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While flow-induced vibration of bluff bodies has been extensively studied over the
last half-century, only limited attention has been given to flow-induced vibration of
elastically mounted rotating cylinders. Since recent low-Reynolds-number numerical
work suggests that rotation can enhance or suppress the natural oscillatory response,
the former could find applications in energy harvesting and the latter in vibration
control. The present experimental investigation characterises the dynamic response
and wake structure of a rotating circular cylinder undergoing vortex-induced vibration
at a low mass ratio (m∗ = 5.78) over the reduced velocity range leading to strong
oscillations. The experiments were conducted in a free-surface water channel with the
cylinder vertically mounted and attached to a motor that provided constant rotation.
Springs and an air-bearing system allow the cylinder to undertake low-damped
transverse oscillations. Under cylinder rotation, the normalised frequency response was
found to be comparable to that of a freely vibrating non-rotating cylinder. At reduced
velocities consistent with the upper branch of a non-rotating transversely oscillating
cylinder, the maximum oscillation amplitude increased with non-dimensional rotation
rate up to α ≈ 2. Beyond this, there was a sharp decrease in amplitude. Notably,
this critical value corresponds approximately to the rotation rate at which vortex
shedding ceases for a non-oscillating rotating cylinder. Remarkably, at α = 2 there
was approximately an 80 % increase in the peak amplitude response compared to
that of a non-rotating cylinder. The observed amplitude response measured over
the Reynolds-number range of (1100 . Re . 6300) is significantly different from
numerical predictions and other experimental results recorded at significantly lower
Reynolds numbers.

Key words: flow–structure interactions, vortex streets, wakes

1. Introduction
Flow-induced vibration (FIV) of elastically mounted bluff bodies is observed in

applications as diverse as the oscillation of a flagpole in the wind, the vibration of

† Email address for correspondence: jisheng.zhao@monash.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-5769-4507
mailto:jisheng.zhao@monash.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.540&domain=pdf
https://doi.org/10.1017/jfm.2017.540


Flow-induced vibration of a rotating circular cylinder 487

cooling arrays in nuclear power generators and offshore oil risers. These vibrations can
decrease the life of engineering structures and even cause catastrophic failures. Design
methods used to avert such effects require a means of predicting their occurrence and
characteristics. This has motivated numerous investigations that aim to characterise the
fluid–structure system and provide a good understanding of the mechanisms. Surveys
of the field are covered in reviews by Griffin, Skop & Koopmann (1973), Bearman
(1984), Blevins (1990), Carberry, Sheridan & Rockwell (2001), Sarpkaya (2004),
Williamson & Govardhan (2004), Naudascher & Rockwell (2005) and Païdoussis,
Price & De Langre (2010), amongst others. FIV, on the other hand, could also find
applications in energy harvesting and vibration control. Comprehensive reviews on
this topic are given by Xiao & Zhu (2014) and Young, Lai & Platzer (2014).

There are two body oscillator phenomena typical of FIV: vortex-induced vibration
(VIV) and transverse galloping (see Naudascher & Rockwell 2005). VIV is caused
by vortex shedding in the wake of a body that then causes structural vibration due
to the spatially oscillating pressure field associated with the shed vortices. Since the
pioneering study by Feng (1968), VIV has been extensively investigated using the
canonical model of an elastically mounted rigid circular cylinder that is free or forced
to oscillate transversely in a free stream (Bishop & Hassan 1964; Bearman 1984,
2011; Williamson & Roshko 1988; Govardhan & Williamson 2000; Carberry et al.
2001; Morse & Williamson 2009; Zhao et al. 2014a).

While the axial symmetry of a circular cross-section enables VIV to be studied
independently from other forms of FIV (i.e. galloping), it should be noted that VIV
can still occur under certain conditions (e.g. mass and damping ratios) and dominate
over a range of reduced velocity when the axial symmetry is broken, as demonstrated
by Corless & Parkinson (1988), Nemes et al. (2012) and Zhao et al. (2014b). In such
cases, however, the body may also be subjected to transverse galloping. Galloping
is categorised as movement-induced excitation (MIE) by Naudascher & Rockwell
(2005). It commonly occurs when the cylindrical body is not axisymmetric, making
it aerodynamically unstable to transverse oscillations (Blevins 1990; Naudascher
& Rockwell 2005; Païdoussis et al. 2010). Generally, galloping is characterised by
oscillations with amplitudes increasing monotonically with flow speed and frequencies
much lower than that of vortex shedding (Bearman et al. 1987); for instance, iced
electrical transmission cables were observed to oscillate with low frequencies and
amplitudes of the order of 100 diameters in winds (see Den Hartog 1932). The
galloping response is attributable to the asymmetric pressure distribution over the
body that is created by the changing instantaneous angle of attack between the flow
and the body. VIV and galloping need not occur mutually exclusively; their occurrence
depends on the flow and structural properties. In fact, the two FIV phenomena may
occur in the same flow regimes, as shown in Corless & Parkinson (1988), Nemes
et al. (2012) and Zhao et al. (2014b). Nemes et al. (2012) and Zhao et al. (2014b)
have shown that large amplitude response regions can result from the interaction
between VIV and galloping.

The present study introduces asymmetry into the system via actuating the body
through the application of forced rotation to an elastically mounted circular cylinder.
Similar mechanical configurations could have practical applications in offshore
engineering, where long slender rotating shafts are exposed to varying flow in
an ocean current. Understanding the behaviour of a rotating cylinder undergoing
VIV may enable behavioural prediction of similar mechanical systems, and could
contribute to energy harvesting applications and FIV control, given the possibility of
enhancing or suppressing the vibrations.
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Rigidly mounted (non-oscillating) circular cylinders undergoing forced rotation in
a cross-flow have also been the subject of studies and reviews over the past century
(e.g. Tietjens & Prandtl 1957; Swanson 1961; Coutanceau & Ménard 1985; Mittal &
Kumar 2003; Rao et al. 2013), due to the potential for wake manipulation. Different
wake regimes have been identified in these previous studies that are found to depend
on the non-dimensional rotation rate of the cylinder, defined as the ratio between
the cylinder surface (|Ω|) and free-stream (U) velocities, namely α = |Ω|D/(2U),
where D is the diameter of the cylinder. Asymmetric vortex shedding occurs in the
wake for 0 < α . 2; and many experimental and numerical works have shown this
alternating vortex shedding over a wide range of Reynolds number (e.g. Coutanceau
& Ménard 1985; Badr et al. 1990; Kang, Choi & Lee 1999; He et al. 2000; Stojković,
Breuer & Durst 2002; Mittal & Kumar 2003; Rao et al. 2013). Over a small range
of α> 4 there is a secondary region of wake unsteadiness, comprising low-frequency
one-sided vortices, as shown by Mittal & Kumar (2003), Stojković et al. (2003) and
Pralits, Brandt & Giannetti (2010). Numerical simulations have shown that the critical
Reynolds number of the secondary instability associated with the spanwise undulation
of the von Kármán vortices increases with Reynolds number (El Akoury et al. 2008;
Rao et al. 2015). Depending on α and Re, there exist a number of steady and unsteady
wake modes (Pralits, Giannetti & Brandt 2013; Rao et al. 2013, 2015).

