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Abstract
Actuarial ratemaking is usually performed at product and guarantee level, meaning that each product and
guarantee is considered in isolation. Moreover, independence between policyholders is generally assumed.
In this paper, we propose a multivariate Poisson mixture, with random effects correlated using a hierarchi-
cal structure, to accommodate for the dependence that may exist between unobserved risk factors across
Home and Motor insurance and between policyholders from the same household. The hierarchical struc-
ture accounts for the fact that Home insurance covers the whole household, whereas Motor insurance
policies are subscribed by specific policyholders within the household. The model allows to periodically
correct the a priori expected claim frequencies using the reported number of claims in any of the consid-
ered products. Applications show that the impact of the number of claims reported in Motor insurance
on the number of claims expected in Home insurance is larger than the other way around. Moreover, an
out-of-sample analysis validates an improved predictive power. Also, the model allows to identify more
rapidly the riskiest households.

Keywords:Multivariate credibility; Poisson–LogNormal; A posteriori claim frequency

1. Introduction and Motivation
In property and casualty insurance, it is common to perform ratemaking using a two-step
approach. First, policyholders are classified by the insurer into risk classes using the information
available at inception of the policy. These information include covariates about the policyholder
himself or herself, the insured car and/or home. Each risk class contains similar policyholders with
respect to the risk they represent and allows to estimate the claim frequency. This risk classification
can be routinely done using generalised linear models and generalised additive models (GAMs).
The risk classes remain however heterogeneous as important risk factors are not observed and dif-
ferentiate policyholders belonging to the same a priori risk class. In a second step, the a posteriori
ratemaking consists in using credibility theory to correct periodically the estimates to account for
this heterogeneity. More specifically, the previous a priori model can be extended thanks to ran-
dom effects which represent the latent risk factors. As time passes, the number of claims reported
every period reveals information about the unobserved risk factors. See Denuit et al. (2007) for a
comprehensive review of these techniques in nonlife insurance.

In Home insurance, multiple guarantees can be subscribed by policyholders in the EU and
cover damage to a building and/or its content by some perils. The guarantees are generally sold
in packages, and in some situations, some guarantees may be even compulsory. The policy can
cover either the building only, the content only or both. The main guarantees cover damages due
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to fire, water damage, electricity, broken glass and third-party liability (TPL) (e.g. covering third
parties in the event of fire or water damage). Due to the nature of the policy, although one specific
policyholder subscribes a Home insurance policy, the whole household is in fact covered.

In Motor insurance, the two most common guarantees that can be bought by policyholders in
the EU are TPL insurance and Material Damage (MD) insurance. TPL is compulsory and covers
a third-party’s loss caused by the insured car. MD is an optional guarantee that covers the cost
of repairing or replacing the insured’s own vehicle. This guarantee will often be used when the
policyholder is liable for the claim, or when no liable person could be identified.

The present paper aims to model claim counts in Home and in Motor insurance, jointly at
household level. It is not the first work that combines both products and considers multiple poli-
cyholders from the same household. Indeed, Guillen et al. (2008) and Brockett et al. (2008) moved
from a product view to a customer (or household) view and focused on the behaviour of house-
holds with multiple policies. Using logistic regression, they analysed how much time the insurer
has to retain the customers starting from the household’s first policy cancellation until all the
policies have been lapsed. Also, Frees (2003) showed, using multivariate credibility in the vein of
Jewell (1974), for aggregate loss models, that it is relevant to account for the covariance between
different lines of business.

Some works have focused on the dependence arising from the possibility that claims trigger
multiple guarantees at the same time. Indeed, in Motor insurance, for instance, it may happen
that a single event triggers both TPL and other guarantees (e.g. MD). When only the number of
claims in each guarantee is available and it is not possible to know which claims triggered multiple
guarantees, one can rely on the bivariate Poisson regression, as, for example, in Bermúdez (2009).
The dependence between the number of claims in both guarantees arises from a common latent
count variable that counts the claims that triggered both guarantees. This bivariate model has
been further extended to more guarantees in Bermúdez & Karlis (2011). The authors used a mul-
tivariate Poisson regression as well as a zero-inflation Poisson regression and relied on Bayesian
calculations for the estimation.

Other works that focused on the modelling of claim frequencies over multiple guarantees
and/or products can be classified in two main categories according to the way claim counts are
correlated.

One way to induce dependence is by introducing a copula. Credibility theory can be used in
conjunction with copulas, see, for example, Frees & Wang (2005). Frees & Valdez (2008) and
Frees et al. (2009) used t-copulas to account for the dependencies among claims from different
types of coverage in Motor insurance. Frees et al. (2018) modelled jointly lapsation and claims
in Motor and Home insurance using copulas, by exploiting the idea that claims outcome may
be related to the lapsation of a policy. Also, Shi & Valdez (2014) introduced a multivariate nega-
tive binomial regression model, where each pair of variables has its own covariance structure. On
aggregated loss, Frees & Wang (2006) used elliptical copulas to model the dependencies between
the severities, and the dependence between the number of claims was modelled introducing latent
correlated factors. Shi et al. (2016) introduced dependence between the cost of claims of vari-
ous types of claims with a Gaussian copula. The copula allows to capture the cross-sectional and
temporal dependence among the claims. Shi & Yang (2018) investigate multiple kind of insur-
ance claims using mixed D-vine copula to model the temporal dependence. The result is used to
integrate the policyholders’ past experience into their future premiums. Bermúdez et al. (2018)
analysed the time and cross dependence between the number of claims using a bivariate integer-
valued autoregressive regression model (see also Karlis & Pedeli 2013). The model allows to
account for both the serial correlation arising frommultiple observations of the same policyholder
over time as well as the correlation between claims in different guarantees.

Another way to introduce dependence is by inclusion of correlated random effects whichmodel
the unobserved risk factors that influence the claim frequency. As these latent risk factors may be
correlated across guarantees and across policyholders from the household, the random effects are

https://doi.org/10.1017/S1748499520000160 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499520000160


84 Florian Pechon et al.

not assumed to be independent amongst the unit household. The introduction of this dependence
therefore induces correlation between the claim frequencies which in turn induces correlation
between the number of claims. Purcaru &Denuit (2003) analysed what kind of dependence results
from the introduction in the claim frequency of correlated random effects. Bermúdez & Karlis
(2017) extended the bivariate model in Bermúdez (2009) by inclusion of either one common
random effect per policyholder or three correlated random effects, one for each count variable.
Pechon et al. (2018) used a multivariate Poisson mixture to account for correlated latent risk fac-
tors in Motor TPL amongst policyholders from the same household. Also, Pechon et al. (2019)
used a multivariate Poisson mixture on two guarantees in Motor insurance and on multiple
policyholders from the same household. Three count variables were used to model the claim fre-
quencies in both guarantees, depending on which guarantee(s) were triggered and for each count
variable a random effect was introduced. The results showed a positive dependence between the
random effects related to policyholders from the same household. Also, Antonio et al. (2010b)
used a multivariate credibility model using a Bayesian approach on a portfolio of fleets of vehi-
cles; see also Antonio et al. (2010a). A posteriori ratemaking can also be used to construct a
bonus–malus (BM) system. For instance, Pinquet (1998) constructs a BM system that models the
dependence between at-fault and not-at-fault claims in Motor insurance using bivariate credibil-
ity. Boucher & Inoussa (2014) proposed a BM system for panel data, while differentiating at-fault
and not-at-fault claims in Motor insurance.

The aim of this paper is to supplement the existing bibliography onmultivariate credibility and
present an approach to model the dependencies between claim frequencies in Home and Motor
insurance. Specificities of these products are taken into account: in Home insurance, one policy-
holder will subscribe the policy which will cover the whole household, while in Motor insurance,
multiple policies (one per vehicle, each subscribed by the main driver of the car) can be present in
a household. Moreover, different kinds of claims are observed inMotor insurance. The paper aims
at taking into account all the claim-related information about both products in each household to
update the household’s expected claim frequencies.

In this paper, we wish to build on Pechon et al. (2018) and Pechon et al. (2019) and provide
a methodology to model the number of claims reported in both Home and Motor insurance at
household level. Compared to the two aforementioned papers, we rely here on a hierarchical
structure of random effect. Indeed, some latent risk factors may in fact be shared across all policy-
holders from the household and across all products. Others aremaybe specific toMotor insurance,
while still being common to all policyholders in Motor insurance. Then, some latent risk factors
specific to each policyholder in Motor insurance may exist, and finally each type of claimmay also
exhibit some latent risk factors. This understanding leads to a hierarchical structure that can be
illustrated as in Figure 2. Therefore, this paper is not a mere extension of the two previously cited
papers, in which we would only add Home insurance. In fact, a different methodology is used.
The hierarchical structure will allow for more interpretation, however, as we will see, at the cost of
forcing a positive correlation which is supported by the data used for illustration.

Our approach can be summarised as follows. First, we estimate the four kinds of a priori
expected claim frequencies (Home insurance, TPL only, MD only and TPL and MD simulta-
neously) using the a priori available covariates. We assume that each of these number of claims
follows a Poisson distribution. In practice, this can be done using GAMs. In a second step, a pos-
teriori ratemaking is performed with the help of credibility theory. Important risk factors are not
observed but are revealed through time by the number of reported claims. Part of these latent risk
factors may be shared or correlated across guarantees and products as well as across policyholders
from the same household. These dependencies can be accounted for by introducing dependence
between the random effects related to the same household. The inclusion of random effects using
the hierarchical structure represented in Figure 2 leads to a multivariate Poisson mixture. The
hierarchical structure allows to have a well-defined variance–covariance matrix and more inter-
pretable results. In Pechon et al. (2019), no hierarchical structure was used, and the model was
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Figure 1. Left: average age of policyholders split by gender during the years 2011–2013. Right: covered value in Euro of the
insured vehicles.

