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In shear flows at transitional Reynolds numbers, localized patches of turbulence,
known as puffs, coexist with the laminar flow. Recently, Avila et al. (Phys. Rev.
Lett., vol. 110, 2013, 224502) discovered two spatially localized relative periodic
solutions for pipe flow, which appeared in a saddle-node bifurcation at low Reynolds
number. Combining slicing methods for continuous symmetry reduction with Poincaré
sections for the first time in a shear flow setting, we compute and visualize the
unstable manifold of the lower-branch solution and show that it extends towards
the neighbourhood of the upper-branch solution. Surprisingly, this connection even
persists far above the bifurcation point and appears to mediate the first stage of
the puff generation: amplification of streamwise localized fluctuations. When the
state-space trajectories on the unstable manifold reach the vicinity of the upper
branch, corresponding fluctuations expand in space and eventually take the usual
shape of a puff.
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1. Introduction

In pipe flow, turbulence first appears in localized regions known as puffs. Puffs
propagate downstream and eventually decay back to the laminar state or split to give
birth to a new puff. Numerical and laboratory experiments in pipe flow (Avila et al.
2011) have shown that transition to sustained turbulence in a circular pipe happens
when the rate of puff splitting exceeds that of decaying. Further research (Lemoult
et al. 2016) has established that the dynamics and interplay of such localized turbulent
domains give rise to a non-equilibrium phase transition. Instead of this stochastic point
of view, we here apply the complementary deterministic dynamical systems approach
in order to unravel details of puff formation.

The time evolution of a fluid flow can be thought of as a trajectory in an
infinite-dimensional space. In this state space, a state of the fluid is a point, and
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its motion follows a one-dimensional curve. While Hopf (1948) articulated this
dynamical viewpoint of turbulence, it has only recently been computationally feasible
to tackle turbulence from this perspective. From this geometrical viewpoint, the state
space of a transitional shear flow contains a linearly stable equilibrium, laminar flow
and a chaotic saddle, turbulence, which for the parameter regime considered here is
of transient nature.

The state-space geometry of a chaotic system is shaped by time-invariant solutions,
such as equilibria and periodic orbits, and their stable/unstable manifolds (Cvitanović
et al. 2015). Such invariant solutions that are embedded in chaotic sets are unstable;
hence they are visited by the flow only transiently. Flow approaches an invariant
solution following its stable manifold and leaves its neighbourhood on its unstable
manifold. This intuition suggests the search for invariant solutions as the first step of
the turbulence problem from Hopf’s perspective.

Over the past three decades, many nonlinear equilibrium and periodic solutions
have been found computationally for canonical shear flows at transitional Reynolds
numbers (Re) (see Kawahara, Uhlmann & van Veen (2012) for a review), and flow
structures similar to some of the solutions found numerically have been observed
in experiments for the case of pipe flow (Hof et al. 2004). A general feature of
these solutions is that they appear as pairs in saddle-node bifurcations at low Re or
through further bifurcations of such saddle-node pairs. Moreover, the lower-energy
ones of these solutions appeared to belong to a state-space region between laminar
and turbulent dynamics. Itano & Toh (2001) used this property to find their travelling
wave solution in plane Poiseuille flow. They employed a shooting method that bisects
between initial conditions that laminarize and those that develop into turbulence,
and found a travelling wave whose stable manifold sets the basin boundary of
turbulence. Kawahara & Kida (2001) adapted this method to plane Couette flow and
discovered a previously unknown periodic orbit. In pipe flow, a similar search yielded
a seemingly chaotic state, albeit with dynamics simpler than those of the turbulence
(Schneider, Eckhardt & Yorke 2007). Later on, Duguet, Willis & Kerswell (2008)
showed numerical evidence that this state is organized in the vicinity of a travelling
wave initially found by Pringle & Kerswell (2007), and approaches to this solution
were observed in pipe flow experiments by de Lozar et al. (2012).

Most of the early studies of invariant solutions in shear flows were restricted to
small computational domains called minimal flow units (Jiménez & Moin 1991)
that are only large enough to capture essential statistics of turbulence. However,
such small domains cannot capture streamwise localization of turbulent spots, which
are relevant to the onset of turbulence. Avila et al. (2013) numerically studied the
laminar–turbulent boundary in a 40-diameter-long periodic pipe, a domain large
enough to exhibit localization. They discovered that when the flow is restricted to
the invariant subspace of solutions that have two-fold rotational and reflectional
symmetries in azimuth, the laminar–turbulent boundary is set by the stable manifold
of a single relative periodic orbit, that is a periodic orbit with a spatial shift. By
numerical continuation they showed that this solution is the lower branch of a
saddle-node pair, akin to invariant solutions found in small domains.

