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We consider extensional flows of a dense layer of spheres in a viscous fluid and employ
force and torque balances to determine the trajectory of particle pairs that contribute to
the stress. In doing this, we use Stokesian dynamics simulations to guide the choice of the
near-contacting pairs that follow such a trajectory. We specify the boundary conditions on
the representative trajectory, and determine the distribution of particles along it and how
the stress depends on the microstructure and strain rate. We test the resulting predictions
using the numerical simulations. Also, we show that the relation between the tensors of
stress and strain rate involves the second and fourth moments of the particle distribution
function.
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1. Introduction

In a recent study, Jenkins & La Ragione (2015) determine the typical trajectory of a
force-equilibrated pair of particles of a dense, two-dimensional suspensions of spheres
subjected to a simple shearing flow. They evaluate the distribution function of such
near-contacting neighbours along the trajectory and, using this distribution function and
the expression for the force between the pair, they predict the particle pressure, the
difference in normal stresses and the difference between the average rotation of the spheres
and half the vorticity of the average velocity.

Here, we focus on extensional flows, also called pure shearing, of a dense layer of
spheres and, as an extension of the previous work, also introduce the moment equilibrium.
We employ a simplified Stokesian dynamics numerical simulation, perhaps more properly
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called lubrication dynamics (e.g. Ball & Melrose 1995), to guide the choice of
the near-contacting pairs on a representative trajectory that contributes most to the
inter-particle stress. We specify the boundary conditions on the representative trajectory,
and determine the distribution of particles along it and the relationship between stress,
microstructure and strain rate. We test these predictions against the results of the numerical
simulations. We show that the relation between the stress and strain rate tensors involves
the second and fourth moments of the particle distribution, and place this and other aspects
of our approach in the context of the earlier models of Phan-Thien (1995), Stickel, Phillips
& Powell (2006), Goddard (2006), Gillissen & Wilson (2018, 2019) and Gillissen et al.
(2019) that focus on the second moment and that of Chacko et al. (2018), who introduce a
fourth-rank tensor to describe flow reversal.

The approximate satisfaction of force and torque balances for particles in the flow plays
an important role in what we do. In that regard, we operate in the spirit of Nazockdast &
Morris (2012a,b, 2013) or that of the statistical characterization by Thomas et al. (2018)
of equilibrated particles sheared in two dimensions, but in the limit of dense flows of
the planar extensional flow. The analysis must be extended to three-dimensional simple
shear flows before it can be placed in relation to phenomenological relations that have
resulted from experiments on dense three-dimensional shearing flows (Boyer, Guazzelli &
Pouliquen 2011; Guazzelli & Pouliquen 2018).

2. Micro-mechanics

A steady, planar extensional flow of a dense suspension of identical spheres with radius
a is characterized by an average rate of deformation tensor D with non-zero components
D11 = −D22 = γ̇ , where x1 and x2 are the axes in the directions of greatest extension and
compression, respectively, and γ̇ is the constant shear rate. We focus on a typical pair of
spheres and their near-contacting neighbours, and take d̂(BA) to be the unit vector directed
from the centre of sphere A to that of sphere B, with d̂(AB) = −d̂(BA) (see figure 1). Then,
with θ(BA) the time-dependent angle between d̂(BA) and the x2 axis,

d̂(BA)
α = (sin θ(BA), cos θ(BA)) (2.1)

and the components of the unit tangent vector, t̂(BA) = −t̂(AB), perpendicular to it, are

t(BA)
α = (cos θ(BA), − sin θ(BA)), (2.2)

or t(BA)
α = εαβd(BA)

β , where ε12 = −ε21 = 1 and ε11 = ε22 = 0. The unit vectors d̂(BA) and

t̂(BA) are indicated in figure 1.

2.1. Kinematics
In planar extensional flow, the relative motion of the centre of particle B with respect to
the centre of particle A is

v(BA)
α = ds(BA)

dt
d̂(BA)

α + 2a
dθ(BA)

dt
t̂(BA)
α , (2.3)

where s is the separation of the edges along the line of centres. The relative velocity of
their points of near contact is then,

v(BA)
α + a(ω(A) + ω(B))t̂(BA)

α ≡ v(BA)
α + aSt̂(BA)

α , (2.4)
where ω is the angular velocity of the sphere and S is their sum.
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Planar extensional flows of a dense suspension

A
B

t̂ (BA)

d̂ (BA)θ(BA)

Figure 1. The pair AB and their near-contacting neighbours, with the angle θ(BA) and the unit vectors d̂(BA)

and t̂(BA) along and perpendicular to the line of centres, respectively.

