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Multipath is still one of the major error sources that degrades the accuracy of GPS pos-
itioning. The amount of multipath is highly dependent on the antenna’s environment, which

makes it difficult to isolate. Usually there is at least one in-view satellite which is more
susceptible to multipath, particularly the one with the lowest elevation angle. To increase the
positioning the best satellites must be selected (i.e. by least square or multipath mitigation)

for computing a position. In this paper we propose an algorithm which picks up the best
satellites (when there are more than four satellites in view) based on wavelet analysis for
calculating a position. In this experiment, code and carrier measurements were collected
in 15-minute segments by exploiting a single frequency (L1), stationary, navigation-grade

receiver in a high-multipath environment. The magnitudes of these pseudoranges were often
inflated by multipath error. We then post-processed the received data by applying wavelet
filtering to the residuals (code minus carrier) to approximate the multipath values, and

compute the receiver’s position based on the selected satellites. Satellites were selected based
on the residual values. To compare the results with the raw measurements, statistical
elements were computed. The results showed significant improvement in variance of the

estimated positions and, most importantly, a normalization of the data scatter-distribution
was observed.

KEY WORDS

1. Multipath. 2. Wavelet analysis. 3. GPS.

1. INTRODUCTION. Of the many sources of GPS error, multipath is
among the most difficult to mitigate due to a lack of physical models. Multipath
disturbance is largely influenced by the receiver’s environment since satellite signals
can arrive at a GPS receiver via multiple paths due to reflections from nearby trees,
terrain, buildings, and vehicles. While the emergence of signal improvements (e.g.
GPS modernization) will increase the likelihood of more accurate relative position-
ing, multipath will remain a relatively important issue, making positioning less ac-
curate in urban environments. Because multipath is dominated by the environment
immediately adjacent to the receiver, we must seek receiver-autonomous solutions.
The use of wavelet analysis on GPS signals has proved to be an effective way of
mitigating multipath. Satirapod and Rizos [1] applied a wavelet decomposition tech-
nique to extract multipath from GPS observations using data collected by three
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dual frequency receivers. Zhang and Bartone [2] applied a wavelet filter on dual fre-
quency measurements as well. In this paper, a wavelet analysis technique is applied
to data taken from a single stationary receiver operating on L1 frequency only. In
order for a GPS receiver to determine its position, it has to receive time signals from
four different satellites. The pseudorange, P(t), of the user from the four satellites
can be determined with the help of signal transit times between the four satellites and
the receiver [3],

P(t)=c[tr(t)xt3(txt)]+ep (1)

where c is the speed of the light, tr(t) is the reception time, t is the GPS time (true time),
t is the total signal travel time, t3(txt) is the transmission time from a satellite, and ep
is the error added to the measurements. Considering the atmospheric effect including
ionospheric delay dion, and tropospheric delay dtrop along with multipath delay dmr

3 on
the received signals, Equation 1 can be broken down into more detail [3] :

P(t)=r(t, txt)+c [dr(t)+d 3(txt)]+c[dr(t)xd 3(txt)]+dtrop+dion+dm3
r+ep (2)

Here r is the geometric distance between the satellite and the observing point, d 3 and
dr are the satellite and receiver equipment delay respectively. Carrier phase measure-
ments, W(t), can also be used to compute the pseudoranges, which are more accurate
than code measurements (P(t)).

Equation 3 shows a representation of the phase measurements [3] :

W(t)=r(t, txt)+c [dr(t)+d3(txt)]+dtrop+dion+c [dtr(t)+dt 3(txt)]

+l[wr(t0)xw3(t0)]+lN+dm3
r+ew

(3)

The resultant time error caused by the error sources creates inaccuracies in the
measurement. Among the errors multipath creates an incremental time delay, thereby
exaggerating the respective pseudorange P(t) [4]. To estimate the value of multipath
from Equation (2) another variable called residual is introduced. Pseudorange can be
calculated from both pseudo random code (PRN) and carrier phase information. The
difference between these two pseudoranges is called residual. These residuals are
processed by the proposed algorithm to be de-noised and ultimately used to mitigate
multipath error.

