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We consider structured specifications built from flat specifications using union, translation

and hiding with their standard model-class semantics in the context of an arbitrary

institution. We examine the alternative of sound property-oriented semantics for such

specifications, and study their relationship to model-class semantics. An exact

correspondence between the two (completeness) is not achievable in general. We show

through general results on property-oriented semantics that the semantics arising from the

standard proof system is the strongest sound and compositional property-oriented semantics

in a wide class of such semantics. We also sharpen one of the conditions that does guarantee

completeness and show that it is a necessary condition.

1. Introduction

Specification formalisms offer specification-building operations that can be used to build

complex structured specifications by combining and extending simpler ones (Burstall and

Goguen 1977). Then, an understanding of a large specification is achieved through an

understanding of its components. The meaning of a specification formalism needs to

be completely and precisely defined, and this raises the question of what specifications

should denote. The ultimate role of any specification is to describe the class of behaviours

that satisfy the specification – its models, in logical terminology – and hence are to

be regarded as correct for the task at hand. In algebraic specification, we represent

behaviours as algebras, abstracting away from the details of code and algorithms used to

implement behaviours. It is then natural to take the class of algebras that represent correct

behaviours – its model class – as the semantics of a specification. This view carries over

to the framework of an arbitrary logical system formalised as an institution (Goguen and

Burstall 1992), where algebras may be replaced by other semantic structures appropriate

for modelling the behaviours of the programs at hand.

However, while model-class semantics remains fundamental, it is vital to be able to

determine whether or not a given property is a consequence of a given specification,
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that is, holds in all of its models. This is the purpose of proof systems for consequences

of structured specifications, as given, for instance, in Sannella and Tarlecki (1988). The

essential property of such a system is its soundness, which ensures that the consequences

derived from a specification do indeed hold in all of its models. Another key property is

that the proof system is compositional, so that the consequences of a structured specification

are derived from the consequences of its immediate constituents. This allows consequences

of structured specifications to be deduced in stages, with the structure of the specification

as a guide to the ‘shape’ of the proof. Completeness holds when every property that holds

in all of the models of a specification is always derivable; this is highly desirable, but

rarely achievable in the practical context of specification formalisms, which often provide

the means for defining the standard model of the natural numbers and other datatypes

(MacQueen and Sannella 1985).

A proof system for consequences of structured specifications determines an alternative

‘property-oriented’ semantics for specifications that maps them to sets of properties (or

theories), as in the original semantics of the Clear specification language – see Burstall

and Goguen (1980); see also Diaconescu et al. (1993). Requiring the proof system to be

sound amounts to requiring that the properties given by this semantics hold in all of the

models given by the model-class semantics. The compositionality requirement amounts

to requiring the meaning of a structured specification in the property-oriented semantics

to depend functionally on the meanings of its immediate constituents. Completeness,

together with soundness, means that the two forms of semantics essentially coincide.

Sound and compositional property-oriented semantics are the subject of study in

this paper, which we conduct in the context of an arbitrary institution (Goguen and

Burstall 1992). We will begin by recalling the standard property-oriented semantics for

structured specifications built from flat specifications using union, translation and hiding,

originating from Clear (Burstall and Goguen 1980), with the model-class semantics given

in Sannella and Tarlecki (1988). We then recall some existing results concerning the

completeness of this semantics and its corresponding proof system, and in the process

sharpen one of the conditions that guarantee completeness and show that it is, moreover,

a necessary condition. The semantics is only complete when the logic in use admits

interpolation, so, for instance, there is a ‘gap’ between the model class semantics and the

property-oriented semantics for many-sorted equational specifications (unless we impose

strong restrictions on the algebras and morphisms involved).

A new result is that the standard property-oriented semantics (and its corresponding

proof system) cannot be improved: no sound and compositional semantics can be better.

This is a consequence of a more general result we prove concerning property-oriented

semantics for structured specifications built using any collection of specification-building

operations. Surprisingly, this result requires a mild but unexpected technical assumption:

that the semantics considered must not ‘forget’ any of the axioms present in flat

specifications. We first show this under the assumption that an oracle (that is, a complete

proof system) for semantic consequences of any set of axioms in the underlying logic is

given and used in the semantics to close the sets of properties assigned to specifications

under consequence. Then we show that this assumption may be dropped when a stronger

form of compositionality is assumed. Finally, we show how these results carry over to the

https://doi.org/10.1017/S0960129513000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000212


Property-oriented semantics of structured specifications 3

context of a sound but not necessarily complete proof system for the underlying logic,

given as an entailment system.

2. Institutional preliminaries

Following Goguen and Burstall (1992) and Sannella and Tarlecki (1988), we abstract

away from any particular logical system and study specifications built in an arbitrary

logical system formalised as an institution.

An institution (Goguen and Burstall 1992) INS consists of:

— a category

SignINS

of signatures;

— a functor

SenINS : SignINS → Set,

giving a set SenINS(Σ) of Σ-sentences for each signature Σ ∈ |SignINS|;
— a functor

ModINS : Signop
INS → Cat,

giving a category ModINS(Σ) of Σ-models for each signature Σ ∈ |SignINS|; and

— a family

〈|=INS,Σ ⊆ |ModINS(Σ)| × SenINS(Σ)〉Σ∈|SignINS|

of satisfaction relations

such that for any signature morphism σ : Σ → Σ′ the translations ModINS(σ) of models

and SenINS(σ) of sentences preserve the satisfaction relation, that is, for any ϕ ∈ SenINS(Σ)

and M ′ ∈ |ModINS(Σ′)| the following satisfaction condition holds:

M ′ |=INS,Σ′ SenINS(σ)(ϕ) iff ModINS(σ)(M ′) |=INS,Σ ϕ.

Examples of institutions abound. The institution EQ of equational logic has many-

sorted algebraic signatures as signatures, many-sorted algebras as models and (explicitly

quantified) equations as sentences. The institution FOPEQ of first-order predicate logic

with equality has signatures that add predicate names to many-sorted algebraic signatures,

models that extend algebras by interpreting predicate names as relations and sentences

that are all closed (no free variables) formulae of first-order logic with equality. The

institution Lω1ω then extends FOPEQ by permitting infinitely countable disjunction and

conjunction in formulae. See Sannella and Tarlecki (2012) for detailed definitions of

these and many other institutions. We will also consider single-sorted versions of these

institutions (EQss , and so on), as well as versions where models are required to have

non-empty carriers of all sorts (EQne , and so on).

We will make free use of standard terminology, and say that a Σ-model M satisfies a

Σ-sentence ϕ, or that ϕ holds in M, whenever M |=INS,Σ ϕ. We will omit the subscript

INS, writing

INS = 〈Sign, Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉.
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Similarly, the subscript Σ on the satisfaction relations will often be omitted. For any

signature morphism σ : Σ → Σ′, the translation function

Sen(σ) : Sen(Σ) → Sen(Σ′)

will be denoted by

σ : Sen(Σ) → Sen(Σ′),

the coimage function with respect to Sen(σ) by

σ−1 : P(Sen(Σ′)) → P(Sen(Σ)),

and the reduct functor

Mod(σ) : Mod(Σ′) → Mod(Σ)

by

σ : Mod(Σ′) → Mod(Σ).

Thus, the satisfaction condition can be re-stated in the form

M ′ |= σ(ϕ) iff M ′
σ |= ϕ.

From now on, we will work with an arbitrary but fixed institution

INS = 〈Sign, Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉.

For any signature Σ, the satisfaction relation extends naturally to sets of Σ-sentences

and classes of Σ-models. In other words, for any set Φ ⊆ Sen(Σ) of Σ-sentences and model

M ∈ |Mod(Σ)|, we write M |= Φ to mean M |= ϕ for all ϕ ∈ Φ. Then, for any Σ-sentence

ϕ ∈ Sen(Σ) and class M ⊆ |Mod(Σ)| of Σ-models, M |= ϕ means M |= ϕ for all M ∈ M.

Finally, we will also write M |= Φ with the obvious meaning.

Given a class of Σ-models M ⊆ |Mod(Σ)|, its theory is given by

Th(M) = {ϕ ∈ Sen(Σ) | M |= ϕ}.

Given a set of Σ-sentences Φ ⊆ Sen(Σ), the class of its models is given by

Mod (Φ) = {M ∈ |Mod(Σ)| | M |= Φ}.

For any signature Σ, a Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a set of Σ-

sentences Φ ⊆ Sen(Σ) (written Φ |=Σ ϕ or simply Φ |= ϕ) if for all Σ-models M ∈ |Mod(Σ)|,
we have M |= ϕ whenever M |= Φ.

It is trivial to check that for any class of Σ-models M ⊆ |Mod(Σ)|, its theory Th(M) is

closed under semantic consequence, and that if a set Φ ⊆ Sen(Σ) is closed under semantic

consequence (Φ |= ϕ implies ϕ ∈ Φ), then it is a theory of its model class. We write ClΣ(Φ)

for the closure of Φ under semantic consequence: that is,

ClΣ(Φ) = Th(Mod (Φ)).

Translation under signature morphisms preserves semantic consequence: that is, for any

σ : Σ → Σ′, ϕ ∈ Sen(Σ) and Φ ⊆ Sen(Σ), we have

if Φ |= ϕ, then σ(Φ) |= σ(ϕ).
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The opposite implication may fail in general. However, it does hold, for instance, if the

reduct

σ : Mod(Σ′) → Mod(Σ)

is surjective on models, so in that case we do have

Φ |= ϕ iff σ(Φ) |= σ(ϕ).

Consequently, semantic consequence is (preserved and) reflected by translation under

all signature morphisms that are injective in EQne , FOPEQne and Lne
ω1ω

(since in these

institutions, injective morphisms induce surjective reduct functors).