The interaction of A with a near-contacting neighbours n, other than B, is treated
differently; the sphere n is assumed to move relative to A with the average flow. Then,
neglecting fluctuations in translational velocity, the relative velocity of centres of pair nA
is

v(nA)
α = 2aDαβ d̂(nA)

β , (2.5)

and the relative velocity of the points of near contact nA is

v(nA)
α + aω(A) t̂(nA)

α . (2.6)

2.2. Force
The force of interaction between a typical pair AB of particles is related to the relative
velocity and distance between their points of near contact. According to Jeffrey & Onishi
(1984) and Jeffrey (1992), the force F (BA) exerted by sphere B on sphere A through a fluid
with viscosity μ, is

F(BA)
α = 6πμaK (BA)

αβ v
(BA)
β − F0

s(BA)
d̂(BA)

α − 9.54πμa2(t̂βDβξ d̂ξ )t̂(BA)
α

+ πμa2
[
ln

( a
s(BA)

)
− 0.96

]
ω(A) t̂(BA)

α + πμa2 ln
( a

s(BA)

)
ω(B) t̂(BA)

α , (2.7)

where

K (BA)
αβ = 1

4
a

s(BA)
d̂(BA)

α d̂(BA)
β +

[
1
6

ln
( a

s(BA)

)
+ 0.64

]
t̂(BA)
a t̂(BA)

β (2.8)

and the constant terms have been retained because they are of a similar size, unless s is
extremely small. The interaction force also includes a short-range repulsion of strength F0
force times length (e.g. Singh & Nott 2000).

We take the near-contacting neighbours, m /= B, to be those that most influence
equilibrium and make the greatest contribution to the stress. There are k − 1 of these
per sphere and we assume that the separation between their edges is s̄. The number, k,
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of near-contacting neighbours is expected to be less, perhaps far less, than the number of
nearest neighbours and to depend upon the area fraction, or concentration, c.

For the near-contacting neighbours, m, the corresponding force is based on the average
motion and the separation s̄

F(mA)
α = 3

s̄
a3πμ

(
Dβξ d̂(mA)

ξ d̂(mA)
β

)
d̂(mA)

α + πμa2
[
ln

(a
s̄

)
− 0.96

]
ω(A) t̂(mA)

α

+ 2a2πμ
[
ln

(a
s̄

)
− 0.96

] (
Dβξ t̂(mA)

ξ d̂(mA)
β

)
t̂(mA)
α − F0

s̄
d̂(mA)

α . (2.9)

2.3. Force and torque balances
In the more complicated two-dimensional simple shear flow, Jenkins & La Ragione
(2015) require the balance of forces for a typical pair of spheres under the action of
their near-contacting neighbours. Here, for the less complicated planar extensional flow,
we consider the balance of both force and torque. The focus on a flow in which there
is no average rotation makes this easier to do; and the possibility of solving for both
the translational and rotational degrees of freedom of a typical pair should increase the
accuracy of the modelling.

The balance of forces for particle A is

F(BA)
α +

N(A)∑
m /=B

F(mA)
α = 0; (2.10)

and that for particle B is

F(AB)
α +

N(B)∑
m /=A

F(mB)
α = 0, (2.11)

with F(BA)
α = −F(AB)

α . The difference in the force balances projected along d̂(BA) is

3πμa
a

s(BA)

ds(BA)

dt
− 2

F0

s(BA)
+ 6πμa2 a

s̄
d̂(BA)

α Jαβγ Dβγ − 2
F0

s̄
Y α d̂(BA)

α = 0; (2.12)

while along t̂(BA)
α it is

0 = 4
[
ln

( a
s(BA)

)
+ 3.84

] dθ(BA)

dt
− 19t̂(BA)

β Dβξ d̂(BA)
ξ

+
[
2 ln

( a
s(BA)

)
− 0.96

]
S +

[
ln

(a
s̄

)
− 0.96

]
SεαβY (BA)

β t(BA)
α

+ 6
a
s̄

Dβξ J(BA)
αξβ t(BA)

α + 2
[
2 ln

(a
s̄

)
− 1.92

]
Dβξ J(BA)

αξβ t(BA)
α , (2.13)

with

J(BA)
αξβ =

N(A)∑
m /=B

d̂(mA)
α d̂(mA)

β d̂(mA)
ξ (2.14)

and

Y (BA)
α =

N(A)∑
m /=B

d̂(mA)
α . (2.15)
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Planar extensional flows of a dense suspension

In writing (2.12) and (2.13), we assume that J(BA)
αξβ = −J(AB)

αξβ and Y (BA)
α = −Y (AB)

α ; that is,
the arrangement of near-contacting neighbours of B is the reflection of that of A. The terms
proportional to S incorporate the influence of the rotations on the force balance.

The balance of torques for particle A is

εαβd(BA)
α F(BA)

β + εαβ

N(A)∑
m /=B

d(mA)
α F(mA)

β = 0, (2.16)

and that for particle B is

εαβd(AB)
α F(AB)

β + εαβ

N(B)∑
m /=A

d(mB)
α F(mB)

β = 0; (2.17)

so their sum is

0 = 4
[
ln

( a
s(BA)

)
+ 3.84

] dθ(BA)

dt
− 19t̂(BA)

μ Dμξ d̂(BA)
ξ

+
[
2 ln

( a
s(BA)

)
− 0.96

]
S +

[
ln

(a
s̄

)
− 0.96

]
S (k − 1)

+ 2
[
2 ln

(a
s̄

)
− 1.92

]
εξνA(BA)

νμ Dμξ , (2.18)

with

A(BA)
νμ =

N(A)∑
m /=B

d̂(mA)
ν d̂(mA)

μ (2.19)

and, again, A(BA)
νμ = A(AB)

νμ .
The tensors A, J and Y provide information on the distribution of spheres in the plane

about a typical pair AB, as shown in figure 1. We assume here that the distributions about
a pair at a given orientation is the average over all pairs at that orientation. These average
distributions should depend on both d̂(AB) and D. As do Jenkins & La Ragione (2015), we
treat the local equilibrium with the approximation that A, J and Y are independent of D.
Then,

