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Utilizing an optically index-matched facility and high-resolution particle image
velocimetry measurements, this paper examines flow structure and turbulence in
a rough-wall channel flow for Reτ in the 3520–5360 range. The scales of pyramidal
roughness elements satisfy the ‘well-characterized’ flow conditions, with h/k ≈ 50 and
k+ =60 ∼ 100, where h is half height of the channel and k is the roughness height.
The near-wall turbulence measurements are sensitive to spatial resolution, and vary
with Reynolds number. Spatial variations in the mean flow, Reynolds stresses, as well
as the turbulent kinetic energy (TKE) production and dissipation rates are confined
to y < 2k. All the Reynolds stress components have local maxima at slightly higher
elevations, but the streamwise-normal component increases rapidly at y < k, peaking
at the top of the pyramids. The TKE production and dissipation rates along with
turbulence transport also peak near the wall. The spatial energy and shear spectra
show an increasing contribution of large-scale motions and a diminishing role of
small motions with increasing distance from the wall. As the spectra steepen at
low wavenumbers, they flatten and develop bumps in wavenumbers corresponding
to k − 3k, which fall in the dissipation range. Instantaneous realizations show that
roughness-scale eddies are generated near the wall, and lifted up rapidly by large-scale
structures that populate the outer layer. A linear stochastic estimation-based analysis
shows that the latter share common features with hairpin packets. This process floods
the outer layer with roughness-scale eddies, in addition to those generated by the
energy-cascading process. Consequently, although the imprints of roughness diminish
in the outer-layer Reynolds stresses, consistent with the wall similarity hypothesis, the
small-scale turbulence contains a clear roughness signature across the entire channel.

Key words: boundary layers, boundary layer structure, turbulent boundary layers

1. Introduction
In a comprehensive review, Raupach, Antonia & Rajagopalan (1991) extend the

Reynolds number similarity hypothesis of Townsend (1976) to flow over rough walls.
In their wall similarity hypothesis, they state that outside of the ‘roughness sublayer’,
turbulent motions in a boundary layer at high Reynolds numbers are independent

† Email address for correspondence: katz@jhu.edu
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of the wall roughness and viscosity. This roughness sublayer, extending from the
wall up to 2–5 roughness length scales (typically k), is the region where the flow
is dynamically influenced by length scales associated with the roughness elements.
Since then, numerous studies have investigated the validity and applicability of this
hypothesis, too many to summarize in a single paper. Strong support has been
provided recently for zero-pressure-gradient (ZPG) boundary layer flows over three-
dimensional roughness by e.g. Schultz & Flack (2003) and Flack, Schultz & Shapiro
(2005). Conversely, some other ZPG boundary layer studies (e.g. Krogstad, Antonia &
Browne 1992; Krogstad & Antonia 1999; Tachie, Bergstrom & Balachandar 2000,
2003; Keirsbulck et al. 2002), have observed significant changes to the Reynolds
stresses that extend well into the outer layer for flows over woven mesh and transverse
bar roughness. By examining data presented in previous papers, Jiménez (2004) points
out that most rough-wall studies have had a low value of either scale separation δ/k

(δ being the boundary layer thickness) or the equivalent sand roughness Reynolds
number, k+

s =Uτks/ν (where Uτ is the friction velocity and ks is the equivalent sand
roughness height). In the former case, the flow can be better described as turbulence
over obstacles, while in the latter case, flows are located in the transitionally rough
regime. To obtain a ‘well-characterized’ rough-wall turbulent boundary layer for
examining Townsend’s hypothesis, both k+ and δ/k must exceed threshold values
(typically k+ > 50–10 and δ/k > 40), and their product, i.e. δ+, should be at least
4000. Following this guidance, recent experiments (e.g. Shockling, Allen & Smits
2006; Wu & Christensen 2007; Schultz & Flack 2007; Volino, Schultz & Flack 2009)
have shown that the wall similarity hypothesis holds in ZPG turbulent boundary
layers over three-dimensional roughness that satisfy the well-characterized condition.
Krogstad et al. (2005) and Bakken et al. (2005) show that the same conclusions apply
to turbulent channel flows over two-dimensional and three-dimensional roughness
on both the bottom and top walls, even when the flow conditions do not strictly
attain Jiménez’s threshold for well-characterized flow. The only exception has been
reported for a ZPG boundary layer with a two-dimensional roughness (e.g. Djenidi
et al. 2008). When the flow satisfies the wall similarity hypothesis, the impact of
roughness on the outer layer can be accounted for as a mean momentum deficit
whose magnitude depends on the roughness geometry. All other effects associated
with the surface condition are confined to the roughness sublayer. The motivation for
studying the roughness sublayer is not only to associate the local turbulence statistics
with geometric parameters of the rough surface but also to elucidate the fundamental
processes involved, and understand how they affect the influence zone of roughness.
Answering these questions is essential for the development of appropriate modelling
tools.

However, due to characteristics of near-wall flow phenomena, the current
flow measurement techniques encounter unavoidable challenges. The accuracy of
traditional single-point measurement techniques, such as hot-wire probes, is adversely
affected by the high-intensity turbulence as well as low mean velocity near and
within the roughness (Raupach et al. 1991). Nonetheless, until recently, most of our
experimental data on the rough-wall boundary layer have been obtained using hot
wires (e.g. Perry, Lim & Henbest 1987; Perry & Li 1990; Krogstad et al. 1992).
Optical techniques such as laser Doppler velocimetry (LDV) and particle image
velocimetry (PIV) are susceptible to interfacial reflection at the solid surface, which
leads to signal deterioration in the near-wall measurements. In the few cases that
have focused on the roughness sublayer, the experimental set-ups are located in the
low δ/k regime (e.g. Grass 1971; Dancey et al. 2000). Owing to the rapid advances on
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Near-wall turbulence statistics and flow structures in a turbulent channel flow 3

computation speed, direct numerical simulations (DNS) have been applied extensively
to study turbulence over smooth walls at increasingly higher Reynolds numbers, e.g.
Reτ = 180 (Kim, Moin & Moser 1987), Reτ = 590 (Moser, Kim & Mansour 1999)
and Reτ = 2000 (Hoyas & Jiménez 2008). However, adapting this tool for rough-wall
turbulence requires much denser computational grids to resolve the three-dimensional
roughness topography and neighbouring flow structures. Consequently, the DNS of
rough-wall turbulence has been mostly implemented for two-dimensional roughness.
The corresponding Reynolds numbers are relatively low compared with experiments
even for the latest simulations, e.g. at Reθ = 1400 in a boundary layer (Lee & Sung
2007) and at Reτ =730–1064 in channel flows (Burattini et al. 2008). For the DNS of
the flow above three-dimensional roughness, the achievable Reynolds number is even
lower, e.g. Reτ = 400 (Bhaganagar, Kim & Coleman 2004). In these cases, the flows
are either located in the transitionally rough regime (low k+

s ) or close to the flow over
obstacles (low δ/k). Except for the study by Bhaganagar et al. (2004), the distributions
of roughness elements are also sparse, with the distance between them exceeding 4k.
Nevertheless, some recent two-dimensional, sparse roughness studies have provided
valuable information on flow structures and turbulence statistics in the roughness
sublayer. For instance, in the DNS of a turbulent channel flow over two-dimensional
ribs by Ikeda & Durbin (2007), they observed that disruption of the three-dimensional
vortical streak in the roughness sublayer is responsible for high energy production just
above the roughness. With a similar rough surface configuration in a ZPG boundary
layer, Lee & Sung (2007) report a significant effect of roughness on the redistribution
of TKE near the wall. The experimental results of Djenidi et al. (2008) reveal that
roughness-scale spanwise vortices originating at the trailing edge of the roughness
are convected downstream and strongly interact with the overlying turbulent flow.
In summary, to our knowledge, none of the experimental or computational studies
to-date have resolved the turbulence in the roughness sublayer of a well-characterized
boundary layer or channel flow over a dense three-dimensional rough wall.

Consequently, the objective of our project is to conduct detailed near-wall flow
measurements under the constraint of well-characterized conditions, and then use
the data for elucidating the dominant contributors to turbulence there. By utilizing
an optically refractive index-matched test facility and high resolution PIV, we are
able to overcome the aforementioned obstacles and conduct measurements that
resolve the flow in the roughness sublayer. The present paper begins with a brief
description of the experimental set-up, measurement techniques and data process
procedures in § 2. In § 3.1, data on the spatially averaged mean flow and Reynolds
stresses are provided, followed by a discussion of the spatial resolution and Reynolds
number effect on Reynolds stress measurements. Turbulence statistics in the roughness
sublayer are discussed in § 3.2, including spatial variations in Reynolds stresses and
other terms affecting the TKE budget. Finally, in § 3.3, we apply spectral analysis,
swirling-strength-based linear stochastic estimation (LSE) along with instantaneous
observations to study the flow structures from near the wall to the lower portion of
the outer layer.