The institutional structure is rich enough to enable a number of key features of logical

systems to be expressed. For instance, amalgamation and interpolation properties may be

captured as follows.

Consider the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ2

σ′
2 σ′

1

This diagram admits amalgamation if for any two models M1 ∈ |Mod(Σ1)| and M2 ∈
|Mod(Σ2)| such that

M1 σ1
= M2 σ2

,

there exists a unique model M ′ ∈ |Mod(Σ′)| such that

M ′
σ′

2
= M1

M ′
σ′

1
= M2

(we call such an M ′ the amalgamation of M1 and M2), and similarly for model morphisms.

An institution is semi-exact if pushouts of signature morphisms always exist and admit

amalgamation (or, equivalently, Mod : Signop → Cat translates them to pullbacks in Cat).

In fact, the developments below do not depend on the amalgamation properties for model

morphisms, so semi-exactness is a bit too strong for our needs. However, we will use this

standard notion nonetheless since we are not aware of any example of an institution of

practical importance where pushout diagrams admit amalgamation of models but not of

morphisms.

Another way to weaken the requirement of exactness is to drop the uniqueness of

the amalgamation; in fact, the results below still hold if we require institutions to be

weakly semi-exact, that is, map the pushouts considered in the category of signatures

to weak pullbacks in Cat. Again, we will not adopt this possible generalisation since

amalgamation, rather than weak amalgamation, is a crucial property of ‘useful’ logical

systems that enables the systematic combination of models (that represent programs) in

architectural designs (Sannella and Tarlecki 2012).
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It is well known that EQ, FOPEQ and Lω1ω (and their single-sorted versions) are

semi-exact. But this fails for some other institutions of interest, where it is useful to rely

on a slightly more subtle notion, which is parameterised by additional classes of signature

morphisms.

Consider two classes H,W ⊆ |Sign| of signature morphisms†. Then INS is 〈H,W〉-exact

if for any signature morphisms δ ∈ H and τ ∈ W with a common source, there are δ′ ∈ H
and τ′ ∈ W forming a pushout

·

· ·

·

�
�

��

�
�

��

�
�

��

�
�

��

δ τ

τ′ δ′

that admits amalgamation, and then any such pushout admits amalgamation as

well.

In the following we will always assume that H and W form wide subcategories of Sign

(that is, are closed under composition and contain all identities in Sign), and that H ⊆ W .

Consider again the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ2

σ′
2 σ′

1

This diagram admits parameterised (or Craig–Robinson) interpolation if for any Φ1 ⊆
Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ2 ∈ Sen(Σ2), whenever

σ′
2(Φ1) ∪ σ′

1(Φ2) |= σ′
1(ϕ2),

we have for some Φ ⊆ Sen(Σ) such that Φ1 |= σ1(Φ) that

Φ2 ∪ σ2(Φ) |= ϕ2.

Such a set Φ will be called a set of interpolants for Φ1 and ϕ2 with respect to Φ2. The

diagram admits Craig interpolation if it admits parameterised interpolation with ‘parameter

set’ Φ2 = �.

† In the context of structured specifications (see Section 3), morphisms in H will be used for hide (hiding),

while those in W will be used for with (translation).
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Given classes H,W ⊆ Sign of signature morphisms, we say that INS admits paramet-

erised (respectively, Craig) 〈H,W〉-interpolation if for any signature morphisms δ ∈ H
and τ ∈ W with a common source there are δ′ ∈ H and τ′ ∈ W forming a pushout

·

· ·

·

�
�

��

�
�

��

�
�

��

�
�

��

δ τ

τ′ δ′

that admits parameterised (respectively, Craig) interpolation. Then any such pushout

admits parameterised (respectively, Craig) interpolation as well.

Tarlecki (1986) provided the basis for the reformulation of classical (first-order) Craig

interpolation (Chang and Keisler 1990) given above. We relax the requirement that the

interpolant be given by a single formula, since a set of interpolants is more natural,

for instance, for equational logic, as argued in Rodenburg (1991) and Diaconescu et

al. (1993). It is well known that single-sorted first-order predicate logic with equality,

FOPEQss , admits Craig as well as parameterised interpolation, but in the many-sorted

case, interpolation requires additional assumptions on the signature morphisms involved:

FOPEQ admits Craig and parameterised 〈H,W〉-interpolation when all morphisms in H
are injective on sorts – see Borzyszkowski (2005).

Interpolation properties for equational logic are a bit more delicate. EQne admits

Craig 〈H,W〉-interpolation for classes H and W where all morphisms are injective,

but the restriction to non-empty carriers cannot be dropped (Roşu and Goguen 2000;

Tarlecki 2011). Parameterised 〈H,W〉-interpolation for EQne fails (a counterexample may

be extracted from Example 4.3 below, cf. Proposition 4.5) unless injectivity and strong

‘encapsulation’ properties are imposed on the morphisms in H (Diaconescu 2008).

In the framework of first-order predicate logic, it is easy to derive the (stronger)

parameterised interpolation property from Craig interpolation. This relies on compactness

and closure of the set of first-order sentences under conjunction and implication as follows.

Consider the commuting diagram

Σ

Σ1 Σ2

Σ′

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ2

σ′
2 σ′

1

in the category of first-order signatures, and assume that it admits Craig interpolation.

Let Φ1 ⊆ Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ ∈ Sen(Σ2) be such that

σ′
2(Φ1) ∪ σ′

1(Φ2) |= σ′
1(ϕ).
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By compactness, there are finite Ψ1 ⊆ Φ1 and Ψ2 ⊆ Φ2 such that

σ′
2(Ψ1) ∪ σ′

1(Ψ2) |= σ′
1(ϕ).

Then

σ′
2(Ψ1) |= σ′

1

(∧
Ψ2 ⇒ ϕ

)
,

so, by the simple Craig interpolation property, we have a set Ψ of Σ-sentences such that

Ψ1 |= σ1(Ψ)

σ2(Ψ) |=
(∧

Ψ2 ⇒ ϕ
)
.

Hence, we also have

Φ1 |= σ1(Ψ)

Φ2 ∪ σ2(Ψ) |= ϕ,

so Ψ is an interpolant set for Φ1 and ϕ with respect to Φ2. Although this argument may

be generalised to any institution where implication and ‘sufficiently large’ conjunction

are expressible, in general, parameterised interpolation is properly stronger than Craig

interpolation.

Just as in classical first-order logic, where interpolation is sometimes derived from

the Robinson consistency theorem, or from various conservativity properties, similar

relationships hold between analogous notions in the institutional framework. For instance,

we say that σ1 : Σ → Σ1 is conservative for Φ1 ⊆ Sen(Σ1)
†

if

Mod (σ−1
1 (ClΣ1

(Φ1))) = Mod (Φ1) σ1
,

that is, every model of the σ1-coimage of the theory generated by Φ1 has a σ1-expansion

that satisfies Φ1. Given a pushout as above, and Φ1 ⊆ Sen(Σ1), Φ2 ⊆ Sen(Σ2) and

ϕ2 ∈ Sen(Σ2) such that

σ′
2(Φ1) ∪ σ′

1(Φ2) |= σ′
1(ϕ2),

it is easy to check that σ−1
1 (ClΣ1

(Φ1)) is a set of interpolants for Φ1 and ϕ2 with respect

to Φ2 whenever σ1 : Σ → Σ1 is conservative for Φ1. So, conservativity in this sense is a

stronger property than parameterised interpolation; in fact, easy examples show that it is

strictly stronger.

3. Structured specifications

As we said in Section 2, we will work with an arbitrary institution

INS = 〈Sign, Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉

equipped with two classes H ⊆ W ⊆ Sign of signature morphisms that contain all

identities and are closed under composition.

†
That is, if we stretch the terminology of Goguen and Roşu (2004) somewhat, the module 〈σ1 : Σ → Σ1,Φ1〉
is conservative
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We study specifications built in INS. Whatever the specifications are exactly, and

whatever their exact written form, each specification has to determine a class of programs

that correctly realise it. If the models of the institution capture (the semantics of) the

programs we want to deal with, and they have signatures capturing their (static) interfaces,

then the most basic semantics of a specification is given in terms of its signature and its

class of models. Consequently, we will consider a class Spec of specifications in INS with

a semantics that for each specification SP ∈ Spec defines its signature Sig[SP ] and its

class of models

Mod [SP ] ⊆ |Mod(Sig[SP ])|.

We will refer to specifications SP with Sig[SP ] = Σ as Σ-specifications and write Spec(Σ)

for the class of all Σ-specifications. When we want to stress that we are dealing with

specifications built in the particular institution INS, we will write SpecINS and SpecINS(Σ)

rather than just Spec and Spec(Σ).

The semantics determines an obvious notion of specification equivalence: specifications

SP1 and SP2 are equivalent, written SP1 ≡ SP2, if their semantics coincide: that is,

Sig[SP1] = Sig[SP2]

Mod [SP1] = Mod [SP2].

The simplest specifications are presentations that simply give a set of axioms asserting

the required properties. We write such flat specifications as 〈Σ,Φ〉 for any Σ ∈ |Sign| and

Φ ⊆ Sen(Σ) and define their semantics in the obvious way:

Sig[〈Σ,Φ〉] = Σ

Mod [〈Σ,Φ〉] = {M ∈ |Mod(Σ)| | M |= Φ}.

Following the ideas of Burstall and Goguen (1977) and Burstall and Goguen (1981),

more complex specifications can now be systematically formed using a collection of

specification-building operations. This stratified way of designing specification formalisms,

with a clear separation of basic blocks given as flat specifications from specification

structuring mechanisms that are largely independent of the underlying logic, has become

standard and can be usefully exploited to ensure clarity and reusability in the context

of different logical systems formalised as institutions. One example of a specification

formalism that is structured in this way is Casl (Bidoit and Mosses 2004; Mosses 2004).

