategy of Kohn and Otto [11], which involves three key ingre-
dients: an interpolation inequality relating the ‘inverse length’ E (the normalized
energy in (1.3)) to a dual ‘length’ L; a dissipation inequality that controls the
growth of L in terms of energy dissipation; and ordinary differential inequalities
that have already been established [7, 11].

The dissipation inequality will relate to the basic energy dissipation identity for
the gradient flow equation (3.23), namely

d
dt

A(G) = 〈dA(G), v〉 = −gG(v, v). (4.1)

https://doi.org/10.1017/S030821050900033X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050900033X


562 S. Dai, B. Niethammer and R. L. Pego

Since, for the monopole model,

A(G) = 1
2

∑
i

4πR2
i =

(
2π

∑
i

R3
i

)
E,

we find (with v = (vi) = (Ṙi) and u = Jv up to any constant) that
(
2π

∑
i

R3
i

)
(−Ė) = gG(v, v)

=
∫

R3
|∇u|2 + β

∑
i

∫
∂B(xi,Ri)

Ṙ2
i

=
∑

i

4π

(
(Ri + β)R2

i Ṙ
2
i +

∑
j �=i

R2
i R

2
j ṘiṘj

|xi − xj |

)
. (4.2)

4.1. Attachment-limited bound on coarsening rate

The two estimates (1.4) and (1.5) will be proved using two different dual lengths.
The first dual length L1 is defined as

L1 =
∑

i R4
i∑

i R3
i

. (4.3)

This was used in [7] to prove upper bounds on coarsening rates for systems of
spherical particles evolving under the pure attachment-limited kinetics in (1.6).

The desired interpolation inequality between E and L1 is an immediate conse-
quence of the Cauchy–Schwarz inequality

EL1 =
(
∑

i R2
i )(

∑
i R4

i )
(
∑

i R3
i )2

� 1. (4.4)

The time derivative of L1 satisfies

L̇1 =
4

∑
i R3

i Ṙi∑
i R3

i

� 4(
∑

i R4
i )

1/2(
∑

i R2
i Ṙ

2
i )

1/2

(
∑

i R3
i )1/2(

∑
i R3

i )1/2 � L
1/2
1

(
−8Ė

β

)1/2

. (4.5)

Rescaling time as t = βt̃/8, we obtain the desired dissipation inequality:
(

dL1

dt̃

)2

� L1

(
−dE

dt̃

)
. (4.6)

Based on this and the interpolation inequality (4.4), the ordinary differential in-
equalities of [7, lemma 4.2] apply directly to provide the following estimate:

∫ T̃

0
E(t̃)p dt̃ � γ1

∫ T̃

0
(t̃−1/2)p dt̃ for T̃ � γ̂1L1(0)2 (4.7)

with constants γ1 and γ̂1 > 0 depending only on p. Unscaling time, we obtain (1.4).
This proves theorem 1.1(i).
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4.2. Diffusion-limited bound on coarsening rate

We will establish the second coarsening bound (1.5) using a dual length L2 that
is defined through a kind of specialization of the arguments of [4]. Let us introduce
an auxiliary function φ, found as the solution of the boundary-value problem

−∆φ = χG in R
3, [n · ∇φ] = 0 on ∂G, (4.8)

where χG is the characteristic function of G =
⋃

Bi, the collection of balls Bi =
B(xi, Ri). The time derivative of φ satisfies

−∆φ̇ = 0 in R
3 \ ∂G, [n · ∇φ̇] = Ṙi on ∂Bi for each i. (4.9)

By superposition φ =
∑

i φi, with each φi satisfying

−∆φi = χBi in R
3, [n · ∇φi] = 0 on ∂Bi. (4.10)

Then we compute

φi(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−|x − xi|2
6

+
R2

i

2
in Bi,

R3
i

3|x − xi|
in R

3 \ Bi,

(4.11)