2. Experimental set-up and methodology
2.1. Facility and measurement

The experiment is performed in the bypass channel of our waterjet pump test facility,
as illustrated in figure 1. The entire facility is filled with 62 % by weight solution
of sodium iodide (NaI) in water that has the same optical refractive index (1.492)
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y, v wall-normal

x, u streamwise

z, w spanwise

200

50

Stagnation chamber

Converging nozzle 

Smooth inserts

3300

1250

Rough inserts 

Sample plane 

Diffuser

Unit: mm

Figure 1. Bypass channel in the optically index-matched test facility.

as acrylic. The specific gravity of this fluid is 1.8, and its kinematic viscosity (ν) is

1.1 × 10−6 m2 s
−1

at ambient temperature, making it a suitable substitute for water.
Using this technique, previous experiments (e.g. Soranna et al. 2006) have successfully
resolved complex flow fields and turbulence in the vicinity of acrylic blades of
turbomachines. The bypass channel consists of an independent settling chamber, a
converging nozzle, a test section and diffuser. The test section is a 3.3 m long and
20 × 5 cm2 rectangular cross-section duct, made entirely of acrylic material, which
facilitates optical access to any internal site from various viewing angles. Note that
the 4:1 aspect ratio of the duct is not sufficient to claim that the present channel
flow conditions are two-dimensional. For example, based on information provided by
Leutheusser (1963), Dean (1978) and Monty (2005), the ratio of the wall shear stress
to h∂p/∂x (∂p/∂x is the mean pressure gradient) in a 4:1 aspect ratio channel/duct
is only about 0.93 as opposed to 1.0 for a two-dimensional flow. For low aspect ratio
duct flows, i.e. 1:1 and 2:1, it has been shown that roughness enhances the secondary
flows, but their characteristic magnitude remains below 2–3 % of the streamwise
centreline velocity (Fujita, Yokosawa & Hirota 1989; Yokosawa et al. 1989). Thus,
although we use the term channel throughout this paper, note that the present flow
is not fully two-dimensional.

Two pairs of 1.25 m long removable acrylic inserts are mounted in the upstream
and downstream halves of the test section. Each pair has a symmetric top and
bottom plate that face each other. This study is performed with a pair of smooth
inserts upstream and a pair of rough inserts downstream. According to Antonia &
Luxton (1971), to achieve a self-similar rough-wall boundary layer, one must have a
sufficient streamwise fetch with roughness of approximately 15δ–20δ. Although this
criterion may not apply directly to a channel flow, it has been used as guidance and
subsequently verified based on the present data. As illustrated in figure 2(a), our
measurements are conducted near 35h from the leading edge of the rough insert. In
our region of interest, i.e. between 34h and 36h, the average streamwise deviation in the
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Figure 2. (a) The rough insert plate showing the measurement region marked by a rectangle.
(b) An x–z projection of the sample area showing the centreline of the two investigated x–y
planes and the domain used for presenting conditional spatial averages. (c) The dimensions of
the wall roughness, x–y plane 1 and domain of the conditional spatial averages. (d ) An x–z
plane and (e) x–y plane 1 of the conditional spatial averages.

mean streamwise velocity magnitude is ∼ 0.4 %, and the deviations in the Reynolds
stress components are 0.5 % for 〈u′u′〉, 1.1 % for −〈u′v′〉 and 1.6 % for 〈v′v′〉. These
values are lower than the corresponding uncertainty levels (details follow). We use
these results along with the streamwise location of measurements (35h) as justification
for assuming that the flow has achieved self-similarity. The rough surface is composed
of closely packed pyramidal elements, which are illustrated in figures 2(a) and 2(b).
This type of roughness has well-defined length scales, and its height k and wavelength
λ make it sufficiently simple for performing spatial sampling of data while retaining
the three-dimensional nature of the roughness. The individual pyramid in our study
is 0.46 mm in height and has a slope angle of 16◦ (figure 2c), which falls in the middle
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Uc (m s−1) Reh k (mm) k+
s Uτ−log(m s−1) Uτ−uv(m s−1) Wall unit (µm) Reτ

2.75 62 500 0.46 95 0.159 0.155 7.1/7.3 3520
3.24 73 640 113 N/A 0.181 6.1 4110
3.75 85 230 130 N/A 0.206 5.3 4680
4.26 96 820 147 N/A 0.236 4.7 5360

Table 1. Experimental flow conditions.

of a series of pyramidal shapes tested by Schultz & Flack (2009). For the selected
roughness, both their data and the present mean velocity profile (figure 5a) have
shown that ks ∼ 1.5k. As a result, according to the measured friction velocity shown
in table 1, our rough-wall flow yields δ/k > 50 (using δ = h) and k+

s > 80, satisfying
the well-characterized condition proposed by Jiménez (2004).

To obtain a full picture of the flows in the roughness sublayer, PIV measurements
are conducted both at the x–y and x–z planes, where the (x, y, z) conventions
are defined in figure 1. Measurements in the x–y plane are carried out at two
spanwise locations, as illustrated in figure 2(b), in close proximity to the centreline
of the channel. Accordingly, the x–z plane measurement (figure 2b) covers the same
spanwise locations, at multiple elevations above the wall within the roughness sublayer.
The laser sheet is generated by a 120 mJ/pulse Nd:YAG laser, and has a thickness of
∼ 0.5 mm, i.e. 15 % of λ and about equal to k. The fluid is seeded with 2 µm silver-
coated glass particles, with specific gravity of 3.1. The illuminated particle images are
recorded by a 4864 × 3248 pixel interline transfer CCD camera. The acquisition rate of
image pairs is 1 Hz with an in-pair pulse delay of 50 µs, making the samples statistically
independent. The resulting typical particle image diameter is 2–3 pixels. Images are
enhanced using procedures described in Roth, Mascenik & Katz (1999), with velocity
vectors obtained using multi-path cross-correlations in LaVision DaVis R© software.
The final interrogation window size is 32 × 32 pixels, and vectors are calculated
with 50 % overlap. Based on the characteristic displacement of 10–35 pixels between
exposures and an estimated 0.1–0.2 pixel uncertainty in the displacement measurement
using cross-correlation, the uncertainty in the instantaneous velocity is 0.5–2 %. Since
the particle diameter is more than 2 pixels, the so-called peak locking bias error is
minimal and of the same magnitude as the random uncertainty (Westerweel 1997;
Christensen 2004). To evaluate the uncertainty in ensemble-averaged statistics, we
have performed a bootstrap analysis by randomly selecting subsamples of 4000 data
points (out of the 5000 available) and obtaining the distribution of measured statistics.
Using twice the standard deviation as a criterion for uncertainty, i.e. a confidence
level of 95 %, one can obtain the characteristic uncertainties for most turbulence
statistics in this paper. Sample values are 0.6 % for the mean velocity, 3.8 % for
〈u′u′〉, 6.8 % for −〈u′v′〉, 5.1 % for 〈v′v′〉, 12 % for triple correlation values (for one
standard deviation), and 5.6 % for dissipation rates estimated based on local velocity
gradients. However, both the Reynolds stresses and dissipation rates are also affected
by the finite resolution of PIV measurements, as discussed in detail in § 3.1 and 3.2.2,
respectively.

Data in the x–y planes have been obtained at two different resolutions. Low
resolution measurements have vector spacing of 280 µm and cover the entire half-
channel. High resolution data have vector spacing of 63 µm, corresponding to 9 wall
units and 0.138k, provide 36 rows of vectors within 5k and focus on examining
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1 m s –1

Figure 3. A 1λ× 2k sample of the instantaneous near-wall flow field at x–y plane 1 and
Reτ = 3520, showing the velocity distribution after subtracting 0.35Uc from each vector.

turbulence in the roughness sublayer. Figure 3 shows a 1λ long and 2k wide sample
part of the vector map, illustrating our spatial resolution and near-wall measurement
region all the way down to the index-matched rough surface. However, in the present
paper, we provide statistics for the flow starting from the top of the roughness
where y = 0 is set (illustrated in figure 2e). As a result, the closest data points to
the roughness are located at y = 36 µm ∼ 5 wall units. The x–z plane measurement
maintains the same resolution as the x–y plane data, but due to the laser sheet
thickness, it essentially provides an average over a distance ∼ k in the wall-normal
direction. Therefore, it is only employed for examining spatial variability in the near-
wall turbulent flow. Approximately 5000 image pairs are obtained at each sample
plane to achieve reasonable convergence of turbulence statistics.

The flow conditions and relevant parameters for the present measurements are listed
in table 1. It also includes datasets acquired at three higher centreline velocities to
examine the Reynolds number effect on the stress statistics. The magnitude of Reh is
calculated using the half channel height and centreline velocity, while Reτ is based on
the friction velocity Uτ , whose value is evaluated using two approaches. The value of
Uτ−log is determined by a logarithmic fit to the mean velocity profile in y =2k to 0.2h.
Uτ−uv is obtained from the slope of a linear least-square fit to the total shear stress, i.e.
the sum of viscous and Reynolds shear stresses, as shown in figure 4. A linear trend for
the total stress distribution is imposed by the constant pressure gradients in the fully
developed channel. The curve fitting range is chosen between y =0.2h and 0.43h,
the latter being the highest elevation in the high-resolution measurement. In the
total stress approach, the friction velocity can also be determined by extrapolating
a linear fit to the wall and calculating the stress based on its intercept with the
wall. For a rough surface, there is an uncertainty in defining the wall location. By
extrapolating the line both to the crest and base of the pyramid, we obtain that the
associated uncertainty in wall stress is less than 2 %, and opt to use the crest value
(at y = 0). It should be pointed out there is a slight difference between the friction
velocities obtained from the slope and the intercept, and the difference diminishes as
the Reynolds number increases. In the current measurement, the differences are 2 %,
1.1 %, 0.4 % and 0.3 % from the lowest to the highest Reynolds number, respectively.
Generally, Uτ−log is employed for analysis of mean velocity distributions, while Uτ−uv

is used for scaling Reynolds stresses (e.g. Bigillon, Niño & Garcia 2006). In table 1,
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1.0
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2 τ
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0 0.2 0.4

y/h
0.6 0.8 1.0

Figure 4. Distributions of the total shear stress fitted to the analytical distribution for total
stress in the fully developed channel flow with a no-slip condition at y = 0 (solid line). Symbols:
�, Reτ =3520; �, Reτ = 4110; �, Reτ = 4680; �, Reτ = 5360.

the value of Reτ is calculated based on Uτ−uv . Nevertheless, Uτ−log and Uτ−uv obtained
from our dataset are very close.