Bourguet & Lo Jacono (2014, hereafter BL14) appear to have been the first
to conduct a low-Re numerical study of an elastically mounted circular cylinder
undergoing forced rotation. This study was undertaken at Re= 100 over a parameter
space spanning the reduced velocity range 4 6 U∗ 6 34 and the rotation rate range
0 6 α 6 4. Here, the reduced velocity is defined by U∗ = U/(fnwD), with U the
free-stream velocity, fnw the natural frequency of the system in quiescent water and D
the cylinder diameter. They found that the time-averaged displacement of the cylinder
tended to increase with α, as did the time-averaged transverse lift-force coefficient.
Non-negligible oscillations (i.e. A∗ ≡ A/D > 0.05, with A the oscillation amplitude)
occurred in both the unstable (α < 1.8) and stable (1.8 6 α 6 3.75) flow regimes,
based on whether the wake of a non-oscillating rotating cylinder had an unsteady or
steady wake. For α 6 3.75, the peak amplitude response was found to increase with
α, and the largest peak amplitude was observed to be 1.9D at (α, U∗) = (3.75, 13),
three times the peak response of the non-rotating case. Also, they found that large
oscillations of the rotating cases were associated with wake–body synchronisations,
similar to the lock-in of a non-rotating cylinder. In addition, BL14 examined the
wake patterns associated with the effects of cylinder rotation. They observed wake
patterns (i.e. 2S, P + S) that have commonly been reported in previous VIV studies
of a non-rotating cylinder (e.g. Williamson & Roshko 1988; Blackburn & Henderson
1999; Mittal & Kumar 2003; Jauvtis & Williamson 2004; Dahl et al. 2007). However,
they also identified a novel T+S wake pattern composed of a triplet of vortices and
a single vortex shed per oscillation cycle, which was attributable to the largest
amplitude response.

Zhao, Cheng & Lu (2014c) numerically studied both one- and two-degree-of-
freedom (1- and 2-DOF) systems with imposed cylinder rotation, again at low
Reynolds numbers. At a constant α, they observed hysteretic regions in the amplitude
response. These regions were similar to those of a non-rotating circular cylinder
undergoing VIV when monotonically increasing and then decreasing U∗. The 2-DOF
studies showed significant differences in vibration response between a non-rotating
cylinder and cylinders rotating at α = 0.5 and 1.0.

More recently, Seyed-Aghazadeh & Modarres-Sadeghi (2015, hereafter SM15)
experimentally studied VIV of a rotating cylinder at relatively low Reynolds numbers
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FIGURE 1. Definition sketch for the transverse FIV of a rotating cylinder. The hydroelastic
system is simplified as a 1-DOF system constrained to move in the cross-flow direction.
The axis of rotation is transverse to both the flow direction (x-axis) and the oscillation
axis (y-axis). Here, U is the free-stream velocity, k the spring constant, D the cylinder
diameter, m the oscillating mass, c the structural damping and Ω the angular velocity.

(Re = 350–1000). Results were presented showing the vibration response and
corresponding flow visualisations in the wake. Of interest, the amplitude response
was found to increase only marginally with rotation rate over that of a non-rotating
cylinder undergoing VIV, from A∗ ' 0.5 to A∗ ' 0.6 at α ' 2.4, and dropping away
after this. This result, showing only a minimal effect of rotation, is distinctly different
from the previous numerical studies of BL14 and Zhao et al. (2014c).

In summary, previous parameter space studies have investigated the vibration
responses and wake modes for both the 1-DOF and 2-DOF oscillation cases, but
only at relatively low Reynolds number. Some of these studies appear to be at least
superficially contradictory, in terms of amplitude response with rotation rate, peak
response and the reduced velocity ranges for significant vibration response. The
present work is an attempt to study this problem over a higher-Reynolds-number
range, where the VIV response is likely to be less sensitive to Reynolds-number
variations. Thus, the findings are likely to be more applicable to typical physical
and/or industrial applications, where Reynolds numbers are generally higher. This
investigation also aims to study the vibration response and wake structure over a
wider range of parameter space (U∗, Re and α) than previous experimental work.

The remainder of the paper is structured as follows. The experimental methodology,
including the fluid–structure system modelling, experimental details and a validation
study, is presented in § 2. The results are presented in § 3, followed by discussion in
§ 3.4. Finally, conclusions are drawn in § 4.

2. Experimental methodology
2.1. Fluid–structure system modelling

A schematic of the fluid–structure system is presented in figure 1. The elastically
mounted cylinder is free to oscillate in only one direction transverse to the oncoming
free stream. The governing equation of motion can be written as

mÿ+ cẏ+ ky= Fy, (2.1)

where Fy represents the fluid force in the transverse direction, m is the total oscillating
mass of the system, c is the structural damping of the system, k is the spring constant
and y is the displacement in the transverse direction.
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FIGURE 2. (Colour online) Schematic of the experiment (not scaled): A, low-friction
air-bearing system; B, cylinder rotation device with built-in motor and optical rotary
encoder; C, 30 mm test cylinder with transparent laser window; D, 532 nm laser sheet;
E, transparent end plate; F, transparent test section window; G, camera; H, 532 nm laser;
I, cylindrical lens; J, carbon shaft; K, linear voltage differential transformer (LVDT); L,
stainless-steel springs; M, support carriage; N, air-bearing bushing.

In the present experiments, the hydroelastic system was modelled based on a
low-friction air bearing system in conjunction with the recirculating free-surface
water channel of the Fluids Laboratory for Aeronautical and Industrial Research
(FLAIR), Monash University. The test section of the water channel has dimensions
of 600 mm in width, 800 mm in depth and 4000 mm in length. The free-stream
velocity in the present experiments could be varied continuously over the range
0.05 6 U 6 0.45 m s−1. The free-stream turbulence level was less than 1 %. Figure 2
shows a schematic of the experimental set-up, while figure 3 shows an actual
photograph of the experimental rig to clarify details. The air-bearing system positioned
above the water channel provided low structural damping and constrained the body
motion to the cross-flow (transverse) direction. Structural stiffness of the oscillating
system was controlled by stainless-steel extension springs attached to both sides of
the support carriage and the base of the air-bearing system. More details of this
hydroelastic system can be found in Nemes et al. (2012) and Zhao et al. (2014a,b).

The cylinder model used was precision-machined from aluminium tubing and had
a diameter of D = 30 ± 0.01 mm. The immersed length of the cylinder was L =
614 mm, giving an aspect ratio of L/D' 20.5. To reduce end effects of the cylinder
and to promote parallel vortex shedding, a conditioning platform was placed under
the cylinder, and the gap between the cylinder end and the platform surface was set
to approximately 1 mm (0.03D) (see Khalak & Williamson 1997, 1999; Zhao et al.
2014a,b).

