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Abstract

Using the direct current power flow model, we study cascading failures and their spatial and

temporal properties in the U.S. Western Interconnection (USWI) power grid. We show that

yield (the fraction of demand satisfied after the cascade) has a bimodal distribution typical

of a first-order transition. The single line failure leads either to an insignificant power loss

or to a cascade which causes a major blackout with yield less than 0.8. The former occurs

with high probability if line tolerance α (the ratio of the maximal load a line can carry to

its initial load) is greater than 2, while a major blackout occurs with high probability in a

broad range of 1 < α < 2. We also show that major blackouts begin with a latent period

(with duration proportional to α) during which few lines overload and yield remains high.

The existence of the latent period suggests that intervention during early stages of a cascade

can significantly reduce the risk of a major blackout. Finally, we introduce the preferential

Degree And Distance Attachment model to generate random networks with similar degree,

resistance, and flow distributions to the USWI. Moreover, we show that the Degree And

Distance Attachment model behaves similarly to the USWI against failures.

Keywords: power grids, cascading failures, line failures, synthetic power grids

1 Introduction

Failure of a transmission line in the power grid leads to a redistribution of the power

flows. This redistribution may cause overloads on other lines and their subsequent

failures, leading to a major blackout (Bernstein et al., 2014; Pahwa et al., 2014;

Buldyrev et al., 2010; Soltan et al., 2014; Hines et al., 2009). These failures may

be initiated by natural disasters, such as earthquakes, hurricanes, and solar flares,

as well as by terrorist and electromagnetic pulse attacks (U.S FERC et al., 2010).

Recent blackouts in the Northeastern United States (US-Canada Power System
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Outage Task Force, 2004) and in India (Bakshi et al., 2012) demonstrated that

major power outages have a devastating impact on many aspects of modern life.

Hence, there is a dire need to study the properties of cascading failures in power

grids.

The direct current (DC) power flow model is commonly used in studying failures

in power grids (Glover et al., 2012; Soltan et al., 2014; Bienstock, 2011; Carreras

et al., 2004; Bienstock & Verma, 2010; Pinar et al., 2010; Carreras et al., 2002;

Asztalos et al., 2014; Dobson & Lu, 1992; Bakke et al., 2006). In this paper, we

employ a similar power flow model which is equivalent to the flows in a resistor

network (De Arcangelis et al., 1985) and follow the cascading failure model of Soltan

et al. (2014) and Bernstein et al. (2014).

It is observed in Carreras et al. (2002) that the distribution of blackout occurrences

in power grids follows a power law, which is related to the phenomenon of self-

organized criticality. Other authors suggest that blackouts follow first-order phase

transitions, in which the loss of power is either very small or very large (Zapperi

et al., 1997; Pahwa et al., 2014). The goal of this paper is to thoroughly study the

properties of cascading failures in power grids and create a realistic model that

carries the main features of a real grid. For this reason, we study cascades in the

U.S. Western Interconnection (USWI) grid and introduce a synthetic Degree And

Distance Attachment (DADA) model.

We show that the characteristics of blackouts are universal. However, the sizes

of blackouts are much smaller in the USWI with a realistic design than in an

artificial DADA model with a different spatial organization. In particular, we study

the dependence of the blackout size and the dynamics of the cascading failures on a

set of three parameters that characterize the robustness of the grid: (1) tolerance α,

the ratio of the maximum flow a line can carry to its initial load (Kornbluth et al.,

2018; Motter & Lai, 2002; Motter, 2004); (2) the minimum flow Ip which any line

in the network can carry independent of its initial load; and (3) the amount of flow

in the initial failed line compared to the distribution of the flows in the grid (Iu). We

characterize Ip and Iu by dimensionless parameters p (called the level of protection)

and u (called the significance of initial failure). p and u are the fraction of the lines

with flows less than Ip and Iu, respectively.

We show that in a broad range of 1 � α < 2, u � 0.8, and 0 < p < 0.95, large

blackouts with yield (the fraction of demand satisfied after the cascade) less than

0.8 may occur with a significant probability both in the USWI and in an artificially

constructed DADA grids. Moreover, we find that in this range of parameters the

distribution of yield is bimodal, which is consistent with first-order phase transitions.

Most importantly, we find that in cascading failures that lead to a large blackout,

there is a latent period during which the damage is localized, few lines are failed, and

the decrease in yield is insignificant. The existence of this latent period suggests that

the majority of blackouts can be effectively stopped by the timely intervention of

grid operators. The length of the latent period increases as the tolerance α increases.