∫
R3

|∇φ|2 = −
∫

R3
φ∆φ = −

∫
R3

∑
i

φi

∑
j

∆φj

=
∑

j

∫
Bj

∑
i

φi

=
∑

j

( ∫
Bj

φj +
∑
i �=j

∫
Bj

φi

)

=
∑

j

( ∫
Bj

(
R2

j

2
− |x − xi|2

6

)
+

∑
i �=j

φi(xj)|Bj |
)

=
∑

j

(
8π

15
R5

j +
4π

9

∑
i �=j

R3
i R

3
j

|xi − xj |

)
. (4.12)

Define L2 by

L2
2 =

1∑
j R3

j

∫
R3

|∇φ|2

=
1∑
j R3

j

∑
j

(
8π

15
R5

j +
4π

9

∑
i �=j

R3
i R

3
j

|xi − xj |

)
. (4.13)

Then

E2L2
2 �

8π(
∑

j R5
j )(

∑
j R2

j )
2

15(
∑

j R3
j )3

� 8π

15
. (4.14)
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Hence, with C1 = (8π/15)1/2 we obtain the interpolation inequality

EL2 � C1. (4.15)

Taking the time derivative of L2
2, we obtain

L2L̇2 =
1∑
j R3

j

∫
R3\∪∂Bi

∇φ∇φ̇

=
1∑
j R3

j

( ∫
R3\∪∂Pi

φ(−∆φ̇) −
∑

j

∫
∂Bj

[n · ∇φ̇]φ
)

=
−1∑
j R3

j

∑
j

∫
∂Bj

Ṙjφ =
1∑
j R3

j

∫
R3

∇u∇φ

�
(

1∑
j R3

j

∫
R3

|∇u|2
)1/2( 1∑

j R3
j

∫
R3

|∇φ|2
)1/2

� (−2πĖ)1/2L2. (4.16)

Hence, with C2 = 2π, we obtain the dissipation inequality

|L̇2|2 � C2(−Ė). (4.17)

Applying [11, lemma 3] after a trivial rescaling, we obtain the estimate (1.5) on
the coarsening rate of the 3D monopole approximation. This proves theorem 1.1(ii).

4.3. Discussion

In this section we discuss the meaning of the coarsening estimates (1.4) and (1.5),
particularly concerning the physical interpretation of the time restrictions on these
estimates in terms of the crossover time.

As mentioned in § 1, up to a constant independent of β, the (attachment-limited)
bound in (1.4) is better than the (diffusion-limited) bound in (1.5) for T < β3, and
vice versa for T > β3. In order for the bound (1.4) to be meaningful, it is necessary
that the bound be valid well before the crossover time. That is, we need

T1 := βĉ2
1L1(0)2 � β3. (4.18)

But by (4.3), heuristically L1(0) ∼ R(0), where R(t) is a characteristic radius of the
particles at time t. Recalling that R(0) ∼ 1 by the initial scaling, (4.18) requires

β � 1, (4.19)

i.e. we need the characteristic radius of particles to be initially much smaller than
β. This is consistent with the heuristic arguments in §§ 1 and 2, where we indicated
that, as long as R(t) � β, the system is expected to behave like volume-preserving
mean curvature flow, with R(t) growing proportional to (t/β)1/2.

The bound in (1.5) is the sharper one in the later stages anyway, so the validation
time T2 := ĉ3

2L2(0)3 is less significant. But, for (1.5) to become valid roughly at or
before the crossover time, we need T2 � β3, or

L2(0) � β. (4.20)

https://doi.org/10.1017/S030821050900033X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050900033X


Crossover in coarsening rates with kinetic drag 565

Interpreting L2(0) as a typical length is complicated, however, by the balance
between the two terms appearing in the numerator of (4.13). Let

I :=
∑

j

R5
j , II :=

∑
j

∑
i �=j

R3
i R

3
j

|xi − xj |
. (4.21)

The relative size of these terms can be related to the Debye screening effect, inter-
preting the numerator of (4.13) as roughly the electrostatic energy of a uniform
distribution of charge on G.