A(BA)
νμ = b1δνμ + b2d̂(BA)

μ d̂(BA)
ν , (2.20)

J(BA)
αξβ = b3d̂(BA)

α d̂(BA)
ξ d̂(BA)

β + b4

(
d̂(BA)

α δξβ + d̂(BA)
ξ δαβ + d̂(BA)

β δξα

)
, (2.21)

and

Y (BA)
α = b5d̂(BA)

α . (2.22)

To calculate the coefficients, Jenkins et al. (2005) assume that given sphere
B, the remaining near-contacting neighbours of A are distributed uniformly around
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its circumference. The results are given as a function of coordination number k through

b = −3
√

3 (k − 1)

16π
, (2.23)

by

b1 = k − 1
2

− b, b2 = 2b, b3 = 0, and b4 = b, b5 = 4b. (2.24a,b)

In the planar extensional flow of interest,

t̂(BA)
μ Dμξ d̂(BA)

ξ = γ̇ sin 2θ and d̂(BA)
μ Dμξ d̂(BA)

ξ = −γ̇ cos 2θ. (2.25a,b)

We use these in the differences of the components of the force balances, make lengths
dimensionless by the sphere radius a, time by the inverse of the shear rate, forces by
πa2μγ̇ , write the dimensionless strength of the repulsion as F̂ = F0/(πa3μγ̇ ) and remove
the superscript (BA). Then, the normal component becomes

1
s

ds
dγ

= 2
3

F̂
(

1
s

+ 4b
s̄

)
+ 4b

s̄
cos 2θ; (2.26)

and the tangential component is[
ln

(
1
s

)
+ 3.84

]
dθ

dγ
=

[
c1 + c2 ln

(
1
s

)]
sin 2θ, (2.27)

with

c1 = 4.77 − 3
b
s̄

and c2 = 6b
(4b − k + 1)

1/s̄
ln (1/s̄) − 0.96

, (2.28a,b)

and we have employed the difference in the force balances and the sum of the torque
balances to write

S = −2c2 sin 2θ. (2.29)

The balances of force and torque, (2.26), (2.27) and (2.29), employed in (2.7), provide
an expression for F (BA) in terms of average quantities

F(BA)
α = 4b

F0

s̄
d̂(BA)

α + πμa3 6b
s̄

cos 2θγ̇ d̂(BA)
α + πμa2 (2c1 + 0.96c2) sin 2θγ̇ t̂(BA)

a

− 9.54πμa2 sin 2θγ̇ t̂(BA)
α . (2.30)

This is later used in the calculation of the stress.

2.4. Representative trajectory
The representative trajectory is a single trajectory that incorporates the influence of those
that contribute most to the stress. Along the representative trajectory particle B moves with
respect to particle A in a succession of states in which force and torque are balanced. The
other near-contacting particles, m, of the pair are assumed to move with the average flow,
at the constant distance s̄ from the pair. The equation that determines this trajectory results
from the balances of force and torque and is a function of two parameters: the average
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Planar extensional flows of a dense suspension

number of near-contacting particles, k, and the distance, s̄. Upon combining (2.26) and
(2.27), it is

ds
dθ

= 2
3s̄

F̂ (s̄ + 4bs) + 6bs cos 2θ[
c1 + c2 ln (1/s)

]
sin 2θ

[
ln

(
1
s

)
+ 3.84

]
. (2.31)

Within the θ interval 0 to π/2, the trajectory begins at θ0 and ends at θ1, and both angles
must be determined. Because of the presence of F̂, the trajectory is asymmetric about π/4,
and θ0 differs from π/2 − θ1.

The amount of total strain, γ̂ , necessary to complete the trajectory may be calculated
from the pair interaction in the average flow. From (2.27)

dγ

dθ
= ln (1/s) + 3.84

[c1 + c2 ln(1/s)] sin 2θ
; (2.32)

so,

γ̂ =
∫ θ1

θ0

ln (1/s) + 3.84
[c1 + c2 ln(1/s)] sin 2θ

dθ. (2.33)

2.5. Particle distribution
We next introduce the distribution of near-contacting neighbours along the trajectory,
A(θ), defined so that A(θ) dθ is the average number of such particles within the element
dθ . At steady state, the flux, A(θ) dθ/dγ , of these equilibrated particles along the trajectory
is constant. That is, particles are more likely to be where the velocity along the trajectory
is least. Because the repulsive force breaks the symmetry of approach and departure, the
distribution is anticipated to be asymmetric about π/4. In computations, we implement
the flux condition as a differential equation

dA
dθ

= −A
θ̇

dθ̇

dθ
, (2.34)

with
dθ̇

dθ
= ∂θ̇

∂θ
+ ∂θ̇

∂s
ds
dθ

. (2.35)

The distribution A(θ) is related to the average number near-contacting neighbours per
particle by

4
∫ θ1

θ0

A (θ) dθ = k. (2.36)

We implement this as a differential equation for the partial number of near-contacting
neighbours

I (θ) ≡
∫ θ

θ0

A(θ ′)dθ ′, (2.37)

as
dI
dθ

= A (θ) , (2.38)

with boundary conditions I(θ0) = 0 and I(θ1) = k/4.
Given that the beginning and ending angles of the trajectory differ, we take the

beginning and ending values of the particle separation to be the same. There are three
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first-order differential equations, (2.31), (2.34) and (2.38), for s, A and I as functions of θ ,
and four boundary conditions: one for each of s0 and s1 that introduce a single parameter,
and two for I. Consequently, θ1 may be determined as part of the solution. The inputs are
θ0, s0 = s1, s̄ and k. In appendix B, we provide the Matlab code that is employed in the
solver. We generate solutions and compare them with the results of Stokesian dynamics
simulations in a later section.