We will assume that specification-building operations are ‘strongly typed’ by specifica-

tion signatures, and write

sbo : Spec(Σ1) × . . .× Spec(Σn) → Spec(Σ)

to indicate that a specification-building operation sbo takes any specifications

SP1 ∈ Spec(Σ1), . . . , SPn ∈ Spec(Σn)

and yields a specification

sbo(SP1, . . . , SPn) ∈ Spec(Σ).
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The meaning of such a specification-building operation is then given as a function on

classes of models:

[[sbo]] : P(|Mod(Σ1)|) × . . .× P(|Mod(Σn)|) → P(|Mod(Σ)|).

The semantics of specifications is then given compositionally, by defining the model class

of sbo(SP1, . . . , SPn) in terms of the model classes of SP1, . . . , SPn using [[sbo]].

Flat specifications may be viewed as constant (nullary) specification-building operations.

In addition to flat specifications, we will concentrate here on three (families of) kernel

specification-building operations, originating from ASL (Sannella and Wirsing 1983), and

then re-introduced in Sannella and Tarlecki (1988) with institution-independent model-

class semantics. These operations are also at the core of Casl, and we will use here a

notation that is closer to the syntax of Casl; see also Sannella and Tarlecki (2012).

Union: For any signature Σ, we have

∪ : Spec(Σ) × Spec(Σ) → Spec(Σ)

with

[[ ∪ ]] = ( ∩ ).

That is, given Σ-specifications SP1 and SP2, we obtain a specification SP1 ∪ SP2 with

the following semantics:

Sig[SP1 ∪ SP2] = Σ

Mod [SP1 ∪ SP2] = Mod [SP1] ∩ Mod [SP2].

SP1 ∪ SP2 combines the constraints imposed by SP1 and SP2.

Translation: For any signature morphism σ : Σ → Σ′ in W , we have

with σ : Spec(Σ) → Spec(Σ′)

with

[[ with σ]] = ( −1
σ )

where −1
σ is the coimage function with respect to the σ-reduct of models. That is,

given any Σ-specification SP , we obtain a specification SP with σ with the following

semantics:

Sig[SP with σ] = Σ′

Mod [SP with σ] = {M ′ ∈ |Mod(Σ′)| | M ′
σ ∈ Mod [SP ]}.

SP with σ changes the names in SP according to σ, and adds new components.

Hiding: For any signature morphism σ : Σ′ → Σ in H, we have

hide via σ : Spec(Σ) → Spec(Σ′)

with

[[ hide via σ]] = ( σ)

where σ is the image function with respect to the σ-reduct of models. That is, given

any Σ-specification SP , we obtain a specification SP hide via σ with the following

https://doi.org/10.1017/S0960129513000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000212


Property-oriented semantics of structured specifications 11

semantics:

Sig[SP hide via σ] = Σ′

Mod [SP hide via σ] = {M σ | M ∈ Mod [SP ]}.

SP hide via σ views SP as a Σ′-specification, hiding auxiliary components.

We will write SpecUTH for the class of specifications built from flat specifications using

union of specifications over common signatures, translation along morphisms in W and

hiding with respect to morphisms in H. Note that the definitions of the syntax and of

the signature for specifications in SpecUTH do not depend on the models and satisfaction

relations of the institution involved (although, of course, they are used to determine the

model-class semantics of specifications) but only on the category of signatures Sign, with

indicated classes H,W ⊆ Sign, and sentences given by the functor Sen : Sign → Set. When

we want to make this dependency and the independence from the other components of the

institution more explicit, we write SpecUTH
Sen for SpecUTH . However, in general, there may

be specification-building operations that involve the model part (or satisfaction relations)

of the underlying institution even in the formulation of the ‘syntax’ – see, for instance,

the singleton operation used in Sannella et al. (1992).

A specification is finitary if all the flat specifications it involves have a finite set of

axioms.

The following normal form theorem provides an important technical tool.

Theorem 3.1. If INS is 〈H,W〉-exact, then any specification SP ∈ SpecUTH has an

equivalent normal form nf(SP ) given as

〈Σ′,Φ′〉 hide via σ,

for some Σ′ ∈ |Sign|, σ : Sig[SP ] → Σ′ in H and Φ′ ⊆ Sen(Σ′). Moreover, Φ′ is finite if SP

is finitary.

We will omit the explicit inductive definition of nf(SP ) and the proof of equivalence

– such normal form results have been well known since Bergstra et al. (1990), with a

predecessor in Ehrig et al. (1983) and the current general version in Borzyszkowski (2002).

Note that (weak) 〈H,W〉-exactness of the institution considered is crucial here.

In Goguen and Roşu (2004), specifications of the form 〈Σ,Φ〉 hide via σ are taken as

the basic meanings of specification expressions. The above theorem shows that this causes

no loss with respect to the model-class semantics, at least for specifications built using the

operations introduced above.

4. Property-oriented semantics for structured specifications

While we view the semantics of specifications given in terms of their model classes as the

most basic, their logical consequences are obviously of prime importance.

A Σ-sentence ϕ ∈ Sen(Σ) is a semantic consequence of a Σ-specification SP ∈ Spec(Σ) if

Mod [SP ] |= ϕ; we write this SP |= ϕ. The set of all semantic consequences of SP , called

the theory of SP , is denoted by Th(SP ), so

Th(SP ) = Th(Mod [SP ]),
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and, in particular,

Th(〈Σ,Φ〉) = Th(Mod [〈Σ,Φ〉]) = ClΣ(Φ).

Some authors go as far as to take the theory assigned to a specification as its meaning.

This goes back to Clear (Burstall and Goguen 1980), and is the stance taken in Diaconescu

et al. (1993). In this section and the next we will discuss this option and its relationship

with the model-class semantics defined above.

We define a property-oriented semantics for specifications to be any function T that

assigns to each specification SP ∈ Spec a set

T (SP ) ⊆ Sen(Sig[SP ])

of Sig[SP ]-sentences.

The assignment Th that maps each specification SP to its theory Th(SP ) is one such

semantics. In fact, this is the ‘best’ such semantics in the sense that it captures all and

only the properties that hold in all models of the given specification. We will use it as a

yardstick to measure the ‘strength’ and ‘soundness’ of other such semantics.

We will now introduce some vocabulary to talk about properties of such semantics. Let

T be a property-oriented semantics for specifications. Then:

— T is sound if

T (SP ) ⊆ Th(SP )

for every specification SP ∈ Spec.

— A sound T is complete if

T (SP ) = Th(SP )

for every specification SP ∈ Spec.

— T is monotone for a specification-building operation

sbo : Spec(Σ1) × . . .× Spec(Σn) → Spec(Σ)

if

T (sbo(SP1, . . . , SPn)) ⊆ T (sbo(SP ′
1, . . . , SP ′

n))

for all specifications SP1, SP ′
1 ∈ Spec(Σ1), . . . , SPn, SP ′

n ∈ Spec(Σn) such that

T (SP i) ⊆ T (SP ′
i), for i = 1, . . . , n.

— T is compositional for a specification-building operation

sbo : Spec(Σ1) × . . .× Spec(Σn) → Spec(Σ)

if

T (sbo(SP1, . . . , SPn)) = T (sbo(SP ′
1, . . . , SP ′

n))

for all specifications SP1, SP ′
1 ∈ Spec(Σ1), . . . , SPn, SP ′

n ∈ Spec(Σn) such that

T (SP i) = T (SP ′
i), for i = 1, . . . , n.

— A sound T is closed-complete for a specification-building operation

sbo : Spec(Σ1) × . . .× Spec(Σn) → Spec(Σ)
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if

T (sbo(SP1, . . . , SPn)) = Th(sbo(SP1, . . . , SPn))

for all SP1 ∈ Spec(Σ1), . . . , SPn ∈ Spec(Σn) such that

ModSig[SP i](T (SP i)) = Mod [SP i] for i = 1, . . . , n.

— T is flat-complete if

T (〈Σ,Φ〉) = ClΣ(Φ)

for every signature Σ and set Φ of Σ-sentences.

— T is extensive if

Φ ⊆ T (〈Σ,Φ〉)
for every signature Σ and set Φ of Σ-sentences.

— T is theory-oriented if for all specifications SP ∈ Spec, we have T (SP ) is a theory

(that is, a set of sentences that is closed under semantic consequence).

T is monotone (respectively, compositional, closed-complete) if it is monotone (respect-

ively, compositional, closed-complete) for all the specification-building operations in use.

Soundness is the property we must insist on for any property-oriented semantics.

Completeness is the goal we should aim to soundly approximate as accurately as possible.

Compositionality (implied by monotonicity) is a crucial property, which is needed to

deal with large structured specifications in a modular way. Closed-completeness is a

technical notion to capture how accurate the semantics is for a given specification-

building operation: we want the semantics for a specification built using an operation

to be complete at least under the assumption that it exactly captures the model classes

of the argument specifications (which for theory-oriented semantics is properly stronger

than completeness of the semantics for the argument specifications). Flat-completeness

is closed-completeness for flat specifications as nullary specification-building operations.

Extensiveness requires the semantics of a flat specification to include all of its axioms.

Surprisingly, this simple technical condition turns out to play a key role in the results

below. Clearly, any flat-complete semantics is extensive. We usually expect semantics to be

theory-oriented: we could in principle always close the set of properties given in one way

or another under semantic consequences, but this would make our analysis of the issues

of dealing with structured specifications more restrictive, and potentially dependent on

the completeness of entailment used for the underlying logical system. Any (flat-complete

and) closed-complete semantics is theory-oriented. Any extensive and theory-oriented

semantics is flat-complete.