Figure 2. Hierarchical structure with policyholder effect in Motor insurance.

restricted to Motor insurance. Similarly to Pechon et al. (2018) and Pechon et al. (2019), the
random effects are assumed to be Gaussian on the score scale. Parameters are estimated using
a likelihood-based inference procedure. The evaluation of the objective function involves the cal-
culation of integrals, which can be computed numerically, for instance using the Gauss–Hermite
quadrature. Other possibilities include quasi-likelihood approaches, Monte-Carlo integration or
the Laplace method, see Tuerlinckx et al. (2006) and Antonio & Zhang (2014) for an extensive
review on these methods. As the random effects related to the same household are not assumed
to be independent, the contribution of one household to the likelihood involves the computation
of as many integrals as there are count variables. On our data set, households had at most two
policyholders in Motor insurance and at most one policy in Home insurance, meaning that there
are three count variables and three random effects related to each policyholder in Motor insur-
ance, and one count variable and one random effect related to Home insurance. Consequently,
the contribution to the likelihood of one household involves at most the computation of a seven-
dimensional integral. The Gauss–Hermite quadrature revealed itself to be fast, especially when
used in conjunction with the package Rcpp contributed by Eddelbuettel & François (2011) which
allows to write chunk of codes in C++ inside an R script enabling a drastic reduction in com-
putational time (up to 30 times faster). Note that this approach is different to a copula approach
(e.g. as in Frees &Wang (2006)) which would directly induce dependence between the number of
claims or between the claim frequencies, without relying on the introduction of random effects.
In our approach, dependence arises from correlated random effects (representing unobserved risk
factors) which in turn correlate with the number of claims. The results show that the latent risk
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factors are correlated across products, guarantees and policyholders from the same household,
meaning that the unobserved risk factors may be correlated or shared in the household. Therefore,
any claim from the household can be used to predict more accurately the claim frequency in any
of the considered guarantees for any policyholder from the household.

The results, which are illustrated in this paper, show that the latent risk factors are positively
correlated across both Motor and Home insurance products, guarantees and policyholders from
the same household, meaning that the unobserved risk factors may be correlated or shared in
the household. The fact that they are positively correlated allows us to use the aforementioned
hierarchical structure. Therefore, any claim from the household (in Home or in Motor insurance)
can be used to predict more accurately the claim frequency in any of the considered products and
guarantees for any policyholder from the household.

A predictive power analysis on out-of-sample data has also been conducted and shows that the
multivariate credibility model proposed in this paper improves the predictive power, in compari-
son for instance to a univariate Poisson mixture. In particular, the model allows to better identify
the riskiest households. Therefore, the model can be used to estimate more precisely the expected
claim frequencies in a household, using all the available information: using a univariate approach,
one policyholder in one product may appear to be a high-risk profile (i.e. a policyholder report-
ing many claims) for the insurer, while using our multivariate approach makes it possible for the
insurer to see the whole picture and may in fact realise that the household as a whole is profitable.
Conversely, if a policyholder from a household is reporting many claims in Motor insurance, the
model will correct the a priori claim frequencies of the other policyholders from the household,
allowing to better identify the riskiest policyholders.

The main contribution of this paper is both methodological and on the application side. The
paper suggests a new likelihood-based estimation procedure involving numerical integration in
high dimensions with insurance count data. Also, the model shows using a household (or family)
approach that the claim frequencies of different products subscribed by different policyholders are
correlated. In this paper, the random effects are correlated using a hierarchical structure, allowing
more interpretability.

This paper is organised as follows: Section 2 briefly presents the data set used to illustrate the
proposed methodology. In Section 3, some notations are introduced, and the model using a hier-
archical structure of random effects is described. Then, the model is estimated on the data set,
the results are analysed and the correlations are interpreted. Then, in Section 4, some insurance
applications illustrate the usefulness of the model. More specifically, a posteriori corrections to
both Home and Motor insurance are discussed, and the impact of Home (respectively, Motor)
insurance on Motor (respectively, Home) insurance is investigated. In Section 5, cross-validation
is used to assess the gain in predictive power of the model. The model is compared to a uni-
variate Poisson–LogNormal mixture model as well as to a Poisson model. Section 6 presents an
approach where the estimation of the GAMs and of the variance–covariance matrix of the random
effects are cycled. Although the cycling resembles an Expectation–Maximization (EM) algorithm,
some characteristics differentiate the two approaches, as for instance, two different objective func-
tions are maximised in the M-step. Section 7 briefly concludes this paper. Additional material is
available as online supplements.

2. Data sets
Let us briefly describe the data sets that will be used to support our analysis. We have to stress
that, for confidentiality reasons, we are not allowed to show statistics (e.g. mean) on the number of
claims. Two detailed data sets relate to portfolios of policies of the same European Insurance com-
pany observed during the years 2011–2013. The first data set is the one used in Pechon et al. (2019)
and relates to policyholders who have subscribed both TPL and MD insurance, in Motor insur-
ance. The policyholders are aged between 30 and 90 years. We have at our disposal the number
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Table 1. Proportions of policyholders in each level of the categorical variables.

Usage Split Litigation

Private 91.13% Annually 48.61% 0 97.99%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Professional 8.87% Monthly 15.79% 2 1.65%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Semi-annually 22.59% 4 0.36%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Quarterly 13.01%

Power New car

Low 95.90% New (≤3 years) 62.68%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

High 4.10% Old (>3 years) 37.32%

Table 2. Number of households according to coverage subscribed in Home and Motor
insurance.

With Home insurance Without Home insurance Total

No Motor policies 612,876 0 612,876
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

One Motor policy 86,321 132,717 219,038
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Two Motor policies 5,536 5,446 10,982
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total 704,733 138,163 842,896

of claims triggering each guarantee as well as the number of claims that triggered both guarantees
at the same time. Some covariates about the policyholder (e.g. age, gender, place of residence) are
available as well as the use of the car. Note that each policy relates to a unique vehicle and is asso-
ciated with a main driver. Some covariates related to the policy itself are also available, such as
whether the payment of the premium has been split. Also, we have access to a variable (litigation)
indicating whether the policyholder has had a failure to pay its premium in due time and if so,
whether the premium has been paid after a first reminder (level 2) or whether the premium has
been paid after a second reminder (level 4), that is, implying an interruption of the coverage in
the meantime. Finally, a family identifier allows to match the policyholders who live in the same
household. Some statistics about the available covariates are given in Table 1 as well as in Figure 1.

The second data set relates to a portfolio of Home insurance policies of the same European
insurance company. A pool of multiple guarantees covering the damages to the building is con-
sidered: damage due to fire, water damage, electricity as well as broken glass and TPL (e.g. covering
third parties in the event of fire or water damage). These guarantees, all related to the building,
have been pooled in order to obtain similar claim frequencies than in Motor insurance. Note
that the coverage of the content is not included in the analysis. The data set contains a total of
704,733 households with a Home insurance policy with a total exposure of 1,462,233 years. Some
covariates are available, such as the value of the covered building, whether the policyholder is
owner (72%) or tenant (28%), whether the building is an apartment (20%) or a house (80%),
whether the building is contiguous to other buildings (61%) or not (39%) and finally the ZIP code
related to the location of the house. This latter variable can be used to find latitude and longitude
coordinates.

The family identifier also allows to match households from both portfolios. More specifically,
we can identify which households have subscribed Home insurance and how many Motor insur-
ance policies (covering both TPL and MD) have been bought in the household. Note that this
is only possible as long as policyholders buy their insurance policy from the same insurance
company, as the data sets relate to only one insurance company.

Among the 704,733 households in the Home insurance portfolio and 230,020 households in
the Motor insurance portfolio, 91,857 have a Home insurance policy as well as at least one Motor
insurance policy covering TPL and MD. More specific details can be found in Table 2.
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3. Model
3.1. Notations
We define some notations, similar to those in Pechon et al. (2019). LetH be the set of households,
and let us introduce the following claim count variables:

— NTPL
h(i),t : the number of claims of policyholder i from household h that triggered only TPL

during year t;
— NMD

h(i),t : the number of claims of policyholder i from household h that triggered only MD
during year t;

— NMD:TPL
h(i),t : the number of claims of policyholder i from household h that triggered both TPL

and MD simultaneously during year t;
— NHome

h,t : the number of claims of household h that triggered Home insurance during year t.

Note that to simplify some expressions, sometimes we will write NHome
h(i),t when we actually mean

NHome
h,t (e.g. in the first assumption later in this section). Clearly, NHome

h(i),t =NHome
h,t for every

policyholder i belonging to household h.
As in Pechon et al. (2019), this implies that the number of claims for policyholder i from

household h that triggered TPL (respectively, MD) during year t isNTPL
h(i),t +NMD:TPL

h(i),t (respectively,
NMD
h(i),t +NMD:TPL

h(i),t ).

We denote the corresponding a priori expected claim frequencies as λTPLh(i),t = E
[
NTPL
h(i),t

]
,

λMD
h(i),t = E

[
NMD
h(i),t

]
, λMD:TPL

h(i),t = E
[
NMD:TPL
h(i),t

]
and λHome

h,t = E
[
NHome
h,t

]
.

We also introduce the aggregated number of claims over the considered time horizon t =
1, . . . , T, namely

— NTPL
h(i),• = ∑T

t=1 NTPL
h(i),t ;

— NMD
h(i),• = ∑T

t=1 NMD
h(i),t ;

— NMD:TPL
h(i),• = ∑T

t=1 NMD:TPL
h(i),t ;

— NHome
h,• = ∑T

t=1 NHome
h,t .