2.2. Data processing

In the present paper, ensemble averaging, denoted by angle brackets (〈 〉), is first
applied to obtain statistical quantities (e.g. U = 〈u〉 and 〈u′u′〉, where u′ = u − U ) at
every data point of the sample area. A spatial average, denoted by an overbar, always
refers to averaging along the streamwise direction over a span of 4λ. A two-step
averaging refers to ensemble averaging followed by spatial averaging, and is denoted
by 〈 〉. Since our rough surface consists of uniform and closely packed pyramids, we
also perform conditional spatial averaging, which refers to spatial averaging of data
at points located at the same position with respect to different pyramids (denoted by
〈̃ 〉). Taking advantage of the self-similar conditions achieved in the sample area, this
process condenses the x–z data to a λ× λ square region and the x–y data to a λ wide
region, as illustrated in figures 2(d ) and 2(e), respectively. This averaging essentially
utilizes a larger dataset to achieve better statistical convergence while maintaining the
spatial variability of statistics with respect to an individual pyramid. The following
quantities are calculated from the data and used during the analysis:

(a) Two point correlations are calculated at different elevations. They are defined
as

Ruiuj
(xref , yref ) =

〈u′
i(xref , yref )u′

j (xref + �x, yref + �y)〉√
〈u′

i(xref , yref )2〉
√

〈u′
j (xref + �x, yref + �y)2〉

. (2.1)

(b) Swirling strength is an effective indicator for vortical structures in the flow field
as shown by many prior studies. It is by definition the magnitude of the imaginary
part of complex eigenvalues of the velocity gradient tensor ∂ui/∂xj (Zhou et al. 1999).
The two-dimensional version of this parameter, λ2D , has been introduced in Adrian,
Meinhart & Tomkins (2000) for analysis of two-dimensional PIV data.

(c) Linear stochastic estimation is a statistical approach to estimate the
conditionally averaged flow field in the vicinity of a prescribed event (Adrian &
Moin 1988; Christensen & Adrian 2001). In the present paper, we estimate the
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4

3

2

1

0
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0
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〈u′
u′

〉/U
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τ2
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v
′ 〉/U

τ2

Figure 5. Spatially averaged quantities for x–y plane 1 and Reτ = 3520: (a) mean velocity:
�, low-resolution data; �, high-resolution data. The dashed line is a logarithmic fit to the
mean velocity profile. (b) Reynolds stress components calculated using the high-resolution data:

�, 〈u′u′〉; �, −〈u′v′〉; �, 〈v′v′〉.

velocity fluctuation at x when the value of λ2D > 0 at x0, i.e.
〈
u′

j (x)
∣∣ λ2D(x0) > 0

〉
.

The LSE of the velocity fluctuation at x is

〈
u′

j (x)
∣∣ λ2D(x0) > 0

〉
≈

〈
λ2D(x0)u

′
j (x)

〉
〈λ2D(x0)λ2D(x0)〉

λ2D(x0). (2.2)

This approach enables us to obtain a statistically converged estimate for the
conditioned velocity field using a smaller database in comparison to that required for
the direct conditional sampling.

3. Results
3.1. Spatially averaged mean flow and Reynolds stress profiles

Two-step-averaged mean velocity profiles are presented in figure 5(a). By combining
results obtained at two different resolutions, the velocity distribution extends from
the top of the roughness up to the centreline of the channel. In general, in the
overlapping range, the two datasets agree very well for y > k. A linear region in
the semi-log plot exhibits an established logarithmic layer at 2k <y < 0.2h. The
conspicuous deviation occurs below y = k, which includes only the lowest data point
in the low resolution measurement. This discrepancy may be attributed to the relatively
large uncertainty in locating the pyramid apex at this resolution. Two-step averaged
Reynolds stresses of high-resolution data are presented in figure 5(b). As the figure
shows, there is a local maximum of 〈u′u′〉 at y = 4k ∼ 5k, while −〈u′v′〉 and 〈v′v′〉 have
relatively broad maxima at y = 2k ∼ 6k and 3k ∼ 8k, respectively. At y > 2k, trends
and magnitudes of the Reynolds stress profiles scaled with U 2

τ agree with previously
published experimental and DNS results, e.g. the compilation of the previous
rough-wall measurement in Jiménez (2004), as well as computational results in
Ashrafian, Andersson & Manhart (2004) and Bahaganagar et al. (2004). The
magnitude of 〈u′u′〉 increases again below y = k as the wall is approached, peaking
at the top of roughness elements. A slight increase also appears in the profile of
〈v′v′〉 adjacent the roughness, but −〈u′v′〉 keeps on decreasing monotonically. It
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Figure 6. Effect of the spatial resolution on Reynolds stresses: (a) 〈u′u′〉, (b) −〈u′v′〉 and (c)

〈v′v′〉 at Reτ =3520. The original high-resolution data (�) are spatially filtered by a 1 × 2 PIV
window (�), 1 × 4 window (�) and 4 × 4 window (�). The symbol � shows low-resolution
data.

is noteworthy that a similar trend of 〈u′u′〉 is documented in Ligrani & Moffat
(1986) for flows above closely packed spheres. However, they observe this near-wall
upsurge only at low Reynolds numbers for a transitionally rough wall, but it vanishes
with increasing k+

s . As the authors show, their results are adversely affected by
sensor resolution, and this effect increases with the Reynolds number, i.e. decreasing
turbulence scales. Correspondingly, the re-appearing of the near-wall upsurge in
〈u′u′〉 under our fully rough conditions may be well attributed to the higher spatial
resolution in our study.

When approaching the wall, the contribution of small-scale motions to TKE
becomes more prominent; the resolution of the turbulence measurements must
be increased accordingly. To evaluate the accuracy of the present Reynolds stress
measurements, we examine the effect of spatial filtering of the PIV data (prior
to ensemble averaging) on the Reynolds stress statistics. This procedure essentially
reduces the spatial resolution of the turbulence measurement. Figure 6 compares
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Near-wall turbulence statistics and flow structures in a turbulent channel flow 11

profiles obtained using filters of different size and the low-resolution results with
those of the original high-resolution data. In general, with increasing filter size, the
magnitude of the near-wall Reynolds stresses decreases. Of the three components,
the decline of 〈v′v′〉 is the most pronounced, both in terms of magnitude and the
wall-normal extent of this decay. This trend is expected since the integral scale
associated with this component is of the same order as the distance from the wall,
making it most affected by small-scale turbulent motions. Conversely, the streamwise
components contain energy associated with much larger scale, as discussed in § 3.3.
The shear stress appears to be the least sensitive to the change in the resolution
near the wall. Accordingly, the correlation coefficient, i.e. −〈u′v′〉/(

√
〈u′u′〉

√
〈v′v′〉),

increases with decreasing resolution (not shown). This effect is most pronounced
near the rough surface, where it reaches ∼ 20 % for the present range of filters,
and diminishes in the outer layer. The effects of resolution on triple correlation
terms (also not shown) are very limited for y/k > 1. Near the roughness, 〈u′u′u′〉
increases slightly with decreasing resolution and distance from the wall, reaching a
maximum difference of ∼15 %. Both trends are consistent with recent observations
by Shah, Agelinchaab & Tachie (2008). The present trends also suggest that it is likely
that even our present high resolution is still insufficient to capture all the relevant
energetic small-scale turbulent motions. We will revisit this issue once higher resolution
holographic data become available. The low-resolution data, whose window size is
equivalent to a two-dimensional 4.4 × 4.4 interrogation window spacing filter, exhibit
trends consistent with filtered results. They are also affected by a minor deviation in
origin locations in the two different experiments, due to the increasing uncertainty in
locating the pyramid apex with decreasing resolution.

Reynolds stresses measured at different Reynolds numbers are summarized in
figure 7. All the stress components are scaled with corresponding U 2

τ . As is evident,
all the scaled stress components increase with the Reynolds number. At y > 0.2h,

the profiles of 〈u′u′〉 and 〈v′v′〉 collapse better towards the centreline of the channel.

Since the curve-fitted Uτ–uv is dominated by the Reynolds shear stress, the −〈u′v′〉
profiles are matched well over the entire range. For all the stress components in
the 2k <y < 10k range, the maxima move towards the wall with increasing Reynolds
number, in agreement with previous studies (e.g. Wei & Willmarth 1989; Bakken et al.
2005). In the 〈u′u′〉 and −〈u′v′〉 profiles, the maximum deviations occur around the
stress maxima. To explain this trend, note that with increasing Reynolds number and
friction velocity, the inner part of the boundary layer, where the total stress deviates
from the linear fit, shrinks (figure 4). Accordingly, the maximum value of stress that
fits the linear curve increases and its location moves closer to the wall with increasing
Reτ . At y < 2k, the Reynolds number effect on 〈u′u′〉 and −〈u′v′〉 decreases relative

to higher elevations but does not vanish. Conversely, profiles of 〈v′v′〉 continue to

diverge as the wall is approached. However, the difference in magnitude between 〈v′v′〉
at the lowest and highest Reynolds number is close to that of 〈u′u′〉. We should note
that these trends are not related to the previously discussed resolution effects. Since
the smallest scales of turbulence are expected to decrease with increasing Reynolds
number, attenuation due to limited resolution would increase with Reynolds number.
As a result, the actual near-wall Reτ effect on 〈v′v′〉 might be even larger than the
presented trends. However, as demonstrated later, the increasing Reynolds number
causes a broadband increase in turbulent energy and modifies the spectral shape for
both velocity components. Consequently, attenuation by the finite resolution is not
expected to play a major role in the present rough-wall channel flow.
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Figure 7. Effect of the Reynolds number on the distribution of (a) 〈u′u′〉, (b) −〈u′v′〉 and (c)

〈v′v′〉 in x–y plane 1. Symbols: �, Reτ = 3520; �, Reτ = 4110; �, Reτ =4680; �, Reτ = 5360.