3. Particle stress

Knowledge of the distribution of near-contacting neighbours A(θ) and the contact forces
along the trajectory permits the calculation of the macroscopic particle stress in the
suspension. The stress tensor is, according to Cauchy (Love (1944), appendix, Note B),

Tαβ = na
∫ 2π

0
A(θ)Fα d̂β dθ, (3.1)

where n is the number of particles per unit area and Fα is given by (2.30). Then, the
two-dimensional viscosity is 2aμ. The dimensionless form, tαβ = Tαβ/(2aμγ̇ ), with n =
c/(πa2), where c is the concentration, is

taβ = c
b
s̄

∫ 2π

0
A (θ) (2F̂ + 3 cos 2θ)d̂α d̂β dθ

+ c (c1 + 0.48c2 − 4.77)

∫ 2π

0
A (θ) sin 2θ t̂ad̂β dθ. (3.2)

The particle shear stress,
τ ≡ 1

2 (t11 − t22) , (3.3)

is

τ = −2c
b
s̄

∫ π/2

0
A(θ)(2F̂ + 3 cos 2θ) cos 2θ dθ

+ c (2c1 + 0.96c2 − 9.54)

∫ π/2

0
A (θ) sin2 2θ dθ, (3.4)

where b, c1 and c2 are given in terms of k in (2.24a,b) and (2.28a,b), respectively. The
shear stress depends on the separation, s̄, of near-contacting neighbours other than B, and
on the area fraction, explicitly and through the coordination number, k. Because the direct
contribution of the repulsive force to the integral is very small and the trigonometric
factors associated with the other contributions are even about π/4, the shear stress is
independent of the asymmetry of the particle distribution about π/4. In contrast, this
asymmetry is crucial to the determination of the particle pressure.

The particle pressure,
p ≡ −1

2 (t11 + t22) , (3.5)

is

p = −2c
b
s̄

∫ π/2

0
A (θ) (2F̂ + 3 cos 2θ)dθ. (3.6)

This pressure also depends on s̄ and c and its existence is due to the asymmetry of A about
π/4. This asymmetry is due to that of the separation along the representative trajectory
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Planar extensional flows of a dense suspension

created by F̂ and the influence of the asymmetry of the separation on the angular velocity,
θ̇ . The particle pressure and the mechanisms responsible for it are a focus of this paper; a
particle shear stress may be calculated based on the average flow, although that determined
here is several times less than this, because of the approximate satisfaction of equilibrium.

Particle stresses associated with motion along the representative trajectories are
compared with those measured in Stokesian dynamics simulations after a discussion of
the simulations.

4. Stokesian dynamics

We determine the trajectories of spherical particles in the flows by performing simulation
with the same conditions as the theory (a monolayer with no inertia). We impose a planar
extensional flow with shear rate γ̇ (note that this is equivalent to the extensional rate ε̇ in
Seto, Giusteri & Martiniello (2017)),

u∞(r) = D · r, D =
(

γ̇ 0
0 −γ̇

)
. (4.1a,b)

A simulation box with periodic boundary conditions constantly deforms according to this
velocity gradient D. Significant deformations of the simulation box can be avoided by
using the Kraynik–Reinelt periodic boundary conditions, which rearrange the deformed
box to the original square box after a constant strain interval (Kraynik & Reinelt 1992;
Todd & Daivis 1998; Seto et al. 2017). Thus, the flow can be applied for a sufficiently long
time to evaluate its steady states.

Due to the negligible inertia of the particles, translational and angular velocities can be
determined by solving the force and torque balance equations for the respective particles
(i = 1, . . . , N) (

0
0

)
=

(
F H

T H

)
+

(
F R

0

)
. (4.2)

Here, a vector, such as F H , represents all N particles, F H ≡ (F (1)
H , . . . , F (N)

H ).
The hydrodynamic interactions in the Stokes, zero Reynolds number, regime are linear

in the velocities (
F H

T H

)
= −RFU ·

(
U − u∞

Ω

)
+ RFE : DN, (4.3)

where DN is block diagonal of N copies of D. There exist several levels of approximations
to construct the resistance matrices RFU and RFD. Brady & Bossis (1988) constructed them
using truncated multipole expansions for the far-field interactions and a pairwise solution
for lubrication interactions. In this work, we focus on a special situation in which repulsive
forces are very weak in comparison with viscous drag forces. Under such conditions,
particles tend to approach their neighbours very closely.