2. WHY WAVELET ANALYSIS. In signal processing we often work with
a time series of data. To process the data we look into the low and high frequency
contents. When working with stationary data a Fourier analysis is sufficient, whereas
working with time varying data the Fourier analysis is not a suitable tool because it
is not able to show the time localization. Fourier basis functions are localized in
frequency but not in time. Small frequency changes in the Fourier transform will
produce changes everywhere in the time domain. Wavelets are local in both fre-
quency (scale) via dilations and in time via translation. This localization makes
wavelet transform a suitable tool for time varying signals. It is well known that the
computational complexity of the fast Fourier transform is O(nlog2(n)), while for
wavelet transform the computational complexity goes down to O(n)[5]. As opposed
to sinusoidal waves, which are considered to be big waves of infinite duration, wave-
lets are small waves, finite in duration. Where sinusoids are smooth and predictable,
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wavelets tend to be irregular and asymmetric. As Fourier analysis breaks up a sig-
nal into sine waves of various frequencies, wavelet analysis breaks up a signal into
shifted and scaled versions of the wavelet. Generally speaking there are two types of
wavelets.

1. Continuous wavelet transform (CWT)

2. Discrete wavelet transform (DWT)

The Fourier transform extracts from the signal details of the frequency content but
loses all information on the location of a particular frequency within the signal. Time
localization must then be achieved by first windowing the signal, and then by taking
its Fourier transform. The problem with windowing is that the slice of the signal that
is extracted is always the same length. Thus, the time slice (number of data points)
used to resolve a high frequency component is the same as the number used to resolve
a low frequency component [6]. In contrast to windowed Fourier transform, the
wavelet adapts the width of its time-slice according to the frequency components
being extracted so that the resolution is high for high frequency components and low
for low frequency components, because a wavelet uses short windows at high fre-
quency and long window at low frequency.

2.1. Continuous wavelet transform. The CWT can be thought of as an inner
product of the original signal with scaled shifted versions of the basis wavelet func-
tion y(t) [7] :

hx,ya, bi=CWT(a, b)=
Z

x(t)y(t)dt (4)

where: ya, b=
1ffiffiffi
a

p y
txb

a

� �
(5)

In Equation 5 a represents the scale (dilation) and b is the time-shift (translation)
parameter. Therefore, the wavelet transform of a continuous (analogue) signal x(t) is
known as CWT which is defined as:

CWT(a, b)=
1ffiffiffi
a

p
Z 1

x1
x(t)y

txb

a

� �
dt (6)

The wavelet functions have time-widths adapted to their frequency such that at high
frequency the time widths are narrow, while those at low frequency are much wider.

2.2. Discrete Wavelet Transform. Most time series are sampled as discrete
values. The scaling and shifting variables are discretized so that wavelet coefficients
can be described by two integers, m and n [7]. Thus, the DWT is given as:

DWT(m, n)=
1ffiffiffiffiffiffi
am0

p X
k

x[k]y[axm
0 nxk] (7)

where x[k] is a signal or a digitized version of an analogue signal with sample index k,
and y[n] is the wavelet. With different choices of m we obtain a geometric scaling: 1,
1/a0, 1/a0

2, … . It is found in practice that the most convenient value of a0 is 2 [8]. This
analysis method then consists of decomposing a signal into components at several
frequency levels that are related by powers of two (a dyadic scale) [7].
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In wavelet analysis we often speak of approximation and details. The approxi-
mations are the high-scale, low frequency components of the signal. The details are
the low-scale, high frequency components [9]. Figure 1 shows a typical data analysis
by wavelet.

2.3. Thresholding. In wavelet decomposition when details are small, they might
be omitted without substantially affecting the original signal. Therefore, de-noising
refers to manipulation of wavelet coefficients for noise reduction in which coefficient
values below a carefully selected threshold level are replaced by zero after which an
inverse transform of modified coefficients is used to recover the de-noised signal.
Mathematically, thresholding can also be described by a transformation of the
wavelet coefficients in which transform matrix is a diagonal matrix with elements 0 or
1 [8]. Zero elements force the corresponding coefficient below a given threshold to be
set to zero while the others correspond to one, thus reducing the coefficients by the
given threshold. The two approaches considered for de-noising are hard and soft
thresholding. In hard thresholding only those wavelet coefficients with absolute values
below or at the threshold level are affected. They are replaced by zero and others are
left unchanged

Hard Thresholding
Wm=(W )
Wm=0

�
if jWjoth
if jWj<th

where W and Wm are the wavelet coefficient before and after thresholding respect-
ively. In soft thresholding coefficients above threshold level are also modified where
they are reduced by the amount of threshold. Note that Donoho [10] refers to soft
thresholding as shrinkage since it can be proved that reduction in coefficient ampli-
tudes by soft thresholding, also results in a reduction of the signal level thus a
shrinkage [8].