The semantics Th above, which is defined using the model-class semantics for specific-

ations, is sound, complete and theory-oriented. It is compositional for hiding: for any

signature morphism σ : Σ′ → Σ and Σ-specification SP , we have

Th(SP hide via σ) = σ−1(Th(SP ))

(Sannella and Tarlecki 1988); note that, by the satisfaction condition, σ−1(Φ) is a theory

if Φ is a theory.
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A key drawback of Th is that it is not compositional for union and translation, as we

will illustrate in the following counterexamples, which will be presented by constructing

an artificial institution in which the point is clear – the reader is encouraged to look for

analogous situations in more standard logical systems.

Example 4.1. Consider an institution INS with exactly two signatures Σ and Σ′, and

σ : Σ → Σ′ as the only non-identity signature morphism. Let

Sen(Σ) = {ϕ,ϕ′}
Sen(Σ′) = {ϕ,ϕ′, ψ1, ψ2},

with σ-translation preserving ϕ and ϕ′, and let

|Mod(Σ)| = |Mod(Σ′)| = {M1,M2},

with the identity σ-reduct. Define

M1 |=Σ ϕ M1 |=Σ′ ϕ M1 |=Σ′ ψ1

M2 |=Σ ϕ M2 |=Σ′ ϕ M2 �|=Σ′ ψ1

M1 �|=Σ ϕ
′ M1 �|=Σ′ ϕ′ M1 �|=Σ′ ψ2

M2 �|=Σ ϕ
′ M2 �|=Σ′ ϕ′ M2 |=Σ′ ψ2.

In Σ′, we have

Mod ({ψ1}) = {M1}
Mod ({ψ2}) = {M2}.

Let SP1 be

〈Σ′, {ψ1}〉 hide via σ

and SP2 be

〈Σ′, {ψ2}〉 hide via σ.

Then

Mod [SP1] = {M1}
Mod [SP2] = {M2},

yielding

Th(SP1) = {ϕ} = Th(SP2).

Now:

— Mod [SP1 ∪ SP2] = �, so

Th(SP1 ∪ SP2) = {ϕ,ϕ′},

which is distinct from

Th(SP2 ∪ SP2) = Th(SP2) = {ϕ}.

— Th(SP1 with σ) = {ϕ,ψ1}, which is distinct from Th(SP2 with σ) = {ϕ,ψ2}.

This shows that Th is compositional for neither union nor translation.
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The lack of compositionality of Th for union and translation, as well as a natural

consideration of proof-theoretic issues (see Section 7 below), led to the following stand-

ard compositional property-oriented semantics T INS for specifications in SpecUTH
INS . This

semantics has its origins in the proof rules in Sannella and Tarlecki (1988), was given

in Bergstra et al. (1990) and was used in Diaconescu et al. (1993). Here is the inductive

definition:

T INS(〈Σ,Φ〉) = ClΣ(Φ)

T INS(SP ∪ SP ′) = ClSig[SP ](T INS(SP ) ∪ T INS(SP ′))

T INS(SP with σ : Sig[SP ] → Σ) = ClΣ(σ(T INS(SP )))

T INS(SP hide via σ : Σ → Sig[SP ]) = σ−1(T INS(SP )).

Proposition 4.2. T INS is a sound theory-oriented semantics for specifications built from

flat specifications using union, translation and hiding. It is monotone, compositional,

extensive, flat-complete and closed-complete for union, translation and hiding.

Proof. Monotonicity and compositionality follow from the definitions, while soundness

requires a simple inductive proof. Closed-completeness for hiding follows from the defin-

itions and the satisfaction condition. (Soundness, monotonicity and closed-completeness

were shown in Sannella and Tarlecki (1988).)

The missing property here is completeness – and, indeed, T INS is not complete, as the

following counterexample shows.

Example 4.3. Consider the following specifications built in the institution EQ of equational

logic, where we use what is a hopefully self-explanatory notation based on the syntax of

Casl
†
:

spec SP 0 = sorts s

opns a, b, c : s,

f, g : s → s

• f(a) = b

• g(a) = c

spec SP 1 = SP 0 hide ops a : s

spec SP = SP 1 then ∀x:s • f(x) = g(x)

This example relies on the fact that the class of models of any set of equations is closed

under subalgebras. Note that using conditional equations would not help, as this property

also holds for them.

Now, Mod [SP1] consists of all Sig[SP1]-algebras with an element on which f yields b

and g yields c. Consequently, given the axiom added in SP , we have SP |= b = c. However,

†
In particular, the missing signature morphism in the definition of SP1 is the inclusion from Sig[SP0] \ {a : s}
to Sig[SP0], and the definition of SP abbreviates

spec SP = SP1 ∪ 〈Sig[SP1], {∀x:s • f(x) = g(x)}〉.
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since any Sig[SP1]-algebra is a subalgebra of an algebra in Mod [SP1], the equational

theory Th(SP1) is trivial (that is, generated by the empty set). Hence T INS(SP1) also only

consists of equational tautologies, and

T INS(SP ) = ClSig[SP ]({∀x:s • f(x) = g(x)})

does not contain b = c.

However, completeness does hold if we impose additional requirements on the under-

lying institution.

Theorem 4.4. Suppose INS is 〈H,W〉-exact and that it admits parameterised 〈H,W〉-
interpolation. Then T INS is complete for specifications built from flat specifications using

union, translation and hiding.

Proof. We assume that SP |= ϕ for a specification SP built from flat specifications

using union, translation and hiding, with Sig[SP ] = Σ and ϕ ∈ Sen(Σ). We will show that

ϕ ∈ T INS(SP ) by induction on the structure of SP , since this will show completeness as

T INS is sound by Proposition 4.2:

— Let SP be 〈Σ,Φ〉 for Φ ⊆ Sen(Σ).

Then Φ |=Σ ϕ, so

ϕ ∈ ClΣ(Φ) = T INS(〈Σ,Φ〉).
— Let SP be SP ′ hide via σ for some specification SP ′ with Sig[SP ′] = Σ′ and σ : Σ → Σ′

in H.

Then SP ′ |= σ(ϕ). By the induction hypothesis, σ(ϕ) ∈ T INS(SP ′), so

ϕ ∈ σ−1(T INS(SP ′)) = T INS(SP ).

— Let SP be SP ′ with σ for some specification SP ′ with Sig[SP ′] = Σ′ and σ : Σ′ → Σ

in W .

By Theorem 3.1,

SP ′ ≡ 〈Σ1,Φ1〉 hide via σ1

for some Σ1 ∈ |Sign|,Φ1 ⊆ Sen(Σ1) and σ1 : Σ′ → Σ1 in H. Then, as in the (omitted,

but well-known) proof of Theorem 3.1, we have

SP ≡ 〈Σ̂, σ′(Φ1)〉 hide via σ′
1,

where the following is a pushout in Sign:

Σ′

Σ1 Σ

Σ̂

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ

σ′ σ′
1

with σ′ ∈ W , σ′
1 ∈ H. Then SP |= ϕ implies σ′(Φ1) |=Σ̂ σ

′
1(ϕ). Hence, by Craig 〈H,W〉-

interpolation (the stronger, parameterised version is not needed in this case), there is
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an interpolant set Ψ ⊆ Sen(Σ′) such that

Φ1 |=Σ1
σ1(Ψ)

and

σ(Ψ) |=Σ ϕ.

The former yields SP ′ |= Ψ, so, by the induction hypothesis, Ψ ⊆ T INS(SP ′); and by

the latter

ϕ ∈ ClΣ(σ(Ψ)) ⊆ ClΣ(σ(T INS(SP ′))) = T INS(SP ).

— Let SP be SP1 ∪ SP2 for specifications SP1 and SP2 with Sig[SP1] = Sig[SP2] = Σ.

By Theorem 3.1,

SP1 ≡ 〈Σ1,Φ1〉 hide via σ1

for some Σ1 ∈ |Sign|,Φ1 ⊆ Sen(Σ1) and σ1 : Σ → Σ1 in H, and

SP2 ≡ 〈Σ2,Φ2〉 hide via σ2

for some Σ2 ∈ |Sign|,Φ2 ⊆ Sen(Σ2) and σ2 : Σ → Σ2 in H ⊆ W . Then

SP ≡ 〈Σ̂, {σ′
2(Φ1), σ′

1(Φ2)}〉 hide via σ2;σ′
1,

as in the (omitted) proof of Theorem 3.1, where the following is a pushout in Sign:

Σ

Σ1 Σ2

Σ̂

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ2

σ′
2 σ′

1

with σ′
1 ∈ H, σ′

2 ∈ W . SP |= ϕ implies

σ′
2(Φ1), σ′

1(Φ2) |=Σ̂ σ
′
1(σ2(ϕ)).

Then, by the parameterised 〈H,W〉-interpolation property, there is an interpolant set

Ψ ⊆ Sen(Σ) such that

Φ1 |=Σ1
σ1(Ψ)

and

Φ2 ∪ σ2(Ψ) |=Σ σ2(ϕ).

The former yields SP1 |= Ψ, so by the induction hypothesis,

Ψ ⊆ T INS(SP1) ⊆ T INS(SP );
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and, by the latter, considering the pushout

Σ

Σ2 Σ

Σ2

�
�

��

�
�

��

�
�

��

�
�

��

σ2 idΣ

idΣ2 σ2

the parameterised 〈H,W〉-interpolation property gives us an interpolant set Ψ′ ⊆
Sen(Σ) (for Φ2 and ϕ with respect to Ψ) such that

Φ2 |= σ2(Ψ′)

and

Ψ′ ∪ Ψ |= ϕ.