Following [17], we roughly estimate this effect as follows. Suppose that R is a
typical radius of particles, and suppose that h is a typical distance between the
nearest particles. We consider the simplest situation, when all particles occupy a
cubic region Ω with side length a, Ω being divided into small cubes of side length
h and the particles being located on vertices of small squares. In this situation, the
total particle number N = (a/h)3 and (roughly, up to constants)

I ∼ NR5,

II ∼ NR6

h3

∫
|x|�a

1
|x| d3x ∼ R6N5/3

h
,

so

II
I

∼ R

h
N2/3 ∼ a2R

h3 . (4.22)

It is argued in [17] that the screening length ξscr is

ξscr ∼
(

h3

R

)1/2

∼
(

a3

NR

)1/2

. (4.23)

Then
II
I

∼
(

a

ξscr

)2

. (4.24)

From these considerations we can make a few points. First, if the ratio II/I is
large, then the interpolation inequality (4.4) is very pessimistic. The bounds in (1.5)
can be expected to be roughly optimal only when II/I is of order 1 or less, and this
means heuristically that the screening length should be at least of the order of the
system size:

ξscr � a. (4.25)

If this is already true at the initial time, then heuristically L2(0) ∼ R(0), and so
(4.20) holds provided that R(0) � β.

If, however, (4.25) fails to hold and we have ξscr � a instead, then

L2

a
∼ R

ξscr
. (4.26)

Note that, since NR3 ∼ const. by volume conservation, (4.23) indicates that the
quantity in (4.26) is roughly constant in time and equal to

√
φ, where φ is the
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volume fraction of the particles in Ω. Now, to have T2 � β3, (4.20) requires a
stricter condition than (4.19), namely,

1 � a

ξscr(0)
� β

R(0)
. (4.27)

If this fails and β3 � T2 instead, we anticipate a gap between the crossover
time β3 and the validity time T2. In the gap, heuristically we expect coarsening
with R ∼ t1/3, but the bound (1.5) is not yet valid. In this case, we expect that,
about the time when ξscr approaches a we will obtain R ∼ L2 ∼ L2(0), and this
is consistent with T2 ∼ R3. What this means is that, heuristically, the (diffusion-
limited) bound (1.5) can only be expected to become valid after the screening length
becomes of the order of the system size. In this sense, improvements in the argument
of § 4.2 would be desirable from a physical viewpoint.

We anticipate that it is likely to be very difficult to observe the expected crossover
behaviour in numerical simulations of the monopole model. To obtain good statistics
one should have to compute with very large numbers of particles for very long times.
The reason can be indicated roughly as follows. With the normalization that the
typical radius is initially R(0) ∼ 1, we expect it to be necessary to take β an order
of magnitude larger and compute until R(t) is an order of magnitude larger than
that, or R(t) ∼ β2. Since we expect R ∼ t1/3 after the crossover time T ∼ β3,
the time it takes for this is long: of the order t ∼ β6. Moreover, the initial number
of particles must be taken as very large to end up with significant numbers of
surviving particles, because the ratio of surviving particles to initial particles will
be N/N(0) ∼ R(0)3/R3 ∼ β−6 by volume conservation.

5. LSW model with kinetic drag

Because of the difficulty of simulating the monopole model directly, we consider
here a simpler model, the Lifshitz–Slyozov–Wagner mean field model (1.7)

Ṙi =
1

β + Ri

(
θ(t) − 1

Ri

)
for all i. (5.1)

In this model the particles interact with each other only through a spatial mean
field θ = θ(t) which is determined by conservation of total volume as before. From

∑
i

R2
i Ṙi = 0

we obtain

θ =
∑

i(Ri + β)−1Ri∑
i(Ri + β)−1R2

i

. (5.2)

The LSW model is justified in the extremely dilute limiting case when the capac-
ity density of the particles approaches zero, which is a stronger condition than a
disappearing volume fraction [15,16].