Soft Thresholding
Wm=sign(W)(jWjxth)
Wm=0

�
if jWjoth
if jWj<th

3. PROPOSED ALGORITHM. The input data (residuals) are passed through
db7 wavelet filters (level 5) to approximate multipath values. Then the best satellites
are selected based on the least value of the multipath. Calculated positions are then
outliered by 3s. Figure 2 shows a block diagram of the proposed algorithm.

Seven data sets for one of the downtown Toronto locations (Yonge and Gerrard)
were collected in 15-minute segments (with no cycle slips) at various times of the day
over the period of one week in order to investigate the consistency of filters on
varying multipath circumstances. The input data to be analyzed is a set of residuals
(i.e. code minus carrier) given by Equation 8. When such a difference is performed all
common errors such as satellite clock error, tropospheric error, and receiver clock
error are eliminated. What remains is predominantly twice the ionospheric error, the

Figure 1. A typical block diagram of wavelet analysis.
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pseudorange multipath error, and the carrier phase ambiguity. The carrier phase
multipath is ignored since its values are very small compared to pseudorange multi-
path.

P(t)xW(t)=2dion+dm3
rxlN (8)

The ambiguity term could be seen as a bias value which is removed by taking the
mean value of the observations and subtracting the mean from the data. Therefore,
the remaining values represent the ionosphere plus the multipath errors. To approxi-
mate the multipath error the wavelet analysis tool is applied to the remaining sum.

3.1. Stage 1: Multipath Approximation. A set of residuals denoted by Resraw,
collected from location L4, is shown in Figure 3. The wavelet procedures start with
passing the signal (sequences of Resraw) through a digital lowpass filter with impulse
response g(n) and a highpass filter h(n). Filtering a signal corresponds to the math-
ematical operation of convolution of the signal with the impulse response of the filter.
The convolution operation in discrete time is defined as follows:

Resraw*g(n)=
X1

k=x1
Resraw �g(nxk) (9)

The lowpass filtering removes the high frequency information, but leaves the scale
unchanged. Only the sub-sampling process changes the scale. Resolution, on the
other hand, is related to the amount of information in the signal, and therefore, it is

Figure 2. Block diagram of the proposed algorithm.

Figure 3. Time domain series of residuals (PRN 10).
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affected by the filtering operations. The lowpass filtering halves the resolution since
the high frequencies are filtered, but leaves the scale unchanged. The signal is then
sub-sampled by two since half of the number of samples are redundant [5]. This
doubles the scale. This procedure can be expressed mathematically as :

Reslow(k)=
X
n

g(k) �Resraw(2nxk) (10)

Reshigh(k)=
X
n

h(k) �Resraw(2nxk) (11)

where Reslow(k) and Reshigh(k) are the outputs of the lowpass and highpass filters
respectively after sub-sampling by a factor of two. The above procedure, which is also
known as sub-band coding, can be repeated for further decomposition. At every level,
the filtering and sub-sampling will result in half the number of samples (hence half the
time resolution) and half the frequency band spanned (hence double the frequency
resolution). The filter used in the algorithm is from the Daubechis series (db7) [14]
and decomposition level is considered to be five.

We noted that successive approximations became progressively less noisy. Optimal
de-noising needed a more subtle approach like thresholding. Thresholding involved
discarding only the portion of the details or approximations that exceed a certain
limit. The threshold limit in this experiment was set to the standard deviation (s) of
the wavelet coefficient achieved from filtering the residuals. Both soft and hard
thresholding [10] were applied to the wavelet coefficients, and coefficients were then
reconstructed. In addition to de-noising the input data, the output is the approxi-
mated value of the pseudorange increment due to multipath since the ionosphere
error is a slowly varying process while here we are dealing with a time varying error as
shown in Figure 4. In Figure 4 the raw residuals form the trace with more fluctuation
whilst the smoother trace represents the approximated values of the multipath for the
corresponding satellite during the specified time.