Since the former now yields SP2 |= Ψ′, by the induction hypothesis, we have

Ψ′ ⊆ T INS(SP2) ⊆ T INS(SP ),

so we also get

ϕ ∈ ClΣ(T INS(SP )) = T INS(SP ),

which completes the proof.

In this proof we have mimicked the proof in Borzyszkowski (2002), which in turn largely

followed Bergstra et al. (1990), where, perhaps, the role of first-order interpolation for

such results was first explored. However, we use a stronger (parameterised) interpolation

property instead of Craig interpolation, together with an assumption that the underlying

institution is compact and has conjunction and implication. The latter idea was used,

for instance, in Diaconescu (2008) to show the completeness of a (stronger) calculus for

proving entailment in a context of structured specifications, where the case of specifications

built using union was simpler.

Another result of this kind, but for a somewhat different collection of specification-

building operations, was given in Goguen and Roşu (2004). They showed soundness and

completeness of T INS with respect to a semantics that, in essence, calculates a normal

form of specification expressions (see Theorem 3.1), but they relied on conservativity of

modules (see the footnote at the end of Section 2) rather than on the strictly weaker

requirement of parameterised interpolation
†
.

It is easy to see that the parameterised interpolation property is necessary for the above

completeness result.

†
Contrary to a claim in the abstract of Goguen and Roşu (2004), conservativity is not a necessary condition

for their results. In fact, they give no technical statement that repeats this claim, and merely show that

completeness fails in certain non-conservative examples.
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Proposition 4.5. Suppose INS is an 〈H,W〉-exact institution such that T INS is complete

for specifications built from flat specifications using union, translation and hiding in INS.

Then INS admits parameterised 〈H,W〉-interpolation.

Proof. Consider any pushout diagram in Sign

Σ

Σ1 Σ2

Σ′

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ2

σ′
2 σ′

1

with σ1, σ
′
1 ∈ H, σ2, σ

′
2 ∈ W , and

Φ1 ⊆ Sen(Σ1)

Φ2 ⊆ Sen(Σ2)

ϕ2 ∈ Sen(Σ2)

such that

σ′
2(Φ1) ∪ σ′

1(Φ2) |= σ′
1(ϕ2).

Let SP ∈ SpecUTH (Σ2) be the specification

((〈Σ1,Φ1〉 hide via σ1) with σ2) ∪ 〈Σ2,Φ2〉.

Then

T INS(SP ) = ClΣ2
(ClΣ2

(σ2(T INS(〈Σ1,Φ1〉 hide via σ1))) ∪ Φ2)

= ClΣ2
(σ2(T INS(〈Σ1,Φ1〉 hide via σ1)) ∪ Φ2).

If T INS is complete, we have

ϕ2 ∈ Th(SP ) = T INS(SP ),

and we can take

Φ = T INS(〈Σ1,Φ1〉 hide via σ1)

to be a set of interpolants for Φ1 and ϕ2 with respect to Φ2.

5. Comparing property-oriented semantics

As can be seen from Theorem 4.4 and Proposition 4.5, T INS is only complete under

rather strong assumptions concerning the underlying logical system. Even though these

hold for FOPEQ, the institution of first-order logic (with classes W and H chosen,

say, to be all injective signature morphisms), this is a rather rare situation, and T INS is

incomplete in many typical institutions of practical importance, including EQ and EQne

(see Example 4.3). There have been attempts to preserve compositionality and still ensure

completeness (Mossakowski et al. 2006). However, we show below that to improve on

T INS, at least some aspects of compositionality must be sacrificed.
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Theorem 5.1. Consider two property-oriented semantics T and T ′ for specifications

constructed using a set of specification-building operations, including all flat specifications.

Let T be sound, monotone and closed-complete. Let T ′ be theory-oriented, sound,

compositional and extensive. Then T is at least as strong as T ′: that is, for every SP ,

T ′(SP ) ⊆ T (SP ).

Proof. We use induction on the structure of SP . For flat specifications,

T ′(〈Σ,Φ〉) ⊆ ClΣ(Φ) = T (〈Σ,Φ〉)

by soundness of T ′ and flat-completeness of T (which is the same as closed-completeness

for flat specifications).

More generally, consider any well-formed specification sbo(SP1, . . . , SPn) with Σi =

Sig[SP i], where i = 1, . . . , n here and below, and suppose

T ′(SP i) ⊆ T (SP i).

Since T ′ is theory-oriented and extensive,

T ′(〈Σi, T ′(SP i)〉) = T ′(SP i).

We also have

T (〈Σi, T ′(SP i)〉) = T ′(SP i).

Then, using compositionality of T ′, soundness of T ′, closed-completeness of T for sbo,

and monotonicity of T (and the induction hypothesis) in turn, we have

T ′(sbo(SP1, . . . , SPn)) = T ′(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ Th(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
= T (sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ T (sbo(SP1, . . . , SPn)).

This completes the induction step and thus the proof of the theorem.

Corollary 5.2. T INS is at least as strong as any sound, compositional and extensive theory-

oriented semantics for structured specifications built from flat specifications using union,

translation and hiding.

Proof. The statement follows directly from Proposition 4.2 and Theorem 5.1.

The requirement that the theory-oriented semantics under consideration be extensive

is perhaps the most surprising one here. Informally, if we forget about some axioms, we

should not be able to soundly get more consequences. However, this requirement cannot

be dropped in general, as the following counterexample shows.

Example 5.3. Consider an institution INS0 with signatures Σ and Σ′, and a signature

morphism σ : Σ → Σ′. Let

Sen0(Σ) = {ϕ}
Sen0(Σ′) = {ϕ,ψ},
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with σ-translation preserving ϕ, and let

|Mod0(Σ)| = |Mod0(Σ′)| = {M0,M1,M2},

with the identity σ-reduct. Suppose

M0 � |= ϕ M0 � |= ψ

M1 |= ϕ M1 � |= ψ

M2 |= ϕ M2 |= ψ

(over appropriate signatures) and that we have a Σ-specification SPbad with

Mod [SPbad ] = {M2}.

Then let T ′ be such that

T ′(SPbad ) = {ϕ}
T ′(SPbad with σ) = {ϕ,ψ},

and T ′ forgets the axiom ϕ in all flat specifications. We can then ensure that for all

Σ-specifications SP , if ϕ ∈ T ′(SP ), then M1 �∈ Mod [SP ], since, very informally, if ϕ

cannot be put into the theory of a specification as an axiom, the only way it can be there

is as a consequence of ψ. So T ′ is sound and compositional, but for the Σ′-specification

SPbad with σ, it is stronger than the expected sound, monotone and closed-complete

theory-oriented semantics T INS0
that yields

T INS0
(SPbad ) = {ϕ}

T INS0
(SPbad with σ) = {ϕ}.

To make this fully specific, we suppose there are no other signatures and non-identity

signature morphisms, and no other sentences and models, and we define:

T ′(〈Σ,Φ〉) = �

T ′(〈Σ′,Φ′〉) = ClΣ′ (Φ′ \ {ϕ})

T ′(SP1 ∪ SP2) = ClSig[SP1](T ′(SP1) ∪ T ′(SP2))

T ′(SP ′ hide via σ) = σ−1(T ′(SP ))

T ′(SP with σ) =

{
� if T ′(SP ) = �

{ϕ,ψ} if ϕ ∈ T ′(SP ).

We now put

SPbad = 〈Σ′, {ψ}〉 hide via σ

and check that it has the properties required above. Indeed, T ′ is a sound compositional

theory-oriented semantics, but

T ′(SPbad with σ) = {ϕ,ψ}

is a strictly larger theory than

T INS0
(SPbad with σ) = {ϕ}.
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The following counterexample shows that we cannot drop the requirement that the

semantics under consideration be theory-oriented either.

Example 5.4. Building on Example 5.3, consider an institution INS1 with exactly two

signatures Σ and Σ′, and σ : Σ → Σ′ as the only non-identity signature morphism. Let

Sen1(Σ) = {ϕ,ϕ′}
Sen1(Σ′) = {ϕ,ϕ′, ψ},

with σ-translation preserving ϕ and ϕ′, and let

|Mod1(Σ)| = |Mod1(Σ′)| = {M0,M1,M2,M3},

with the identity σ-reduct. Define

M0 � |= ϕ′ M0 � |= ϕ M0 � |= ψ

M1 |= ϕ′ M1 � |= ϕ M1 � |= ψ

M2 |= ϕ′ M2 |= ϕ M2 � |= ψ

M3 |= ϕ′ M3 |= ϕ M3 |= ψ

(over appropriate signatures).

|= ϕ′ ϕ ψ

M0 − − −
M1 + − −
M2 + + −
M3 + + +

So, over the appropriate signatures, we have ϕ |= ϕ′ and ψ |= ϕ.

