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Two players share a connected graph with non-negative weights on the vertices. They

alternately take the vertices (one in each turn) and collect their weights. The rule they have

to obey is that the remaining part of the graph must be connected after each move. We

conjecture that the first player can get at least half of the weight of any tree with an even

number of vertices. We provide a strategy for the first player to get at least 1/4 of an

even tree. Moreover, we confirm the conjecture for subdivided stars. The parity condition

is necessary: Alice gets nothing on a three-vertex path with all the weight at the middle.

We suspect a kind of general parity phenomenon, namely, that the first player can gather

a substantial portion of the weight of any ‘simple enough’ graph with an even number of

vertices.

1. Introduction and conjecture

A graph-grabbing game is played on a finite connected graph with non-negative weights

on the vertices (from now on, simply a graph). There are two players: Alice and Bob.

Starting with Alice, they take the vertices alternately one by one and collect their weights.

The vertices taken are removed from the graph. The choice of a vertex to be played in

each move is restricted by the rule that after each move the remaining vertices form a

connected subgraph. In particular, playing on a tree, the players pick and remove leaves.

Both players aim at maximizing their outcomes at the end of the game, when all vertices

have been taken.

The first problem in Winkler’s puzzle book [7] is to prove that Alice can guarantee

herself at least half of the weight of any path on an even number of vertices. The strategy

is very simple: two-colour the vertices and gather the heavier colour. On the other hand,

Alice cannot expect any positive score for odd paths: just consider a path on three vertices

with all the weight at the middle. We believe this dichotomy of parities holds for all trees.
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Figure 1. G5: Alice cannot secure more than 1.

Conjecture 1.1. Alice can secure at least 1
2

of the weight of any tree with an even number

of vertices.

Further on we present a strategy for Alice to collect 1
4

of the weight of any tree with

an even number of vertices (Theorem 2.1). We also confirm the conjecture for subdivided

stars, that is, trees with at most one vertex of degree greater than 2 (Theorem 2.2). Note

that any odd tree on at least three vertices can be weighted so that Alice gets nothing (it

suffices to put the whole weight at one non-leaf vertex).

This parity phenomenon does not hold for all graphs in the graph-grabbing game.

There is no positive lower bound for the fraction of total weight that Alice can guarantee

herself on any graph with an even number of vertices. Example 1.2 describes a sequence

of even graphs on which Alice’s guaranteed gain tends to zero. Nevertheless, all such

sequences known by the authors contain arbitrarily large cliques. There might exist a

function f(n) > 0 such that Alice can secure at least f(n) of the weight of any graph with

an even number of vertices and with clique-size at most n.

Example 1.2. Gn = (V , E, w) is a weighted graph with 2n vertices V = {a1, . . . , an,

b1, . . . , bn}. The bi form a clique: bi E bj for all i �= j. The only neighbour of each ai
is bi. The weights are distributed on the bi: w(ai) = 0 and w(bi) = 1, and thus the total

weight is n. Alice has no strategy to gather more than 1 from Gn.

The graph-grabbing game on a cycle has been studied as the so-called pizza game:

vertices are seen as slices of a pizza. The two-colouring argument shows that Alice can

get at least half of an even pizza, and there are examples of odd pizzas where she can get

only 4
9

(see Figure 2). Winkler [6] conjectured in 2008 that Alice can secure at least 4
9

of

any pizza, and this has been proved by two independent groups of researchers [1, 3].

In the pizza game not only the remaining part but also the taken part is connected

throughout the game. This leads to another generalization for graphs, in which the taken

part is required to be connected. In this variant Alice starts by taking any vertex and

then the players alternately pick vertices adjacent to already taken ones. The parity of the

number of vertices makes a difference in this game as well, but this time odd graphs are

better for Alice. In particular, Alice has a strategy to get at least 1
4

of any odd tree, while

even trees can be arbitrarily bad for her [4].
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Figure 2. Alice can guarantee herself at most 4
9 of the pizza.

Independent research on generalizations of pizza game, also leading to the two

aforementioned variants, has been carried out by Cibulka, Kynčl, Mészáros, Stolař and

Valtr [2]. They focus on connectivity and computational complexity issues. In particular,

they provide a sequence of graphs of arbitrarily high connectivity and Alice’s guaranteed

gain tending to zero. They also prove that it is PSPACE-complete to decide who can

get half of the weight of the graph in the graph-grabbing game. The complexity of the

problem when input graphs are restricted to trees is unknown.

The name graph-grabbing game follows Moshe Rosenfeld, who proposed the game for

trees and called it the gold-grabbing game [5].