The cylinder rotation rate is defined as the ratio of the cylinder surface speed to
the free-stream velocity, namely α = |Ω|D/(2U). The rotation speed of the cylinder
was controlled using a motion control system manufactured by Parker Hannifin (USA)
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FIGURE 3. (Colour online) A photograph showing the experimental rig used in the present
study.

consisting of a controller (model 6K2), a motor drive (model E-DC) and a miniature
low-voltage micro-stepping motor (model LV172) with a resolution of 25 000 steps
per revolution.

The total oscillating mass, including the cylinder model, motor assembly and
moving components of the air-bearing system, was m = 2503.6 g and the displaced
mass of the fluid was md = 433.1 g, resulting in a mass ratio of m∗ = m/md = 5.78.
The natural frequencies of the system and the structural damping in both air and water
were determined by conducting free-decay tests individually in air and in quiescent
water. The natural frequency in quiescent water was found to be fnw= 0.671 Hz. The
structural damping ratio in air was ζair ' c/(2

√
km)= 4.1× 10−3.

The cylinder flexed slightly under large body oscillations, which resulted in a
minor deviation between the cross-sectional centroid position of the cylinder at the
top, where there was minimal cylinder flexing, and the centroid position of the
cylinder at the bottom, where transverse deflection due to flexing was largest. This
was quantified by measuring the difference in the centroid positions at the top and
bottom using a linear variable differential transformer (LVDT) and a high-speed
camera (see § 2.2 for further details), respectively. In the worst case (U∗ = 6.0) the
deviation was measured as ∼0.1D, while the peak-to-peak oscillation measured 2.8D,
i.e. approximately 3.5 %. Alternatively, this represented a deflection of the cylinder
over its length of less than 0.3◦.

2.2. Data acquisition and processing methods
The data acquisition and the control of the free-stream velocity and motor rotation
speed over the U∗–α parameter space were automated using customised LabVIEW
(National Instruments, USA) programs. The reduced velocity was varied over the
range 2.5 6 U∗ 6 14 in increments between 0.25 and 1 (depending on structural
response regimes). The corresponding Reynolds-number range was 1132 6 Re 6 6313.
Note that the Reynolds number is defined by Re= UD/ν, where ν is the kinematic
viscosity of the fluid. Fluctuations in the kinematic viscosity with temperature were
considered minimal, with temperature fluctuations of less than ±0.5 ◦C while the
experiments were undertaken. The cylinder rotation rate was varied over the range
0 6 α 6 4.2 in increments of 0.05.
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The body displacement was measured using a non-contact (magnetostrictive) LVDT.
The accuracy of the LVDT was within ±0.01 % of the 250 mm range available (see
Zhao et al. 2014a,b). The rotation speed was measured using a digital optical rotary
encoder (model E5-1000, US Digital, USA) with a resolution of 4000 counts per
revolution. The sampling frequency for all measurements was set to 100 Hz. For each
point in the U∗–α parameter space, the structural response was measured for at least
300 s, which amounted to more than 300 oscillation cycles. Sufficient transition time
(180 s) was allowed between changing either α or U∗ to enable the VIV response
to fully develop before recording the signal sequences. To remove high-frequency
electrical noise, a low-pass Butterworth filter of order 4 with a cut-off frequency of
2 Hz was applied to all analogue signals prior to further processing. Fast Fourier
transforms (FFTs) were used to extract body oscillation frequencies from the LVDT
signals.

The particle image velocimetry (PIV) technique was employed to capture flow
structures in the near wake of the cylinder. The flow was seeded with hollow
microspheres (Sphericel 110P8, Potters Industries Inc.) having a normal diameter
of 13 µm and a specific weight of 1.1 g m−3. The particles were illuminated by a
2 mm thick horizontal planar laser sheet from two miniature Ng:YAG pulse lasers
(Continuum Minilite II, USA), while imaging was performed using a high-speed
camera (Dimax S4, PCO AG, Germany) with a resolution of 2016 pixel × 2016 pixel.
The camera was equipped with a 50 mm lens (Nikon Corporation, Japan), giving a
magnification of 9.71 pixel mm−1 for the field of view of interest. The PIV image
pairs were captured at 14 Hz using a TTL pulse generator. For each PIV imaging
location in the U∗–α space, 3140 image pairs were recorded for quantitative analysis.
The imaging data were processed using validated in-house PIV software developed
by Fouras, Lo Jacono & Hourigan (2008). More details of the method used for
identifying the wake structures are further provided in § 3.2.

2.3. Validation
The vibration response of a non-rotating circular cylinder undergoing VIV is compared
against previous work by Khalak & Williamson (1997, 1999) and Zhao et al. (2014b)
in figure 4. Figure 4(a) presents the amplitude response as a function of reduced
velocity and shows the current experimental configuration produces non-rotating VIV
results in good agreement with previous VIV studies. Here, it is important to note
the effect of the mass ratio, which is necessarily higher here than for some of the
comparison studies because of the added weight arising from the motor assembly. At
the lowest m∗ achievable, of m∗= 5.78, the typical VIV amplitude response branches
of a non-rotating cylinder are seen. The initial branch exists for U∗ < 4.8. At m∗ =
5.78, the upper branch covers the range U∗= 4.8–6.4; the lower response branch lies
within the range 6.4 6 U∗ 6 9.5; and the desynchronised region occurs for U∗ > 9.5.
Previous studies by Khalak & Williamson (1997) and Zhao et al. (2014b) at m∗= 2.4
showed a peak amplitude response of A∗ ≈ 0.95. The mean of the highest 10 % of
peak amplitude response (A∗10) of the current system is A∗10 = 0.82. This agrees with
previous studies on the effects of mass and damping. As the mass and damping ratios
are increased, the magnitude of the amplitude response decreases and the range of
U∗ over which the system self-excites reduces (Feng 1968). A hysteretic transition
between the initial and upper branch occurs at U∗ ≈ 4.8 and is accompanied by a
jump in A∗10 from 0.25 to 0.79. The transition from the upper to lower branch causes
a reduction in A∗10 from 0.78 to 0.55, and the desynchronisation of the system at
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FIGURE 4. (Colour online) Vibration response of a non-rotating circular cylinder
undergoing VIV. (a) The normalised amplitude response (A∗) as a function of reduced
velocity (U∗): u, the mean of the highest 10 % of oscillation amplitude in the present
study with m∗ = 5.78 and ζ = 0.0041; @, results from Zhao et al. (2014b) with m∗ =
2.4 and ζ = 0.00243; A, results from Khalak & Williamson (1997) with m∗ = 2.4 and
ζ = 0.0045;C, results from Khalak & Williamson (1999) with m∗= 10.3 and ζ = 0.00165.
The vertical dashed lines represent the boundaries of branches for the present study. (b) A
PSD contour map of A∗ as a function of f ∗ and U∗. Essentially normalised power spectra
are assembled together horizontally to construct this map. Note that the PSD is normalised
by the peak value at each U∗.