Another important discovery is that in the event of a large blackout, cascading

failures stop when the network breaks into small, disconnected islands.

The rest of the paper is organized as follows. Section 2 describes the power flow

and cascading failure models. In Section 3, we study the topological properties of

the USWI power grid and its robustness against cascading failures. In Section 4, we
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Table 1. Summary of notation.

Notation Description

n+ The number of supply nodes

n− The number of demand nodes

n0 The number of transmitting nodes

I+
i The current supplied by supply node i

I−
i The current demanded by demand node i

Rij The resistance of the line connecting nodes i and j

Vi The voltage of node i

Iij The current traveling through the line connecting nodes i and j

α The tolerance of the lines

p The level of protection of the lines

u The significance of the initial failure

describe the DADA model, and in Section 5 we compare its features to the USWI

power grid. Finally, in Section 6, we discuss and summarize the results of our study.

2 Model and definitions

In this section, we describe the power flow and the cascade model in details. Table 1

provides a summary of notations.

2.1 Power flow model

We employ the DC power flow model widely used in the power engineering

community. This model is equivalent to the flow equations in resistor networks.

In this model, the power flows, reactance values, and phase angles are replaced by

currents, resistance values, and the voltages, respectively.

We denote the power grid network by a graph G = (N,E), where N denotes

the set of all nodes and E denotes the set of edges. We assume G consists of

n0 transmitting, n+ supply, and n− demand nodes. The total number of nodes is

n = n0 +n+ +n−. Each supply or demand node is specified by the amount of current

it supplies (I+
i > 0) or by the amount of current it demands (I−

i > 0). Due to the

law of charge conservation,
∑

I+
i =

∑
I−
i . We denote the set of all neighbors of

node i by N(i). ki := |N(i)| represents the degree of a node i and 〈k〉 is the average

degree of all nodes in the network. Each transmission line connecting nodes i and j

is characterized by its resistance Rij , while each node i is characterized by its voltage

Vi. The current Iij flowing from node i to node j is

Iij = (Vi − Vj)/Rij . (1)

Additionally, the sum of all the currents flowing into each node i is equal to the

sum of all currents flowing out:
∑
j∈N(i)

Iij = δ+
i I

+
i − δ−

i I
−
i , (2)

where δ+
i = 1 or δ−

i = 1 if a node i is a supply or a demand node, respectively.

δ+
i = δ−

i = 0 otherwise.
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2.2 Cascading failures model

Once the system (1)–(2) is solved, we find the currents in all transmitting lines Iij
and define their maximum capacities I∗

ij using the following two rules: (i) we define

Ip as the standard capacity of the lines. It is computed such that a fraction p of the

lines initially have currents below Ip. We refer to p as the level of protection. (ii) For

each line, we define its individual capacity α|Iij |, where α � 1 is the tolerance (i.e.,

the factor of safety). We assume α to be the same for every transmission line in the

grid. Using these rules,

I∗
ij ≡ max(Ip, α|Iij |). (3)

If a current in line {i, j} exceeds I∗
ij , it fails.

The larger p and α are, the better the grid is protected against overloads. The

standard capacity Ip is to ensure that lines that do not carry a significant current

have a reasonable capacity. In this paper, we use p = 0.9 and vary α as the main

parameter of grid resilience, most of the time.

To initiate a cascading failure, we randomly select and remove a single line which

current |Iij | belongs to the interval [Iu−Δu, Iu], where the fraction u − Δu of lines

operate below Iu−Δu and the fraction u of lines operate below Iu. The parameter u

specifies the significance of the lines which are targeted for the initial failure. We

refer to u as the significance of the initial failure. For example, u = 1.0 and Δu = 0.1

means that the line which is initially failed, is selected from the top 10% of lines

ranked according to their initial current.