The corresponding a priori expected claim frequencies are denoted λTPLh(i),• = E
[
NTPL
h(i),•

]
, λMD

h(i),• =
E

[
NMD
h(i),•

]
, λMD:TPL

h(i),• = E
[
NMD:TPL
h(i),•

]
and λHome

h,• = E
[
NHome
h,•

]
. In our study, T = 3. This means that

the policyholders have been observed for at most 3 years. In fact, a variable exposure expresses the
amount of time the policyholders were covered during the T years.

Let GMotor = {TPL,MD,MD : TPL} be the set of types of claims in Motor insurance and G =
GMotor ∪ {Home} be the set of all claim types considered in this paper.

3.2. Correlation structure
We introduce a Poisson multivariate mixture to allow for dependence between the latent effects
which represents all the unobserved risk factors affecting the claim frequency. Let us make the
following assumptions:

1. ∀h ∈H, i= 1, 2, ∀g ∈ G, given �
g
h(i) = θ , the random variables Ng

h(i),1, . . . ,N
g
h(i),T are inde-

pendent.
2. ∀h ∈H, i, j= 1, 2, ∀gi, gj ∈ GMotor such that i �= j or gi �= gj, given (�gi

h(i),�
gj
h(j))= (θi, θj), the

sequences of random variables Ngi
h(i),1,N

gi
h(i),2, . . . ,N

gi
h(i),T and Ngj

h(j),1,N
gj
h(j),2, . . . ,N

gj
h(j),T are

independent.
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3. ∀h ∈H, i= 1, 2, ∀gi ∈ GMotor , given (�gi
h(i),�

Home
h )= (θi, θ), the sequences of random vari-

ables Ngi
h(i),1,N

gi
h(i),2, . . . ,N

gi
h(i),T and NHome

h,1 ,NHome
h,2 , . . . ,NHome

h,T are independent.
4. For a household with two Motor insurance policies and one Home insurance policy,

let �h = (�Home
h ,�TPL

h(1),�
MD
h(1),�

MD:TPL
h(1) ,�TPL

h(2),�
MD
h(2),�

MD:TPL
h(2) ) be the vector of all random

effects. We assume that E(�h)= 1. Furthermore, we assume that the random effects can
be decomposed using the hierarchical structure described in Figure 2 (with nested random
effects):

— ∀h ∈H,�Home
h = exp

(
EHousehold
h + EHome

h

)
;

— ∀h ∈H, ∀i ∈ h, ∀g ∈ GMotor ,�
g
h(i) = exp

(
EHousehold
h + EMotor

h + EPolId
h(i) + Eg

h(i)

)
.

We will assume that EHousehold
h ∼N

(
−ς2

Household
2 , ς2

Household

)
, EHome

h ∼N
(
−ς2

Home
2 , ς2

Home

)
,

EMotor
h ∼N

(
−ς2

Motor
2 , ς2

Motor

)
, EPolId

h(i) ∼N
(
−ς2

PolId
2 , ς2

PolId

)
, ∀g ∈ GMotor Eg

h(i) ∼N
(
−ς2

g
2 , ς

2
g

)
.

The random vector Eh = (EHousehold
h , EHome

h , EMotor
h , EPolId

h(i) , ETPL
h(i) , EMD

h(i) , EMD:TPL
h(i) ) is such that

E[ exp Eh]= 1. The variance–covariance matrix of Eh is given by

V [Eh]= diag(ς2
Household, ς

2
Home, ς

2
Motor , ς

2
PolId, ς

2
TPL, ς

2
MD, ς

2
MD:TPL)

The diagonal structure of the matrix V [Eh] means that the additive random effects are
independent.

Considering Figure 2, EHousehold can be understood as the Household effect. Indeed, all the shared
risk factors across the policyholders from the household and across both products are included in
this random effect. Thanks to this random effect, both products are correlated. In Motor insur-
ance, some effects may be common to policyholders from the same household, in addition to the
previously cited Household effect. Indeed, the random effect EMotor induces additional covari-
ance between the claim frequencies in Motor insurance. Finally, some policyholder-related latent
factors may exist and influence the claim frequencies; these effects are modelled thanks to EPolId.

Note that the assumptions above that relate to Motor insurance are similar to those made in
Pechon et al. (2019). The assumption of normality means that the vector of random effects�h has
a multivariate LogNormal distribution with unit mean. In Pechon et al. (2018), a Poisson mixture
was used to introduce dependence between policyholders from the same household in TPL insur-
ance. The authors compared a Poisson–Gamma, where the Gamma-distributed random effects
were correlated using a Gaussian copula, with a Poisson–LogNormal model and concluded that
the Poisson–LogNormal model outperformed the Poisson–Gamma model. The model involves a
hierarchical structure of random effects representing the latent effects. The variance–covariance
matrix of log�h (where the log is taken on each component) is given by

�log�h =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ 2
Home σHM σHM σHM σHM σHM σHM
σHM σ 2

TPL σPolId σPolId
σHM σPolId σ 2

MD σPolId σMotor
σHM σPolId σPolId σ 2

MD:TPL
σHM σ 2

TPL σPolId σPolId
σHM σMotor σPolId σ 2

MD σPolId
σHM σPolId σPolId σ 2

MD:TPL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

σ 2
Home = ς2

Household + ς2
Home

σ 2
TPL = ς2

Household + ς2
Motor + ς2

PolId + ς2
TPL
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σ 2
MD = ς2

Household + ς2
Motor + ς2

PolId + ς2
MD

σ 2
MD:TPL = ς2

Household + ς2
Motor + ς2

PolId + ς2
MD:TPL

σHM = ς2
Household (Household effect)

σMotor = ς2
Household + ς2

Motor (Inter-policyholder)
σPolId = ς2

Household + ς2
Motor + ς2

PolId (Intra-policyholder)

3.3. Estimation
Since the support of each random effect is R+, we can write the likelihood as

L(�log�)=
∏
h∈H

∫
R
7+

⎡
⎢⎢⎣

2∏
i=1

∏
g∈G

exp
(
−λ

g
h(i),•θ

g
h(i)

) (
λ
g
h(i),•θ

g
h(i)

)ngh(i),•
ngh(i),•!

⎤
⎥⎥⎦ f�h(θh)dθh (1)

Note that if for some household the length of the vector �h is smaller than 7 (i.e. no Home insur-
ance policy or less than two Motor insurance policies), by adopting the convention that 00 = 1
and by setting the corresponding a priori expected claim frequency λ to zero yield the correct
likelihood. In such a case, the corresponding integral vanishes.

The computations have been realised in the statistical software R. The estimation was done in
a two-part approach.

First, the a priori expected claim frequencies have been estimated with a Poisson regression
using GAMs. It has to be noted that no covariates from Motor insurance have been used in the
Home insurance regression and vice versa. One reason for this is that some households have only
Motor (respectively, Home) insurance, and the covariates related to the missing product would
therefore result in missing values, which the GAMs do not handle. This does not prevent us from
using common factors, such as the length of time the policyholder or household has been with the
company. Such a covariate can be a part of each model as long as the parameters are functionally
independent. Four different claims are considered: one in Home insurance and three in Motor
insurance. As explained in Section 2, a pool of multiple guarantees in Home insurance is consid-
ered, whereas inMotor insurance, three types of claims are considered. The GAMs were chosen to
model the claim frequencies using a Poisson regression with a log link function. See Wood (2017)
for an introduction to GAMs. In the present study, the mgcv package available in R was used.

Themodels used inMotor insurance are the same as in Pechon et al. (2019). More details about
the a priori analyses can be found in Section 6.

In the second part, the a priori expected claim frequencies are fixed, and the variance–
covariance matrix of the random effects is estimated by maximising the objective function (1)
by holding the a priori expected claim frequencies λ fixed.

Although this two-part approach will be used in this paper, we provide an algorithm in
Section 6 that resembles an expectation/conditional maximisation (ECM) procedure. The algo-
rithm proposed in this paper differs from the one proposed in Meng & Rubin (1993) with the
fact that we maximise two different objective functions. We stress out that further research is
necessary, however, to assess the validity of the proposed algorithm.

In order to compute the likelihood in equation (1), we need to rely on numerical integration.
We rely on the multivariate Gauss Hermite quadrature, which is available in R thanks to the pack-
ageMultiGHQuad contributed by Kroeze (2016). The integrand is written in C++ so as to fasten
the computation. The C++ integrand can be included in an R function using the Rcpp package
(see Eddelbuettel & François 2011). We have a step-by-step approach to estimate the parameters,
which we shall describe below. The step-by-step approach allows to break down the estimation
in different steps of smaller dimension (i.e. which require less computations) which in turn give
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Table 3. Estimates at each step of the optimisation process.

First step Second step Third step (s.e.)

ς̂2Household 0.0000 0.00000 0.128 (0.0161)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2Home 0.0000 0.00000 0.185 (0.0204)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2Motor 0.0000 0.19038 0.0703 (0.0297)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2PolId 0.2414 0.05199 0.0444 (0.0279)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2TPL 0.3163 0.31631 0.315 (0.0424)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2MD 0.1199 0.12429 0.126 (0.0178)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2MD:TPL 0.1225 0.12900 0.133 (0.0411)

us good initial values for the final step that incorporates all the parameters. Having good initial
values for this final step allows to have less iterations in the optimisation process and consequently
reduces drastically the computation time.