U∗≈ 9.5 is accompanied by a drop in A∗10 from 0.54 to ∼0.07. This comparison with
results from previous literature shows that the current air-bearing system reproduces
an amplitude response consistent with previous careful studies.

Figure 4(b) presents a power spectral density (PSD) contour plot of the normalised
cylinder displacement as a function of the normalised frequency response f ∗ and
reduced velocity U∗. This consists of individual vertically aligned greyscale-coded
power spectra for each U∗ stacked together horizontally to show the frequency
response of the system, with darker regions representing frequencies of higher power.
The narrowness or broadness of the spectral peaks is also clear from the colour
gradation. The variation of the shedding frequency ratio (fsh/f ) with U∗ is plotted as
a dot-dashed line in figure 4(b) to highlight U∗ regions where f ≈ fsh. To highlight
U∗ ranges where f locks to fnw (i.e. f ≈ fnw), the f ∗ = 1 curve is shown as a dotted
line in figure 4(b). The body’s frequency response ( f ) follows the shedding frequency
( f ≈ fsh) until the end of the initial amplitude response branch, where it begins to bend
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towards fnw and subsequently lock in to it ( f ≈ fnw). The frequency response remains
synchronised throughout the upper and lower amplitude response branches until the
desynchronised region is reached. At that point, the body frequency response deviates
from fnw, returning to follow fsh, although there is still a broad spectral peak close to
the natural shedding frequency. For the current experiment, the mean Strouhal number,
defined by St = fshD/U, was measured as St ≈ 0.215 for the Re range investigated;
this agrees with the known St value in the same Re range.

3. Results
The vibration response and time-averaged position of the cylinder are presented in

§ 3.1, and the wake modes and structure are explored in § 3.2. A specific section is
devoted to the wake state in the upper branch where intermittent behaviour is observed
to occur (§ 3.3), prior to a short discussion comparing current results with those from
previous related studies in the following section (§ 3.4).

3.1. Vibration response
The time-averaged displacement of the cylinder from its non-rotating neutral position
(ȳ) is discussed first, followed by the observed vibration response, i.e. the oscillation
amplitude and frequency response, as U∗ and α are varied. The oscillations observed
in the current study are typically broadly periodic although there is some variation of
the waveform from cycle to cycle. When a cylindrical body is rotated about its axis
in a fluid flow, an asymmetric pressure distribution is generated. This uneven pressure
distribution is the result of fluid being accelerated by the body rotation on the leeward
side, and decelerated with flow separation from the body on the windward side. This
is generally known as the Magnus effect, and it has been extensively studied over
the past century (e.g. Tietjens & Prandtl 1957; Coutanceau & Ménard 1985; Badr
et al. 1990; Kang et al. 1999; He et al. 2000; Stojković et al. 2002; Mittal & Kumar
2003; Rao et al. 2013). A net transverse force is generated by the asymmetric pressure
distribution. The magnitude of the force increases with α; therefore, it is expected that,
at any U∗, an increase in α will result in an increase in the magnitude of ȳ. Figure 5
presents ȳ as a function of U∗ at varying α. This shows that ȳ increases in magnitude
with α as expected due to the increase in the mean cross-flow force. This general
behaviour agrees with rotating VIV results from low-Reynolds-number (Re = 100)
simulations of BL14, although the current experimental offsets are generally larger
than the numerical ones. In figure 5, the Re= 100 numerical predictions for α = 2.0
(dashed) and α= 4.0 (solid) are overlaid for comparison. The measured experimental
variation of SM15 for α = 2.0 is also overlaid (dot-dashed line). This is closer to
the Re= 100 numerical result than the present variation, perhaps consistent with the
lower-Reynolds-number range (Re= 350–1000) of that study.

The oscillatory component of the motion of the cylinder is characterised in figures 6
and 7. Figure 6 shows how the vibration response varies as a function of U∗. The
means of the highest 10 % of normalised amplitude response peaks (A∗10) about their
time-averaged positions (ȳ) are presented as a function of U∗ and α in figure 6(a).
The amplitude response for a number of different cases (α= 0, 1.0, 2.0 and 3.0) are
highlighted by dashed lines to help clarify the overall behaviour with rotation rate.
Large amplitude oscillations are observed over a broad range of U∗ and α. The peak
amplitude first increases as the rotation rate is increased from α=0, while beyond α=
2 there is a decrease in the peak response. Overall, the amplitude response is similar
to the non-rotating VIV case for α 6 2.0. While distorted by the effects of rotation,
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FIGURE 5. The time-averaged displacement of the cylinder (ȳ) as a function of reduced
velocity (U∗) at different rotation rates (α). Numerical predictions BL14 for Re= 100 at
α = 2.0 and 4.0 are shown by the dot-dashed lines. The dotted line shows experimental
results of SM15 at Re= 350–1000, α = 2.0 for comparison.
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FIGURE 6. The vibration response of an elastically mounted circular cylinder undergoing
constant rotation as a function of reduced velocity (U∗) at different rotation rates (α).
(a) The normalised amplitude response (A∗10). (b) The normalised frequency response (f ∗).
Approximate fits to cases α= 0, 1.0, 2.0 and 3.0 are shown by the labelled dashed lines.

the three amplitude response branches, i.e. the initial, upper and lower branches, can
be clearly identified. Over the rotation rate range 0<α6 1.5, an increase in α results
in an increase in peak amplitude response, transitions between the upper and lower
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branch and the desynchronisation become less distinct, and the width of the U∗ range
over which excitation occurs increases. For rotation rates between 1.5< α 6 2.0, the
peak amplitude increases to higher values than seen at lower α. The transition between
upper and lower branches is abrupt, but the range of U∗ at which excitation occurs is
similar to that of a non-rotating cylinder. Up to a rotation rate of α≈2.0, the U∗ range
corresponding to the amplitude peak increases with α. In the range 2 < U∗ 6 3, the
amplitude response decreases significantly, and the response curve shape no longer
resembles that seen for non-rotating VIV. Instead of the typical two- or three-branch
response, in this range of α these are replaced with a twin-peak (α= 2.5) and a small
single-peak (α= 3.0) response. Also, the range of reduced velocity at which excitation
occurs becomes narrower. For α > 3.0, body excitation is minimal.

The normalised frequency response about its time-averaged position is presented
as a function of U∗ and α in figure 6(b). As for the amplitude response curves,
the frequency variations for the non-rotating case and α = 1.0, 2.0 and 3.0 are
highlighted by dashed lines. For the non-rotating case, again there is good agreement
with previous VIV studies. The frequency response follows the non-rotating VIV
response and the response globally decreases with increasing α. This is also in good
agreement with the numerical results found by BL14 and experiments of SM15.