2. Results

Theorem 2.1. Alice can secure at least 1
4

of the weight of any tree with an even number of

vertices.

Proof. A two-coloured tree is a tree whose vertices are coloured black or white so that

no two adjacent vertices have the same colour. We are going to prove that given a two-

coloured tree T with an even number of vertices, Alice can secure at least 1
2

of the total

weight of a colour she chooses. This yields at least 1
4

of the total weight of T for Alice.

The proof goes by induction on the number of vertices of T (only even numbers). For

a tree with two vertices the statement is trivial. To get through the induction step we

construct a strategy for Alice which leads the game to a point (after some move of Bob)

at which the weight of black vertices she has taken is at least the weight of black vertices

taken by Bob. We distinguish two cases.

Case 1: T has a black leaf.

This is an easy case. Alice takes the heaviest available black vertex. With this move she

does not uncover any new black vertex, so Bob can only respond with a white vertex or a

non-heavier black vertex. In both scenarios Alice gains no less than Bob from the black

part, and for the rest of the tree the induction hypothesis can be applied.

Case 2: All leaves of T are white.

First observe that there must be a black vertex of degree greater than 2: if all black

vertices have degree 2 then the total number of edges is even, so T has an odd number

of vertices, which contradicts the assumption. Let K be the subtree of T spanned by all
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core

Figure 3. Illustration for Case 2. Odd components (marked with dashed lines) have white roots, even

components have black roots.

black vertices of degree greater than 2. We call K the core of T, and we call connected

components of T − K simply components. The root of a component is its only vertex

adjacent to the core. A similar argument with counting edges shows that a component

with a white root has an odd number of vertices and a component with a black root

has an even number of vertices (see Figure 3). Since all leaves of the core are black and

have degree greater than 2, at least two of their (white) neighbours must be roots of

components. Therefore, taking a vertex from the core is possible only after at least two

components with an odd number of vertices have been entirely shared out.

Let C1, . . . ,Ck be the components, and assume C1 is a component with an odd number

of vertices and the least total weight of black vertices among all components with an odd

number of vertices.

Alice starts with any vertex from C1. The following invariants are to be kept till the

moment the induction hypothesis is applied:

(i) for i �= 1, all vertices in Ci available for Bob are white,

(ii) no component with an odd number of vertices other than C1 has been entirely shared

out.

Subsequent moves of Alice depend on what Bob has just played. Observe that by (ii)

no vertex from the core is available. Thus, Bob can choose only from the vertices in the

components.

Case 1: Bob takes a vertex from C1.

Alice takes another vertex of C1. Such a vertex exists as C1 has an odd number of

vertices. Clearly, both invariants are preserved.

Case 2: Bob takes a vertex v from Ci with i �= 1.

If v is not the root of Ci then Bob’s move uncovers exactly one black vertex in Ci,

which is now a new leaf. Alice takes it. It may be the root of Ci but then Ci has an even

number of vertices, so taking the last vertex of Ci does not violate (ii). All vertices that

remain available in Ci are white exactly as (i) states.

If v is the root of Ci then Ci has an odd number of vertices and all of them have been

taken. Note that all black vertices taken by Bob are in C1, and Alice has taken all black
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vertices from Ci. Since the weight of black vertices in Ci is at least the weight of black

vertices in C1, Alice has collected at least as much as Bob from the black part. For the

remaining tree the induction hypothesis is applied.

Theorem 2.2. Alice can secure at least 1
2

of the weight of any subdivided star with an even

number of vertices.

Proof. Let T be the given subdivided star and w be the weight function. The proof goes

by induction on the number of vertices of T, just like the proof of Theorem 2.1. If T is a

path then the statement is easy, as discussed in the Introduction. Thus suppose T is not

a path.

Let v be the vertex of T of degree d � 3. Other vertices of T form d paths uk1uk2 . . . uk�k
for k = 1, . . . , d, which we call arms of T. Here u11, . . . , ud1 are the d leaves of T and

u1�1
, . . . , ud�d are the d neighbours of v.

We define the alternating weight of any prefix uk1 . . . ukj of the kth arm to be

ŵ(uk1 . . . ukj) =

j∑

i=1

(−1)iw(uki).

The idea behind this definition is as follows. Suppose at some point of the game the

players start to play on the kth arm and they alternately take the vertices uk1, . . . , ukj .

Then ŵ(uk1 . . . ukj) measures the relative gain of the second player from this line of play.

We say that uk1 . . . ukj has the even prefix property if we have ŵ(uk1 . . . uki) > 0 for any

even i � j. The kth arm is called bad if it has the even prefix property and its length �k
is even. Otherwise the kth arm is good. The intuition is that it is (almost) never profitable

to start playing in a bad arm, because the other player can always continue in the same

arm and gain more.