Removing a line can lead to disintegration of the grid into two disconnected

components, which we call clusters. Obviously, the supply and demand in each

cluster should be equalized to retain charge conservation. Thus, for each cluster Cj ,

we compute
∑

i∈Cj
I+
i and

∑
i∈Cj

I−
i . If in a cluster

∑
i∈Cj

I+
i >

∑
i∈Cj

I−
i , we multiply

the current of each supply node in Cj by
∑

i∈Cj I−
i∑

i∈Cj I+
i

< 1; if
∑

i∈Cj
I−
i >

∑
i∈Cj

I+
i , we

multiply the current of each demand node in Cj by
∑

i∈Cj I+
i∑

i∈Cj I−
i

< 1 to obtain new

supply/demand values I
+(1)
i and I

−(1)
i . We define I1 =

∑
i I

+(1)
i =

∑
i I

−(1)
i as the

total supplied current at the end of the first step of the cascade. Then, we solve

Equations (1) and (2) again to compute new new currents I
(1)
ij . At the second time

step of the cascade, we remove all lines for which the new current |I (1)
ij | exceeds

its maximum capacity I∗
ij . If no overloads occur, the cascade stops. If there are

new failures, we repeat the supply/demand equalization process, modify the system

of equations (1)–(2), and compute the new currents I
(2)
ij . We repeat this process

recurrently until at a certain time step t of the cascade no lines fail. We call this

time step, the final step of the cascade.

2.3 Metrics

We define here all the metrics used in this paper to characterize the severity of a

cascade.

Cascade Duration, f: the number of time steps until the cascade stops.
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Number of Active Lines, L: the number of transmission lines in the grid that have

not failed by the end of the cascade.

Yield, Y (t): It
I0

, the ratio between the total demand at time step t(It) and the

original demand (I0). For t = f, we simply denote yield by Y.

Local Yield, Y (t, h):

Y (t, h) =

∑
i∈H(h) I

−(t)
i∑

i∈H(h) I
−
i

(4)

where H(h) is the subset of demand nodes a given hop distance h from the failed line.

Blackout Radius of Gyration, rB(t): a quantitative measure of the blackout’s

geometric dimension as a function of the cascade time step t,

rB(t)2 =

〈∑
i∈B(t) h

2
i I

−(t)
i

〉
〈∑

i∈B(t) I
−
i

〉 (5)

where the summation is made over the set B(t) of totally disconnected demand

nodes which do not receive any current at the tth time step of the cascade. < . >

denotes the average over all the cascade simulations.

3 The topological properties of the USWI and its robustness against cascades

In this section, we study the properties of the USWI network obtained from the Platts

Geographic Information System (Platts, 2009). This dataset includes approximate

information about transmission lines based on their lengths, supplies based on power

plants’ capacities, and demands based on the population at each location (Bernstein

et al., 2014). In the next section, we provide the DADA model to generate synthetic

power grids. Figures in this section also show the properties of the DADA model

that we get back to in the next section.

3.1 Topological properties

The USWI power grid contains 8,050 transmitting nodes, 1,197 supply nodes,

3,888 demand nodes, and 17,544 transmission lines. To avoid exposing possible

vulnerabilities of the actual USWI, our dataset does not include the geographic

coordinates of the nodes. It does however, include the length of each line rij
connecting nodes i and j. We define the resistances of the lines to be proportional

to their lengths Rij = ρrij , where ρ is a constant.

3.1.1 Degree distribution

The degree distribution of the nodes in the USWI is characterized by a fat-tail

distribution (Figure 1(a)), which can be approximated by a power law P (k) ≈ k−3

with an exponential cut-off. The degree distribution of transmitting nodes, supply

nodes, and demand nodes are quite similar to each other. The average degree 〈k〉 of
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Fig. 1. Degree distributions of the nodes in (a) the USWI power grid, and (b) the

DADA model for μ = 6, � = 1.5.
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Fig. 2. Length distribution of the lines, which are the same as the resistance values,

in (a) the USWI power grid, and (b) the DADA with μ = 6, � = 1.5. (Color online)

the nodes in the USWI is 2.67. For the supply nodes, it is slightly larger 2.88 and

for the demand nodes, it is slightly smaller 2.61.

3.1.2 Length distribution of the lines

The length distribution of the lines in the USWI has an approximately lognormal

shape with power law tails. Figure 2(a) shows lnP (ln rij), the logarithm of the

probability density function (PDF) of ln rij . For the lognormal distribution, the

curve would be a perfect parabola. Instead, we see that both tails of the distribution

can be well approximated by straight lines with slope ν− = 0.77 for the left tail

and slope ν+ = −1.44 for the right tail. This means that the PDF of rij can be

approximated by power laws P (r) ≈ rν−−1 for r → 0 and P (r) ≈ rν+−1 for r → ∞.