3.2. Spatial variation of mean flow and turbulence statistics in the roughness sublayer

3.2.1. Mean velocity and Reynolds stresses

Approaching the rough surface, the flow and ensemble-averaged turbulence statistics
become increasingly more susceptible to spatial variations in roughness geometry.
Figure 8 is a compilation of mean flow profiles obtained from both x–y and x–z plane
measurements after the conditional spatial averaging. The mean velocity profiles at
x/λ=0, 0.25, 0.5 (figure 8a) show no appreciable difference above y = k, but they
diverge at lower elevations. Data for the x–z plane centred around y = 0.4k show a
spanwise periodic pattern with low eU (figure 8c) along the streamwise ridges (z/λ= 0,
the streamwise line connecting pyramid crests), and high values between them. Values
of eU are minimal around (x/λ, z/λ) = (0.25, 0), i.e. above the forward-facing ridge of
the pyramid. Its maxima are situated above the middle of the two spanwise ridges
(0.0, ±0.25). The maxima appearing at x/λ= ±0.5 are located above spanwise ridges
of pyramids that are staggered by half a wavelength on either side of the target
pyramid. The corresponding symmetric pattern of the spanwise velocity eW (figure 8d )
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Figure 8. Conditionally spatially averaged mean velocity distribution at Reτ = 3520. (a)
Streamwise velocity in x–y plane 1 and x/λ= 0 (�), 0.25 (�) and 0.5 (�). (b) Streamwise
velocity spatially averaged over 0 <y < 0.8k for x–y plane 1 (�) and 2 (�). (c) Streamwise and
(d ) spanwise velocity components in an x–z plane centred at y = 0.4k.

is also evident, with peak magnitude above the forward faces, including the target
pyramid at (0.4, ±0.25) and staggered ones on its sides. The x–y plane data averaged
over 0 < y < 0.8k (figure 8b) provide a consistent picture of streamwise variations at
two spanwise locations. Differences in values are attributed to the finite thickness of
the laser sheet (>k), which results in spatial averaging in the spanwise direction.

The spatial variations in 〈u′u′〉, −〈u′v′〉 and 〈v′v′〉 diminish above y =2k, and, as a
result, we use this elevation as a definition for the height of the roughness sublayer.
However, all stress components become periodically non-uniform at lower elevations,
as demonstrated by a sample contour of 〈u′u′〉 in figure 9(a). The conditional
spatially averaged versions (figure 9b–d ) provide more distinct patterns of these

spatial variations. For A〈u′u′〉 (figure 9b), the near-wall range contains two layers, the
lower one with high values and the upper one with relatively low values. The high
stress layer starts just above the crest and is initially inclined at a very shallow angle,

but the inclination increases to about 15◦ above the forward ridge, where A〈u′u′〉 is
maximum. The adjacent low stress layer extends up to about 2k at an inclination of
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Figure 9. Contour plots of (a) 〈u′u′〉 and conditional spatial averages of Reynolds stresses:

(b) A〈u′u′〉, (c) −A〈u′v′〉 and (d ) A〈v′v′〉 for plane 1 and Reτ = 3520.

about 10◦. Extensions of both layers beyond one wavelength can be seen over the
crest on the left side of figure 9(b). For the other two components, spatial variations

are mostly limited to y � k. Along the backward-facing ridge, both −A〈u′v′〉 and A〈v′v′〉
have minima with little inclination. Their values are higher above the forward ridge,

where −A〈u′v′〉 peaks, and has an inclined extension that resembles the one in A〈u′u′〉.
The near-wall peak in A〈v′v′〉 occurs slightly downstream of the other components.

Similar to trends of the mean flow, spanwise periodicity in A〈u′u′〉 is clearly illustrated

by the x–z plane data centred at y = 0.4k (figure 10a). The value of A〈u′u′〉 is high

along streamwise ridges and low in between. The peak of A〈u′u′〉 above the forward
ridge coincides with the region of minimal eU . Evidently, the highest values and

spatial variations in A〈u′u′〉 occur along the line with maximum differences in the
surface protrusion. A consistent picture of the streamwise and spanwise variations

in A〈u′u′〉 is provided by comparing the results obtained in x–y planes 1 and 2,
after spatially averaging the results over 0<y < 0.8k (figure 10b). The near-wall
distributions of Reynolds stresses change as the Reynolds number increases, even for

the present limited range. At Reτ =5360, the peak in A〈u′u′〉 (figure 11a) is pushed
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Figure 11. Contour plots of conditional spatially averages of Reynolds stresses: (a) A〈u′u′〉
and (b) A〈v′v′〉 for plane 1 and Reτ = 5360.

further downstream along the forward ridge with little variation of magnitude, while
the inclination angle for the low stress layer decreases to about 7◦. Accordingly, the

peaks in −A〈u′v′〉 (not shown) and A〈v′v′〉 (figure 11b) also shift downstream and are

located slightly downstream of the A〈u′u′〉 peak.

3.2.2. Turbulent kinetic energy budget analysis

The TKE budget is examined using the x–y plane PIV data, but refer to the x–z
plane only for validation of assumptions. For a statistically stationary turbulent flow,
the TKE balance equation is (Pope 2000)

0 = C + T + Π + P + D − ε, (3.1)
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where C is the mean convection term, T is the turbulent transport, P is the production
term, Π is the pressure-related term, D is the viscous diffusion, and ε is the dissipation
rate. Of these terms, Π is inaccessible relying solely on velocity measurement, and D
becomes important only within the viscous sublayer and insignificant in rough-wall
turbulence. Approximate expressions for the spatial averages of other budget terms
based on the x–y plane data are as follows:

C̄ = −U
∂k

∂x
− V

∂k

∂y
− W

∂k

∂z
≈ 0, (3.2)

P̄ = −〈u′
iu

′
j 〉∂Ui

∂xj

≈ −〈u′v′〉∂U

∂y
, (3.3)

T̄ = −1

2

∂〈u′
ju

′
j v

′〉
∂y

− 1

2

∂〈u′
ju

′
j v

′〉
∂z

≈ −1

2

∂〈u′u′v′〉
∂y

− 1

2

∂〈v′v′v′〉
∂y

, (3.4)

ε̄ = ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
+ ν

∂2〈u′
iu

′
j 〉

∂xi∂xj

, (3.5)

ε̄ASX ≈ ν

⎛
⎝−

〈(
∂u′

∂x

)2
〉

+ 8

〈(
∂v′

∂y

)2
〉

+ 2

〈(
∂u′

∂y

)2
〉

+ 2

〈(
∂v′

∂x

)2
〉⎞

⎠ , (3.6)

ε̄ISO ≈ 4ν

⎛
⎝〈(

∂u′

∂x

)2
〉

+

〈(
∂v′

∂y

)2
〉

+
3

4

〈(
∂u′

∂y

)2
〉

+
3

4

〈(
∂v′

∂x

)2
〉

+

〈(
∂u′

∂x

∂v′

∂y

)〉
+

3

2

〈(
∂u′

∂y

∂v′

∂x

)〉)
. (3.7)

The logic associated with these approximations is as follows. For the mean flow
convection, spatial averaging eliminates the first term, and the experimental data
show that the other two terms are about two orders of magnitude smaller than the
production term. As for the turbulence production, spatial averaging eliminates the
term involving ∂/∂x and the terms involving ∂V/∂y are small, leaving the mean shear
term as the primary contribution. The other terms, including those measured in the
x–z plane, e.g. 〈w′w′〉∂U/∂z, are at least one order of magnitude smaller. Since we are
predominantly concerned with wall-normal energy exchange, we only include terms
available from the x–y plane data in the present study. Needless to say, the spanwise
contribution might be equally significant for the turbulence transport near the wall.

To estimate the dissipation rate based only on the x–y plane measurement, one has
two options. The first is to use a streamwise axisymmetric assumption, which gives ε̄ASX

shown in (3.6) (Antonia, Kim & Browne 1991). Under this assumption, the estimated
ε is identical to the pseudo-dissipation, εpseudo = ν〈∂u′

i/∂xj , ∂u′
j /∂xi〉, which appears

in some DNS studies (e.g. Ikeda & Durbin 2007). A slightly different expression, ε̄ISO

shown in (3.7), is obtained by assuming local turbulence isotropy (Luznik et al. 2007).
The validity of some of these assumptions is verified utilizing the x–z plane data. It
shows that both methods provide the same good agreement for the sum of 〈(∂u′/∂z)2〉
and 〈(∂w′/∂x)2〉. However, the axisymmetric assumption produces a reasonable

estimate for the disparity between these two terms, i.e. 〈(∂w′/∂x)2〉 ≈ 2〈(∂u′/∂z)2〉.
Nevertheless, based on the current data, it is still impossible to conclude which
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Figure 12. Spatially averaged TKE budget terms scaled by U 4
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estimate provides a better near-wall approximation, so both estimates are presented
in the discussion that follows. As figure 12 demonstrates, ε̄ASX and ε̄ISO coincide very
well above the roughness sublayer, but differ near the wall. Another related issue is
the effect of finite resolution of PIV data on the dissipation estimates since they are
dominated by small-scale motions. The Kolmogorov scale, η = (ν3/ε)1/4, calculated
from ε̄ISO is about 25 µm near the wall, i.e. it is significantly larger than the wall
unit ∼7.1 m. Thus, our vector spacing is 2.5η and the interrogation window size
is 5η near the wall, which become 1.6η and 3.2η, respectively, in the outer layer.
However, the out-of-plane spatial resolution, which is estimated based on either the
depth of focus of the imaging system (∼12η) or laser sheet thickness (∼20η), is lower,
and consequently, has the largest impact on the attenuation of terms involved in
estimates of dissipation. As discussed in the Appendix, the estimated attenuation of
the dissipation rate is about 50 %. In the following analysis, we present and use
the calculated dissipation rate, but one should keep in mind that its magnitude is
attenuated.