For a complete understanding of the state-space geometry, numerical identification
of dynamically relevant invariant solutions must be followed by preparation of a
catalogue of possible motions in their neighbourhood. Recently, Suri et al. (2017)
experimentally demonstrated that this approach can be used as a predictive tool
on a weakly turbulent quasi-two-dimensional flow. For three-dimensional shear
flows computation of unstable manifolds of invariant solutions is a technically
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Heteroclinic path to spatially localized chaos

challenging task because they can be very high-dimensional. Moreover, the presence
of continuous symmetries further complicates the problem since each continuous
symmetry introduces a new marginal direction, increasing the dimension of the
associated unstable manifold by one. The main technical contribution of the current
work is to resolve this issue by combining the method of slices with Poincaré
sections for computation and visualization of the unstable manifold of a relative
periodic orbit. Applying this technique, we show for the aforementioned case of
the localized lower-branch relative periodic orbit that its unstable manifold extends
towards the neighbourhood of the corresponding upper-branch solution. Our results
demonstrate that this state-space structure governs the first stage of puff formation,
which corresponds to the amplification of localized disturbances in the physical space.
Once the unstable manifold reaches the vicinity of the upper-branch solution, the
disturbances begin to expand and take the typical shape of a puff.

The paper is organized as follows. In the next section, we describe the numerical
procedure and introduce our notation. Technical aspects, the simple symmetry
reduction scheme and the computation of unstable manifolds on a Poincaré section
are presented in §§ 3 and 4. The results are discussed in § 5. The main text is
supplemented by appendix A, where we derive projection operators, which we use in
our computations.

2. Numerical set-up and notation

For numerical simulations, we use Openpipeflow (Willis 2017), which integrates
the Navier–Stokes equations for fluctuations u around the base (Hagen–Poiseuille)
solution. The axial pressure gradient is adjusted throughout the simulation in order to
ensure a constant flux equal to that of the base flow at a given Re=UD/ν, where U
is the mean axial velocity, D is the pipe diameter and ν is the kinematic viscosity of
the fluid. The flow field satisfies the incompressibility condition ∇ · u= 0 throughout
the volume; there are periodic boundary conditions u(z, θ, r) = u(z + L, θ, r) and
u(z, θ, r)= u(z, θ + 2π, r) in axial and azimuthal directions, and the no-slip boundary
condition u(z, θ, r = D/2) = 0 on the pipe wall. For spatial discretization, flow
fields are expanded in Fourier series in axial and azimuthal directions and finite
differences are used to evaluate derivatives in the radial direction. In the numerical
work presented here, the computational domain is L = 25D long and Fourier series
in axial and azimuthal directions are respectively truncated at K = 192 and M = 16,
and N = 64 finite difference points are used in the radial direction. Nonlinear terms
are evaluated following the 3/2-rule for dealiasing resulting in 64× 576× 48 spatial
grid points. We adopted our resolution from Chantry, Willis & Kerswell (2014), who
studied bifurcations of the localized solutions considered here from travelling waves
as the pipe length is increased. We checked our results for robustness at higher spatial
resolution (N, K, M) = (128, 320, 32). Re is set to 1700, at which puffs have long
lifetimes (up to 1000 D/U) in the symmetry subspace considered here.

Pipe flow is equivariant under streamwise translations gz(l)u(z, r, θ)= u(z− l, r, θ),
azimuthal rotations gθ(φ)u(z, r, θ) = u(z, r, θ − φ) and the azimuthal reflection
σ [u, v, w](z, r, θ)= [u, v,−w](z, r,−θ), where u, v, w are velocity field components
in the axial, radial and azimuthal directions respectively. Following Avila et al. (2013),
we restrict our study to the velocity fields that are symmetric under rotation by π,
gθ(π)u = u, and the reflection σu = u. Imposing reflection invariance breaks the
continuous rotation symmetry of the system, allowing only for half-domain rotations.
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Since we are considering the subspace invariant under rotation by π, half-domain
rotations are given by gθ(π/2), hence the symmetry group of the system becomes
G= {gz(l), gθ(π/2)}.

For clarity, we are going to use state-space notation. Let a(t) be a vector
containing all (3 × 64 × 384 × 32) numerical degrees of freedom of the flow fields
[u, v,w]. Evolution under Navier–Stokes equations implies a finite-time flow mapping
f τ (a(0)) = a(τ ) that takes a solution at time 0 to a new one at time τ . In this
formalism, equivariance under g∈G means that the flow and the symmetry operation
commute, i.e. gf τ (a(0)) = f τ (ga(0)). Throughout this article, our notation will not
distinguish between an abstract group element and its particular representation. Thus,
whenever a group action is present, its appropriate representation on the corresponding
velocity fields is implied. Finally, we need to introduce an inner product to use in
our calculations. Our choice is the standard ‘energy norm’: let a and a′ be state-space
vectors corresponding to velocity fields u and u′. We define the L2 inner product as
〈a, a′〉 = (1/2)

∫
u · u′ dV; hence ‖a‖2

= 〈a, a〉 is the kinetic energy of a.
A relative periodic orbit is a recurrence (after the orbit’s period T ′p) up to a

symmetry operation
f T ′p(ap)= g′pap. (2.1)

For the pair of relative periodic orbits found by Avila et al. (2013), g′p= gθ(π/2)gz(l′p).
For simplicity, we are going to treat this orbit as if its period were twice its
fundamental period Tp = 2T ′p, and its only symmetry is a streamwise shift since
gp = (g′p)

2
= gz(lp = 2l′p).