3.2 Cascade properties

The results provided in this subsection are for 100 trials for each set of p, u, α. In

this subsection, Δu = 0.1.
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Fig. 3. Distribution of yield for α = 1.6, p = 0.9, and u = 1.0 in (a) USWI and (b)

DADA.
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Fig. 4. Cumulative distribution of the yield for p = 0.9, u = 1.0 and various values

of α for (a) the USWI model, and (b) the DADA model with μ = 6, � = 1.5. The

large gap in the distributions is a feature of the abrupt first-order transition. (Color

online)

3.2.1 Bimodality of the yield distribution

The interesting feature of the yield histogram as can be seen in Figure 3(a), is its

bimodality. One can clearly see the bimodality of the distribution with two peaks

for high yield 0.975 and low yield 0.625, with practically no yields between 0.75

and 0.9 for the USWI. This can be detected by a plateau in the cumulative yield

distribution (Figure 4(a)). The bimodality of the yield distribution is present in a

large region of the parameter space (α, p, u), characterized by relatively small α < 2,

practically all p � 0.95, and relatively large u > 0.8. One can see (Figure 4(a)) that

the distribution of yield clearly remains bimodal for α < 2 in the USWI model.

3.2.2 Risk of large blackouts

Cascades can be characterized by two important parameters of the outcome: (i)

the probability of a large blackout P (Y < 0.8), which we call the risk of a large
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Fig. 5. Probability of large blackout P (Y < 0.8), or risk Π(α), as function of α in

(a) USWI model for different values of u and p = 0.5, (b) USWI model for different

values of p and u = 0.9, (c) DADA model for different values of u and p = 0.5, and

(d) DADA model for different values of p and u = 0.9. (Color online)

blackout Π(α), and (ii) the average blackout yield 〈Y 〉, for the cases result in a large

blackout.

Figure 5(a) and (b) shows how the risk of large blackouts Π(α) decreases as α

increases for different values of u and p. We find that for different values of u and

p, the shapes of the curves Π(α) remain approximately constant, but the curves

significantly shift in a horizontal direction. This means that the curves Π(α) can be

well approximated by Π (α − α0(u, p)). The function α0(u, p) can be defined by solving

the equation Π (α0(u, p)) = 1
2

with respect to α0(u, p). One can see that α0(u, 0.5) is an

approximately linear function of u, which increases with u (Figure 6(a)). This means

that for protection against failure in lines carrying high currents, a higher tolerance is

needed. In other words, the same effect can be achieved either by protecting a certain

fraction of the most significant lines from spontaneous failure, or by increasing the

tolerance of all the lines by some quantity (Figure 6(a)).

The dependence of the risk on p is weaker than on u, especially for p � 0.5

(Figure 6(b)). An increase in p has practically no effect on the robustness of the

grid. The increase in p achieves a significant effect on the risk of large blackouts

only when p approaches 0.9.
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Fig. 6. Behavior of α0(u, p) (a) as function of u at constant p = 0.5, and (b) as

function of p at constant u = 0.9. (Color online)

3.2.3 Characteristics of large blackouts

Large blackouts can be characterized by their average yield 〈Y 〉, average fraction

of surviving lines 〈L〉, and the average fraction of nodes in the largest connected

component of the grid 〈G〉. These metrics only weakly depend on u, but are strongly

increasing functions of α (Figure 7(a)). The independence of the characteristics of

large blackouts on u stems from the fact that the properties of large blackouts, if

they occur, do not depend on a particular line to initiate the failure. The risk of

large blackouts depends on u, but the average parameters of large blackouts do not.

The dependence of these metrics on p is more complex (Figure 7(b)). While the

yield 〈Y 〉 starts to increase only for p > 0.7, the number of survived lines 〈L〉
significantly increases with p even for small p. This is not surprising since p is the

level of protection of the lines, and fewer lines fail if more lines are protected. As

p approaches 1, the dependence of 〈L〉 on α becomes very weak. The explanation

of this fact is based on the notion that 〈L〉 is computed only for the case of large

blackouts. For a large blackout to occur, a significant fraction of lines must fail,

sufficient to disconnect a large fraction of demand nodes. On the other hand, as α

increases, the risk of a large blackout goes to zero, so the average fraction of lines

surviving for all the cascades (large and small) approaches 1.

Another important observation from Figure 7(b) is the small dependence of 〈G〉
on the parameters α, p, and u, as opposed to 〈L〉. Hence, by removing a small

fraction of the lines (20%), the grid disintegrates into many small clusters, each

less than 20% of the total size. Indeed, percolation theory predicts that close to

the percolation threshold, it is sufficient to delete an infinitesimally small fraction

of the so called “red” bonds to divide the network into a set of small disconnected

components (Coniglio, 1981).