Profiles of the spatially averaged estimates for the three TKE budget terms in
(3.3)–(3.5) are presented in figure 12. Both production and dissipation peak in the
vicinity of the roughness and decrease with increasing distance from the wall. Both
terms decay sharply within the roughness sublayer, but the decay rate gradually slows
down farther from the wall. The turbulent transport term also reaches maximum near
the wall, but drops rapidly to almost zero within 1k. Note that turbulent diffusion
becomes slightly positive around y = 1.7k, indicating that energy is transported into
this domain from neighbouring areas. In the rest of the flow domain, turbulence
diffusion is negative. All the three calculated terms contribute significantly to the
TKE balance at y < k, while production and dissipation become the only dominant
terms at higher elevations. The ratio of production to dissipation P̄ /ε̄ (where ε̄ISO is
used to represent ε) is also plotted in figure 12 to illustrate their relative contributions
across the channel, although ε̄ISO is most likely underestimated. As is evident, P̄ /ε̄
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peaks very near the wall, where most of turbulence is produced, and the surplus
TKE must be transported away, consistent with the high local wall-normal transport.
This ratio and the turbulent transport decrease rapidly, even within y < k. Further
above, P̄ /ε̄ keeps on decreasing, initially at a low rate (up to y ≈ 4k), and then at a
faster pace with increasing elevation. The magnitude of P̄ /ε̄ falls below 1 at y ≈ 21k.
However, due to the attenuation of ε discussed earlier, the elevation where dissipation
surpasses the production can be expected to be much closer to the wall. In spite of
this concern, some of the present trends are consistent with the DNS results for the
two-dimensional rough-wall channel flow (e.g. Ikeda & Durbin 2007). In Ikeda &
Durbin (2007), they indicate that local maxima in P̄ /ε̄ coincide with those of 〈u′u′〉.
The first peak is located near the roughness, and the second one, much broader,
appears at y ≈ 3k. In our data, the 〈u′u′〉 upsurge near the wall is affiliated with the
P̄ /ε̄ peak there. Although P̄ /ε̄ does not have a second maximum in our case, its

decay rate is slow up to y ≈ 4k, which coincides the region where 〈u′u′〉 has a broad
maximum. The faster decay of P̄ /ε̄ at higher elevations indicates an increasing impact
of local dissipation on the turbulence budget.

Within the roughness sublayer, spatial variations of each TKE budget term become
appreciable. Selected contour plots of in-plane contributions to conditional spatial
averages of several terms associated with turbulence production are illustrated in
figure 13. Their definitions are as follows:

eP 2D
uu = −2(E〈u′u′〉∂U/∂x + E〈u′v′〉∂U/∂y), (3.8)

eP 2D
vv = −2(E〈u′v′〉∂V/∂x + E〈v′v′〉∂V/∂y), (3.9)

eP 2D = 0.5
(
eP 2D

uu + eP 2D
vv

)
, (3.10)

where eP 2D
uu , eP 2D

vv and eP 2D represent conditional spatial averages of 〈u′u′〉, 〈v′v′〉 and
the TKE production, respectively. It is evident that except for a factor of 2, the

distributions of eP 2D
uu and eP 2D (figures 13a and 13c, respectively) have very similar

pattern, and peak at the same location as the A〈u′u′〉 maximum. As demonstrated in
figure 13(d ), which displays P 2D averaged over 0 <y < 0.8k, the spatial variations in
eP 2D are mainly caused by −E〈u′u′〉∂U/∂x. The largest term, −E〈u′v′〉∂U/∂y, contributes

significantly to the magnitude of eP 2D , but remains relatively uniform across the span

of the roughness wavelength. The third term, −E〈v′v′〉∂V/∂y, is very small for the most

part, and −E〈u′v′〉∂V/∂x (not shown) is negligible everywhere. Note that the in-plane
contributions to the TKE production account for most of the overall TKE production
rate since the out-of-plane contribution is at most ∼ 10 % of the in-plane values based

on the analysis of the x–z plane data. The peaks in A〈u′u′〉 and overall production
above the forward face are associated with deceleration of the streamwise velocity.
As for the wall-normal component, the spatially averaged 〈v′v′〉 production is almost
zero, indicating that the magnitude of 〈v′v′〉 is dominated by the inter-component
energy transfer. However, the spatial variation of the 〈v′v′〉 production (figure 13b)
seems to be sufficiently large to affect local velocity fluctuations. Near the wall, it is
negative above a large portion of λ and becomes positive just upstream of the crest,
consistent with the patterns of high and low regions in 〈v′v′〉.

The dissipation (figure 14a) appears to be distributed more evenly in comparison
to the production rate, with low values in the vicinity of the crest and trough, and
broad maxima between them, slightly downstream of the production maxima. Its
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Figure 13. Near-wall spatial variations of x–y plane contributions to (a) 〈u′u′〉 production,
(b) 〈v′v′〉 production and (c) TKE production. (d ) A comparison among terms contributing
to the TKE production, spatially averaged over 0< y < 0.8k. Symbols: �, total in-plane TKE

production; �, − D〈u′v′〉∂U/∂y; �, −E〈u′u′〉∂U/∂x; �, − D〈v′v′〉∂V/∂y.

spatial variability diminishes at y > k. In the distribution of the wall-normal turbulent

transport, i.e. eT = 0.5 × (E∂〈u′u′v′〉/∂y + E∂〈v′v′v′〉/∂y) (figure 14b), the negative peak
where energy is depleted is located downstream of the maximum in the TKE
production. Contours of both contributors to eT (not shown individually) exhibit
shallowly inclined patterns and consist of adjacent layers with positive and negative
signs. The angles and wall-normal extent of these layers are similar to those observed
in the plots of 〈u′u′〉. The major contributor in the streamwise turbulent transport,

0.5 × E∂〈u′u′u′〉/∂x (not shown), has a negative peak at the same location as that of

the 〈u′u′〉 maximum. We also provide the distribution of B〈u′u′v′〉 in figure 14(c), which
displays an inclined positive layer extending from above the trough, coinciding with
the patterns in 〈u′u′〉.

The confinement of spatial variability in turbulence statistics to the roughness
sublayer can be explained by investigating the quadrant contribution to these
quantities. The flow field is decomposed into four quadrants based on the orientation
of the velocity fluctuation vectors, namely, upward motion (Q1: u′ > 0, v′ > 0), ejection
(Q2: u′ < 0, v′ > 0), downward motion (Q3: u′ < 0, v′ < 0) and sweep (Q4: u′ > 0,
v′ < 0). Figure 15 shows the contribution of each quadrant to the Reynolds shear
stress with increasing distance from the wall. Ejections and sweeps are dominant
everywhere, as expected, with higher contributions from sweep very near the wall
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Figure 14. Near-wall spatial variations of (a) ε̃ISO/(U 4
τ /ν), (b) eT /(U 4

τ /ν) and (c) B〈u′u′v′〉/U 3
τ

for x–y plane 1 and Reτ =3520.
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scaled by −〈u′v′〉 (denoted by a superscript ‘+’) at corresponding elevations for (a) Reτ = 3520
and (b) Reτ = 5360. Symbols: �, Q1; �, Q2; �, Q3; �, Q4.

and from ejection above y ≈ 3k. Nevertheless, it is of note that a significant amount
of negative Q1 contribution is evident adjacent to the roughness with a magnitude

close to that of Q2. The contour plots of quadrant-sampled A〈u′u′〉 show that spatial
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Figure 16. Quadrant contributions of (a) Q2 and (b) Q4 events to A〈u′u′〉/U 2
τ for x–y plane 1

and Reτ =3520.

variations in A〈u′u′〉 occur primarily during ejection events (figure 16a), while the
contribution of sweeps remains almost uniform (figure 16b). Decompositions of other
turbulence quantities (not shown) also support that ejections are responsible for
most of inclined patterns extending upward, while sweep contributions are more
equally distributed with higher magnitudes close to the wall. For instance, in the
B〈u′u′v′〉 contour (figure 14c), the inclined, high positive layer is generated by ejections,
while the broad negative region above the forward face is mainly due to sweeps.
Such trends are expected since ejections carry structures produced within and near
the roughness away from the wall while sweeps squeeze them into the vicinity of
roughness, as demonstrated by Zhu, van Hout & Katz (2007) for canopy flows.
In the resulting thinner shear layer during sweeps, both the Reynolds shear stress
and strain rate are higher. Consequently, the TKE production rate during sweep
events is larger than that during ejections in the roughness sublayer, especially below
y ≈ k for our case. Although weaker ejections subsequently lift up the turbulence
which contains its spatial variability, the confined production limits the spatial non-
uniformity in turbulence statistics below y ≈ 2k. As the Reynolds number increases,
the contribution of sweeps to shear stress (figure 15b) increases near the wall, but the
size of the region where sweeps dominate varies very little.