Because the resistance coefficients diverge at contacts (s = 0), the nearly touching
hydrodynamic interactions dominate the dynamics. This is why we construct the
approximate resistance matrices with the leading 1/s term in the normal component and
the logarithmic term log(1/s) and following constants in the tangential component, using
the solution for two nearly touching rigid spheres (Jeffrey & Onishi 1984; Jeffrey 1992).
(A detailed description can be seen elsewhere, cf. Mari et al. (2014).) The hydrodynamic
interaction is effective only when s < 0.10; thus, the resistance coefficients remain positive
in this range.
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The repulsive force employed in this work is the same as that used in Nott & Brady
(1994)

F R = F0
λ−1 e−s/λ

1 − e−s/λn, (4.4)

where the range of repulsive force is set by a parameter λ. Because the repulsive force
diverges as F0/s in the limit of contact, s → 0, some force balance can occur at a finite
gap. Because the repulsive force diverges as F0/s in the limit of contact, s → 0, some force
balance can occur at a finite gap. Thus, the gap s remains positive, and contact forces do not
appear in the current system. Note that the divergence in the lubrication coefficient does
not guarantee the presence of a minimum s > 0, thus it leads to a pathologic singularity in
theoretical models (Ball & Melrose 1995).

By solving the force and torque balance equations (4.2) with the hydrodynamic
interaction (4.3) and repulsive force (4.4), the linear and angular velocities (U, Ω) can be
determined at each time step. Integrating these velocities U with a discretized time step,
we obtain trajectories of particles. The particle stress tensor T̂ is given by the symmetrized
first moment

T̂ = 1
V

∑
j

rijF ij + rjiF ji

2
, (4.5)

with the pairwise forces F ij ≡ F ij
Lub + F ij

R and relative positions rij ≡ ri − r j of all
interacting particle pairs. Here, V = 2aL2 is the volume of the monolayer system.
Normalizing the symmetrized first moment with the shear stress of the suspending fluid
2μγ̇ , gives the dimensionless stress tαβ ≡ T̂αβ/2μγ̇ . Thus, we have the dimensionless
particle pressure p ≡ −(t11 + t22)/2 and the dimensionless particle shear stress τ ≡
(t11 − t22)/2, respectively.

5. Results

We simulate monolayer systems with 1000 spheres of radius a at area fractions, c,
between 0.52 and 0.64. We generate initial configurations with a simple algorithm using
random numbers. To reduce effects of such artificially generated initial configurations, the
post-processing analyses use steady state data from 10 to 50 strain units. The repulsive
force is set to be very weak F0/πa3μγ̇ = 10−4 and short-ranged λ/a = 10−2.

In the implementation of the model, we take s̄ = 0.02, θ0 = 10−6, s0 = s1 = 0.10 and
assume that k varies linearly with c from 2.0, at c = 0.52, to 2.5, at c = 0.64. These
values and the relation for k are plausible and they are influenced by those measured in the
simulations. The value s̄ gives values of the shear stresses that are close to those measured.
The value of θ0 is the default absolute tolerance of the solver; smaller values of θ0 have
little influence on the shear stress, but do slightly improve the prediction of the pressure.
The initial and final values of the separation were those employed in the simulations, and
the variation of near-contacting neighbours with concentration, k(c), was that measured in
the simulation.

Figure 2 shows plots of the shear stress τ and pressure p measured in the simulation
and predicted by the model, over a range of area fraction c. The stresses in the simulation
increase in a similar manner with c, but the ratio τ/p decreases gradually. The predicted
particle pressure is somewhat less than that measured in the simulations and the predicted
shear stress is somewhat greater. The ratio of shear stress to pressure decreases with area
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Figure 2. Shear stress τ (black), pressure p (red) and stress ratio (blue) over a range of concentrations, as
measured in the simulation (solid) and predicted by the model (dashed).
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Figure 3. (a) Near-contact contributions to τ and p. (b) The partial stress obtained using only the normal
component of the pairwise force in (4.5).

fraction, as in the numerical simulations; but, because of under- and over-predicting, we
have a greater value for the ratio.

Most of stress measured in the simulations is generated by closely approaching
particles – defined as those with a separation less than one per cent of the particle radius.
As seen in figure 3, more than 90 % of shear stress is generated from particle pairs with
s < 0.01. Moreover, such near-contacting particles generates almost 100 % of the pressure
p. Finally, approximately 80 % of the shear stress τ comes from the normal force.

We can check the concentration of stress contribution in the very narrow range of s
using distribution maps. We calculate the spatial distribution in ξ ≡ log s. The statistics
are calculated with discretized bins ξk ≡ ξ1 + (k − 1)ξ , k = 1, . . . , kmax. ξ1 = log 10−7

and ξkmax = log 10−1. The results are plotted with s in a logarithmic scale. Figure 4(a)
displays the distribution of shear stress, indicating that the stress tends to be concentrated
near the stagnation point (θ, s) ≈ (0, 10−6). The region of concentration spreads until
θ ∼ π/4. We also separately calculate the stress of (4.5) constructed with normal forces
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Figure 4. (a) Stress concentration, (b) trajectories, with colours denoting their average contribution to the
stress. Both figures are for c = 0.52.

F ij
n ≡ F ij · nijnij and tangential forces F ij

t ≡ F ij − F ij · nijnij. As shown in figure 3(b),
80 % of the shear stress τ indeed comes from the normal forces. Besides systematic
motions due to the shearing deformation, particle motions fluctuate due to occasional
configurations of surrounding particles. Therefore, it is necessary to reconstruct averaged
trajectories to compare with theoretical ones. To this end, we first calculate the averaged
relative-velocity field 〈U (j) − U (i)〉 over all interacting pairs i and j in terms of the relative
position coordinate rij = (2a + s, θ). Owing to the symmetry of planar extension, the
statistics are taken on a quadrant: 0 < θ < π/2. Because we consider a situation that is
very close to the singularity (Ball & Melrose 1995), the particles tend to approach very
close to contact, i.e. a bundle of trajectories is compressed into an extremely narrow range
of s. To avoid a loss of precision due to averaging, we carry out the statistical data binning
with ξ instead of s.