This LSW model has a gradient-flow structure, described in [18], that we can
also obtain by simplification from the monopole model: let Ñ be the collection of
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vectors R = (Ri) of particle radii with fixed total volume. The tangent space TRÑ
corresponds to all possible vectors v = (vi) of normal velocities such that

∑
i

R2
i vi = 0.

Define a metric on TRÑ by

gR(v, ṽ) =
N∑

i=1

R2
i (Ri + β)viṽi for any v, ṽ ∈ TRÑ . (5.3)

Then the system (1.7) with (5.2) is the gradient flow for the rescaled surface area

A∗(R) = 1
2

N∑
i=1

R2
i

with respect to the metric g.

5.1. Coarsening rate estimates

Now we establish bounds on the coarsening rates for the LSW model. Corre-
sponding bounds for diffusion-limited and attachment-limited LSW models were
separately established in [7]. But the argument here is simpler, as we make use
of the gradient-flow structure. As before, we still work with the volume-averaged
interfacial area

E =
∑

i R2
i∑

i R3
i

. (5.4)

Also, we need a dual length-scale. The situation here is slightly simpler than for the
monopole model. For both the attachment-limited and diffusion-limited regimes, it
suffices to consider

L =
∑

i R4
i∑

i R3
i

. (5.5)

By the Cauchy–Schwarz inequality we obtain the interpolation inequality EL � 1
as before. Now consider the dissipation relation. We have

−Ė =
2gR(Ṙ, Ṙ)∑

i R3
i

=
2

∑
i R2

i (Ri + β)Ṙ2
i∑

i R3
i

, (5.6)

L̇ =
4

∑
i R3

i Ṙi∑
i R3

i

=
4

∑
i Ri(Ri + β)1/2Ṙi · R2

i (Ri + β)−1/2∑
i R3

i

�
(

2
∑

i R2
i (Ri + β)Ṙ2

i∑
i R3

i

)1/2(∑
i R4

i (Ri + β)−1∑
i R3

i

)1/2

. (5.7)

Since
R4

i (Ri + β)−1 � R4
i β

−1 and R4
i (Ri + β)−1 � R3

i , (5.8)
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combining (5.6) and (5.7) we obtain both kinds of dissipation inequalities that
appeared in the previous section:

(L̇)2 � β−1L(−Ė) and (L̇)2 � −Ė. (5.9)

Using the interpolation inequality and each of these dissipation inequalities in
turn with the ordinary differential inequalities in [11, lemma 3] and [7, lemma 4.2],
we obtain the following estimates analogous to (1.4) and (1.5).

Theorem 5.1.

(i) Given 1 < p < 2, there exist positive constants c1 and ĉ1 depending only on p
such that, for any solution {Ri} of the LSW model, we have

∫ T

0
E(t)p dt � c1

∫ T

0

(
t

β

)−p/2

dt for T � βĉ1L(0)2. (5.10)

(ii) Given 1 < p < 3, there exist positive constants c2 and ĉ2 depending only on p
such that, for any solution {Ri} of the LSW model, we have

∫ T

0
E(t)p dt � c2

∫ T

0
(t−1/3)p dt for T � ĉ2L(0)3. (5.11)

5.2. Numerical simulations

To illustrate the coarsening behaviour, we performed numerical simulations for
the LSW model with various values of β. We use the forward Euler method to
discretize in time. The time steps ∆tn are chosen to be no bigger than dt = 0.5.