A study of the vibration response at fixed α increments can better show the effects
of rotation on the vibration response and how each α increment compares to the non-
rotating VIV case over the tested U∗ range. The normalised vibration response about
its time-averaged position at several U∗ of interest were selected and are presented
as a function of α and U∗ in figure 7. The selection of these values of U∗ was
based on how each represents the vibration response at similar U∗, and how well
these cases show the response progression with increasing U∗. Figure 7(ai) shows A∗10
as a function of α at U∗ = 4.00. At this reduced velocity, the amplitude response
is small (A∗ . 0.2) with increased rotation further suppressing oscillations beyond
α=2.3. Figure 7(aii) shows f ∗ as a function of α at U∗=4.00. When the rotation rate
is increased, the body frequency response converges towards fnw with an associated
decreased amplitude response. This trend was observed in the initial branch and at
the beginning of the upper branch.

Figure 7(bi,ii) show that the amplitude increases significantly up to a rotation rate
of α≈ 2.0 and abruptly decreases thereafter (highlighted by the vertical dashed line in
figure 7bi). The highest amplitude observed in the current study occurred at U∗= 6.25.
Specifically, the amplitude increased from A∗10 = 0.79 in the non-rotating case to a
peak value of A∗10 = 1.39 at α = 2.0. With further increase in α, the amplitude drops
to A∗10 ≈ 0.3 at α ≈ 2.3.

The frequency response decreases with increasing α towards fnw. There is a small
jump in the frequency response accompanying the drop in amplitude response
(highlighted by the vertical dashed line in figure 7bii). As the frequency initially
converges towards the natural frequency of the structure, the oscillation locks in to
the natural frequency, resulting in an increase in amplitude response. As the rotation
rate is increased past α ≈ 2.25, the wake mode changes (refer to § 3.2) and the
response frequency is no longer locked in with the natural frequency of the structure.

When the reduced velocity is further increased to the onset of the lower amplitude
response branch (U∗=6.5), there is an increase in the amplitude response. Figure 7(ci)
shows that the amplitude response does drop following the peak, but in this case the
sharp drop occurs at a lower rotation rate (α ≈ 1.7) and is followed by a plateau
between the peak and the lower amplitude regions. Over the range of α where the
amplitude plateau exists, the frequency response locks in with the natural frequency
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FIGURE 7. (Colour online) The vibration response of an elastically mounted circular
cylinder undergoing constant rotation as a function of rotation rate (α) at selected reduced
velocities (U∗). In each reduced velocity case, panel (i) is the normalised amplitude
response (A∗10) and panel (ii) is the PSD contour of the normalised reduced velocity (f ∗)
normalised by the peak power. The horizontal solid lines in panels (ii) indicate f ∗= 1 (or
f = fnw). The vertical dashed lines highlight features of interest discussed in the text.

of the structure, i.e. f ≈ fnw. When the rotation rate is increased past α≈ 2.25 (second
vertical dotted line), the frequency response is similar to that of the upper branch.
From α≈ 2.25 onwards, f ∗ in both cases begins at a value slightly above f ∗= 1, then
it gradually decreases to below f ∗ = 1 as α is increased.
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When the reduced velocity is further increased to the U∗= 7.50 (lower branch), the
vibration response is different from that seen at the beginning of the lower response
branch (U∗ = 6.5). Figure 7(di) exhibits two amplitude peaks, the second appearing
at a higher α than the peaks seen at lower U∗. The amplitude response is relatively
unresponsive to rotation rates up to α≈ 0.8 (highlighted by the vertical dashed line in
figure 7di). The second peak appears when the rotation rate is close to α≈ 2.75. The
frequency response is similar to that of the amplitude, with little effect of rotation up
to α ≈ 0.8. Further increase in α is accompanied by a gradual reduction in f ∗ down
to and then below f ∗ = 1 ( f = fnw). The location of the second amplitude peak and
the point at which f decreases past fnw suggests that the appearance of the second
amplitude peak is due to f approaching fnw. Similar trends were observed at U∗= 8.0;
however, the second peak becomes less distinct.

At U∗ = 10.0 (desynchronised region), the amplitude and frequency responses tend
to be similar to those in the lower branch, as can be observed from figure 7( f i,ii).
However, the magnitude of the amplitude is much lower than in the lower branch.
Body rotation does not appear to significantly affect the amplitude response of
the cylinder when the reduced velocity lies in the initial branch. However, in the
desynchronised region there is an unexpected response. With increasing rotation rate,
the amplitude response increases from approximately 0.1 to 0.5, while the frequency
response is not close to the natural frequency of the structure.

To understand how the wake structure affects the vibration response of the cylinder,
the wake patterns are examined in the following section.

3.2. Wake structures

Vortex shedding structures in the wake are significant as they influence the body
vibration response of an elastically mounted structure. Williamson & Roshko (1988),
Badr et al. (1990), Khalak & Williamson (1999), Carberry et al. (2001), Mittal
& Kumar (2003), Rao et al. (2013) and Zhao et al. (2014a) have discovered and
categorised the wake patterns of forced rotation on rigidly mounted cylinders and
non-rotating cylinders undergoing free and forced vibrations. The wake structure can
vary significantly from the Kármán vortex streets typically observed for a stationary
cylinder. BL14 have shown that an elastically mounted cylinder undergoing forced
rotation can exhibit wake structures previously observed in forced vibration, free
vibration and forced rotation studies. To better understand how the wake modes
interact with the body vibration response, the wake modes have been mapped against
the primary independent variables, U∗ and α.

Figure 8 is a contour map of the mean response amplitude in U∗–α parameter
space. The dashed lines are iso-amplitude contours. The wake patterns observed for
selected PIV datasets (discussed in more detail below) are marked on this figure to
indicate how the wake state affects the amplitude response. The solid lines represent
approximate boundaries of regions with the same wake state. These are mainly drawn
to aid in the interpretation of how the wake state and amplitude response are related.

As indicated above, a large number of PIV snapshots were gathered at a high
sampling frequency capturing approximately 12–15 snapshots per cycle for typically
200–300 cycles (3140 images gathered). The recording of the PIV snapshots were
synchronised with the cylinder motion.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.540


Flow-induced vibration of a rotating circular cylinder 499

2

0.2

0.6

0.8

1.0

1.2

1.4

4

3

0

2

1

0
141210864

0.4

P + S

P + S
A(P + S)

C(AS)

0.4

0.8

2S
2P

1.2

A(P + S)

A(2S)

2P 2S

2S

C(AS)

A(2S)

FIGURE 8. The wake patterns observed based on PIV data with approximate boundaries
shown by the solid lines. This overlays a greyscale contour map of the mean peak
amplitude, in U∗–α parameter space, with amplitude levels indicated by the dashed lines.
There appears to be a gradual change from 2P to P + S as the rotation is increased,
causing a deflection of the wake away from the streamwise centreline.