3.2.4 Latent period of the cascade

The cascading failures that do not result in large blackouts (Y > 0.8) are usually

short (f < 8) (Figure 8(a) and (b)). In contrast, the duration of cascades resulting in

large blackouts (Y � 0.8) increases with α, reaching values of order 40 for large α.
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Fig. 7. Behavior of the yield 〈Y 〉, the fraction of nodes in the largest connected

component 〈G〉, and the fraction of survived lines 〈L〉 averaged over cascades resulted

in large blackouts (y < 0.8) as a function of α for different u and a fixed value of

p = 0.5 in (a) USWI model, and (c) DADA model. The behavior for different p at

fixed u = 0.9 in (b) USWI model, and (d) DADA model. (Color online)

This means that for large tolerances, it takes much longer for the cascade to spread

over a large area, since at each time step only a few lines overload and fail.

In the cascades resulting in large blackouts, yield Y (t) decreases with time in a

non-trivial way (Figure 9(a)). During the first few time steps of the cascades, the

yield does not significantly decrease since the current can successfully redistribute

over the remaining lines without disconnection of the demand nodes. This period,

in which the cascade is still localized and a blackout has not yet occurred, can be

called the latent period of the cascade, tl . The recognition of this latent period is

important since it is a period in which a cascade is beginning to spread but has not

yet grown uncontrollable. In the latent period, it may still be possible to intervene

and redistribute current flow to stop the cascade before it becomes a large blackout.

We define the duration of this latent period of the cascade as the time step at

which the yield drops below 0.95. At approximately this time step, the yield starts

to rapidly decrease and then, toward the end of the cascade, stabilizes again. The

shape of this function is characteristic of an abrupt first-order transition observed in

simpler models of network failure (Buldyrev et al., 2010; Motter, 2004). Remarkably,

the duration of the latent period is a linear function of tolerance (Figure 9(b)).
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Fig. 8. Dependence of the average duration of the cascade on tolerance α for

different u at p = 0.5 in (a) USWI model, and (c) DADA model. The dependence

for different p at u = 0.9 in (b) USWI model, and (d) DADA model. (Color online)

3.2.5 Cascade spatial evolution

To observe the spatial evolution of a cascade, we group the grid’s demand nodes

into bins based on their “hop distance” from the original failed line. In each bin,

we compute the local yield Y (t, h). We average the local yield Y (t, h) for cascades

resulting in large blackouts (Figure 10(a)). The yield in each bin at the end of

cascades resulting in large blackouts is almost independent of the distance from the

initially failed line. While at the beginning of the cascade, the blackout is localized

near the initially failed line, eventually the blackout spreads uniformly over the

entire system. Delocalization occurs at the end of the latent period of the cascade.

This can be clearly seen from the behavior of the blackout profiles, which start to

rapidly drop down for large distances only at intermediate time steps of the cascade.

To give a more quantitative measure of the blackout spread, we use the “blackout

radius of gyration” (rB(t)) metric defined in Section 2.3. Figure 11 shows the behavior

of rB(t)2 versus the cascade time step t for the cascades which result in insignificant

failures (Figure 11(a)) and large blackouts (Figure 11(b)). We observe the same

phenomena—initially rB(t)2 grows slowly in all the cascades. However, while in

cascades resulting in insignificant consequent failures the cascade stops during the

latent period, in ones resulting in large blackouts the cascade rapidly spreads over

a large area. The cascade spreads more quickly for small α than for large α.
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Fig. 9. Yield as a function of the cascade time steps for the cascades resulting in

large blackouts in (a) the USWI model, and (c) the DADA model. The latent period

as a function of the tolerance α in (b) the USWI model, and (d) the DADA model.

In both USWI and DADA models, u = 1.0, p = 0.9. (Color online)
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Fig. 10. The fraction of current reaching demand nodes as a function of hop distance

in cascades resulting in large blackouts in different cascade time steps, with p = 0.9

and α = 1.6 in (a) the USWI, and (b) in the DADA model. (Color online)

4 DADA model

In the previous section, we found that cascading failures in the USWI model have

characteristic features of a first-order transition: the bimodal distribution of yield
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large blackouts with Y < 0.80 in (b) the USWI model and (d) the DADA model.

(Color online)

and the latent period during which the damage to the network is insignificant. It is

important to investigate whether these features are due to particular characteristics

of the USWI design, or whether they are universal features of a much broader

class of networks. Moreover, the data on real grids are limited and therefore it is

important to develop algorithms for generating synthetic grids resembling real grids

topologies.