A relative periodic orbit with a one-parameter compact continuous symmetry defines
a 2-torus

{gz(l)f τ (ap) | τ ∈ [0, Tp), l ∈ [0, L)} (2.2)

in the state space, which is parametrized by shifts l and time τ . The stability of a
relative periodic orbit is determined by the eigenvalues of the Jacobian matrix

Jp = g−1
p df Tp(ap)/dap, (2.3)

which are known as Floquet multipliers (Chossat & Lauterbach 2000; Cvitanović
et al. 2015). Since this Jacobian matrix (2.3) is very large, in practice, we compute
the leading Floquet multipliers Λi and the corresponding Floquet vectors Vi via
Arnoldi iteration (Trefethen & Bau 1997). The lower-branch relative periodic orbit of
Avila et al. (2013) has only one positive real Floquet multiplier Λ1 greater than
one, two marginal Λ2,3 = 1 multipliers corresponding to the disturbances as axial
and temporal shifts; the rest |Λi>3| of the multipliers have absolute values smaller
than one. Counting axial and temporal shift directions, the unstable manifold of this
relative periodic orbit is three-dimensional. However, these marginal directions are of
no dynamical importance and our next step is to cancel them.

3. Reductions

For a (1 + 1)-dimensional partial differential equation under a periodic boundary
condition, Budanur et al. (2015) show that the translational symmetry can be
reduced by fixing the phase of the first Fourier mode to 0, and this transformation
can be interpreted as a ‘slice’, that is a codimension-1 hyperplane where all
symmetry-equivalent state-space points are represented by a single point. Extension
of this method to the canonical shear flows requires a particular choice for the
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(a) (b)

FIGURE 1. Sketches of two different formulations of continuous symmetry reduction by
the first Fourier mode slice. (a) Projection of a full state-space trajectory a(τ ) on a
two-dimensional hyperplane spanned by (â′, gz(−L/4)â′). Symmetry-fixing phases φ(τ)
(3.3) are shown for instances τ1 and τ2. (b) Slice hyperplane defined by (3.4) and
the transformation of full state-space trajectory a(τ ) onto the slice by the action of
gz(Lφ(τ)/2π).

slice template’s dependence on the non-homogeneous directions. Willis, Short &
Cvitanović (2016) adapted this idea to the study of a short (L ≈ 1.85) pipe with
imposed shift-and-reflect symmetry: they experimentally selected a typical turbulent
state for this purpose, retained its dependence on the radial and azimuthal coordinates,
while imposing a cos(2πz/L) dependence in the axial direction. Here, we take a much
simpler approach and define a first Fourier mode slice template â′ as the state vector
corresponding to the three-dimensional field

[û′, v̂′, ŵ′](z, θ, r)= J0(αr) cos(2πz/L), (3.1)

where J0 is the zeroth Bessel function of the first kind and α is chosen such that
J0(αD/2) = 0. For a given trajectory a(τ ), we can now define a symmetry-reduced
trajectory as

â(τ )= gz(Lφ/2π)a(τ ), (3.2)

where
φ(τ)= arg(〈a(τ ), â′〉 + i〈a(τ ), gz(−L/4)â′〉). (3.3)

The pair of state-space vectors â′, gz(−L/4)â′ are orthogonal to each other and span a
two-dimensional subspace. As depicted in figure 1(a), the slice-fixing phase φ in (3.3)
is the polar angle when a state is projected onto this hyperplane. Transformation (3.2)
fixes this angle to 0, defining a unique symmetry-reduced â(τ ) for all a(τ ). We have
chosen the r dependence of the slice template in (3.1) to be a Bessel function because
of the cylindrical geometry. In practice, many other choices can be equally good for
the purpose of symmetry reduction.

Our next step is to redefine the transformation (3.2) as a slice, a codimension-1
half-hyperplane

〈â(τ )− â′, t′〉 = 0, 〈t(â), t′〉> 0, (3.4a,b)

where t(â)=Tzâ is the group tangent, t′= t(â′) is the slice tangent, Tz is the generator
of infinitesimal translations, satisfying gz(l) = exp(Tzl). In our particular case, Tzu =
−du/dz, hence t′= (2π/L)gz(−L/4)â′. After defining the slice by (3.4), one looks for
the phases φ such that gz(Lφ/2π)a(τ ) satisfies (3.4) as sketched in figure 1(b).