First, we estimate the parameters related to Motor insurance at a policyholder level (the
variances ς2

PolId, ς
2
TPL, ς

2
MD, ς2

MD:TPL), the other variances being fixed temporary at zero. As ini-
tial values, we rely on the marginal estimates of the variance. To obtain initial values for the
parameters ς2

TPL, ς
2
MD, ς2

MD:TPL, we can estimate the three variances of three different univari-
ate Poisson–LogNormal models. A initial value for ς2

PolId can be given by optimising a trivariate
Poisson–LogNormal model with the three previous variances fixed and the covariance (i.e. ς2

PolId)
being estimated. Since these models are of low dimension and each of them involves only one
parameter to optimise, convergence is fast.

In the second step, the variance ς2
Motor is estimated. In fact, the parameters σ 2

TPL, σ
2
MD, σ 2

MD:TPL
are kept constant in this step, and an increase of the parameter ς2

Motor (inducing the dependence
between random effects from the same household) is compensated by a decrease of the parame-
ter ς2

PolId (inducing dependence between random effects from the same policyholder). Note that
the difference at this point with Pechon et al. (2019) comes from the dependence structure. The
covariance (induced by �Motor) is estimated and is assumed to be the same for any pair of differ-
ent random effects belonging to the same policyholder, whereas in Pechon et al. (2019), each pair
of random effects related to the same policyholder had its own covariance parameter.

In the third step, Home insurance is then included. However, the hierarchical structure imposes
that the correlations (respectively, covariances) are positive. As opposed to Motor insurance, for
which we could rely on the results found in Pechon et al. (2019) establishing that the correlation
is positive, we first need to assess whether the dependence between Home and Motor insurance is
positive before using the hierarchical structure. For this preliminary assessment, we first introduce
a single random effect �Home and introduce dependence with respect to Motor insurance thanks
to a unique covariance parameter between the random variable �Home and the random variables
�TPL,�MD,�MD:TPL. The variance (i.e. the residual heterogeneity in Home insurance) is esti-
mated marginally and then is fixed at its value to estimate the covariance. We find a covariance
equals to 0.1202 (s.e. 0.0174).

Given that the covariance between Home andMotor insurance’s random effects is significantly
positive, we can rely on the hierarchical structure which imposes a positive dependence and esti-
mate all the parameters simultaneously in a third step by maximising the objective function (3.3)
holding the a priori expected claim frequencies λ fixed.

We display all the estimates at each step in Table 3. We note that at each step there is a transfer
that occurs: the estimated ς̂2

PolId from step 1 is split into ς̂2
PolId and ς̂2

Motor in step 2. This break-
down can be understood in the following way. The introduction of the variance ς̂2

Motor induces
covariance between policyholders from the same household in Motor insurance, while in step 1,
only the random effects of guarantees related to the same policyholder had a strictly covariance.
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Table 4. Final estimates.

Effect Estimate s.e

ς̂2Household 0.1238 0.0175
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2Home 0.1872 0.0216
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2Motor 0.1141 0.021
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2PolId 0.0000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2TPL 0.3213 0.0175
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2MD 0.1272 0.0216
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ς̂2MD:TPL 0.1336 0.021

Figure 3. Hierarchical structure of final model.

The increase in ς̂2
Motor is, however, compensated by the decrease in ς̂2

PolId. The covariance for guar-
antees related to the same policyholder does not change, while the policyholders from the same
household in Motor insurance become correlated. Similarly, from step 2 to step 3, the introduc-
tion of the random effect related to the Home induces a decrease of ς̂2

Motor that is compensated
by an increase of ς̂2

Household. The covariances in Motor insurance remain the same than in step 2,
however, due to the common variance ς̂2

Household, Home and Motor insurance become correlated,
with a covariance equal to ς̂2

Household.
Finally, we observe that the policyholder effect (i.e. ς2

PolId) does not seem to be significantly
different from zero. This appears to be coherent with the results found in Pechon et al. (2019),
where the estimates of the analogue parameters appear to have overlapping confidence intervals.
This model is then re-estimated by forcing ς2

PolId = 0. The estimates can be found in Table 4.
A likelihood ratio test is conducted to assess whether the policyholder effect is significant (i.e.

ς2
PolId > 0). The value of the statistic is t = 0.1866. Since the test involves a value on the bound-

ary of the domain, Self & Liang (1987) and Agresti (2003) suggest to compute the p-value using
1
2 Pr

(
χ2
1 > t

)
. We obtain a p-value of 0.3329, which confirms that the policyholder effect is not

significant. Notice that because of the two-step estimation procedure, this p-value must be con-
sidered with caution, but its relatively high value is taken as an evidence supporting the model
choice ς2

PolId = 0 retained here.
The final model used in the remainder of this paper, without the policyholder effect, amounts

to a hierarchical structure as depicted in Figure 3.
Note that given the parametrisation using a hierarchical structure, any value within the confi-

dence intervals will yield an appropriate (i.e. positive-definite) variance–covariance matrix. This
is one of the advantages of the hierarchical parametrisation.
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Some sensitivity analysis with respect to the number of nodes per dimension used in the Gauss–
Hermite quadrature has been conducted. The results thereof can be found in the Supplementary
Material in this paper. It appears that starting at seven nodes per dimension, the estimates stabilise.
By choosing m= 7 nodes per dimension, for the households with two Motor insurance policies
and one Home insurance policy, the number of nodes used to compute the contribution of this
household to the likelihood amounts to m7 = 77 = 823,543. It has to be noted, though, that not
all households have these three policies. The contribution to the likelihood of these households
therefore implies the evaluation of less integrals.

3.4. Implied dependence structure
Now that the model has been estimated, we can compute the implied dependence structure
between these latent factors. We start with the variances, which represent the strength of these
latent factors (i.e. the amount of residual heterogeneity in each risk class constructed with the a
priori model).

We start with the implied dependence structure of the underlyingmultivariate normal distribu-
tion. Afterwards, the implied dependence structure on the LogNormal scale (i.e. the dependence
structure of �h) will be deduced.

For i= 1, 2, we can compute the residual heterogeneity:

V
[
log�Home

h
] = ς2

Household + ς2
Home estimated to 0.3110

V
[
log�TPL

h(i)

]
= ς2

Household + ς2
Motor + ς2

TPL estimated to 0.5592

V
[
log�MD

h(i)

]
= ς2

Household + ς2
Motor + ς2

MD estimated to 0.3651

V
[
log�MD:TPL

h(i)

]
= ς2

Household + ς2
Motor + ς2

MD:TPL estimated to 0.3715

As stated above, the hierarchical structure induces positive covariances between the random
effects. We can now explicitly compute these. Indeed, we have that for i, j= 1, 2

Cov
[
log�Home

h , log�TPL
h(i)

]
=Cov

[
log�Home

h , log�MD
h(i)

]
=Cov

[
log�Home

h , log�MD:TPL
h(i)

]
= ς2

Household estimated to 0.1238

Cov
[
log�TPL

h(i) , log�MD
h(j)

]
=Cov

[
log�TPL

h(i) , log�MD:TPL
h(j)

]
=Cov

[
log�MD

h(i) , log�MD:TPL
h(j)

]
= ς2

Household + ς2
Motor estimated to 0.2379

and for i �= j,Cov
[
log�TPL

h(i) , log�TPL
h(j)

]
=Cov

[
log�MD

h(i) , log�MD
h(j)

]
=Cov

[
log�MD:TPL

h(i) , log�MD:TPL
h(j)

]
= ς2

Household + ς2
Motor estimated to 0.2379

We can compute the correlations between the log of the random effects. The estimated correla-
tions are shown in Table 5. These correlations are related to the underlying normal distribution,
which is on the score scale (i.e. the log scale).

Now that the dependence structure of the multivariate normal random vector is computed, we
can deduce the correlation structure between the LogNormal random effects. Let us compute the
variances as well as the correlations between the LogNormal distributed random effects
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Table 5. Estimated correlation structure between the randomeffects on the log scale (i.e. at the score scale).

log�Home
h log�TPL

h(1) log�MD
h(1) log�MD:TPL

h(1) log�TPL
h(2) log�MD

h(2) log�MD:TPL
h(2)

log�Home
h 1.0000 0.2896 0.3574 0.3751 0.2896 0.3574 0.3751

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log�TPL
h(1) 0.2896 1.0000 0.4745 0.4979 0.3844 0.4745 0.4979

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log�MD
h(1) 0.3574 0.4745 1.0000 0.6146 0.4745 0.5857 0.6146

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log�MD:TPL
h(1) 0.3751 0.4979 0.6146 1.0000 0.4979 0.6146 0.6450

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log�TPL
h(2) 0.2896 0.3844 0.4745 0.4979 1.0000 0.4745 0.4979

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log�MD
h(2) 0.3574 0.4745 0.5857 0.6146 0.4745 1.0000 0.6146

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

log�MD:TPL
h(2) 0.3751 0.4979 0.6146 0.6450 0.4979 0.6146 1.0000

Table 6. Estimated variances of random effects for i= 1, 2.

�Home
h �TPL

h(i) �MD
h(i) �MD:TPL

h(i)

Var 0.3655 0.7406 0.4387 0.3914

Table 7. Estimated correlation structure between the LogNormal random effects.

�Home
h �TPL

h(1) �MD
h(1) �MD:TPL

h(1) �TPL
h(2) �MD

h(2) �MD:TPL
h(2)

�Home
h 1.0000 0.2457 0.3193 0.3380 0.2457 0.3193 0.3380

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�TPL
h(1) 0.2457 1.0000 0.4165 0.4410 0.3206 0.4165 0.4410

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�MD
h(1) 0.3193 0.4165 1.0000 0.5730 0.4165 0.5412 0.5730

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�MD:TPL
h(1) 0.3380 0.4410 0.5730 1.0000 0.4410 0.5730 0.6066

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�TPL
h(2) 0.2457 0.3206 0.4165 0.4410 1.0000 0.4165 0.4410

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�MD
h(2) 0.3193 0.4165 0.5412 0.5730 0.4165 1.0000 0.5730

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�MD:TPL
h(2) 0.3380 0.4410 0.5730 0.6066 0.4410 0.5730 1.0000

�h =
(
�Home

h ,�TPL
h(1),�

MD
h(1),�

MD:TPL
h(1) ,�TPL

h(2),�
MD
h(2),�

MD:TPL
h(2)

)
We show the estimated variances in Table 6 and the estimated correlations in Table 7.