Once we evaluate the velocity field in the ξ–θ space, i.e. (〈ξ̇〉 = 〈ṡ/s〉, 〈θ̇〉), we can
obtain trajectories as streamlines of the velocity field. In figure 4(b), trajectories of the
system with c = 0.52 and various initial positions are plotted. The trajectories are coloured
from blue to red, according to their contribution to the stress. We identify the band of
significant trajectories as those with a separation of less than 10−2.

In figure 5, we show the particle number density, measured in the simulations for c =
0.64, with particle trajectories superposed. The near-contact distribution A(θ), normalized
by the total number of particles, is obtained by integrating across the trajectories in the
region below s = 10−2. The product of the integral of the particle probability distribution
over the area of figure 5 below s = 10−2 and the total number of particles is the
coordination number.

In figure 6(a), we plot the trajectories from the simulation, for the smallest separation
in figure 4(b), and the predicted representative trajectories of the model for concentrations
of 0.52 and 0.64. The representative trajectories are located within the band and have a
shape similar to the individual trajectories at smaller separations. In figure 6(b), we show
distributions, A(θ), measured in the simulation and predicted along the representative
trajectories for two values of the concentration. These share the same features and have
a similar agreement as the trajectories. The asymmetry of the distributions result from the
influence of the repulsive force that breaks the symmetry of approach and departure.
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Figure 5. Particle number density over s and θ , with particle trajectories superposed for c = 0.64.
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Figure 6. (a) Closest trajectories in the numerical simulation (solid) and the representative trajectories
(dashed), for c = 0.52 (blue) and c = 0.64 (red). (b) The distribution A(θ) along the representative trajectory,
as measured in the simulation (solid) and predicted by the model (dashed), for c = 0.52 (blue) and c = 0.64
(red).

We have employed information from the simulation on the variation in the coordination
number as a function of concentration and the value of separation of near-contacting
neighbours necessary to reproduce the measured particle shear stress. These, used in
the model, gives it the capacity to generate particle trajectories that are representative
of the stress-producing trajectories of the simulation and particle distributions along
the representative trajectories with the appropriate asymmetry about π/4 to predict a
reasonable variation of a particle pressure.

We next indicate how the structure of the model can be used as the basis for a continuum
theory of dense suspensions and to provide a context for existing theories.
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6. Tensorial formulation

As elaborated upon by Onat & Leckie (1988) and Advani & Tucker (1987, 1990), the
distribution of near-contacting neighbours can be represented by an infinite series with
respect to basis functions, such as

fαβ = d̂α d̂β − 1
2δαβ (6.1)

and

gξηρβ = d̂ξ d̂ηd̂ρ d̂β − 1
6(δξηd̂ρ d̂β + d̂ξ d̂ηδρβ + d̂ξ d̂ρδηβ + d̂ηd̂βδξρ + δξβ d̂ηd̂ρ

+ d̂ξ d̂βδηρ) + 1
24(δξηδρβ + δξρδηβ + δξβδηρ) : (6.2)

A(θ) = k
2π

(1 + 4Zαβ fαβ + 16Bξηρβgξηρβ + · · · ). (6.3)

The coefficients Z and B are completely traceless and completely symmetric tensors,
related to the distribution through

Zαβ =
∫ 2π

0
A(θ)fαβ dθ (6.4)

and

Bξηρβ =
∫ 2π

0
A(θ)gξηρβ dθ. (6.5)

These are the second and fourth moments of the distribution, respectively.
The stress of (3.1) may be written in terms of these as

Tαβ = 4nak
F0

s̄
bδaβ − nπμa3 (M + N)Bαβγ ηDγ η − nπμa3 (M − N)

k
4
δαηδβγ Dγ η

− nπμa3 (M + N)
1
6
δαβZηγ Dγ η − nπμa3 2M − N

6
(δαηZγβ + δβηZγα)Dηγ ,

(6.6)

where

M = 6b
s̄/a

and N = 2c1 + 0.96c2 − 9.54; (6.7a,b)

or, more compactly, as

Tαβ = na
(

4kb
F0

s̄
δaβ + Gαβγ ηDγ η

)
, (6.8)

where

Gαβγ η = −nπμa3
[

M − N
4

kδαηδβγ + M + N
6

δαβZηγ + 2M − N
6

(δαηZγβ + δβηZγα)

]
− nπμa3(M + N)Bαβγ η. (6.9)

The stress depends only on the second and fourth moments of the distribution, although an
approximation of the distribution in terms of these does not provide a good representation
of it. Because we predict the distribution function, we are able to capture the essential
role played by the fourth moment. This places our theory in the context of the work of
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Chacko et al. (2018), in which numerical simulations confirm the need of the fourth
moment, in addition to the second moment, to describe stress reversal.