It is not convenient to directly discretize equation (1.7) because this equation
indicates that the radii of disappearing particles shrink to zero at infinite speed,
which is very hard to simulate accurately. On the other hand, the rescaled particle
volumes xi := R3

i shrink to zero at a finite speed even if β = 0. So we will discretize
the following evolution equation for particle volumes xi:

ẋi =
3x

2/3
i

x
1/3
i + β

(
θ − 1

x
1/3
i

)
, (5.12)

where

θ =
∑

i(x
1/3
i + β)−1x

1/3
i∑

i(x
1/3
i + β)−1x

2/3
i

. (5.13)

Let xn
i be the volume of the ith particle at time tn. The scheme is as follows:

xn+1
i = xn

i + ∆tn
3(xn

i )2/3

(xn
i )1/3 + β

(
θn − 1

(xn
i )1/3

)
, (5.14)

where θn is determined by (5.13) with xi replaced by xn
i . Note that particles can

disappear in finite time and we need to estimate these disappearing times accurately.
To do so, we compute the minimum time step that makes some particle size vanish
in the system (5.14), and take ∆tn to be the minimum of this value and dt. Then
we discard those particles with radius near zero from the system and continue the
scheme with the surviving particles.
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5.2.1. Initial data

To motivate our choice of initial values we mention that the LSW model is usually
formulated to consider the evolution of a particle volume distribution f(t, x), which
satisfies a transport equation

∂tf + ∂x

(
3x2/3

x1/3 + β

(
θ − 1

x1/3

)
f

)
= 0. (5.15)

Here θ(t) is defined as in (5.13) but with summations replaced by integrals with
respect to the distribution f . We see that equation (5.12) is the corresponding
characteristic equation for this partial differential equation.

Our arguments indicate that, in the early stage, when typical particle radii are
much smaller than β, the LSW model behaves similarly to a volume-preserving
mean curvature flow, governed by

βṘi = θ − 1
Ri

, θ =
∑

i Ri∑
i R2

i

. (5.16)

The corresponding transport equation for the particle volume distribution is

∂tf + ∂x

(
3x2/3

β

(
θ − 1

x1/3

)
f

)
= 0. (5.17)

This equation admits a self-similar solution with a C∞ profile supported in [0, 1],
having the explicit form

f(x, t) = a

(
t

β

)2

f0

(
a

(
t

β

)
x

)
, (5.18)

with a(t) = (1 + 2t)−3/2, θ = 2a(t/β)1/3 and

f0(x) =
1

x1/3(1 − x1/3)5
exp

(
−3x1/3

1 − x1/3

)
. (5.19)

The corresponding solution for two dimensions was described and used in [3] to
compare with experiments concerning island growth on silicon surfaces.

Since the goal of our simulation is to observe crossover behaviour, it is natural
to start with a particle size distribution that comes from a self-similar solution for
the volume-preserving mean curvature flow. We first discard the tail (1−δ, 1] of the
distribution near x = 1, since f0(x) exponentially decays to zero as x approaches 1,
then uniformly divide the interval [0, 1 − δ] into subintervals of size h and use the
node points as a set of particle volumes {x0

0 = 0, x0
1 = h, x0

2 = 2h, . . . }. For each x0
i ,

we assign a weight mi := f0(x0
i ) which indicates the relative number of particles of

volume x0
i that we have. We choose δ = 0.15 and h = 10−4.

5.2.2. Results

The simulation approximates, for each i, the volume xi of the mi particles at later
times. So the scheme is exactly (5.14), with the exception that θn is determined by
weighted sums:

θn =
∑

i mi((xn
i )1/3 + β)−1(xn

i )1/3∑
i mi((xn

i )1/3 + β)−1(xn
i )2/3 . (5.20)
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Figure 1. LSW model with β = 20, log E(t) versus log(t + 1
2β).
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Figure 2. LSW model with β = 30, log E(t) versus log(t + 1
2β).

A small but important point in analysing the data is that, since the systems are
translation invariant in time, a temporal power law E(t) ∼ t−α should be more
precisely represented as

E(t) ∼ c(t + t0)−α

for some constant c and time translation t0. To best match the form of the solution
in (5.18) and (5.19) at early times, we take t0 = 1

2β.
Figures 1 and 2 show the behaviour of the log of total surface area E(t) plotted

against log(t + t0) for the two values β = 20 and 30. It is clear that E behaves
similarly to (t + t0)−1/2 at early times and similarly to (t + t0)−1/3 ∼ t−1/3 later.
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