Let us provide some interpretations for the values displayed in Tables 6 and 7.
The heterogeneity appears to be the smallest in Home insurance. This is very intuitive because

claims in Motor insurance are strongly related to the way of driving as well as the risk aversion of
the policyholder, whereas claims in Home insurance can be more often the result of a external cir-
cumstances, such as bad location (e.g. flood zone), or to a badly constructed building (e.g. faulting
electrical connections).

The dependence between both Home and Motor insurance materialises in a correlation of
about 30%. It appears, however, to be weaker than within guarantees related to Motor insurance.
Again, this is intuitive, as less choices are made by the policyholder in Home insurance than in
Motor insurance. The correlations in Motor insurance appear to be of similar order of magnitude
than those given in Pechon et al. (2019), although a different pair appears to have the strongest
correlation. By looking at the standard errors of the estimates, we can assume that this could be
related to randomness.

Consequently, there appears to be some unobserved risk factor that is affecting the whole
household and that is correlating the claim frequencies in both Motor insurance guarantees as
well as in Home insurance. This could be a very local geographic effect that the a priori model
could not identify using a bivariate function of the latitude and longitude of the place of resi-
dence, or even the socio-economic status, as the latitude and longitude variables available in the
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data set are in fact the centre of each district. Therefore, socio-economic status, often shared in
neighbourhoods, could not be integrated in the a priori model and could be part of the unob-
served risk factors. Nevertheless, one can only take guesses, since this information is not available
and consequently cannot be added to the a priori model.

The fact, however, that the correlation between Motor insurance guarantees is the high-
est suggests that some other unobserved factor representing the behaviour and risk averseness
of the policyholder is hidden in this residual heterogeneity and is also possibly shared among
policyholders from the same household.

4. Insurance Applications
In this section, we aim to focus on applications which illustrate the consequence of the dependence
between Home and Motor insurance using credibility theory. Some applications related to Motor
insurance have been reviewed in Pechon et al. (2019). We aim to focus here on the consequence
of the dependence between Home and Motor insurance.

In the first application, we will show how the claims experience can be used to produce yearly
(or for any other period) updates of the expected claim frequencies (i.e. a posteriori expected
claim frequencies). Different scenarios related to the number of claims observed in the different
products and guarantees will be discussed.

In the second application, we will show how the newly introduced dependence between the
latent factors in Home and Motor insurance impacts the a posteriori corrections. By correction,
we mean the conditional expectation of the random effect, that is, the multiplicative correction
to apply to the a priori expected claim frequency given the past numbers of claims. More specif-
ically, we will compare the corrections given by our model with the corrections given in case we
would assume independence between Home and Motor insurance (but keeping the dependence
at household level between the guarantees in Motor insurance).

4.1. A posteriori corrections
As time passes by and the insurer observes the number of claims, we can compute corrections
to apply to the a priori expected claim frequency conditional to the observed number of claims
thanks to credibility theory. Due to the dependence between the random effects related to the
same household, the number of claims of any policyholder from the household as well as of any
guarantee is relevant.

Let a household h consists of two policyholders, h(1) and h(2), and let them both have TPL and
MD insurance. Moreover, the household also has a Home insurance policy at the same insurance
company.We will assume for simplicity that all the policies start at the same date. At any time, the
insurer computes for each guarantee the cumulated (i.e. aggregated) number of claims since the
contracts inception as well as the cumulated (i.e. aggregated) a priori expected claim frequencies.
For instance, at the end of year T, the insurer can then compute the following corrections for the
household in Home insurance:

E
[
�Home

h |Nh = nh
]

= 1
Pr [Nh = nh]

∫
R
7+

θHome Pr [Nh = nh|� = θ] f�(�)d�

= 1
Pr [Nh = nh]

1+ nHome
h,•

λHome
h,•

∫
R
7+
Pr

[
N(−Home)

h = n(−Home)
h ,

NHome
h,• = nHome

h,• + 1|� = θ
]
f�(�)d�

=
Pr

[
N(−Home)

h = n(−Home)
h ,NHome

h,• = nHome
h,• + 1

]
Pr [Nh = nh]

1+ nHome
h,•

λHome
h,•
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where

Nh =
(
NHome
h,• ,NTPL

h(1),•,N
MD
h(1),•,N

MD:TPL
h(1),• ,NTPL

h(2),•,N
MD
h(2),•,N

MD:TPL
h(2),•

)
nh =

(
nHome
h,• , nTPLh(1),•, n

MD
h(1),•, n

MD:TPL
h(1),• , nTPLh(2),•, n

MD
h(2),•, n

MD:TPL
h(2),•

)
and where N(−Home)

h (respectively, n(−Home)
h ) is the vector Nh (respectively, nh) without the item

related to the Home guarantee.
In Motor insurance, we can compute the conditional expectation of any random effect:

∀g ∈ GMotor , E
[
�

g
h(i)|Nh = nh

]
=

Pr
[
N(−g)

h(i) = n(−g)
h(i) ,N

g
h(i),• = ngh(i),• + 1

]
Pr [Nh = nh]

1+ ngh(i),•
λ
g
h(i),•

where

Pr [Nh = nh]=
∫
R
7+

∏
i∈h

∏
g∈G

exp
(
−λ

g
h(i),•θ

g
h(i)

) (
λ
g
h(i),•θ

g
h(i)

)ngh(i),•
ngh(i),•!

f�h(θh)dθh

can be computed numerically, for instance with the Gauss–Hermite quadrature, and where N(−g)
h(i)

(respectively, n(−g)
h(i) ) is the vector Nh (respectively, nh) without the item related to the guarantee g

of policyholder h(i).
Although the modelling in Motor insurance includes three count variables and three random

effects to model two guarantees (in order to capture the events that trigger both guarantees at the
same time), we can in fact calculate the correction that is applied in TPL and inMD by considering
the following linear combinations:

1
λTPLh(i),• + λMD:TPL

h(i),•

(
λTPLh(i),•E

[
�TPL

h(i) |Nh = nh
]
+ λMD:TPL

h(i),• E
[
�MD:TPL

h(i) |Nh = nh
])

1
λMD
h(i),• + λMD:TPL

h(i),•

(
λMD
h(i),•E

[
�MD

h(i) |Nh = nh
]
+ λMD:TPL

h(i),• E
[
�MD:TPL

h(i) |Nh = nh
]) (2)

In order to numerically compute these corrections, we need to determine the a priori risk pro-
files of both policyholders in TPL and in MD as well as the household’s risk profile in Home
insurance. For this matter, we bin the predicted a priori expected claim frequencies obtained with
the GAMs into three categories, using the quantiles 2/6 and 4/6: low-, medium- and high-risk
profiles. The three risk profiles are then associated with the numerical values given by the quan-
tiles 1/6, 3/6 and 5/6 (i.e. the corresponding median value of estimated expected claim frequency
of each risk class). In the following numerical examples, we will only consider the cases in which
the same a priori risk profile is shared across all the policyholders and all the guarantees. Of course,
other combinations are possible.

4.1.1. A posteriori corrections in the claim-free case
Let us first illustrate the example in which no claim was reported in any guarantee. We show in
Figure 4 the corrections to apply in Home and Motor insurance when no claim occurred as time
passes. As expected, the correction factor drops as time passes and no claim is reported. The riskier
profiles have a stronger correction, in line with the idea that claim-free years are more expected
from a safer policyholder than from a riskier policyholder. Note that the corrections are similar in
TPL and inMD, although they appear to be slightly stronger in MD. This comes from the fact that
the average claim frequency is higher inMD than in TPL, although this effect is, in these examples,

https://doi.org/10.1017/S1748499520000160 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499520000160


Annals of Actuarial Science 97

Figure 4. Corrections to apply in TPL (left), MD (middle) andHome insurance (right)whenno claimoccurred in the household.

partly compensated by the fact that the heterogeneity is greater in TPL than in MD. Also in Home
insurance, a correction factor below 90% is observed after 5 claim-free years, meaning that in
average, claim-free households (in Motor and Home insurance) with a low-risk profile have about
10% less claims in Home insurance than the claim frequency given by their a priori risk class.

4.1.2. A posteriori corrections in Motor insurance after a claim
In the following, we will first consider that a claim occurred (either in Home or in Motor insur-
ance) and discuss the corrections to apply to the guarantees in Motor insurance. The corrections
to apply in Home insurance will be considered later. Note that, even though two policyholders
are considered in the household, we can consider in these examples without loss of generalisation
that h(1) experiences the claims in Motor insurance and h(2) remains claim-free. Also, note that
for Home insurance, it is neither h(1) nor h(2) that experiences the claim, but rather the whole
household h.

In Figure 5, the corrections to apply in TPL to both policyholders are depicted. The figures
show that a claim in any guarantee will increase the correction factors in all the guarantees and
for all the policyholders from the household. We see, however, that the biggest increase is for h(1)
in TPL (i.e. the policyholder at fault in the triggered guarantee). We also note that both h(1) and
h(2) have the same corrections after a claim of h(1) in MD only. This comes from the fact that
the model assumes the same covariance between the different random effects in Motor insurance
(regardless if they are related to the same policyholder from the household). This is not the case
for the corrections after a claim triggering both TPL and MD, as the correction in TPL explicitly
combines both kind of claims: those triggering only TPL and those triggering TPL and MD (see
equation (2)).