3.3. Flow structures in the roughness sublayer and regions above

3.3.1. Spatial energy spectra

Spatial energy spectra E11(k1), E22(k1) and shear spectra E12(k1) are calculated along
streamwise lines of instantaneous data and then ensemble-averaged, where subscripts
1 and 2 refer to the streamwise and wall-normal velocity components. We apply fast
Fourier transform (FFT) without any other windowing function except for removing
the mean value and linear detrending. The spectra presented are scaled in two ways
for different purposes. First, as shown in figure 17, we scale each spectrum with the
spatially averaged Reynolds stress at the corresponding elevation, which keeps both
horizontal and vertical axes dimensional. This scaling accentuates subtle variations in
spectral shapes with increasing distance from the wall, and is convenient to compare
variation in energy distributions at the same physical length scales. The other way
of scaling refers to compensated energy spectra (figure 18), namely Eii(k1)ε

−2/3k
5/3
1

plotted against k1η, with the Kolmogorov scale estimated based on ε̄ at corresponding
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Figure 17. Spatial spectra for x–y plane 1 and Reτ = 3520: (a) E11(k1)/〈u′u′〉,
(b) E12(k1)/−〈u′v′〉 and (c) E22(k1)/〈v′v′〉.

elevations. Since ε̄ decays with increasing elevation, i.e. η increases, values of k1η

equivalent to a certain length scale, e.g. k and λ, also increase with elevation. Therefore,
we highlight the points corresponding to k and λ in each plot (figure 18) for better
reference. Using this scaling, an inertial range spectrum is represented as a horizontal
line, which intercepts the vertical axis at E11(k1)ε

−2/3k
5/3
1 = 0.49 and E22(k1)ε

−2/3k
5/3
1 =

0.65 (E22(k1)/E11(k1) = 4/3) in isotropic turbulence and in the outer parts of high-
Reynolds-number turbulent boundary layers (Saddoughi & Veeravalli 1994). These
expected values are indicated by horizontal dashed lines in figure 18. Before discussing
the trends, note that due to the finite spatial resolution of the PIV data, the spectral
energy is attenuated significantly up to scales of several times the interrogation
window size (Zhu & Antonia 1996; Lavoie et al. 2007; Hackett et al. 2009). The
depth of the sample volume also affects the spectra along with the dissipation rate,
as discussed and demonstrated in the Appendix.

Several trends can be observed in the dimensional energy and shear spectra
(figure 17). First, as expected, spatial variation in the flow within the roughness
sublayer generates spectral peaks at k1 = 2π/λ and its multiples, representing the
effects of the periodic flow patterns imposed by the roughness. These peaks
disappear at higher elevations, consistent with the data presented earlier. Second,
at low wavenumbers, all the spectra steepen with increasing distance from the wall,
demonstrating a growing contribution of large-scale turbulence and a decreasing role
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Figure 18. Compensated energy spectra in x–y plane 1, with magnified solid symbols marking
wavenumbers corresponding to λ and k: (a) E11(k1), Reτ = 3520; (b) E22(k1), Reτ = 3520; (c)
E11(k1), Reτ = 5360; (d ) E22(k1), Reτ = 5360. In (e) and (f ) we re-plot the data in (c) and
(d ), respectively, using dissipation rates that match the compensated E11(k1) at k1η

∗ ≈ 0.3 with
constants expected in Kolmogorov inertial-range spectra.

of small-scale energy. Third, at low wavenumbers, the shear spectra show a tendency
towards a −7/3 slope, the expected slope for the inertial range shear-stress spectrum
(Lumley 1967), with increasing distance from the wall. For the same wavenumber
range, the slope of E11(k1) approaches −5/3. Finally, for wavelengths in the k–3k

range, all the spectra flatten, i.e. display a decrease in slope magnitude outside of the
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roughness sublayer. This pattern is most pronounced in the E12(k1) plots and least in
E22(k1).

In the corresponding compensated spectra (figures 18a and 18b), the flattening
pattern appears as a distinct bump in the same wavenumber range. It occurs at
all elevations including well above the roughness sublayer, indicating the presence
of excessive energy at this scale range. In general, the entire compensated E11(k1)
decreases rapidly with elevation with a particularly fast decay rate around the high
wavenumber bump. For compensated E22(k1), the corresponding bump is low very
near the wall in accordance with the entire spectrum. It reaches a maximum value
within the roughness sublayer, and then decreases with further increase in elevation.
At higher elevations above the roughness sublayer, it is noticeable that another peak
forms at low wavenumbers of the compensated E11(k1) in the vicinity of k1η ∼ 0.04
and its magnitude also decreases with elevation. Similarly, the low wavenumber bump
is also observed in the compensated E22(k1) but only at y > 3.4k, i.e. above the peak in
the corresponding Reynolds stress. Since the magnitudes of both E11(k1) and E22(k1)
near the low wavenumber peak have expected inertial range values (Pope 2000), the
presence of these low wavenumber bumps suggests that an inertial range is beginning
to form with increasing distance from the wall.

With increasing Reynolds number (figures 18c and 18d ), although formation of
two compensated E11(k1) peaks occurs at higher elevations, spectral bumps at scales
of k–3k are still evident. In the 0.02 <k1η < 0.07 range, a broad peak begins to form
at and above y =3.4k, with a higher compensated value than those measured at the
lower Reynolds numbers. This trend may be related to the increasing attenuation
of the dissipation rates as the Reynolds number increases and the Kolmogorov
scale decreases. Therefore, we re-scale the compensated spectra at the four highest
elevations using adjusted dissipation rates (ε∗), which bring the compensated value of
E11(k1) at the broad peak to the constant of the Kolmogorov inertial range spectrum.
The same ε∗ is also adopted for scaling E22(k1) and recalculating the Kolmogorov
scale (η∗). The results are presented in figures 18(e) and 18(f ), along with values of
η∗ at each elevation. After rescaling, the compensated E11(k1) collapse at all scales
larger than λ. Values of the compensated E22(k1) still increase slightly with elevation
in this wavenumber range, but reach the expected Kolmogorov inertial range at the
two highest elevations and expected larger wavenumbers. These trends suggest the
establishment of a Kolmogorov-cascading process in the outer layer. The same process
and conclusions can be found by rescaling the spectra at the lower Reynolds number.
In this case, the required corrections to the magnitude of dissipation rate vary between
0 and 50 %, in agreement with the range of estimated attenuation in dissipation
discussed in the Appendix. However, in spite of this uncertainty and attenuation of
small-scale energy due to the finite resolution of PIV data, the existence of excessive
energy at scales close to k is clearly evident. We conjecture that this excessive energy
is a result of generation of eddies with a typical roughness scale in the vicinity of
the rough surface. These eddies are subsequently advected away from the wall by
large-scale turbulent structures that populate the outer layer of the channel.

To demonstrate this phenomenon, figure 19(a) shows an instantaneous velocity
and vorticity distribution after subtracting 0.5Uc from each vector. An inclined large-
scale structure is clearly observed across the entire flow domain at y > 5k, whose
two-dimensional signature resembles the hairpin structures studied by Adrian’s group
(e.g. Adrian et al. 2000). The region below this structure is populated with small-
scale eddies. Adjacent to the roughness, the flow contains several inclined trains of
vortices. To examine the spatial distribution of roughness-scale eddies, we spatially
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Figure 19. (a) (See hi-res example online as supplementary material at journals.cambridge.
org/flm) Sample instantaneous velocity distribution for x–y plane 1 and Reτ = 3520, after
subtracting 0.5Uc from each vector. Colours indicate the scaled vorticity. (b) The same velocity
field, spatially bandpass-filtered using box filters in the k–3k range.

bandpass-filter this velocity distribution by calculating the two-dimensional box-
filtered vector maps at scales k and 3k, and subtracting them from each other. The
resulting instantaneous velocity map is presented in figure 19(b). Evidently, the entire
field is filled with eddies in the k–3k size range. In general, the eddy strength diminishes
with increasing elevation, but there is a clear separation below and above the shear
layer interface, marking the in-plane signature of large-scale structures. Below this
interface, the stronger structures are observed and they appear to be ‘newborn’ eddies
that have just been entrained from the wall by the large structures. While above, the
eddies are relatively weak, presumably since they were entrained at earlier times and
have been partially dissipated. Similar patterns with variations in size and location
are present in numerous velocity distributions that we have examined, indicating that
the anecdotal evidence shown here is a regularly occurring phenomenon. This rapid
wall-normal transport of roughness-scale eddies induces the excessive energy at the
same scales in all the energy spectra. The time scales associated with this transport are
not long enough for these eddies to dissipate and, consequently, they leave imprints in
the spectra across the entire flow domain. Clearly, these eddies are not produced by
the typical energy-cascading process of turbulence at large scales, and hence lead to
distinct bumps in the compensated spectra (figure 18). The resulting excessive energy
in the 15η–30η scale range should enhance the dissipation rate since it is located in
the most dissipative range in isotropic turbulence (Pope 2000). Such an expectation
is consistent with the trend of P/ε above the roughness sublayer.

Several relevant comments should be made before concluding this section. First,
spectra of PIV data obtained in a number of measurements performed in the coastal-
ocean bottom boundary layer also exhibit bumps (e.g. Nimmo Smith, Katz & Osborn
2005; Luznik et al. 2007). In Nimmo Smith, Katz & Osborn (2005), we verified
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that these bumps are not an artefact of the measurement or analysis procedures by
applying the same codes (PIV analysis and spectral calculations) to process laboratory
isotropic turbulence data and confirming that they do not have bumps. In support
of our claims, Hackett et al. (2010) show that the length scale associated with the
oceanic bumps, ∼ 2 cm, is very different from the present scales, but matches the
local height of bottom ripples. Second, spectral bumps have been observed in a few
canopy flow studies (e.g. Seniger et al. 1976), where they have been commonly related
to the interactions of large-scale motion with canopy elements (e.g. Finnigan 2000).
Third, bumps also exist in the spectra of hot-wire data obtained in the atmospheric
boundary layers (Champagne et al. 1977) and high-Reynolds-number wind tunnel
boundary layers (Saddoughi & Verravalli 1994). In both cases, the authors do not
relate this phenomenon to specific flow features, but others have attributed the bumps
to an energy bottleneck at the transition between inertial and dissipation ranges (e.g.
Falkovich 1994). Recently obtained spectra within smooth-wall boundary layers (e.g.
Mathis, Hutchins & Marusic 2009) show that small-scale turbulence dominates near
the surface, but decays and eventually disappears with increasing distance from the
wall. A second, distinctly lower-wavenumber peak forms away from the wall. The
present rough-wall data also show that a low wavenumber peak develops away from
the wall, but the distinct signature of the small-scale turbulence persists over the entire
boundary layer. Finally, the particularly large signature of roughness-scale eddies in
the shear spectra (figure 17b) is a further manifestation of their role in the wall-normal
momentum transport. Incidentally, in the compensated shear spectra (not shown), the
peak is centred on the wavenumber corresponding to the roughness height.