The two basic features of USWI that we like to reproduce are the degree

distribution and the length distribution of the lines. The degree distribution of the

USWI discussed in Section 3 is in agreement with the Barabási–Albert preferential

attachment model (Albert & Barabási, 2002; Barabási & Albert, 1999). Accordingly,

we use the Barabási–Albert model as the basis of the DADA model. In the original

Barabási–Albert model, a newly created node is attached to an existing node with

a probability proportional to its degree. However, for power grids embedded in

two-dimensional space, the length distribution of the lines, resulting from the degree

preferential attachment, would not decrease with length. Therefore, in order to

create a grid with a decreasing length distribution, one must introduce a penalty for

attaching to a distant node. Thus, we employ here the DADA model with a distance

penalty, similar to Xulvi-Brunet & Sokolov (2002) and Manna & Sen (2002). This
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method produces degree and length distributions similar to those of the USWI (see

Section 3.1).

4.1 Construction of the DADA model

4.1.1 Construct the network

The DADA model randomly generates nodes j = 1, 2, . . . , n one by one on a plane

with a uniform density. It connects each new node j to an existing node i based on

i’s degree and distance with probability P({i, j}) ∝ ki
rij μ

, where ki is the present degree

of node i and rij is the distance between nodes i and j. This rule mimics the way real

networks are evolved. A real network such as the USWI is not planned all at once;

rather, new stations are added to the grid as necessity dictates. The probability of

connection P({i, j}) ∝ ki
rij μ

is assumed to be proportional to ki, since connections to

nodes of high degree are more reliable, but also inversely proportional to a power

of rij , since construction of long transmission lines costs more. The distance penalty

μ is a factor which seeks to optimize the balance between reliability and cost.

It is shown in Xulvi-Brunet & Sokolov (2002) and Manna & Sen (2002) that for

μ < 1, the degree distribution of the resulted graph is a power law P (k) ≈ k−3, while

for μ > 1, it becomes a stretched exponential (Clauset et al., 2009). However, the fat

tail of the stretched exponential can be approximated by a power law P (k) ≈ k−γ

with an exponent γ > 3 (Figure 1(b)). It is also shown in Manna & Sen (2002)

that the length distribution of the lines is P (rij) ≈ rij as rij → 0, and for large μ,

P (rij) ≈ r−3
ij as rij → ∞. The functional form of P (rij) for the DADA and USWI

models are similar, but the exponents are different. As mentioned in Section 3.1.2

regarding the USWI model, these asymptotic behaviors correspond to the slopes

ν− = 2 and ν+ = −2 of the logarithmic distribution P (ln(rij)) observed in the

DADA model (Figure 2(b)), while for the USWI model these values are ν− = 0.77

and ν+ = −1.43. In our simulations, we select μ = 6. For this choice of μ, the

degree distribution exponent γ ≈ 4.3, while −ν+ = 2. The corresponding values in

the USWI model are smaller. Both γ and −ν+ can be decreased by decreasing μ,

so that the degree and length distributions of the DADA model would be closer

to those of the USWI. However, by doing so, our results on the distribution of

currents in the DADA model and the properties of the cascading failures do not

change significantly, indicating that the observed features of the cascades are quite

universal. The discrepancy in ν− for the DADA and USWI is related to the fact

that in the DADA model the nodes are spread on the plane with a uniform density,

while in the USWI model the density of nodes is related to the population density

which has fractal-like features.

Our goal is to create a grid with a given number of lines, l. Therefore, when each

new node is created, we connect it on average to �̄ = l
n

= 〈k〉
2

pre-existing nodes.

Since �̄ is a real number, we pre-assign to each node i an integer �i, the number of

lines by which it will be connected to the previously generated nodes. We randomly

select l − n��̄ < n nodes, where ��̄ is the integer part of �̄. For these nodes, we

choose �i = ��̄ + 1. For the rest of the nodes, we choose �i = ��̄. For each new

node j, we attempt to create �j lines with the previously existing nodes. If j � �j ,

then we connect j to all pre-existing nodes, as we cannot create �j lines without
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duplicating lines. If j � �j , there are more existing nodes than �j and we create lines

according to the rule described above (with probability proportion to the distance

and degree). In the end, a total of almost n�̄ = l lines are created.