Similarly, in Figure 6, the corrections to apply in MD to both policyholders are shown. By
comparing the corrections in TPL after a claim in TPL (Figure 5) and the corrections in MD after
a claim inMD (Figure 6), it appears that we have a stronger correction factor in TPL when a claim
is reported in TPL than in MD when a claim in MD is reported. This comes from the greater
heterogeneity in TPL (see Table 6) and the lower claim frequencies in TPL which means that a
claim is less expected in TPL than in MD. Moreover, the decrease of these correction factors is
greater in MD than in TPL, in line with the greater claim frequencies in MD than in TPL.

Furthermore, it appears that a claim triggering both guarantees at the same time has less con-
sequences on the MD a posteriori expected claim frequency than on the TPL a posteriori expected
claim frequency. One explanation is that in average the claim frequency related toMD:TPL claims,
λMD:TPL, only plays for about 28% of the total claim frequency in MD (i.e. λMD + λMD:TPL),
whereas it is about 55% of the total claim frequency in TPL (i.e. λTPL + λMD:TPL). Hence, the
correction arising from the conditional expectation of �MD:TPL is less weighted (i.e. in the convex
combination (2)) in the MD case than in the TPL case.
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Figure 5. Correction to apply to TPL insurance a priori expected claim frequencies when one claim was reported.

Figure 6. Correction to apply to MD insurance a priori expected claim frequencies when one claim was reported.
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Figure 7. Correction to apply to Home insurance a priori expected claim frequency when one claim was reported.

Finally, let us analyse the correction factors when a claim was reported in Home insurance
(Figures 5 and 6) and compare them to those when no claim was reported (Figure 4). Both in
TPL and in MD, we observe that after 1 year, there is a difference of around 10%. As time passes,
the difference shrinks to around 5% after 5 years. Consequently, we see that taking into account
the reported claims in Home insurance to compute a posteriori expected claim frequencies is
pertinent.

4.1.3. A posteriori corrections in Home insurance after a claim
We can also compute the corrections to apply to the a priori expected claim frequency in Home
insurance as a function of the number of reported claims in both Home and Motor insurance.
As before, we assume a household with two policies in Motor insurance as well as one Home
insurance. The correction to apply to Home insurance is depicted in Figure 7. Note that, on the
contrary to the Motor insurance case, only one correction applies, as the policyholder is assumed
to be the whole household in this case.

Symmetrically to the Motor insurance case, a claim in Home insurance appears to increase the
most the correction factor to apply to the a priori expected claim frequency in Home insurance.
We note, however, that in the long run, differences between lower- and higher-risk profiles appear
to be large (about 10–15%). Only a claim in Home insurance yields a correction factor larger than
1 after 5 years. Moreover, note that the correction factors arising from a claim in any guaran-
tee in Motor insurance are all equal, regardless of which guarantee was triggered. The reason of
this comes from the common covariance between the Home insurance guarantee and the three
random effects related to the three count variables in Motor insurance.
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4.2. Impact of dependence between Home and Motor insurance on corrections
Let us assess on an example in what way the dependence between Motor and Home insurance
changes the corrections to apply.

Wewill consider a household with two policyholders, each holding a policy inMotor insurance,
covering both TPL and MD. In addition, the household also holds a Home insurance policy. To
ease the presentation, we will consider a unique risk profile for each guarantee and each of the
policyholders. More specifically, we will consider the median expected a priori claim frequency
for each of the four count variables (i.e. medium-risk profile in the previous example).

In order to measure the impact of the dependence between Home and Motor insurance, we
will distinguish two cases:

1. The correlation structure of the random effects is given in Table 7;
2. The same variance–covariance matrix as above, except for the off-diagonal terms of the first

row (respectively, column), is set to 0 (i.e. independence between Home and Motor insur-
ance is assumed). The dependence in Motor insurance for policyholders from the same
household is therefore kept at there levels given in Table 7.

Six examples are considered: (i) a claim-free case (meaning that in all three policies no claim
was reported), (ii) one claim in Home insurance (during the first semester), (iii) one claim from
policyholder h(1) in Motor TPL, (iv) one claim from policyholder h(1) in Motor MD, (v) one
claim from policyholder h(1) that triggered both TPL andMD simultaneously and (vi) two claims
from policyholder h(1): one triggering TPL and the other triggering MD.

4.2.1. Impact on Home insurance
Let us first show the corrections to apply in Home insurance, by discussing the six examples
detailed above. The corrections in Motor insurance will be presented later. The corrections are
depicted in Figure 8.

In the claim-free case, we see that both Motor policies help decrease the estimate by an extra
10% compared to the independence case. In the second example, where one claim was reported
in Home insurance, the correction is above 1, but the dependence allows this correction to be
weaker at first. As time goes by, the correction decreases faster than in the independence case
thanks to the claim-free years in Motor insurance. In the next three examples, in which one claim
was reported in Motor insurance, we observe similar corrections to be applied in Home insur-
ance. We see that even though a claim was reported in Motor insurance, the correction factor in
Home insurance falls below 1 after about 2 years. Note that the difference with the first example
(i.e. no claims in any guarantee) is about 5% after 5 years when considering the dependence. So,
correcting the Home insurance a priori expected claim frequency without considering the Motor
insurance experience may yield too advantageous corrections in the considered examples. In the
last example, we note the importance of distinguishing when a single event is triggering two guar-
antees (i.e. only one claim) compared to two events each triggering a different guarantee (i.e. two
claims). Indeed, in the former case, the correction factor in Home insurance is 5–10% lower than
in the latter case. These differences also exhibit the importance of identifying whether two claim
counts are in fact related to a single event (i.e. one claim triggering both guarantees) or whether
they are unrelated and should be considered as two separate claims.

Finally, note that as could be expected, the corrections in the independence case are the same
in five of the six examples (i.e. when no claim was reported in Home insurance).

4.2.2. Impact on Motor insurance
Let us now assess the corrections to apply in Motor insurance (TPL and MD), by discussing the
same six examples as previously. Even though the modelling in Motor insurance involves three
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Figure 8. Impact of the dependence of the randomeffects related toHome andMotor insurancemeasured by the corrections
in Home insurance. Six cases are considered, whether a claim occurred or not, and if so, which guarantees were triggered by
the claim.

count variables, we can compute two correction factors, one for TPL and one for MD, using the
formulas given in (2). The corrections are shown in Figure 9 for TPL and in Figure 10 for MD.
Note that only the corrections for policyholder h(1) (who is the only policyholder among the
two policyholders in the household that experiences claims in Motor insurance) are shown. By
looking at Figure 9 (respectively, Figure 10) which displays the corrections to apply to h(1) in TPL
(respectively, MD), we note that the dependence between Home and Motor insurance does not
seem to considerably change the corrections. While the independence case considers that there
is independence between Home and Motor insurance, no independence between guarantees in
Motor insurance for different policyholders from the same household is assumed. This means
that the observed number of claims of any policyholder in Motor insurance remains relevant in
both cases displayed in Figures 9 and 10. Let us explain why the additional information related
to Home insurance does not change a lot the correction factors. Compared to the aggregated a
priori expected claim frequencies for two policies in Motor insurance (TPL and MD), the a priori
expected claim frequency in Home insurance is actually small. Actually, it is comparable to the one
of one policyholder in Motor TPL, so that it amounts to around 1/7 of the total expected claim
frequency in the household. This means that a claim-free year in Home insurance will have a little
impact on the correction factors in TPL and MD. Only when a claim occurs in Home insurance,
it appears to have an impact on the correction factors in TPL and MD. In that situation, Figures 9
and 10 show that after 5 years there is a difference of about 5% in the correction factors to apply
to TPL and MD due to the dependence with Home insurance.
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Figure 9. Impact of the dependence of the randomeffects related toHome andMotor insurancemeasured by the corrections
in Motor TPL for h(1). Six cases are considered, whether a claim occurred or not, and if so, which guarantees were triggered
by the claim.

The corrections to apply to h(2) (who does not experience any claims in any of the six cases)
exhibit a similar difference between the independence case and the dependence case.

5. Predictive performance on out-of-sample data
It is common practice nowadays to compute the predictive performance on out-of-sample data.
Indeed, by measuring the predictive power of a model on data that have not been used in the
estimation, it is possible, for instance, to detect overfitting or assess the predictive power of a
model.

Here, we only use years 1–2 and predict claim numbers of year 3. Thus, we set T = 2. The
prediction of each claim frequency given by our model is the product of two factors: the expected
a priori claim frequency from the GAM and a correction factor, the expectation of the random
effect conditional to the reported number of claims from the past, that is, for policyholder i from
household h, the expected claim frequency in year T + 1 in guarantee g ∈ G given past experience
of the whole household is given by

λ̂
g
h(i),T+1E

[
�

g
h(i)|Nh• = nh•

]
where nh• is the aggregated number of claims over the period t = 1 to t = T. Since the random
effect related to policies of the same household is correlated, any number of claim of any policy of
the household is predictive of any claim frequency.
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Figure 10. Impact of the dependence of the random effects related to Home and Motor insurance measured by the cor-
rections in Motor MD for h(1). Six cases are considered, whether a claim occurred or not, and if so, which guarantees were
triggered by the claim.

We aim to compare our model to two different models. First, we compare our multivariate
Poisson mixture to the expected claim frequencies obtained with the GAMs, that is, λ̂

g
h(i),T+1.