To investigate the wake state beyond the PIV images, the classical snapshot method
(Sirovich 1987; Holmes et al. 2012) was followed using the MODRED 2.0.1 library
to decompose the fields. The velocity field, u(x, t), is decomposed as follows:

u(x, t)=
N∑

i=0

φi(t)ψi(x). (3.1)

Here x is the illuminating laser plane coordinates, N = 3140 is the number of
snapshots taken, ψ(x) are the proper orthogonal decomposition (POD) spatial
modes and φ(t) are the temporal mode coefficients. In the presence of periodic
or near-periodic flow, the mean flow is approximately represented by ψ0(x), whereas,
in terms of the shedding process, the first pair of temporal modes, φ1 and φ2, together
represent the most energetic shedding mode. The subsequent pair is often a harmonic
of the first pair. Therefore, the first temporal coefficients (φ1–φ4) are often sufficient
to assess the flow state and to reorder the velocity/vorticity fields into similar phases,
as shown in Legrand et al. (2011), Sherry et al. (2013) and Venning et al. (2015).
All the PIV data were subsequently analysed with the POD approach and phase
averaging was based on the temporal evolution of the first two modes associated
with the main shedding behaviour. In the present study, the images in each set were
categorised into 12 phases for averaging.

A non-rotating cylinder undergoing VIV shows hysteresis and wake mode switching
in the transition regions between the amplitude response branches (Feng 1968; Khalak
& Williamson 1999; Williamson & Govardhan 2004). A primary focus of the current
study is to determine the wake patterns in U∗–α parameter space.

In low amplitude response regions, i.e. at reduced velocities associated with the
initial response branch (U∗ < 4.8) and in the desynchronised region (U∗ > 9.5),
the shedding mode typically found for non-rotating VIV was observed up to a rotation
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FIGURE 9. (Colour online) Phase-averaged spanwise vorticity contours of a 2S mode
at U∗ = 5.0, α = 1.0 (a), 2P mode at U∗ = 8.0, α = 0.0 (b) and P + S mode at
U∗ = 6.5, α = 0.6 (c) over an oscillation cycle. Cylinder rotation is anticlockwise. The
normalised vorticity range is ω∗ = ωD/U ∈ [−1, 1], where ω is the vorticity. Near the
cylinder the vorticity exceeds these values, so the contour levels are clipped to this range
to allow downstream vortices to be visible.

rate of α ≈ 2.0. This wake is characterised by shedding two single counter-rotating
vortices per oscillation cycle (figure 9). This is referred to as the 2S mode.
This is the standard shedding mode commonly found in both stationary and
non-rotating VIV studies.
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FIGURE 10. (Colour online) Instantaneous isocontours of the C(AS) mode at U∗ =
4.00, α = 2.75. The C(AS) wake pattern is of a chaotic nature and consists of small
vortices patched around a curve. The normalised vorticity range is ω∗ =ωD/U ∈ [−1, 1].

When the rotation rate is above α≈ 2.0 for the same reduced velocity ranges (U∗<
4.8, U∗ > 9.5), a new wake pattern characterised by shedding of small asymmetric
vortices was observed. It appears similar to the shedding mode observed in the second
region of wake instability reported by Mittal & Kumar (2003), although that mode was
observed at significantly higher rotation rates (α∼ 4.5). When the flow first undergoes
transition to this mode, i.e. at its boundary with other wake modes, the vortices shed
are larger and more periodic. As the rotation rate is increased further, the shed vortices
become smaller and their shedding is more chaotic. However, it was observed that
the wake switches between a wider and a narrower state, with the former associated
with the shedding of smaller vortices. The coalescence of these small asymmetric
vortices, together with its wake switching, has led to this mode to be named C(AS).
Instantaneous spanwise vorticity contours for this mode are illustrated in figure 10: (b)
illustrates the wider wake state; and (a) shows the narrower state.

At moderate reduced velocities associated with the lower amplitude response branch
(6.56α6 9.5), where 0.4<A∗10 6 0.6 and the rotation rate is below α6 0.5, two pairs
of counter-rotating vortices are shed per oscillation cycle (figure 9). This resembles the
standard 2P mode reported in previous non-rotating VIV studies (e.g. Williamson &
Roshko 1988; Khalak & Williamson 1999).

At moderate rotation rates (1.25 6 α < 2.25) a dominant wake mode persists
across the vibration region (5.0 < U∗ 6 9.0), for which the wake and body motions
synchronise. Here, the wake is characterised by the P+ S mode as shown in figure 9.
This wake mode is composed of a pair (P) of counter-rotating vortices and a single
(S) vortex shed per oscillation cycle. Again, this mode has been previously observed
in free and forced vibration studies (see Williamson & Roshko 1988). It has also
been observed for the low-Reynolds-number rotating VIV simulations of BL14 and
experiments of SM15.

Over the same reduced velocity range (5.0 < U∗ 6 9.0), the C(AS) wake mode
appears when the rotation rate is increased above α > 2.25.

From figures 7 and 8, it is evident that large changes in the oscillation amplitude
response correspond to changes in the wake mode. For example, in the case of U∗=
6.25, the drop in amplitude and jump in frequency response near α = 2.25 coincide
with a change in wake mode from 2S, in the unsteady flow regime, to the C(AS)
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FIGURE 11. (Colour online) Phase-averaged spanwise vorticity contours of the 2S mode at
different α over an oscillation cycle: U∗= 5.00, α= 0.00 (a–c), U∗= 5.00, α= 1.00 (d–f )
and U∗= 5.00, α= 2.25 (g–i). Contours were selected to align the leading vortex of each
oscillation cycle, i.e. the vortex with positive vorticity, to the trailing vortex of the previous
oscillation cycle. This illustrates the effects of α on wake asymmetry and the gap between
vortices from adjacent oscillation cycles. Therefore, the contours between different α are
not necessarily in phase. The normalised vorticity range is ω∗ =ωD/U ∈ [−1, 1].

mode, where the flow becomes almost steady. At the start of the lower branch (U∗=
6.5) there is a similar wake transition when P+ S undergoes transition to C(AS).

To further understand and characterise the effects of increasing rotation rate on
the cylinder wake, the induced changes to the dominant 2S mode are examined.
Figure 11 shows the progression of the 2S wake mode with increasing rotation rate
at a constant reduced velocity of U∗= 5.0. In figure 11, (a–c) shows the characteristic
vortex shedding for the non-rotating cylinder. Figure 11(d–f ) and (g–i) show shedding
at non-zero rotation rates: α = 1 and 2.25, respectively. With increasing rotation rate,
the mean position of the cylinder shifts upwards and the shed vortices deviate
further downwards from the streamwise centreline as they advect downstream. This
is expected as the body rotation causes wake deflection due to the Magnus effect.