For the USWI network �̄ = 〈k〉/2 ≈ 1.5, so for the DADA model, we choose

�̄ = 1.5 (more accurate values of �̄ do not significantly affect our results). Averaging

over 100 different grids, our DADA model has slightly higher average degree of

2.84. More accurate values of �̄ do not significantly change the cascading properties

of the DADA model.

As in the USWI model, we assume that in the DADA model Rij = ρrij , where ρ

is resistivity, which is constant for all the lines in the system.

4.1.2 Generate supply and demand

We randomly assign n+ supply nodes and (different) n− demand nodes. We select

n = 13, 135, n− = 3, 888, and n+ = 1, 197 to match the USWI. We assign the supply

and demand nodes independent of the nodes’ degree. Thus, the average degrees of the

supply and demand nodes are the same as the average degree of the DADA model.

Since the supplies and demands of the USWI have an approximately lognormal

distribution (see Figure 12), we generate currents of supplies and demands in the

DADA model following a modified lognormal distribution:

I+
i = eνiσ

++m+ ln ki , (6)

for supplies and

I−
i = eνiσ

−+m− ln ki , (7)

for demands, where νi is randomly generated according to a standard normal

distribution, σ± is a standard deviation, and m± is a parameter which creates a

correlation between the node’s current and its degree.

Furthermore, since it is unrealistic to have nodes with very high supply and

demand vales, we introduce a cut-off a±σ±, where a± is a parameter of the model

such that we accept only I±
i � ea

±σ±
. Thus, the supply and demand of each node is

I±
i = min

(
eνiσ

±+m± ln ki , ea
±σ±)

. (8)

This cut-off corresponds to the sharp drops of the right tails of the supply and

demand distributions in the USWI (Figure 12).

To best match the USWI data, we let the values of m± be the slopes of the

regression lines of the log–log scatter plots which plot the average supply or demand

versus the degree of corresponding nodes. We then select values of σ and a so that

the distributions simulated for the DADA model best match the USWI distributions

(Figure 12). We obtain σ+ = 2.0, m+ = 0.38924, a+ = 1.6, σ− = 1.8, m− = 0.62826,

and a− = 1.2.

5 Comparison of the USWI and DADA model

Here, we compare the main properties of the USWI and the DADA model. We also

discuss reasons for the differences observed. The cumulative distribution of currents

in the DADA model closely follows the exponential distribution of currents in the
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USWI grid (Figure 13). This is important because the ratio of currents in the two

models corresponding to the same significance of lines parameters u is approximately

equal.

5.1 Yield

The distribution of the yield Y in the DADA model is also bimodal for approximately

the same set of parameters α, u, and p as in the USWI model, but the gap between

the two modes (low and high yield) is significantly wider in the DADA model than

in the USWI model (Figure 4).

Figure 4 shows the yield distributions of the USWI and DADA model for u = 1

and p = 0.9 for several values of 1 � α < 2. In both networks, the cascade results

in a large blackout (Y < 0.8) for small values of α, and results in an insignificant

consequent failures (Y > 0.8) for large values of α. But for the DADA model,

chances of large blackout (risk) are smaller for the same set of parameters than

in the USWI model. For example, the DADA model can still survive with a small
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probability for α = 1.2, but the USWI always collapses for α < 1.3. Conversely, we

do not observe any large blackouts in the DADA model for α > 1.7, while a failure

in the USWI can still cause large blackouts even for α = 1.9. Thus, even though in

the event of a large blackout the average yield in the USWI is greater than in the

DADA model (and thus, in this sense, the DADA model is more vulnerable than

the USWI), the risk of large blackouts is greater in the USWI than in the DADA

model for the same set of parameters.

These differences may be related to the fractal structure of the USWI, in which

densely populated areas with lot of demand and supply nodes are separated by large

patches of empty land over which few long transmission lines are built, whereas the

DADA model has constant density of nodes. Thus, it is less likely that the cascade

spreads over the entire grid in the USWI. However, a higher tolerance is needed to

prevent large blackouts in the USWI than in the DADA model.

Qualitatively, the behaviors of the metrics 〈Y 〉, 〈L〉, and 〈G〉 are similar in the

USWI model and in the DADA model, but in the DADA model the survival

quantities are always smaller for the same α, u, and p. This indicates that the

artificial DADA model is more vulnerable than the USWI (Figures 5–7). The values

of 〈G〉 in the DADA model are very small, indicating that in the event of a large

blackout the DADA network disintegrates into very small connected components,

each constituting about 1% of the nodes of the grid. In the USWI grid, the average

largest component is larger, because USWI grid consists of several dense areas

connected by few long lines. The overload of these long lines breaks the USWI grid

into relatively large disconnected components, preventing the cascade from further

spreading.