We now define a property-oriented semantics T ′′ using inductive clauses that essentially

copy those for T INS1
, except that for the flat Σ′-specification with ψ as the only axiom,

we omit exactly one of its consequences, ϕ′, and then for translation along σ when

the properties of the argument specification given by the semantics include ϕ but not

ϕ′, we add ψ as a property of the translated specification. The latter happens only if

the specification to be translated along σ results from hiding with respect to σ of a

specification with ψ as the only axiom. We have

T ′′(〈Σ,Φ〉) = ClΣ(Φ)

T ′′(〈Σ′,Φ′〉) =

{
{ψ,ϕ} if Φ′ = {ψ}
ClΣ′ (Φ′) otherwise

T ′′(SP1 ∪ SP2) = ClSig[SP1](T ′′(SP1) ∪ T ′′(SP2))

T ′′(SP ′ hide via σ) = σ−1(T ′′(SP ′))

T ′′(SP with σ) =

{
ClΣ′ (σ(T ′′(SP ))) if ϕ′ ∈ T ′′(SP ) or ϕ �∈ T ′′(SP )

ClΣ′ (σ(T ′′(SP )) ∪ {ψ}) if ϕ′ �∈ T ′′(SP ) and ϕ ∈ T ′′(SP ).

https://doi.org/10.1017/S0960129513000212 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000212


Property-oriented semantics of structured specifications 23

T ′′ is a sound, compositional, extensive property-oriented semantics. However, it is not

theory-oriented since, in particular,

T ′′(〈Σ′, {ψ}〉) = {ψ,ϕ}

is not closed under consequence (it does not contain ϕ′). Since the semantics T ′′ yields

a theory for all other Σ′-specifications and for flat Σ-specifications, this is exploited to

‘enlarge our knowledge’ about Σ-specifications SP with T ′′(SP ) containing ϕ but not ϕ′.

Specifically, as in Example 5.3, putting

SPbad = 〈Σ′, {ψ}〉 hide via σ,

we get

T ′′(SPbad ) = {ϕ},
(while T INS1

(SPbad ) = {ϕ,ϕ′}), so

T ′′(SPbad with σ) = {ψ,ϕ, ϕ′},

which is a strictly larger theory than

T INS1
(SPbad with σ) = {ϕ,ϕ′}.

The counterexample property-oriented semantics given in Example 5.4 is compositional

but not monotone. This is necessarily so, since for the semantics considered in Theorem 5.1

and Corollary 5.2, if we assume that it is monotone, we can drop the requirement that it

be theory-oriented.

Theorem 5.5. Consider two property-oriented semantics T and T ′ for specifications

constructed using a set of specification-building operations, including all flat specifications.

Let T be sound, monotone and closed-complete. Let T ′ be sound, monotone and extensive.

Then T is at least as strong as T ′: that is, for every SP ,

T ′(SP ) ⊆ T (SP ).

Proof. We use induction on the structure of SP . For flat specifications,

T ′(〈Σ,Φ〉) ⊆ ClΣ(Φ) = T (〈Σ,Φ〉)

by soundness of T ′ and flat-completeness of T (which is the same as closed-completeness

for flat specifications).

More generally, consider any well-formed specification sbo(SP1, . . . , SPn) with Σi =

Sig[SP i], where i = 1, . . . , n here and below, and suppose

T ′(SP i) ⊆ T (SP i)

(as induction hypothesis). Since T ′ is extensive, we have

T ′(SP i) ⊆ T ′(〈Σi, T ′(SP i)〉).

We also have

T (〈Σi, T ′(SP i)〉) = ClΣi
(T ′(SP i)) ⊆ ClΣi

(T (SP i)) = T (SP i)
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by applying flat-completeness of T , the induction hypothesis and closure of T (SP )

under consequence (T is closed-complete, and thus theory-oriented) in turn. Then, using

monotonicity of T ′, soundness of T ′, closed-completeness of T for sbo, and monotonicity

of T in turn, we have

T ′(sbo(SP1, . . . , SPn)) ⊆ T ′(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ Th(sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
= T (sbo(〈Σ1, T ′(SP1)〉, . . . , 〈Σn, T ′(SPn)〉))
⊆ T (sbo(SP1, . . . , SPn)).

This completes the induction step and thus the proof of the theorem.

Corollary 5.6. T INS is at least as strong as any sound, monotone and extensive property-

oriented semantics for structured specifications built from flat specifications using union,

translation and hiding.

Proof. The statement follows directly from Proposition 4.2 and Theorem 5.5.

Example 5.3 shows that the requirement that the semantics considered in the above

corollary be extensive cannot be dropped: the counterexample semantics T ′ given there

is monotone.

The above analysis of the relative power of property-oriented semantics for structured

specifications was based on an implicit assumption that there are no signatures, sentences

and specifications other than those we are dealing with. In a way, this is a version of

the famous closed world assumption. In particular, Examples 5.3 and 5.4 relied on this

to justify soundness of the counterexample semantics constructed there, which for some

specifications (built from flat specifications using union, translation and hiding) yield a

theory that is properly richer than the theory produced by the standard compositional

semantics. Consequently, the counterexamples do not apply if we consider the semantics

for specifications in some potential extensions of the specification framework.

As before, we consider a class Spec of specifications built using a family of specification-

building operations. For any class SP of new specification constants, with model-theoretic

semantics given as usual
†
, let Spec(SP) be the class of specifications that contains Spec

and SP and is closed under the specification-building operations under consideration,

with a semantics that extends the semantics for specifications in Spec and SP using the

meaning of the specification-building operations as explained in Section 3.

We say that a property-oriented semantics T for specifications in Spec is persistently

sound and compositional if for any class of new specification constants SPnew with model-

†
That is, for each SP ∈ SP , we have

Sig[SP ] ∈ |Sign|
and

Mod [SP ] ⊆ |Mod(Sig[SP ])|,
hence we also have

Th(SP ) = Th(Mod [SP ]).
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class semantics and for any sound property-oriented meaning for specifications in SPnew

given by

Tnew (SP ) ⊆ Th(SP )

for all SP ∈ SPnew , there is a sound and compositional property-oriented semantics T̂ for

Spec(SPnew ) that extends T and Tnew , that is, such that

T̂ (SP ) = T (SP )

for SP ∈ Spec and

T̂ (SP ) = Tnew (SP )

for SP ∈ SPnew . Clearly, any persistently sound and compositional property-oriented

semantics is sound and compositional, but the opposite implication fails in general.

It is easy to check that the standard compositional property-oriented semantics T INS

for specifications built from flat specifications using union, translation and hiding is

persistently sound and compositional. Moreover, it is the strongest such property-oriented

semantics. In contrast to the previous results, this does not require the semantics under

consideration to be extensive.

Theorem 5.7. Consider two property-oriented semantics T and T ′ for specifications

constructed using a set of specification-building operations, including all flat specifications.

Let T be sound, monotone and closed-complete, and let T ′ be persistently sound and

compositional. Then T is at least as strong as T ′: that is, for every SP ,

T ′(SP ) ⊆ T (SP ).

Proof. We proceed by induction on the structure of specifications. Consider a specific-

ation sbo(SP1, . . . , SPn) for n � 0, where

T ′(SP1) ⊆ T (SP1)

...

T ′(SPn) ⊆ T (SPn).

We need to show

T ′(sbo(SP1, . . . , SPn)) ⊆ T (sbo(SP1, . . . , SPn)).

Let SP ′
1, . . . , SP ′

n be new specification constants with model-class semantics given by

Sig[SP ′
1] = Sig[SP1] Mod [SP ′

1] = Mod [〈Sig[SP1], T ′(SP1)〉]
...

...

Sig[SP ′
n] = Sig[SPn] Mod [SP ′

n] = Mod [〈Sig[SPn], T ′(SPn)〉],
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and with property-oriented meaning given by

Tnew (SP ′
1) = T ′(SP1)

...

Tnew (SP ′
n) = T ′(SPn).

Since T ′ is persistently sound and compositional, there is a sound and compositional

property-oriented semantics T̂ ′ that extends T ′ and Tnew to Spec({SP ′
1, . . . , SP ′

n}). Then,

using compositionality of T̂ ′, its soundness, the definition of the model-class semantics

of the new constants, closed-completeness of T and extensiveness (which follows from

flat-completeness, implied by closed-completeness) and monotonicity of T in turn, we get

T ′(sbo(SP1, . . . , SPn)) = T̂ ′(sbo(SP ′
1, . . . , SP ′

n))

⊆ Th(sbo(SP ′
1, . . . , SP ′

n))

= Th(sbo(〈Sig[SP1], T ′(SP1)〉, . . . , 〈Sig[SPn], T ′(SPn)〉))
= T (sbo(〈Sig[SP1], T ′(SP1)〉, . . . , 〈Sig[SPn], T ′(SPn)〉))
⊆ T (sbo(SP1, . . . , SPn)).

This completes the induction step and thus the proof of the theorem.

Corollary 5.8. T INS is at least as strong as any persistently sound and compositional

property-oriented semantics for structured specifications built from flat specifications

using union, translation and hiding.

Proof. The statement follows directly from Proposition 4.2 and Theorem 5.7.

6. Entailment systems

The notion of an institution as recalled in Section 2 captures model-theoretic aspects

of logical systems. An institution is typically augmented by an entailment system that

approximates the semantic consequence relation, and in this section we consider the

consequences of the results given above in this setting. Entailment systems are normally

defined with reference to a set of proof rules, but the presentation here will abstract away

from this level of detail.

An entailment relation on a set S of sentences is a binary relation � ⊆ P(S)×S satisfying

the following properties:

reflexivity: {ϕ} � ϕ;

weakening: if Φ � ϕ, then Φ ∪ Ψ � ϕ; and

transitivity: if Φ � ψ and Ψϕ � ϕ for each ϕ ∈ Φ, then
⋃
ϕ∈Φ Ψϕ � ψ

for all sentences ϕ,ψ ∈ S and sets of sentences Φ,Ψ ⊆ S and Ψϕ ⊆ S for ϕ ∈ Φ.

Clearly, the semantic consequence relation defined in Section 2 is an entailment relation

in the above sense.
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Let Sen : Sign → Set be a functor. An entailment system for Sen is a family of entailment

relations

E = 〈�Σ ⊆ P(Sen(Σ)) × Sen(Σ)〉Σ∈|Sign|

such that for each morphism σ : Σ → Σ′ in Sign, each sentence ϕ ∈ Sen(Σ) and each set

Φ ⊆ Sen(Σ),

if Φ �Σ ϕ, then Sen(σ)(Φ) �Σ′ Sen(σ)(ϕ),

where Sen(σ)(Φ) denotes the image of Φ under Sen(σ).