3.3.2. Analysis of flow structures based on LSE

To statistically investigate the mechanisms dominating vortex lifting, we apply
the swirling strength-based LSE at different elevations to obtain the conditionally
averaged velocity fields, as introduced in § 2. Sample results are presented in figure 20,
with a solid circle marking the location of the swirling strength condition. We opt to
retain the relative length of each vector to highlight the significant flow features
since the domain contains numerous very weak structures, whose enhancement
by normalization may introduce unreal physical patterns. Furthermore, to increase
statistical convergence in results obtained at y < 2.5k (only), we also apply conditional
spatial averaging of data obtained at corresponding locations relative to the roughness.
This procedure generates smoother vector fields but has little effect on the flow
features. For a swirl at y = 1.4k (figure 20a), a clockwise vortex is centred at the
event location with strong ejection upstream and below. The characteristic size of this
vortex is k–2k, as can be quantitatively confirmed based on the two-point correlations
of λ2D and velocity fluctuations (not shown). Sweep events are observed above and
upstream of this vortex. Downstream of the vortex, the flow contains a series of
weak vortical patterns at approximately the same elevation. Data obtained for events
at the same elevation but different streamwise locations show similar trends, with
some variations in the relative magnitude of vectors surrounding the event points.
For swirl events located below 1k (not shown), the only discernible flow feature is a
clockwise-rotating vortex with a sweeping flow above.

For events occurring at y ≈ 2.5k (figure 20b), a distinct shear layer shown by a
dashed line becomes visible in the neighbourhood of the event, with sweep above and
ejection below. It has a slight upward inclination upstream of the event, but becomes
horizontal downstream. At this elevation, the coherent pattern disappears beyond
about one wavelength on both sides of the event. At y =6.3k (figure 20c), the inclined
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Figure 20. LSE of vector fields based on the swirling strength at (a) y = 1.4k, (b) y = 2.5k,
(c) y = 6.3k and (d ) y = 7.6k (shown by solid dots) for x–y plane 1 and Reτ = 3520. Dashed
lines in (b) and (c) mark the location of shear layers.
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shear layer becomes clearly evident. It contains a train of vortices with scale of k–2k
separating regions of sweep and ejection. At this elevation, the shear layer extends
over the entire sample area and qualitatively resembles the instantaneous sample
in figure 19(a). Formation of shear layers has been reported before in boundary
layers over both smooth and rough walls analysed using LSE (e.g. Christensen &
Adrian 2001; Volino et al. 2009). On the basis of an investigation of experimental and
computational data, Adrian’s group (e.g. Adrian et al. 2000; Christensen & Adrian
2001) has attributed this phenomenon to the flow induced by hairpin vortex packets.
In their results, the spacing between vortex cores along the shear layer (hairpin
heads) is of the same order as their distance from the wall. Although in the present
rough-wall case, the shear layer is populated with more tightly packed roughness-scale
eddies, the overall feature appears to be similar, including the formation of features
separated by a distance that is close to the local elevation.

At y = 7.6k, in addition to the phenomena described above, a pair of strong ejection
regions highlights the presence of two large structures, each inclined at ∼ 45◦, and
each with a spanwise vortex at its highest, most downstream point. Their streamwise
extent, 2λ–2.5λ, is considerably larger than the roughness wavelength or the distance
from the wall. This scale approximately corresponds to that of the low wavenumber
peak in the compensated energy spectra (figure 18), i.e. the streamwise integral scale.
As shown in § 3.3.1, eddies of such scales exhibit inertial range characteristics and are
involved in an energy-cascading process that is eventually disrupted by roughness-
scale eddies. Although we cannot determine how these structures are produced based
on the present data, their persistent quasi-periodic appearance suggests that they
are related. At higher elevations, the distinct shear layer becomes less visible in the
original LSE plots, but the ‘blobs’ of the strong ejection region remain over the entire
domain of the high-resolution measurement. However, upon low-pass filtering of
the data, which removes the swirling strength peaks associated with roughness-scale
eddies, the shear layer clearly reappears (not shown).

In summary, the LSE-based analysis indicates that at y < 1.5k, the flow field is
dominated by roughness-scale eddies. Although the instantaneous data frequently
show inclined trains of vortical structures (e.g. figure 19), there is no statistical
evidence of spatial coherence that would suggest the formation of small-scale hairpin
packets. A shear layer with at least roughness wavelength-scale coherence, implying
correlated vortex trains, appears only from y ≈ 2.5k. Within the logarithmic layer,
the shear layer has features that resemble those induced by hairpin packets in prior
studies (e.g. Christensen & Adrian 2001). Quasi-periodic structures, consisting of
strong ejection events, emerge at higher elevation and have integral length scales.
Nevertheless, the flow field is still flooded with roughness-scale eddies.

Imprints of some of the aforementioned flow structures can also be seen in the
distributions of two-point spatial correlations. Sample Ruu and Rvv during Q2 and
Q4 events, denoted as Ruu,Qi , at several elevations are presented in figure 21. As
seen in numerous prior studies (e.g. Krogstad & Antonia 1994; Volino et al. 2009),
Ruu has a much longer extent than Rvv , especially in the streamwise direction. The
differences between Ruu and Rvv are explained by Adrian (2007) based on the hairpin
packet model. For correlation coefficients below 0.7, the Ruu contours are inclined
at shallow angles, whose orientations agree with the inclination of the shear layer
in the LSE results, as well as the train of vortices demonstrated in instantaneous
realizations. This inclination diminishes for higher correlation values, but contours
remain elliptical, consistent with the shape of the vortex at the event point of the
LSE data. Correlations associated with sweeps have larger extent than those with
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Figure 21. Quadrant-sampled two-point correlations: (a) Ruu,Q2, (b) Rvv,Q2, (c) Ruu,Q4,
(d ) Rvv,Q4 at y = 0.6k, 5.6k and 16.7k (shown by solid dots) for x–y plane 1 and Reτ = 3520.

ejections, especially below y = 4k–5k, because sweeps presumably bring down larger
scale events from above, whereas ejections lift up small-scale eddies from below.

4. Discussion and conclusions
Utilizing an optically index-matched flow facility and high magnification PIV

measurements, we have studied the turbulence statistics and flow structures in the
inner part of a turbulent channel flow over a rough surface at Reτ ranging from
3520 to 5360. In all cases, the combinations of Reynolds number, roughness and
channel scales satisfy the well-characterized condition (Jiménez 2004). We focus
mostly on the roughness sublayer and lower portions of the outer layer, but lower
resolution data cover the entire half-channel. In the ensemble and spatially averaged
turbulence statistics, 〈u′u′〉 has a local maximum at y = 4k ∼ 5k, while −〈u′v′〉 and

〈v′v′〉 have relatively broad maxima at y = 2k ∼ 6k and 3k ∼ 8k, respectively. These
trends are consistent with prior publications (Jiménez 2004). However, within the
roughness sublayer, 〈u′u′〉 increases again below y = k as the wall is approached,
peaking at the top of pyramidal elements. A slight increase also appears in the
profile of 〈v′v′〉 adjacent to the roughness while −〈u′v′〉 keeps on decreasing. Since
small-scale structures are major contributors to the near-wall turbulence, the data are
sensitive to the measurement resolution, especially when the wall-normal component
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Figure 22. A comparison between the present 〈u′u′〉 and the smooth-wall, channel flow data
in Monty (2005). Present results: �, high-resolution data at Reh = 62 500; �, low-resolution
data at Reh = 61 600; �, high-resolution data at Reh =73640. Monty’s data: �, Reh = 54 000;
�, Reh = 70 000.

is involved. Even in our limited range of the Reynolds number, scaling of Reynolds
stress components with U 2

τ yields good collapse only far from the wall. In the 〈u′u′〉
and −〈u′v′〉 profiles, maximum deviations occur in the vicinity of stress peaks in

the 2k <y < 10k range, while the profiles of 〈v′v′〉 continue to diverge as the wall is
approached.

For the present roughness geometry, all the spatial variations in the mean velocity
and Reynolds stress distributions vanish above y ≈ 2k. To determine implications
associated with the wall similarity hypothesis (Raupach et al. 1991), figure 22 compares
the present, spatially averaged distribution of 〈u′u′〉 with the smooth-wall channel
flow data available in Monty (2005) and Monty et al. (2009). To avoid issues related to
Reynolds number effect, we only use smooth-wall data obtained at similar Reynolds
numbers, i.e. Reh = 54 000 and 70 000. As is evident, the rough-wall results match those
of Monty for y/δ > 0.1–0.2 (y/k > 5–10), providing clear support for the Townsend’s
hypothesis for the Reynolds stress statistics. Slight deviations between profiles of
〈u′u′〉 and 〈v′v′〉 (not shown) can be attributed to uncertainties related to the curve
fitting used for determining Uτ .