Increased rotation also changes the spacing between the clockwise and anticlockwise
vortex cores in the wake. With no rotation, the positive and negative vortex cores are
distributed evenly along the wake. However, the addition of rotation means that the
wake vortices show signs of collecting in pairs. This effect is enhanced with increasing
rotation rate. This is shown in figure 11(c, f,i. It can be seen that, as the rotation rate is
increased, the distance between a shed anticlockwise (red) vortex and the subsequently
formed clockwise (blue) vortex is less than the distance between that vortex and the
anticlockwise vortex shed next. With increasing rotation rate, the size and strength
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FIGURE 12. (Colour online) Phase-averaged isocontours of the P + S mode at U∗ =
5.50, α = 1.15 in the upper response branch (a) and U∗ = 6.50, α = 0.60 in the lower
response branch (b). The normalised vorticity range is ω∗ =ωD/U ∈ [−1, 1].

of shed vortices decreases. This has been seen in rotating cylinder wakes previously,
e.g. figure 5 from Radi et al. (2013). This is consistent with rotation causing the two
separation points, which feed the shed vortices, to move together, thereby restricting
the vorticity shed into each wake vortex and increasing cross-annihilation. Similar
observations of the effects on the asymmetry and spacing are seen with the P + S
mode.

Images of the P+ S mode at different reduced velocities show a subtle change in
the vortex pattern. Previous observations of the P + S mode in VIV studies showed
that it consisted of a single vortex on one side of the cylinder centreline, together
with a clockwise and anticlockwise vortex pair on the other. Owing to symmetry in
the non-rotating case, the pair and single vortices can form interchangeably on either
side of the cylinder centreline. Figure 12 illustrates the P + S mode in the upper
amplitude response branch at U∗= 5.50 (figure 12a) and in the lower response branch
at U∗= 6.5 (figure 12b). In the upper branch there are two clockwise vortices on the
retreating side of the cylinder and one anticlockwise vortex on the advancing side of
the cylinder. In the lower branch, the anticlockwise vortices on the advancing side of
the cylinder that were previously observed in the upper branch remain. However, on
the retreating side there are now one clockwise and one anticlockwise vortex. This
observation was unexpected. It had been thought that the flow asymmetry created by
the cylinder rotation would promote the shedding of vortices in one direction, hence
the consistent combination of vortices seen in previous work (Williamson & Roshko
1988; Morse & Williamson 2009) and figure 12(b). This result was observed at a
range of rotation rates in the upper and lower branch. Further work is needed to better
understand this behaviour.

3.3. Intermittent nature of the wake in the upper branch
When a cylinder undergoes VIV, previous studies have shown that, in the upper
branch, the wake is of an intermittent or chaotic nature (Lucor & Triantafyllou 2008;
Zhao et al. 2014a). One question of interest is whether this mode-switching signature
of the upper branch still prevails when the cylinder is undergoing forced vibration.
Indeed, the action of rotating fixed cylinders modifies the wake stability, whether
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FIGURE 13. (Colour online) Instantaneous measurement showing transition from the 2P
to 2S mode for U∗ = 6.50 and α = 0.0. (a) Time-varying body position y∗ = y′/D, with
y′ = y − ȳ, as a function of t∗ = tfnw. The black line represents the zone of 2P mode,
and the blue line represents the zone of 2S mode. The red filled symbols (u and q)
match the instantaneous vorticity fields presented in (d) and (e) showing a 2P and 2S
mode, respectively, to the instantaneous positions in the other plots. Plots (b) and (c)
represent the temporal evolution of the POD modes, highlighting the differences over time
(i.e. providing different Lissajous shapes). See supplementary movie 1.

the rotation is oscillatory (Tokumaru & Dimotakis 1991; Lo Jacono et al. 2010;
D’Adamo, Godoy-Diana & Wesfreid 2015) or uniform (El Akoury et al. 2008; Rao
et al. 2013, 2015). Thus, given that the cylinder is under uniform rotation, hence
biasing the vorticity production towards one side and therefore biasing the wake
topology, the question of how this affects the wake dynamics of the upper branch is
of interest.

In the following, observations on the vortex wake state are presented for U∗ = 6.5
at three different rotation rates: α = 0.0, 0.8, 1.5. The switching of the wake
state was identified from the inspection of the φ1–φ4 POD temporal coefficients.
The instantaneous amplitude provided by y(t) was not enough to unambiguously
decipher changes within the wake, as exemplified through figures 13–15. Given
the substantial number of snapshots gathered (∼3100), covering a large number
of shedding cycles (∼200–300), it is possible to observe many examples of mode
switching. In the supplementary material associated with this paper (available at
https://doi.org/10.1017/jfm.2017.540), movies displaying these transitions provide a
useful adjunct to the still images presented in this section.

Figure 13 shows an example of this mode-switching behaviour for α = 0. This
example shows the transition from a 2P to 2S shedding mode. The time history of
the motion is given in figure 13(a), with the section in blue marking where mode

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

54
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.540
https://doi.org/10.1017/jfm.2017.540


Flow-induced vibration of a rotating circular cylinder 505
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FIGURE 14. (Colour online) Instantaneous measurement showing transition from the P+
S+ to 2S shedding mode for U∗ = 6.50 and α = 0.80. (a) Time-varying body position
y∗ as a function of t∗. The black line represents the zone of P + S+ mode, and the
blue line represents the zone of 2S mode. The red filled symbols (u andq) correspond
to the instantaneous vorticity presented in panels (d) and (e) showing a P + S+ and
2S mode, respectively. Plots (b) and (c) are representative of the temporal POD mode
evolution, highlighting the differences in time (providing different Lissajous shapes). See
supplementary movie 2.

switching is observed. The temporal evolution of the mode is represented through
Lissajous figures of the first pair (φ1 and φ2), and the first and third modes (φ1 and
φ3), in figure 13(b,c), respectively. The symbols (u andq) appearing in these plots in
figure 13(a–c) correspond to the instantaneous vorticity fields given in figure 13(d,e),
representing the 2P and 2S modes, respectively. Clearly, the information contained
in the displacement signal y(t) is not sufficient to reveal the behaviour within the
wake, yet the changing form of the two Lissajous curves clearly differentiates the
modes. In the supplementary movie, additional switching within the blue zone can be
observed. Inspection of the POD temporal mode was instrumental to differentiate the
wake dynamics and was only possible due to the large number of shedding periods
recorded.

Figure 14 shows a further example of mode switching at α = 0.80. This example
shows the transition from a P+ S+ to 2S shedding mode. Note that the S+ represents
an anticlockwise single vortex. The time history of the displacement trace is given
in figure 14(a), with the mode switching zone coloured in blue. The temporal mode
evolution is given through Lissajous figures of the first pair (φ1 and φ2), and the first
and third modes (φ1 and φ3), in figure 14(b,c), respectively. The symbols appearing in
figure 14(a–c) correspond to the instantaneous vorticity field given in figure 14(d,e),
representing the P+ S+ and 2S modes, respectively. Again, the changing shape of the
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FIGURE 15. (Colour online) Instantaneous measurement showing transition from the P+
S− to 2S shedding mode for U∗ = 6.50 and α = 1.50. (a) Time-varying body position
y∗ as a function of t∗. The black line represents the zone of P + S− mode, and the
blue line represents the zone of 2S mode. The red filled symbols (u andq) correspond
to the instantaneous vorticity presented in panels (d) and (e), showing a P + S− and
2P mode respectively. Plots (b) and (c) are representative of the temporal POD mode
evolution, highlighting the differences in time (providing different Lissajous shapes). See
supplementary movie 3.

two Lissajous curves clearly differentiates the shedding modes, while the displacement
signal y(t) is not sufficient to reveal the mode switch.