Given an institution

INS = 〈Sign, Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉,

an entailment system for INS (Meseguer 1989; Harper et al. 1994) is an entailment system

E = 〈�Σ〉Σ∈|Sign|

for Sen that is sound with respect to semantic consequence, that is, for each signature Σ,

each Σ-sentence ϕ ∈ Sen(Σ) and each set Φ ⊆ Sen(Σ), if Φ �Σ ϕ, then Φ |=Σ ϕ. Such an

entailment system E is complete for INS if the opposite implication holds. Clearly, for any

institution INS, the semantic consequence relations form an entailment system

EINS = 〈|=Σ〉Σ∈|Sign|,

which is sound and complete for INS.

A general logic (Meseguer 1989) is an institution INS equipped with an entailment

system E for INS.

For the rest of this section, we let E = 〈�Σ〉Σ∈|Sign| be an arbitrary entailment system for

Sen : Sign → Set.

For any signature Σ ∈ |Sign|, a set of sentences Φ ⊆ Sen(Σ) is an E-theory if it is closed

under �Σ: that is, if Φ �Σ ϕ, then ϕ ∈ Φ for all ϕ ∈ Sen(Σ). For any set Φ ⊆ Sen(Σ),

the least E-theory that contains Φ will be denoted by ClEΣ(Φ). Clearly, for any institution

INS and its semantic entailment system EINS, we have ClEINS

Σ ( ) coincides with ClΣ( ), and

EINS-theories are exactly the theories in INS as defined in Section 2.

An entailment system

E = 〈�Σ〉Σ∈|Sign|

for Sen : Sign → Set is trivial if for each signature Σ ∈ |Sign|, we have

�Σ = P(Sen(Σ)) × Sen(Σ)

(each set entails all sentences).

Proposition 6.1. Given an entailment system E , if E is non-trivial, there is an institution

INS0 such that E is a (sound) entailment system for INS0, but E is not complete for INS0.

If E is trivial, it is complete for any institution for which it is sound.

Proof. A non-trivial entailment system is incomplete for an institution INS0 in which

all categories of models are empty; more interesting institutions INS0 can be constructed

as well. The other part is trivial.
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Proposition 6.2. For any entailment system E there is an institution INSE such that E is

(sound and) complete for INSE .

Proof. Consider an entailment system

E = 〈�Σ〉Σ∈|Sign|

for Sen : Sign → Set. For any signature Σ ∈ |Sign|, we define Σ-models to be E-theories

and satisfaction to be membership: that is,

Mod(Σ) = {Φ ⊆ Sen(Σ) | ClEΣ(Φ) = Φ}

(considered as a discrete category), and then for M ∈ Mod(Σ) and ϕ ∈ Sen(Σ), we

define M |=Σ ϕ to hold if and only if ϕ ∈ M. Furthermore, for any signature morphism

σ : Σ → Σ′, we define the reduct to be the coimage with respect to translation of sentences:

that is, for M ′ ∈ Mod(Σ′),

M ′
σ = σ−1(M ′).

By preservation of entailment in E along signature morphisms, it follows that indeed

M ′
σ ∈ Mod(Σ), and the satisfaction condition holds trivially. This defines an institution

INSE = 〈Sign, Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉.

Now, given any set of Σ-sentences Φ ⊆ Sen(Σ) and Σ-sentence ϕ ∈ Sen(Σ), we have

Φ |= ϕ in INSE means that for all M ∈ Mod(Σ), if Φ ⊆ M, then ϕ ∈ M, which is

equivalent to ϕ ∈ MΦ, where MΦ = ClEΣ(Φ) is the least model in Mod(Σ) that contains Φ.

Hence, Φ |= ϕ in INSE if and only if Φ �Σ ϕ.

As noted in Section 3, the syntax of flat specifications and union, translation and

hiding introduced there for an arbitrary institution INS depends only on the category

of signatures with distinguished class H and W of signature morphisms satisfying

the requirements imposed in Section 3, and the sentence functor Sen : Sign → Set.

Consequently, we can consider such specifications whenever we are just given an entailment

system E for Sen together with appropriate H and W , rather than an entire institution. In

particular, the signature Sig[SP ] of any specification SP ∈ SpecUTH is then well defined.

The concept of a property-oriented semantics carries over directly to this framework:

as in Section 4, a property-oriented semantics is a function T that maps any specification

SP to a set of Σ-sentences

T (SP ) ⊆ Sen(Sig[SP ]).

Given such a property-oriented semantics, the definitions of its monotonicity, compos-

itionality and extensiveness carry over in a similarly straightforward way. We say that T
is E-theory-oriented if T (SP ) is an E-theory for all specifications SP .

However, concepts related to the model-theoretic part of the institution require more

care.
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A property-oriented semantics T is E-sound if it is sound in any institution INS (with

the same signature category and sentence functor as for E) for which E is sound (or,

equivalently, in any general logic with E as the entailment system).

A sound property-oriented semantics T is E-complete in a class of institutions INS

if it is complete in any institution INS ∈ INS (with the same signature category and

sentence functor as for E) for which E is sound and complete. E-closed-completeness and

E-flat-completeness may be defined analogously, but we will not use these concepts here.

E-completeness is perhaps a weaker notion than we might expect: we might have

required completeness of the semantics in any institution INS ∈ INS for which E is sound

but not necessarily complete, and thus in any general logic with E as the entailment

system. However, it can be shown from Proposition 6.1 that such a stronger property

would not be achievable at all unless the entailment system were trivial (or a very narrow

class INS is considered).

The definition of the standard compositional theory-oriented semantics for specifications

in SpecUTH only requires an obvious tiny adjustment:

TE (〈Σ,Φ〉) = ClEΣ(Φ)

TE (SP ∪ SP ′) = ClESig[SP ](TE (SP ) ∪ TE (SP ′))

TE (SP with σ : Sig[SP ] → Σ) = ClEΣ(σ(TE (SP )))

TE (SP hide via σ : Σ → Sig[SP ]) = σ−1(TE (SP )).

Proposition 6.3. TE is an E-sound E-theory-oriented semantics for specifications built from

flat specifications using union, translation and hiding. It is monotone, compositional and

extensive.

As in the case of T INS in Section 4, completeness does not hold unless the class of

institutions (general logics) considered is subject to further requirements.

Corollary 6.4. Let INS be the class of institutions that are 〈H,W〉-exact and admit

parameterised 〈H,W〉-interpolation. Then TE is E-complete for specifications built from

flat specifications using union, translation and hiding in the class INS.

Proof. The statement follows from Theorem 4.4.

Interpolation properties may be directly defined for an entailment system

E = 〈�Σ〉Σ∈|Sign|
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for a sentence functor Sen : Sign → Set, without reference to the underlying institution.

Specifically, consider again the following commuting diagram in Sign:

Σ

Σ1 Σ2

Σ′

�
�

��

�
�

��

�
�

��

�
�

��

σ1 σ2

σ′
2 σ′

1

This diagram admits parameterised (or Craig–Robinson) interpolation if for any Φ1 ⊆
Sen(Σ1), Φ2 ⊆ Sen(Σ2) and ϕ ∈ Sen(Σ2), if

σ′
2(Φ1) ∪ σ′

1(Φ2) �Σ′ σ′
1(ϕ),

then for some Φ ⊆ Sen(Σ) such that Φ1 �Σ1
σ1(Φ), we have

Φ2 ∪ σ2(Φ) �Σ2
ϕ.

The diagram admits Craig interpolation if it admits parameterised interpolation with

‘parameter set’ Φ2 = �.

Given classes H,W ⊆ Sign of signature morphisms, we say that E admits parameterised

(respectively, Craig) 〈H,W〉-interpolation if for any signature morphisms δ ∈ H and

τ ∈ W with a common source, there are δ′ ∈ H and τ′ ∈ W forming a pushout in Sign

·

· ·

·

�
�

��

�
�

��

�
�

��

�
�

��

δ τ

τ′ δ′

that admits parameterised (respectively, Craig) interpolation. Then any such pushout also

admits parameterised (respectively, Craig) interpolation as well.

Clearly, if E is (sound and) complete for an institution INS, the above interpolation

properties for E coincide with those for INS as defined in Section 2.

So, for an entailment system that admits parameterised 〈H,W〉-interpolation, the

semantics TE is E-complete for the class of institutions that are 〈H,W〉-exact.

Even though TE is not E-complete in general, it is, in essence, the strongest compositional

E-theory oriented semantics.

Corollary 6.5. TE is at least as strong as any E-sound, compositional, extensive E-theory-

oriented semantics for structured specifications built from flat specifications using union,

translation and hiding.

Proof. Let T be an E-sound, compositional, extensive E-theory-oriented semantics.

Consider the institution INSE , where semantic entailment coincides with entailment in E ,

as given by Proposition 6.2. Then TE coincides with T INSE , and T is sound in INSE (as
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well as being compositional and extensive). Consequently, TE is at least as strong as T by

Corollary 5.2.

We cannot drop the assumption that the semantics under consideration is extensive. To

see this, we can adapt Example 5.3 to the framework of an entailment system as follows.

Example 6.6. Consider an entailment system E0 that consists of semantic consequence for

the institution constructed in Example 5.3. That is, we take the category of signatures Sign0

with exactly two objects Σ and Σ′, and σ : Σ → Σ′ as the only non-identity morphism.

The sentence functor is given by

Sen0(Σ) = {ϕ}
Sen0(Σ′) = {ϕ,ψ},

with σ-translation preserving ϕ. We now define E0 as the least entailment system for Sen0

such that ψ �0
Σ′ ϕ.