With knowledge of the distribution function, it is possible to evaluate the components of
the second and fourth moments. In particular, when F = 0, the only non-zero components
are B1111 = B2222 = −B1122; when F /= 0, then Z11 = −Z22 are also different from zero.
For example, when c = 0.64, k = 2.50 and F̂ = 10−4, their numerical values are B1111 =
0.25 and Z11 = −0.57. Then, with (6.8), the dimensionless particle pressure is

p = c
b
s̄

(F − 3Z11) = 8.51. (6.10)

Given the force and torque balances, it is possible to characterize the role played by the
torque balance in determining features of the trajectory and the distribution of particles
along it. Ignoring the torque balance is equivalent to taking S = 0, or c2 = 0 in (2.27). This
has an important influence on θ̇ . Then, because both the distribution of near-contacting
neighbours and the interval over which it is defined depend upon θ̇ , there is a dependence
of the stress upon it. For example, when c = 0.64 and the torque balance is ignored, p
is 14.81, rather than 8.51. That is, the value of p is affected by the balance through the
distribution. In contrast, τ is 18.60, rather than 18.94 and changes little, because it is
independent of the shape of the distribution.

In the absence of the knowledge of the distribution function, it is possible to develop
evolution equations for the approximate determination of its moments (e.g. Prantil, Jenkins
& Dawson 1993). Phan-Thien (1995) and Stickel et al. (2006) employ such an equation
for the second moment, and break the symmetry of approach and departure by including
a term in it that is proportional to [tr(D2)/2]1/2. Goddard (2006) introduces a memory
integral for the second moment – a representation for the solution to its evolution
equation – that breaks this symmetry by incorporating a term proportional to the D2.
Gillissen & Wilson (2018, 2019) and Gillissen et al. (2019) distinguish between an
anisotropic distribution of near contacts and an isotropic distribution of outer contacts,
introduce a difference in association and disassociation of these contacts in the directions
of compression and extension. This difference appears in the evolution equation of the
second moment and provides the asymmetry necessary for normal stress differences.
Theories of this type produce stress relations that are linear in the strain rate; that is, rate
dependent. In contrast, we employ only a short-range repulsive force that is independent of
the shear rate. Consequently, our stress relation contains contributions that are independent
of rate.

7. Conclusion

We have considered a planar extensional flow of a dense layer of spheres in a viscous
fluid. In addition to the viscous forces associated with the flow, we assumed that there
was a short-range repulsive force between the spheres. We focused on pairs of spheres,
assumed that their neighbours translate with the average flow, and required that they be in
force and moment equilibrium with each other and their neighbours. We then assumed that
the neighbourhoods of pairs with the same orientation were equal to the average over that
orientation; this permitted us to write equations for the radial and angular velocity of the
relative motion of a single pair as they began and ended an interaction, and the orientation
of their line of centres with the axis of greatest compression of the flow.

The possible determination of the distribution of near-contacting particles along
the trajectory then leads to expressions for the particle shear stress and pressure.
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Stokesian dynamics simulations provided a value of particle shear stress that permitted
the determination of the angle of departure for the trajectories and the separation of
near-contacting neighbours. The variation of the shear stress with area fraction suggested
the variation of the number of near-contacting neighbours per particle with area fraction.
With this information, numerical values of the particle distribution and the particle
pressure could be calculated.

The simplicity of the micro-mechanical model makes it possible to understand the
influence of the normal and tangential components of the viscous force and the short-range
repulsive force on the shape of the trajectory and the distribution of particles along it. It
also permits the derivation of a continuum theory for dense suspensions based on the
micro-mechanics of equilibrated pairs of particles and a better understanding of those
based on phenomenology. However, it is important to note that correlated motions of
the particles along the axis of compression in the simulations have no counterpart in the
model; these are likely to force approaching particles into trajectories with significantly
smaller separations. The small value of θ0 necessary in the model may be a way for it
to incorporate the influence of such particles. Other modelling issues that remain involve
the parameters k and s̄. We believe that it is likely that measurements of the relationship
between k and c in three dimensions will be robust and apply to different sharing flows;
the determination of s̄ is less certain, although methods employed by Nazockdast & Morris
(2013) may permit its prediction.

The two-dimensional, simple shear flow that was considered earlier by Jenkins & La
Ragione (2015) is much more complicated. In it, there are upstream and downstream
trajectories, roughly, on either side of the direction of greatest rate of compression. The
exact location of the limiting trajectory is influenced by the rotation of the average flow
and, in the calculation, its location is difficult to determine. In the earlier study, the
separation, was taken to be the average separation calculated by Torquato (1995) for a
dense, equilibrated system of colliding, elastic spheres in two dimensions. This varies
between 0.13 and 0.06 as c varies from 0.52 and 0.64. These values are much greater than
the value 0.02 employed here. However, in the calculation for simple shear we obtain an
excellent agreement between theory and simulation for the shear stress because the length
of the particle interaction was taken to be much longer, and probably compensated for
the greater separation. Given our experience with the simpler planar extension, we should
return to the simple shear flow.