We will present two complementary strategies: one for the case of at most two good

arms, and one for the other case. Only the latter uses induction.

Strategy 1: T has at most two good arms.

Since each bad arm has even length and there is an even number of vertices in total,

exactly one arm has odd length. Assume without loss of generality that arm 1 has odd

length and that arms 3, . . . , d are bad. Two-colour the vertices of T properly with black

or white. One of the colours, say black, carries at least half of the total weight of T. We

will show that Alice can secure at least the total weight of all black vertices.

Case 1: u11 is black and u21, . . . , ud1, v are white.

In this case the strategy for Alice is just to take the only black leaf available. This leads

to a position where all leaves are white. Bob is forced to take a white leaf and thus to

uncover a new black leaf for Alice. This way Alice gathers all black vertices.

Case 2: u11 is white and u21, . . . , ud1, v are black.

Initially arms 1, 2 are marked active and arms 3, . . . , d are marked passive. Alice starts

by taking u21. After Bob takes uki, Alice responds in the same arm by taking uk,i+1 unless
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i = �k . In the latter case Alice chooses any remaining passive arm, marks it active and

takes its available vertex. If there are no more passive arms, the remaining part of T is

a path and therefore Alice can easily collect all remaining black vertices. This strategy

guarantees that Alice takes black and Bob takes white vertices, except that playing in

arms 3, . . . , n when passive Alice takes white vertices and Bob takes black ones. Vertices

played when an arm is passive form an even prefix of it. Since arms 3, . . . , n are bad,

the weight of white is greater than the weight of black in these prefixes. Therefore, Alice

scores at least the total weight of all black vertices.

Strategy 2: T has at least three good arms.

The strategy we are going to present now leads the game to a point at which Alice has

gathered at least as much as Bob after some move of Bob. Then we apply the induction

hypothesis to show that Alice can secure at least half of the remaining part of T.

For any good arm k let rk be such that

• rk is odd;

• uk1 . . . ukrk has the even prefix property;

• ŵ(uk1 . . . ukrk ) is maximized.

Assume without loss of generality that arm 1 minimizes ŵ(uk1 . . . ukrk ) among all good

arms k. Alice starts by taking u11. Then, each time Bob takes a vertex uki, Alice responds

in the same arm by taking uk,i+1 until

(a) Bob takes u1i1 such that ŵ(u11 . . . u1i1 ) � 0, or

(b) Bob takes ukrk from a good arm k �= 1.

We will prove that

• when (a) or (b) happens, Alice has just gathered at least as much as Bob and can

therefore play inductively in the remaining part of T;

• if Bob takes uki and neither of (a), (b) happens, then i < �k , so the vertex uk,i+1 exists;

• Bob cannot take v.

Suppose that (a) happens. We may assume without loss of generality that vertices were

taken from arms 1, . . . , c for some 1 � c � d. Let u2i2 , . . . , ucic be the last vertices taken

(by Alice) from arms 2, . . . , c respectively. For good arms k we have ik < rk , as otherwise

(b) would happen before. Therefore, by the even prefix property in the definitions of rk
and of a bad arm, ŵ(uk1 . . . ukik ) > 0 for every k = 2, . . . , c. Observe that ŵ(uk1 . . . ukik ) is

the difference between Alice’s and Bob’s gain in arm k, and the difference between Alice’s

and Bob’s gain in arm 1 equals −ŵ(u11 . . . u1i1 ) � 0.

Now, suppose that (b) happens. The same argument as above shows that Alice has

scored no less than Bob in arms other than 1 and k. Let i1 be the last vertex taken (by

Alice) from arm 1. Since (a) did not happen before, u11 . . . u1i1 has the even prefix property.

Therefore,

ŵ(u11 . . . u1i1 ) � ŵ(u11 . . . u1r1
) � ŵ(uk1 . . . ukrk ).

It suffices to observe that the difference between Alice’s and Bob’s gain in arms 1 and k

together is ŵ(uk1 . . . ukrk ) − ŵ(u11 . . . u1i1 ) � 0.
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Suppose that Bob takes uk�k and neither of (a), (b) happens. If k = 1 then �1 is even,

and u11 . . . u1�1
has the even prefix property, as otherwise (a) would happen now or before.

This contradicts the fact that arm 1 is good. If k �= 1 then �k is odd, so arm k is good.

Therefore, (b) would happen now or before.

Finally, to show that Bob cannot take v, observe that taking v is possible only if all

arms except one are entirely taken out. However, there are at least three good arms, of

which only arm 1 can be entirely taken out before (b) happens.
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