Now consider the property-oriented semantics T ′ defined in Example 5.3. It is E0-

sound (by the same reasoning as in Example 5.3), compositional and E0-theory-oriented.

Moreover, for SPbad defined as

〈Σ′, {ψ}〉 hide via σ,

we have

T ′(SPbad with σ) = {ϕ,ψ},
while

TE0 (SPbad with σ) = {ϕ}.

Similarly, the assumption that the semantics under consideration be E-theory-oriented

cannot be dropped, since Example 5.4 can also be adapted here as follows.

Example 6.7. Consider an entailment system E1 that consists of semantic consequence for

the institution constructed in Example 5.4. That is, take the category of signatures Sign1

with exactly two objects Σ and Σ′, and σ : Σ → Σ′ as the only non-identity morphism.

The sentence functor is given by

Sen1(Σ) = {ϕ,ϕ′}
Sen1(Σ′) = {ϕ,ϕ′, ψ},

with σ-translation preserving ϕ and ϕ′. We now define E1 as the least entailment system

for Sen1 such that

ψ �1
Σ′ ϕ

ϕ �1
Σ ϕ

′.

Now consider the property-oriented semantics T ′′ defined in Example 5.4. It is E1-sound

(for the same reason as in Example 5.4), compositional and extensive. Moreover, for SPbad

defined as

〈Σ′, {ψ}〉 hide via σ,
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we have

T ′′(SPbad with σ) = {ψ,ϕ, ϕ′},
while

TE1 (SPbad with σ) = {ϕ,ϕ′}.

As in Section 5, this counterexample semantics has to be non-monotone.

Corollary 6.8. TE is at least as strong as any E-sound, monotone and extensive property-

oriented semantics for structured specifications built from flat specifications using union,

translation and hiding.

Proof. Let T be a E-sound, monotone and extensive property-oriented semantics.

Consider the institution INSE where semantic entailment coincides with entailment in E ,

as given by Proposition 6.2. Then TE coincides with T INSE , and T is sound in INSE (as

well as being monotone and extensive). Consequently, TE is at least as strong as T by

Corollary 5.6.

Clearly, by Example 6.6, we cannot drop the requirement that the semantics considered

in the corollary be extensive since the semantics T ′ given there was monotone.

We conclude this section by comparing semantics in different entailment systems. Of

course, if E is not at least as strong as another entailment system E ′ used to give a

semantics for specifications, we cannot expect TE to be at least as strong as this other

semantics; typically this would not hold even for flat specifications. However, we do have

the following proposition.

Proposition 6.9. Consider the following two entailment systems for Sen : Sign → Set:

E = 〈�Σ〉Σ∈|Sign|

E ′ = 〈�′
Σ〉Σ∈|Sign|.

Suppose E is at least as strong as E ′, that is, for each signature Σ ∈ |Sign|, we have

�′
Σ ⊆ �Σ (that is, all E ′-consequences of any set of sentences are also its E-consequences).

Then TE is at least as strong as TE ′ for specifications built from flat specifications by union,

translation and hiding: that is, TE ′ (SP ) ⊆ TE (SP ) for all SP ∈ SpecUTH .

Proof. The proof is by an easy induction on the structure of specifications.

Corollary 6.10. TE is at least as strong as any semantics for specifications built from

flat specifications using union, translation and hiding that is compositional, extensive,

E ′-theory-oriented and E ′-sound for some entailment system E ′ such that E is at least as

strong as E ′.

Proof. The statement follows from Corollary 6.5 and Proposition 6.9.

It may be considered somewhat unsatisfactory for us to require that the semantics we

compare TE with is E ′-sound, rather than just E-sound. However, this cannot be weakened,

since the counterexample semantics T ′′ given in Example 6.7 is E ′-theory-oriented, for
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instance, for the least entailment system E ′ generated by ψ �′
Σ′ ϕ (and any system that is

even weaker than such E ′).

However, as we discussed at the end of Section 5, the possibly unexpected requirements

on the property-oriented semantics considered may be dropped if a stronger version of

soundness and compositionality is assumed that persist when the specification framework

is extended.

A property-oriented semantics T for specifications built using some specification-

building operations in the context of an entailment system E is said to be E-persistently

sound and compositional if it is persistently sound and compositional in any institution

INS for which E is sound.

Corollary 6.11. TE is at least as strong as any E-persistently sound and compositional

property-oriented semantics for structured specifications built from flat specifications

using union, translation and hiding.

Proof. By Corollary 5.8, if we consider the institution INSE where semantic entailment

coincides with entailment in E , as given by Proposition 6.2, and TE coincides with T INSE .

7. Final remarks

We have studied property-oriented semantics for structured specifications in the context

of an arbitrary institution, and then in the context of an arbitrary entailment system.

Considering specifications built from flat specifications using union, translation and

hiding, we explained why the standard compositional property-oriented semantics given

in Section 4 cannot be improved. On the one hand, we have sharpened the standard

result (Borzyszkowski 2002) that this semantics is complete in any exact institution with

an appropriate interpolation property (cf. Theorem 4.4). On the other hand, we have also

shown that it is at least as strong as any other sound, compositional, extensive theory-

oriented semantics, as well as any other sound, monotone, extensive property-oriented

semantics (cf. Corollaries 5.2 and 5.6). These two results follow from more general

theorems that state similar results for specifications built using an arbitrary collection of

specification-building operations (cf. Theorems 5.1 and 5.5).

We have also given counterexamples that show that the unexpected and counter-

intuitive requirements of extensiveness (the semantics under consideration must not ‘forget’

about axioms in flat specifications
†
) and theory-orientedness (the semantics must take

regard of consequences of the properties derived) cannot be dropped in general (cf.

Examples 5.3 and 5.4). However, they become superfluous if we require a stronger

form of soundness and compositionality, that persist when the specification formalism is

extended by new specification constants with arbitrary sound semantics (cf. Theorem 5.7

and Corollary 5.8). It is worth noting that a similar effect may be achieved if, instead

of adding new specification constants, we require that the property-oriented semantics

†
For this reason, extensiveness is called non-absent-mindedness in Sannella and Tarlecki (2012).
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for structured specifications translated by any institution comorphism (Meseguer 1989;

Tarlecki 2000; Goguen and Roşu 2002) extends in a sound and compositional way to

structured specifications in the richer institution.

These results and counterexamples improve significantly on related results in Sannella

and Tarlecki (2012). They carry over to the context of specifications built from flat

specifications using union, translation and hiding in the context of an entailment system –

see Section 6. The results also apply, mutatis mutandis, to any specification language that

has at least the expressive power provided by these simple operations.

Although we have only discussed property-oriented semantics here, there is an intimate

link between proof systems and property-oriented semantics that makes the results

immediately applicable to proof systems as well. For instance, the standard compositional

property-oriented semantics T INS for structured specifications built from flat specifications

using union, translation and hiding in an institution INS given in Section 4 may be

presented using the well-known proof system

〈Σ,Φ〉 � ϕ
ϕ ∈ Φ

SP1 � ϕ
SP1 ∪ SP2 � ϕ

SP2 � ϕ
SP1 ∪ SP2 � ϕ

SP � ϕ
SP with σ � σ(ϕ)

SP � σ(ϕ)

SP hide via σ � ϕ
together with the following rule to link consequences of specifications with semantic

consequence in the underlying institution:

SP � ϕ for each ϕ ∈ Φ Φ |= ψ

SP � ψ
(|= closure)

Clearly, for any specification SP ∈ SpecUTH and Sig[SP ]-sentence ϕ, we have that

ϕ ∈ T INS(SP ) if and only if SP � ϕ can be derived in the above proof system. The

standard compositional property-oriented semantics TE for structured specifications built

from flat specifications using union, translation and hiding in an entailment system E
given in Section 6 may be presented by essentially the same proof system with the final

rule (|= closure) replaced by

SP � ϕ for each ϕ ∈ Φ Φ �Sig[SP ] ψ

SP � ψ
(� closure)

In this sense, any proof system for proving consequences of specifications generates a

property-oriented semantics. (Note that this is different from proof systems for proving

entailment between properties in the context of a structured specification, as studied in

Diaconescu (2008, Section 14.2).)

On the one hand then, the notions we introduced for property-oriented semantics, like

soundness, completeness, closed-completeness, compositionality, monotonicity, and so on,

may be directly applied to proof systems. In particular, the proof system given by the
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rules above is sound, theory-oriented, monotone, compositional, extensive, flat-complete

and closed-complete for the specification-building operations considered. The main results

presented here for property-oriented semantics carry over to proof systems as well, and

can be recast as establishing that the above proof system for consequences of structured

specifications built from flat specifications using union, translation and hiding is the

strongest compositional one possible. Improving on it requires compositionality to be

sacrificed: for example, a non-compositional proof system that is stronger may be given

by the following single rule, using Theorem 3.1:

Φ′ �Σ′ σ(ϕ)

SP � ϕ
nf(SP ) = 〈Σ′,Φ′〉 hide via σ.

Another non-compositional approach, which uses additional axioms and rules that are

derived from the form of the specification in question, can be found in Hennicker

et al. (1997).

On the other hand, we may want to study formats of proof systems that ensure

desirable properties of the semantics they generate. For instance, if all the proof rules

in a proof system derive consequences of structured specifications from consequences

of their immediate constituents, then the corresponding property-oriented semantics is

compositional. Monotonicity follows if, furthermore, none of the proof rules involves

‘negative’ premises. Finally, the property-oriented semantics given by a proof system

is theory-oriented (respectively, E-theory-oriented) if and only if the rule (|= closure)

(respectively, (� closure)) is admissible.
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