As the rotation rate is increased to α = 1.50, the mode switching behaviour still
prevails at U∗ = 6.5. Figure 15 shows the transition from a P + S− to 2P mode.
Note that S− represents a clockwise single vortex. As before, the time history of
the motion is given, with the switch to blue marking the transition between wake
states. Once again, the switch is clear through the change in the response depicted
in the Lissajous figures (figure 15b,c). The supplementary movie 3 further confirms
these modes, noting that it can be difficult to interpret a shedding mode from a single
instantaneous snapshot.

It is acknowledged that the results presented do not provide a complete picture
reflecting all possible transitions. However, the limited information reported is
sufficient to confirm that the intermittent behaviour in the upper branch is sustained
even for high rotation rates.

3.4. Discussion
Figure 16(a) shows a comparison of the vibration response curve at α = 2 with
previous parameter studies from the literature. The response curve of SM15, who
also performed experiments using a water channel for their VIV studies of a rotating
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FIGURE 16. (a) Comparison of the response curve for α= 2.0 against previous numerical
and experimental studies. Note, in particular, the much higher vibration response in this
case. (b) Corresponding approximate vibration boundaries as a function of U∗ and α. Refer
to panel (a) for data references.

cylinder, has been extracted from an amplitude contour plot in their paper. Their
Reynolds-number range covers the interval 350 6 Re < 1000, with the maximum
response recorded for U∗ = 6.5, corresponding to Re' 600. The Re= 100 numerical
results of BL14 are also shown for this rotation rate. The maximum response
(A∗ ' 0.6D) found by SM15 actually occurred at a slightly higher rotation rate
of α ' 2.3, although this was only marginally in excess of the value recorded for
the α = 2.0 case shown. On the other hand, the low-Reynolds-number simulations
of BL14 indicate that the vibration response continues to increase with rotation rate
up to α = 4.0, after which there is minimal response. Notably, they also found a
significant vibration response for a much larger U∗ range than observed in both
sets of experiments. The different vibration response seen in the current experiments
is likely to be due to the significantly higher Reynolds number (Re = 3000 at
U∗ = 6.5) of the current study, rather than the different mass ratios (m∗ = 5.78
compared with 11.5 and 10), or the different but low mass-damping ratios, of the
different experiments and simulations. Figure 16(b) shows the approximate vibration
response boundaries for these three cases, delimiting regions where the response is
non-negligible. Interestingly, the two sets of experiments show similar boundaries,
despite the distinct differences in amplitude response. The unstable region from the
numerical simulations is also similar over the initial U∗ range for low α but shows
that significant vibration response extends up to high U∗ for larger values of α.

4. Conclusions

The present study on the vibration response and wake structure of an elastically
mounted circular cylinder subjected to forced, constant rotation over a range of
rotation rates and Reynolds numbers has made several new findings.

Substantial body vibration was found to occur through wake–body synchronisation
over a range of rotation rates and reduced velocities. Significant cylinder oscillations
were observed to occur for rotation rates up to α ≈ 3.5 over the lock-in range.
Interestingly, previous rigidly mounted cylinder studies show that rotation rates beyond
α = 2 cause suppression of vortex shedding. Overall, this study shows that forced
rotation can cause the cylinder to vibrate at up to 1.4D, a 76 % increase in amplitude
response over non-rotating VIV. This maximal response occurs when the rotation
rate is close to 2.0 and in the range of reduced velocities associated with the upper
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amplitude response branch of a non-rotating cylinder. Across the U∗–α parameter
space where a large amplitude response is seen, the cylinder frequency response is
observed to be synchronised with the natural frequency of the oscillating system.
It is the resonance between these two frequencies that enables large vortex-induced
oscillations for non-rotating VIV and also enables large oscillations for VIV of a
rotating cylinder. Increasing the rotation rate from 0 to 2 both broadens the range
of reduced velocities where large body oscillations occur and increases the peak
amplitude response. As the rotation rate is increased towards α ≈ 2.0, the frequency
response f ∗ gradually decreases to fall below f ∗ = 1, where the oscillation frequency
equals the natural frequency of the structure. This is correlated with the amplitude
response increasing as the rotation rate is increased towards α ≈ 2.0. An increase in
rotation rate beyond α ≈ 2.0 results in a reduced peak amplitude response, noting
that the body oscillation becomes desynchronised with the weakened, less coherent
vortex shedding.

A variety of wake modes were observed over the parameter space covered by
the present study. At low to moderate reduced velocities (U∗ < 6.5), the 2S mode
dominates at all rotation rates observed. At low rotation rates (α < 1.25), the 2S
and 2P modes characterise the wake at reduced velocities associated with the upper
and lower response branches, respectively. In the desynchronised region, the 2S
mode appears again. At moderate rotation rates (1.25 6 α < 2.25), the P + S mode,
a mode composed of a pair of counter-rotating vortices and a single vortex shed
per cycle, was observed for most of the synchronisation region. Chaotic switching
of the wake mode was observed in the upper branch. Indeed, it was found that,
regardless of the rotation rate, the upper response branch seemed to retain its chaotic
state. In the desynchronised region, a mode in which small-scale vortices coalesce
and shed asymmetrically, C(AS), was observed at rotation rates above α ≈ 1.25.
Beyond α≈ 2.25, C(AS) dominates in the reduced velocity range associated with the
vibration region of a non-rotating cylinder (U∗ ≈ 4–10). On further increasing the
rotation rate, shed vortices increasingly deviate from the streamwise centreline of the
cylinder. This deviation with rotation rate was observed for multiple wake modes,
as is expected from the Magnus effect. In addition, the distance between vortices of
adjacent oscillation cycles increases, and the size and peak vorticity of the vortices
shed decreases, in line with non-VIV studies.

Of further interest is the significantly lower amplitude response observed experi-
mentally by Seyed-Aghazadeh & Modarres-Sadeghi (2015) relative to that found in
this case. Given the substantial Reynolds-number difference between these studies,
this could simply be a low-Reynolds-number effect, but it would be useful to have
independent verification of either study. In a sense, it is surprising that rotation
significantly enhances vibration amplitudes, given that it tends to make the wake
narrower and asymmetric, so a deeper understanding of the near-wake dynamics and
the effects on VIV would be useful. Also of interest is the still significant amplitude
response observed at α = 2.5 and 3, well beyond the rotation rate for suppressing
shedding from a fixed rotating cylinder, which warrants further investigation.
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Supplementary movies

Supplementary movies are available at https://doi.org/10.1017/jfm.2017.540.
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STOJKOVIĆ, D., BREUER, M. & DURST, F. 2002 Effect of high rotation rates on the laminar flow
around a circular cylinder. Phys. Fluids 14 (9), 3160–3178.
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