To validate the multipath approximation from wavelet filtering, a few data sets
were collected by a dual frequency receiver. Multipath error was then computed and

Figure 4. Multipath approximation (PRN 10).
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plotted using the TEQC software [11] as shown in Figure 5. Then from the same dual
frequency data but using only the L1 frequency information, the multipath error was
estimated by wavelet filtering as illustrated in Figure 6. By looking at the absolute
values of both the TEQC and wavelet filtering, results are consistent with each other.
Since some of the data were missing while using the L1 frequency data, there is a time
shifting difference between Figures 5(b) and 6(b). Figures 7(a) and 7(b) show the
frequency domain of the raw data (residuals before filtering), and the de-noised data
respectively. It can be observed that the wavelet filtering has successfully de-noised
the residuals. Figures 8(a) and 8(b) are two other samples of residuals with lower
amount of noise compared with Figure 7(a).

3.2. Stage 2: Finalizing the Computed Positions. To compute a position from the
code measurements, we set a criterion based on the multipath (single frequency)
value. In case there were more than four satellites in view, only the best four were
selected to compute the position. We selected the ones with the lower multipath
values at each epoch. Then outlier detection was applied to the computed positions.
In this experiment, the outlier detection was based on the standard deviations (s) in
Easting and Northing components. These were computed and position estimates
exceeding 3s from the mean were rejected. The output from the second stage filter is
the final position estimate as shown in Figure 9.

Figure 5. Approximated multipath from TEQC using dual frequency data.

Figure 6. Approximated multipath from wavelet filtering, using single frequency data.
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4. RESULTS. Figure 9 shows two data sets from the Yonge-Gerrard location.
In each figure, the red dots represent the positions computed from the raw pseudo-
ranges (data before filtering) while the black dots represent the positions after filtering.

Figure 7. Residual spectrum before and after filtering.

(a) PRN 2 (b) PRN 5

Figure 8. Residual spectrum before and after filtering.
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Table 1. Statistical results taken from Figure 9(a).

Statistical Parameter

Raw

Data(m)

Filtered

Data(m)

Easting Variance 619.3 297.3

Northing Variance 1502.2 568.4

Min Eigenvalue 500.2 109.1

Max Eigenvalue 1621.3 756.7

Easting Kurtosis 2.7 1.8

Northing Kurtosis 3.6 2.4

Table 2. Statistical results taken from Figure 9(b).

Statistical Parameter

Raw

Data(m)

Filtered

Data(m)

Easting Variance 706.6 305.7

Northing Variance 1242.8 344.6

Min Eigenvalue 612.3 98.5

Max Eigenvalue 1754.2 348.2

Easting Kurtosis 2.9 1.6

Northing Kurtosis 3.4 2.1

Figure 9. L4 positions: Raw (red) and filtered (black) data.
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Figs. 9(a) and 9(b) show the positions for two different collection times. The
horizontal and vertical axes represent the Easting and Northing respectively after
normalizing to the scatter mean. Since satellite constellation and environmental
conditions, such as traffic, change with time, the positions shown in plots (a) and
(b) of Figure 9 scattered differently. A sample of the statistical measures are shown
in Tables 1 and 2.

5. CONCLUSION. We have developed a two-stage wavelet filtering tool to
mitigate GPS multipath. The first stage de-noises residuals to estimate multipath
errors that overstate the magnitude of L1 pseudorange values. The second stage
detects the outliers for a final position estimate. The results from our experiment
show that excluding satellites with higher multipath could increase the position
accuracy. The post filtered position scatters show smaller variance, eigenvalues,
and kurtosis. On visual inspection, our approach to wavelet-based filtering provides
a strong degree of statistically measurable noise removal in the seven, 15-minute
datasets studied. De-noising of signals from a stationary receiver has applications
in low-cost survey and location applications.
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