Also, we wish to compare our multivariate Poisson mixture to a univariate Poisson mixture. Let
us put labels on each of the three models, that is,

Model Description

Model 1 GAMs
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model 2 GAMs+ univariate a posteriori correction
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Model 3 GAMs+multivariate a posteriori correction

The univariate Poissonmixture (model 2) considers that all the random effects are independent
from each other, that is, only the number of claims of the policyholder itself in the considered
guarantee is relevant for the correction of the predicted expected a priori claim frequency. In
mathematical terms, for policyholder i from household h, the expected claim frequency in year
T + 1 in guarantee g ∈ G is given by

λ̂
g
h(i),T+1E

[
�

g
h(i)|N

g
h(i),• = ngh(i),•

]
We will consider that in the univariate case, the variances of the random effects are the same

as in the multivariate case: in the variance–covariance matrix, the original diagonal terms are kept
while all the off-diagonal terms are put to 0.
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Fivefolds have been constructed on the data to perform cross-validation. The folds have been
constructed in the following way to ensure correct balancing.

For each household, the number of policies in Motor insurance (0, 1 or 2) and in Home insur-
ance (0 or 1) is determined. Then, for each policy, the number of claims (0, 1, 2+) reported by
each policyholder in each guarantee during the two first years (2011 and 2012, i.e. t = 1, 2) is
determined. Both, the number of policies and the numbers of claims are then crossed to obtain
a categorical variable informing which policies the household has subscribed to and how many
claims have been reported in each of these policies. The newly created categorical variable is then
used to split the households into fivefolds, using stratified sampling. Stratified sampling ensures
that all the claimed policies, or all the households with a single Motor insurance policy, are not
grouped into a single fold.

Once the households have been split into the fivefolds, the cross-validation involves an estima-
tion part and a prediction part. Let us describe the process for model 3. The process is similar for
models 1 and 2.

Let us consider the first fold. In the first step, the multivariate Poissonmixture model (model 3)
is estimated on the data that consist of all the folds, except the first fold. The first fold is therefore
considered as out-of-sample, as it is not involved in the estimation process.

Next, the claim frequencies related to the household in the first fold are predicted: for each year
and for each household, the estimated expected claim frequencies are obtained using the GAMs
with the a priori available data.

Then, the observed number of claims of the two first years is used to compute the correction
factor to apply to the third year’s a priori expected claim frequencies from the household. The
predictive performance can then be evaluated on the data from the first fold and related to the
third year.

Finally, we can iterate and leave the second fold out of the estimation process and predict the
claim frequencies on the second fold. It has to be noted that the 3 years of observations have
similar claim frequencies on portfolio level.

We will use two different measures to assess the predictive power of our model. We will rely
on the Poisson deviance as well as the loss ratio lift, which, in our context, will be the ratio of the
actual number of claims to the expected number of claims. See Henckaerts et al. (2019) for more
details on these measures.

5.1. Poisson deviance
Let us first use the Poisson deviance. Indeed, one way to measure the predictive power of a model
with count data is to compute the Poisson deviance on the out-of-sample data. The Poisson
deviance has been computed on each fold on the third year’s predicted claim frequencies and
observed number of claims.

First, we computed the deviance on Home insurance, Motor TPL and Motor MD separately.
In Figure 11, on top, we see that the GAMs alone, as expected, have the worst performance in the
three cases, and the multivariate Poisson mixture outperforms the univariate Poisson mixtures.
We note, however, that in Home insurance, the difference is small between the univariate and the
multivariate credibility models. This difference is, however, the greatest in Motor TPL (which is
where the greatest heterogeneity has been found). On the bottom, the three cases are summed to
obtain the deviance of the whole portfolio over all insurance products. Using a univariate Poisson
mixture allows to take into account part of the heterogeneity and ‘improves therefore the pre-
dictability. However, the GAMs along with multivariate credibility appear to outperform both
models, on every fold, by exploiting the dependence between the latent risk factors.

Let us note that small differences in deviances for insurance type count data (i.e. low claim
frequencies) can in reality imply large differences in the predicted claim frequencies. Therefore,
we will also use a second method to assess the predictive power of our model by using the lift.
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Figure 11. Poisson deviance on out-of-sample data. Three models are considered: GAMs, GAMs corrected by a univariate
credibilitymodel and GAMs corrected by themultivariate credibilitymodel. Top: the deviance for Home insurance andMotor
TPL and MD is illustrated. Bottom: total deviance (sum of the three deviances).

5.2. Lift
Another way to compare the predictive performance is to rely on the lift. Define the relativity rgh(i)
as the ratio of the a posteriori expected claim frequency according to the competing model to that
of the benchmark model. If the model does not include any random effect (model 1), then the a
posteriori expectation reduces to λ̂

g
h(i),T+1.

Based on these relativities, it is then possible to bin policyholders into groups of similar expo-
sure. Then, on each bin, the loss ratio, that is, the ratio of the sum of the actual number of claims
observed in the bin to the sum of the expected number of claims in the bin given by the benchmark
model. A loss ratio of 1 for each group means that the benchmark model is perfectly accurate. The
loss ratios for each group can be plotted and, if an upward trend is visible, it implies that the com-
peting model outperforms the benchmark model. The intuitive idea is as follows. Since we have
sorted the relativities, from smallest to largest, if we have an upward trend, then it means that for
small relativities, the loss ratio is below 1. Consequently, since the relativity is small, the compet-
ing model is predicting less claims than the benchmark model, and the loss ratio below 1 implies
that there are less actual claims than predicted by the benchmark model. Therefore, it could be
that competing model is predicting better than the benchmark model. A similar argument holds
for larger relativities. See Henckaerts et al. (2019) for a comprehensive presentation of the lift.

Let us use the lift methodology in two different comparisons. First, we will compare model 3
(comp) with model 1 (bench). Then, we will compare model 3 (comp) with model 2 (bench). In
each comparison, we will consider the three different claim frequencies that have been covered in
this paper: claim frequencies in Home insurance, in Motor TPL and in Motor MD.

The computations are done in the third year of fold 1, when the model has been estimated on
the four remaining folds (i.e. folds 2–5). Since we are using the third year to compute the lift, we
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can use the two first years of observations to compute a posteriori corrections for the third year.
When comparing model 3 with model 1, the relativities can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rHome
h(i) = λHome

h,3 E
[
�Home

h |Nh,1−2 = nh,1−2
]

λHome
h,3

= E
[
�Home

h |Nh,1−2 = nh,1−2
]

rTPLh(i) =
λTPLh(i),3E

[
�TPL

h(i) |Nh,1−2 = nh,1−2
]
+ λMD:TPL

h(i),3 E
[
�MD:TPL

h(i) |Nh,1−2 = nh,1−2
]

λTPLh(i),3 + λMD:TPL
h(i),3

rMD
h(i) =

λMD
h(i),3E

[
�MD

h(i) |Nh,1−2 = nh,1−2
]
+ λMD:TPL

h(i),3 E
[
�MD:TPL

h(i) |Nh,1−2 = nh,1−2
]

λTPLh(i),3 + λMD:TPL
h(i),3

where nh,1−2 is a vector indicating the number of claims observed in every policy of the household
during years 1 and 2, that is, in a household h with a Home insurance policy and two Motor
insurance policies,

nh,1−2 =
2∑

t=1

(
nHome
h,t , nTPLh(1),t, n

MD
h(1),t, n

MD:TPL
h(1),t , nTPLh(2),t, n

MD
h(2),t, n

MD:TPL
h(2),t

)
′

while when comparing model 3 with model 2, the relativities are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rHome
h(i) = λHome

h,3 E
[
�Home

h |Nh = nh
]

λHome
h,3 E

[
�Home

h |NHome
h = nHome

h
]

rTPLh(i) =
λTPLh(i),3E

[
�TPL

h(i) |Nh = nh
]
+ λMD:TPL

h(i),3 E
[
�MD:TPL

h(i) |Nh = nh
]

λTPLh(i),3E
[
�TPL

h(i) |NTPL
h,• = nTPLh

]
+ λMD:TPL

h(i),3 E
[
�MD:TPL

h(i) |NMD:TPL
h,• = nMD:TPL

h

]

rMD
h(i) =

λMD
h(i),3E

[
�MD

h(i) |Nh = nh
]
+ λMD:TPL

h(i),3 E
[
�MD:TPL

h(i) |Nh = nh
]

λMD
h(i),3E

[
�MD

h(i) |NMD
h,• = nMD

h

]
+ λMD:TPL

h(i),3 E
[
�MD:TPL

h(i) |NMD:TPL
h,• = nMD:TPL

h

]
The policies are then sorted based on their relativity and are binned into 25 risk classes of equal

(or almost equal) exposures. On each of these risk classes, the aforementioned loss ratio can be
computed, comparing for each risk class the actual number of reported claims with the expected
number of reported claims (given by the benchmark model).

The resulting loss ratios are illustrated in Figure 12 in blue. We have used a local polynomial
regression to compute the smooth curves. We also computed in dark orange the loss ratios with
the competing model (i.e. the multivariate credibility model) in the denominator.