The effect of the roughness geometry becomes appreciable below y ≈ 2k, where
all distributions of the mean flow and turbulence statistics become highly variable
but periodic with roughness wavelength. For example, the mean flow exhibits a
channelling phenomenon, i.e. a higher streamwise velocity along slightly meandering
paths located between the crests of pyramidal elements. Other phenomena associated
with the flow separating and circumventing the pyramid crests are also evident. In the
x–y plane dissecting the ridgeline, 〈u′u′〉 peaks above the forward-facing ridge of the
pyramid, near the site of the maximal TKE production rate. While the contribution of
shear to production is fairly uniform, spatial variations in the magnitude and sign of
∂U/∂x generate a TKE production peak above the forward ridge, in the region where
the streamwise flow contracts. An inclined layer with high values of 〈u′u′〉 extends at
a shallow angle away from the region of the maximum production. The distribution
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of total wall-normal turbulent transport term also has a similar inclined pattern.
The −〈u′v′〉 peak coincides with that of 〈u′u′〉, while 〈v′v′〉 reaches local maximum
slightly downstream. Within the roughness sublayer especially adjacent to the surface,
a quadrant analysis shows that sweeps are the dominant contributors to the Reynolds
shear stress and related statistical quantities such as shear production. During sweeps,
the downward motions squeeze spatial non-uniformities into a thin layer within
y ≈ 0.5k above the surface, leaving the flow above spatially uniform. Conversely,
ejections expand the spatially non-uniform domain to the entire roughness sublayer.
The contribution of ejections to all the Reynolds stress components exceeds that of
sweeps above y ≈ 3k over the present range of Reynolds numbers. An analysis of
terms in the TKE balance equation based on spatially averaged data shows that both
production and dissipation rate (under-resolved) reach maximum at the elevation just
above the top of pyramidal elements. However, P̄ /ε̄ also peaks in the same region,
causing substantial wall-normal turbulent transport near the wall. The latter becomes
insignificant at higher elevations, leaving production and dissipation the only major
contributors in the TKE balance. The magnitude of P̄ /ε̄ drops to below one in the
outer layer. These trends are consistent with the DNS results obtained by Ikeda &
Durbin (2007) for the two-dimensional roughness.

The energy and shear spectra show an increasing contribution of large-scale
motions, and a diminishing role of small-scale eddies with increasing distance from
the wall. However, as the spectra steepen, E11(k1), E22(k1) and E12(k1) develop bumps
(flattening of slopes) in wavenumbers corresponding to k–3k. In the compensated
energy spectra, these bumps appear as local maxima at scales corresponding to 15η–
30η (which varies with elevation), i.e. within the dissipation range. A very similar trend
can be seen in the oceanic data of Hackett et al. (2010), where the spectral bumps
appear in wavenumbers corresponding to ∼ 1.6k–2.4k or 13η–20η, but in this case
k ∼ 1 cm and η = 1.2 mm. In both cases, these bumps appear at higher k1η, i.e. deeper
within the dissipation range, than those reported in Saddoughi & Verravalli (1994)
for a smooth-wall boundary layer that have been attributed to an energy bottleneck.
As demonstrated by sample instantaneous velocity and vorticity distributions, the
roughness-scale eddies are generated near the surface, and advected rapidly away
from the wall by large-scale structures that populate the outer layer. Consequently,
in addition to eddies generated by the typical energy-cascading process of turbulence,
the outer layer is also flooded by roughness-scale eddies that are produced near
the wall, injecting excessive energy at these scales. Thus, although the imprints of
roughness diminish in the outer-layer Reynolds stress statistics, in agreement with the
wall similarity hypothesis, the small-scale turbulence and associated dissipation rate
contain clear roughness signatures in the entire flow domain.

In an attempt to characterize the large-scale structures lifting near-wall eddies, we
apply the swirling strength-based LSE along with observations on instantaneous data.
Early signs of the formation of an inclined shear layer with ejection below and sweep
above appear in the LSE results only above y ≈ 2.5k. These features are similar to
those observed by Christensen & Adrian (2001), and have been attributed to the
formation of organized hairpin packets based on their analysis of experimental and
numerical data (see comprehensive discussion in Adrian 2007). In the present data,
the streamwise extent of the shear layer grows with elevation. However, such a shear
layer does not appear closer to the wall in the LSE result, in spite of a substantial
portion of instantaneous realizations showing that trains of roughness-scale eddies
extend from the roughness at an inclined shallow angle. In the outer layer, where
the LSE shear layer forms, it is still populated by roughness-scale eddies over the
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entire flow domain. The presence of these eddies also obscures the shear layer entirely
above y ≈ 8k, but it reappears after lowpass filtering of the data. The outer layer
LSE results also show the formation of multiple inclined structures with scales that
are considerably larger than the roughness wavelength or distance from the wall.
These scales are more related to the local turbulence integral scale, as observed in
the spectral analysis. Such structures are also present in instantaneous realizations.
Unfortunately, one cannot elucidate the three-dimensional profile and origin of these
structures conclusively based on two-dimensional PIV data. Resolving them and their
time evolution requires three-dimensional, time-resolved measurements that cover
the region from the base of the pyramids. Ongoing holographic PIV measurements
presently attempt to address this challenge.

This research has been funded by the Office of Naval Research under grant N00014-
06-1-0650. The programme officer is Ronald Joslin. Construction of the optically
index-matched facility has been funded by ONR, in part under grant N00014-06-
1-0160, and in part by DURIP grant N00014-06-1-0556. The programme officer is
Ki Han Kim. The authors would like to thank Yury Ronzhes for designing the new
facility, as well as Siddharth Talapatra, Joshi Pranav and Huixuan Wu for their help
during the experiments.

Appendix. Effect of spatial resolution on dissipation rate estimates
Dissipation estimates based on instantaneous velocity gradients are attenuated due

to the finite spatial resolution of PIV measurements. In planar PIV, the in-plane
spatial resolution is limited by the interrogation window size and the out-of-plane
resolution is imposed by the laser sheet thickness or the depth-of-field (DOF) of
the imaging system (Raffel et al. 2007), depending on which of the two is smaller.
Meinhart, Wereley & Gray (2000) show that for a typical PIV analysis one should
use the depth of correlation instead of DOF as the depth of the interrogation volume
since out-of-focus particles still affect the intensity distribution of the image and,
therefore, the velocity measurement. However, as described by Roth et al. (1999), we
employ an enhancement procedure, which maintains the intensity distribution only
above a locally determined threshold level, followed by histogram equalization. This
process removes the background non-uniformities of images, including those of dim,
out-of-focus particle traces below the threshold level. Consequently, DOF should be
the proper length scale for the out-of-plane resolution of our data. The attenuation of
velocity spatial gradients because of finite resolution is affected by the combination
of the in-plane and out-of-plane resolutions. For the present high-resolution data,
the interrogation window size is 126 µm, which is equal to 5η near the wall and
∼ 3η in the outer layer. The laser sheet thickness is about 0.5 mm ∼ 20η. For high
magnification images, where the particle image size is governed by the diffraction
limit of the imaging system, the DOF can be estimated using (Inoué & Spring 1997)

DOF =
nλ0

NA2
+

ne

NAM
(A 1)

where NA is the numerical aperture, ∼ 0.053 (using F# of ∼ 9.5 of a Schneider
Macro Componon-S 5.6/100 mm lens), λ0 is the laser wavelength in vacuum, n is the
refractive index, M is the magnification (1.86), and e is the pixel spacing of the CCD
sensor. We use a diffraction limit-based formula since the characteristic size of particle
traces on the CCD array is 2–3 pixels, corresponding to 8–12 µm, i.e. much larger
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Figure 23. Attenuation caused by one-dimensional, wall-normal spatial averaging on (a)
the streamwise energy spectrum, E11(k1)/νUτ , and (b) corresponding dissipation spectrum,
2νk2

1
E11(k1)/U 3

τ at y/k = 3.4. Symbols: �, original PIV data; �, filter size: DOF; �, filter size:
laser sheet thickness.

than the actual particle size (2 µm). The resulting estimated DOF in our experiment
is about 280 µm, i.e. 7η–13η. Because of the high magnification, the depth of focus is
smaller than the laser sheet thickness.

On the basis of a study on the effect of the spatial resolution of PIV on dissipation
estimates in decaying isotropic turbulence by Lavoie et al. (2007), the in-plane
resolution should enable us to resolve about 75 % of the dissipation rate near the wall
and 87 % in the outer layer. However, in their study the laser sheet thickness is chosen
to be a half of the interrogation window size, while in our case, it is significantly larger
than the in-plane values. Since we do not have a direct method for measuring the
effect of the out-of-plane resolution on the in-plane derivatives, we estimate it instead
based on an equivalent effect, namely the effect of spatial filtering in the wall-normal
direction on the streamwise derivatives. We filter the original velocity field with a one-
dimensional spatial top-hat filter and calculate its effect on squared perpendicular
derivatives that appear in the dissipation rate formula. For example, wall-normal
one-dimensional filtering is used for estimating the attenuation of 〈(∂u′/∂x)2〉, and
streamwise filtering for 〈(∂v′/∂y)2〉. The analysis shows that for a filter with the size of
the laser sheet thickness, 〈(∂u′/∂x)2〉 and 〈(∂v′/∂y)2〉 are attenuated by 64 % (62–67 %,
depending on elevation) and 57 % (55–60 %), respectively. When DOF is selected as
the filter size, the corresponding values are reduced to 56 % (53–59 %) and 45 % (42–
48 %). Thus, a reasonable estimate for the attenuation of the dissipation estimates by
the finite thickness of the laser sheet or depth of focus is about 50 %. Figures 23(a)
and 23(b) show the effect of the one-dimensional, wall-normal, spatial filtering on
sample streamwise energy spectra, E11(k1), and dissipation spectra, 2νk2

1
E11(k1). As

expected, and consistent with the above discussion, the filtering causes significant
attenuation, especially at high wavenumbers. However, the spectral bumps associated
with roughness-scale eddies are evident before and after the filtering.
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