The formulation for the two-dimensional planar extensional flow can be easily extended
to an axisymmetric extensional flow in three dimensions. The only essential change is in
the components of the average strain rate tensor. The three-dimensional calculation can
then incorporate particle elasticity and friction to permit a study of shear thickening and
comparison with physical experiments.
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Appendix A

Force equilibrium equation for particle A is

0 = 6πμaK (BA)
αβ v

(BA)
β − F0

s(BA)
d̂(BA)

α − 9.54πμa2(t̂βDβξ d̂ξ )t̂(BA)
α

+ πμa2
[
ln

( a
s(BA)

)
− 0.96

]
ω(A) t̂(BA)

α + πμa2 ln
( a

s(BA)

)
ω(B) t̂(BA)

α

+
N(A)∑
n /=B

{
3
s̄

a3πμ
(

Dβξ d̂(nA)
ξ d̂(nA)

β

)
d̂(nA)

α + πμa2
[
ln

(a
s̄

)
− 0.96

]
ω(A) t̂(nA)

α

}

+
N(A)∑
n /=B

{
2a2πμ

[
ln

(a
s̄

)
− 0.96

] (
Dβξ t̂(nA)

ξ d̂(nA)
β

)
t̂(nA)
α − F0

s̄
d̂(nA)

α

}
. (A1)

Similar expression can be written for particle B. The difference between force
equilibrium A and B leads to

0 = 12πμaK (BA)
αβ v

(BA)
β − 2

F0

s(BA)
d̂(BA)

α − 2 × 9.54πμa2
(

t̂(BA)
β Dβξ d̂(BA)

ξ

)
t̂(BA)
α

+ a2πμ
[
2 ln

( a
s(BA)

)
− 0.96

]
St̂(BA)

α + a2πμ
[
ln

(a
s̄

)
− 0.96

]
SεαβY (BA)

β

+ 2
3
s̄

a3πμDβξ J(BA)
αξβ + 2a2πμ

[
2 ln

(a
s̄

)
− 1.92

]
Dβξ J(BA)

αξβ − 2
F0

s̄
Y (BA)

α , (A2)

where
S = ω(A) + ω(B),

J(BA)
αξβ =

N(A)∑
m /=B

d̂(mA)
α d̂(mA)

β d̂(mA)
ξ ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A3)

and

Y (BA)
α =

N(A)∑
m /=B

d̂(mA)
α . (A4)

Moment equilibrium for particle A is

0 = 6πμaK (BA)
αβ v

(BA)
β εαρ d̂(BA)

ρ − 9.54πμa2(t̂βDβξ d̂ξ )

+ πμa2
[
ln

( a
s(BA)

)
− 0.96

]
ω(A) + πμa2 ln

( a
s(BA)

)
ω(B)

+ εαρ

N(A)∑
n /=B

{
3
s̄

a3πμ
(

Dβξ d̂(nA)
ξ d̂(nA)

β

)
d̂(nA)

α +πμa2
[
ln

(a
s̄

)
−0.96

]
ω(A) t̂(nA)

α

}
d̂(nA)

ρ

+ εαρ

N(A)∑
n /=B

{
2a2πμ

[
ln

(a
s̄

)
− 0.96

] (
Dβξ t̂(nA)

ξ d̂(nA)
β

)
t̂(nA)
α − F0

s̄
d̂(nA)

α

}
d̂(nA)

ρ . (A5)
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A similar expression holds for particle B. The sum of moment equilibrium for particles A
and B is

0 = 12εαβK (BA)
αμ v(BA)

μ d̂(BA)
β − 2 × 9.54a

(
t̂(BA)
μ Dμξ d̂(BA)

ξ

)
+ a

[
2 ln

( a
s(BA)

)
− 0.96

]
S + a

[
ln

(a
s̄

)
− 0.96

]
S (k − 1)

+ 2a
[
2 ln

(a
s̄

)
− 1.92

]
εξνA(BA)

νμ Dμξ , (A6)

where

A(BA)
νμ =

N(A)∑
m /=B

d̂(mA)
μ d̂(mA)

ν . (A7)

In both the difference of force equilibrium and the sum of moment equilibrium, we have
made the following approximations

A(BA)
νμ = A(AB)

νμ ,

J(BA)
αξβ = −J(AB)

αξβ ,

⎫⎬
⎭ (A8)

and

Y (BA)
α = −Y (AB)

α . (A9)

The projection of the difference in force equilibrium along the direction orthogonal to
t(BA)
α is

3πμa
a

s(BA)
ṡ(BA) − 2

F0

s(BA)
+ 6πμa2 a

s̄
d̂αJαβγ Dβγ − 2

F0

s̄
Y α d̂α = 0, (A10)

while the component along t(BA)
α is

0 = 12πμaK (BA)
αβ v

(BA)
β t(BA)

α − 2 × 9.54πμa2
(

t̂(BA)
β Dβξ d̂(BA)

ξ

)
+ a2πμ

[
2 ln

( a
s(BA)

)
− 0.96

]
S + a2πμ

[
ln

(a
s̄

)
− 0.96

]
SεαβY (BA)

β t(BA)
α

+ 2
3
s̄

a3πμDβξ J(BA)
αξβ t(BA)

α + 2a2πμ
[
2 ln

(a
s̄

)
− 1.92

]
Dβξ J(BA)

αξβ t(BA)
α . (A11)

Using (A11) and (A6), we solve for S

S = − 12b
(4b − k + 1) s̄[ln(1/s̄) − 0.96]

sin 2θ, (A12)

or

S = −2c2 sin 2θ, (A13)

where

c2 = 6b/ [s̄ (4b − k + 1)]
ln (1/s̄) − 0.96

. (A14)
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Planar extensional flows of a dense suspension

Appendix B

The Matlab m-files for the numerical solution of the ordinary differential equations and
boundary conditions follow.
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