First, let us comment on the plots on the left, which compare our multivariate credibility model
(model 3) to the GAMs (model 1). The blue curves suggest an increasing trend, in particular,
in the higher risk classes. The higher risk classes imply that the multivariate credibility model
yields higher claim frequencies than the GAMs, whereas the high loss ratio observed on this
risk classes suggests that the GAMs underestimate clearly the claim frequencies. As explained
above, if the blue line is not close to 1, then the benchmark model is not perfectly accurate.
Moreover, if an uprising trend is visible, then, in fact, the competing model is outperforming the
benchmark model. Therefore, one can say that the multivariate credibility model will at least less
underestimate the expected claim frequencies, but could in fact overestimate the expected claim
frequencies. This is the reason why we also plotted the orange curve which computes the loss
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Figure 12. Lift on out-of-sample data. Two comparisons are considered. Left: multivariate credibility is compared to the
predictions of the GAMs. Right: multivariate credibility is compared to the predictions of univariate credibility.

ratio between the actual and the expected number of claims (given by the multivariate credibility
model). As can be seen, for instance, on the plot on top left, the orange curve is much closer to the
horizontal line at level 1. Being close to this red line suggests that the expected number of claims
are closer to the actual number of claims (i.e. the model is predicting better on this risk class). It
has to be noted that for the orange curve, only the closeness to the horizontal line at level 1 has to
be seen (since we are not comparing the predictions with respect to another model). As such, we
see that for the three plots on the left, the orange curve is, for most risk classes, closer to the red
line than the blue curve is (i.e. the multivariate credibility model outperforms the GAMs on these
risk classes). This is especially true for the higher risk classes, where our multivariate credibility
model was able to account for the higher latent risk factors.

Let us now compare the multivariate credibility model (model 3) with the univariate credibil-
ity model (model 2). In TPL and MD, the blue lines again suggest an increasing trend, especially
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for the second half of the risk classes. For Home insurance, this upward trend is not as visible.
However, when looking at the orange curve, we can see that again, for many classes, the multi-
variate credibility model is close to predicting the actual number of claims on each risk class (i.e.
close to 1). We note that again, there is a big discrepancy in this last risk classes (i.e. the riskiest
classes). Indeed, compared to the univariate credibility model, the multivariate credibility is able
to better identify the riskiest households by using information related to other products and other
policyholders from the household.

6. An alternative to the two-step estimation
6.1. Description of the algorithm
In this paper, model fit is based on a two-step approach. First, the expected a priori claim frequen-
cies are estimated with GAMs using the a priori available information. The expected a priori claim
frequencies are then fixed and random effects are introduced. In the second step, the variance–
covariance matrix of these random effects is estimated. Therefore, one could say that a limitation
of our approach is that parameters in the GAMs could depend on the variance–covariance matrix
and could therefore have different estimates, would we have estimated both the parameters of the
GAMs and the variance–covariance matrix at the same time.

In this section, we aim to conduct an experiment and show how we can actually cycle both
steps. We can summarise the cycling of the two-part approach in the following ways:

1. We compute the conditional expectation of the random effects in the current model. If this
is the first time we iterate, these conditional expectations are fixed at 1.

2. The GAMs are estimated, with the conditional expectations found in step 1 put in the offset.
3. The variance–covariance matrix of the random effects is estimated by using the estimated

expected a priori claim frequencies from the previous step.
4. Repeat steps 1–3, until convergence is achieved.

The algorithm described resembles to what is known as an ECM algorithm (see Meng & Rubin
1993). Indeed, the E-step corresponds in our situation to conditional expectation computed in
step 1. Then, the conditional maximisation step corresponds to both steps 2 and 3. One key dif-
ference, however, relates to the fact that at both M-steps (steps 2 and 3 in the described algorithm
above), two different objective functions aremaximised, whileMeng&Rubin (1993)maximise the
same objective function at the different M-steps. Indeed, at step 2, the Poisson log-likelihood is
maximised, whereas at step 3, the log-likelihood of the multivariate Poissonmixture is maximised.

We stress out that, since this algorithm cannot be considered as an ECM algorithm, further
research is necessary to assess its validity. Therefore, this section, along with the practical appli-
cation of the algorithm that follows, should only be considered as a preliminary experiment and
further research could be devoted to this issue.

6.2. Practical application of the algorithm
This algorithm has been implemented on the model presented in this paper. The steps have
been repeated five times. We wish now to illustrate the coefficients of the discrete variables in
Tables 8–11. The parameters do appear to change a bit after the first iteration and seem to con-
verge rapidly. Note that, for confidentiality reasons, we are not allowed to show the intercept. We
can, however, state that the absolute change in the intercept between the first and last iterations
was as follows: 0.003 in TPL, −0.018 in MD, −0.024 in MD:TPL and −0.007 in Home insurance.

For the continuous variables, we show, in Figure 13, the estimated effects at iterations 1 and 5
on the log scale. We see that the differences remain small (below 1% in most cases).
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Table 8. Estimate of discrete parameters in TPL at each iteration of the cycling algorithm.

Iteration New car Prof. usage Litigation 2 Litigation 4 Female

1 −0.146 0.316 0.365 0.887 0.051
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −0.153 0.316 0.362 0.890 0.050
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −0.153 0.316 0.362 0.890 0.050
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 −0.153 0.316 0.362 0.890 0.050
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 −0.153 0.316 0.362 0.890 0.050

Table 9. Estimate of discrete parameters in MD at each iteration of the cycling algorithm.

Iteration New car Prof. usage Litigation 2 Litigation 4 Female

1 0.468 0.082 0.207 0.330 0.065
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.457 0.082 0.206 0.323 0.061
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.456 0.082 0.206 0.322 0.061
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.456 0.082 0.206 0.322 0.061
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.456 0.082 0.206 0.322 0.061

Table 10. Estimate of discrete parameters in MD:TPL at each iteration of the cycling algo-
rithm.

Iteration New car Prof. usage Litigations 2–4 Female Power high

1 0.144 0.142 0.295 0.112 0.211
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.137 0.141 0.293 0.111 0.199
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.137 0.141 0.293 0.111 0.198
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.137 0.141 0.293 0.111 0.198
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.137 0.141 0.293 0.111 0.198

Table 11. Estimate of discrete parameters in Home insurance at each iteration of the cycling
algorithm.

Iteration Tenant Apartment Contiguity Tenant:Appartment

1 −1.740 0.062 0.191 −0.181
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 −1.742 0.060 0.192 −0.179
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 −1.742 0.060 0.192 −0.179
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 −1.742 0.060 0.192 −0.179
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 −1.742 0.060 0.192 −0.179

Finally, for the geographic effect, Figures 14 and 15 compare the estimated effects at iterations
1 and 5.

We also comment on the parameters involved in the variance–covariancematrix. The estimates
at the different steps are given in Table 12. We note that, similarly to the parameters of the GAMs,
the changes occur mainly at the first iteration steps, and convergence is rapid.

To sum up, cycling the different steps produces estimates that rapidly stabilise, with only
limited changes between first and last iterations.

7. Discussion
In this paper, we have presented a model that allows the actuary to account for the depen-
dence between two different products which can have multiple guarantees as well as multiple
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Figure 13. Effect on score at the first iteration and the last iteration (= 5) for the univariate continuous variables.

policyholders from the same household. The model captures the dependencies that exist between
unobserved risk factors that influence the claim frequencies. Home insurance is subscribed by one
specific policyholder, but in reality, the whole household is covered by the policy. In Motor insur-
ance, each policy relates to a single car and policyholder. The proposed model takes into account
these specificities by the introduction of a hierarchical dependence structure of the random effects
which model the unobserved risk factors. On top of easing the parametrisation, the hierarchical
structure brings some additional interpretability, at the cost of forcing a positive correlation.

The results show that there is a dependence between Home and Motor insurance.
Consequently, any claim from any guarantee is relevant to refine the predictions on the claim
frequencies on both considered products. The hierarchical structure hints towards the fact that
part of the unobserved risk factors are common to the whole household, whereas some are more
specific to the product (i.e. Home or Motor insurance), and others are specific to the different
guarantees in Motor insurance. The results shown in the applications stress out the benefits for
the insurer to have customers who own multiple policies over different lines of business, as it
improves its understanding about the customer’s risk profile.
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Figure 14. Effect on score of the geographic effects estimated at the first iteration and the last iteration (= 5) in Motor
insurance.
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Figure 15. Effect on score of the geographic effect estimated at the first iteration and the last iteration (= 5) in Home
insurance.

Table 12. Estimate of the parameters defining the variance–covariance matrix at each iteration of
the cycling algorithm.

Iteration ς̂2Household ς̂2Home ς̂2Motor ς̂2TPL ς̂2MD ς̂2MD:TPL

1 0.1238 0.1872 0.1141 0.3213 0.1272 0.1336
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.1245 0.1870 0.1139 0.3229 0.1277 0.1348
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.1243 0.1872 0.1146 0.3217 0.1275 0.1340
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.1243 0.1872 0.1146 0.3217 0.1275 0.1340
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.1243 0.1872 0.1146 0.3217 0.1275 0.1340

We need to stress out that one limitation of this paper is that the models only rely on claim
frequencies and do not consider the cost of claims. If costs of claims were to be considered, then
some specificities would need to be taken into account. For instance, in Motor insurance, two dif-
ferent types of claims should be distinguished (bodily damage andMD), due to the fact that bodily
damages are in general way more costly. By considering only the claim frequencies, the models are
therefore greatly simplified. Replacing the Poisson distribution with the Tweedie model appears
to be a promising way to include costs in the analysis.

The out-of-sample analysis indicated that the multivariate credibility model improves the
prediction compared to a univariate mixture. The Poisson deviances suggest that our model out-
performs both the univariate Poissonmixture as well as the GAMs. However, the Poisson deviance
did not allow us to identify for which risk classes our model is particularly better in terms of pre-
dictive power. The analysis with the lift allowed us to identify these and showed that our model is
better at identifying the riskiest policyholders (i.e. the policyholders having many claims across all
their policies).

Finally, an experiment was conducted by proposing an algorithm that cycles the estimation of
the GAMs and of the variance–covariance matrix. The algorithm showed a rapid convergence,
while the parameters of the GAMs remained, for the most, close to a 1% deviation to those
obtained using the two-part approach. Further work is, however, necessary to assess the validity
of the method from a theoretical point of view.
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