5.2 Cascade temporal dynamics

The spatial and temporal behaviors of the cascades in the DADA model closely

follow the behaviors in the USWI model (Figures 8–11). rB(t)2 in the DADA model

is much smaller than in the USWI model due to the different structures of the

models and difference in diameters of the networks. The longest distance (in terms

of number of hops) between any two nodes (i.e., diameter of the network) in the

DADA model is ≈ 16, while in the USWI model it is ≈ 41. In both models, we see

that the cascade spreads more quickly for a small α than for a large α. However,

the first-order all-or-nothing nature of the cascades, characterized by a latent period

during which the blackout is small and localized followed by a fast blackout spread

over a large area, is common in both models.

5.3 Cascade spatial evolution

The advantage of the DADA model is that we know the exact coordinates of the

nodes and thus we can illustrate the spatial and temporal evolution of a cascade

as a sequence of snapshots on the plane. Figure 14 shows spatial snapshots of the

cascading failures taken at different time steps for the DADA model with parameters

α = 1.8 and p = 0.4. The color of each line indicates the time step of the cascade

at which the line is failed. One can see that during the first three time steps of the

cascade (red lines) the area of line failures is small and localized near the initial
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Fig. 14. Cascade propagation for α = 1.8, p = 0.4, u = 1 in the DADA model with

13,135 nodes, � = 1.5, μ = 6. Lines that failed at different time steps of the cascade

are shown with different colors. The initial line randomly selected to fail due to

spontaneous failure or attack is depicted at the center of the grid and is surrounded

by a gray circle. (Color online)

failure. The cascade starts to spread during time steps 4–8 (orange and yellow–

green), but the area of line failures is still localized. At time step 10, the cascade

quickly spreads to very distant parts of the system (green). The blue and violet lines

are the final time steps of the cascade. Thus, the figure also illustrates the latent

period of the cascade during which the distressed area is small and localized.

6 Conclusion

In this paper, we thoroughly studied the properties of cascading failures in power

grids. We showed that the cascading failures in power grids have features of all-or-

nothing transition, just like in a broad spectrum of more primitive models such as

the Motter model (Motter & Lai, 2002; Motter, 2004). In the Motter model, instead

of currents, the betweenness of each node in a graph is computed and the maximum

load of each node is defined as its original betweenness multiplied by the tolerance.

Then, a random node is taken out as an initial failure, and the new betweenness

of each node is calculated. If the new betweenness of a node exceeds its maximum

load, this node is taken out and the entire process is repeated. The yield in the
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Motter model is defined as the fraction of survived nodes at the end of the cascade.

The distribution of the yield in the Motter model is bimodal for a large range of

tolerances. Similarly, in a wide range of parameters, the USWI is in a meta-stable

state and there exists the risk that the failure of a single line will lead to a large

blackout, in which the yield falls below 0.8. As tolerance increases beyond 2.0, the

risk of a large blackout decreases almost to 0.

We also showed that the level of line protection, p, increases the robustness of

the grid, but to a lower extent than does the tolerance. An important parameter

defining the robustness of the grid is the significance of the initial failure u. Given a

particular α, when u is small, there is practically no risk of a large blackout, while

when u approaches 1, the risk is maximal for a given α. If α is kept constant and u

decreases, there is the same effect on the risk of a large blackout as when α increases

and u is kept constant, meaning that the same effect could be achieved by protecting

important lines as by increasing the overall tolerance.

Another important observation from our simulation is that upon failure of a

line, the first few cascade time steps affect only the immediate vicinity of the failed

line. During the first few time steps of the cascade, the yield does not significantly

decrease, but it starts to drop quickly at the end of the latent period. The duration

of the latent period of the cascade linearly increases with the line tolerances. Hence,

increasing the line tolerances provides sufficient time for grid operators to intervene

and stop the cascade.

Finally, we introduced the DADA model to generate synthetic power grids. We

showed that the DADA model and the USWI have many common features. The

physical features, such as the distribution of degrees, resistances, and currents,

compare well in both models. The behavior of cascading failures in the DADA

model is also similar to their behavior in the USWI power grid.

Overall, our results provide a useful understanding and insight of the general

properties of cascading failures in power grids. Our findings can be used to increase

the resilience of power grids against failures and to design optimal shedding and

protection strategies for preventing cascades from spreading.
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