827 R1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

51
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.516


N. B. Budanur and B. Hof

At first sight, redefining the polar coordinate transformation (3.2) as a slice (3.4)
might seem an overcomplication; however, this reformulation provides some important
tools. In particular, one can derive (see appendix A) the projection operator

H(â)= 1−
t(â)⊗ t′

〈t(â), t′〉
(3.5)

that projects infinitesimal perturbations to â from full state space to the slice. With
(3.4) and (3.5), we can now reduce the torus (2.2) to a closed curve and define
its stability. Let ap be a point on a relative periodic orbit and Vi be the Floquet
vectors computed at this point. If âp = g(Lφp/2π)ap is the symmetry-reduced
state-space point corresponding to ap, then the symmetry-reduced Floquet vectors
are V̂i = H(âp)g(Lφp/2π)Vi. Note that H(â)t(â) = 0, thus the continuous symmetry
direction is eliminated in the slice.

It can be shown (Guckenheimer & Holmes 1983; Cvitanović et al. 2015) that in
the vicinity of a periodic orbit of a dynamical system, one can define a Poincaré
map, which contains a fixed point, whose stability multipliers are equal to the Floquet
multipliers of the periodic orbit, except for the marginal multiplier corresponding to
the time direction that is eliminated by the Poincaré section. Moreover, the stability
eigenvectors in the Poincaré section can be obtained from Floquet vectors by a
projection. We define such a Poincaré section as

〈âP − âp, v̂(âp)〉 = 0, 〈v̂(âP), v̂(âp)〉> 0, (3.6a,b)

where v̂(â)= H(â)v(â) and v(a)= limδτ→0( f δτ (a)− a)/δτ is the state-space velocity.
Continuous-time symmetry-reduced flow â(τ ) = f̂ τ (â(0)) induces a discrete-time
dynamical system âP [n] = f̂ n

P(âP [0]), where n counts the number of intersections
of trajectories with the Poincaré section as the discrete-time variable. Finally, we
define the operator that reduces the infinitesimal perturbations to âP from the
symmetry-reduced state space to the Poincaré section as

P(âP)= 1−
v̂(âP)⊗ v̂(âp)

〈v̂(âP), v̂(âp)〉
, (3.7)

which allows us to project the symmetry-reduced Floquet vectors V̂i onto the Poincaré
section as V̂i,P = P(âp)V̂i. Similar to (3.5), the projection operator (3.7) follows from
(A 6).

4. The unstable manifold

Budanur & Cvitanović (2017) demonstrate the approximation of one- and
two-dimensional unstable manifolds of relative periodic orbits on Poincaré sections
for the Kuramoto–Sivashinsky system. The main idea is to select trajectories that
approximately cover the linear unstable manifold, hence their forward integration
approximately covers the nonlinear unstable manifold; see Budanur & Cvitanović
(2017) for details. Here, we are interested in computing the unstable manifold of the
lower-branch relative periodic orbit (LB) of Avila et al. (2013) at Re= 1700. At this
Re, the only unstable Floquet multiplier of LB is Λ1 = 2.8291523. Initial conditions
on the Poincaré section that approximately cover the associated unstable manifold are

âP(δ)= âp,P ± εΛ
δ
1V̂1,P , (4.1)
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FIGURE 2. (a) Unstable manifold of LB (grey dots) and a small perturbation (cyan
circles) to the laminar flow that develops into a puff on the Poincaré section (3.6). The
direction of discrete time from n= 0 to n= 9 is indicated by arrows for the perturbation.
Intersections of relative periodic orbits LB and UB with the Poincaré section are marked
yellow and black respectively. Magenta markers correspond to the orbit with the initial
condition âP(δ = 0). Few points on the unstable manifold to the left of LB are shown
because this direction consists of laminarizing orbits. (b) Three-dimensional projection
of the trajectories (grey) that populate the unstable manifold of LB along with the LB
(yellow) and UB (red) within the slice. The laminar equilibrium is annotated with L.

where δ ∈ [0, 1) and ε is a small constant. Note that under discrete-time linear
dynamics, the first return of the initial condition âP(0) corresponds to âP(1); therefore,
forward integrating these initial conditions populates the one-dimensional unstable
manifold on the Poincaré section. Openpipeflow normalizes Floquet vectors such that
their magnitudes are equal to that of the initial point on the relative periodic orbit,
i.e. ‖Vi‖ = ‖ap‖. Projection onto the Poincaré section and setting ε = 10−4 yields the
relative amplitude of the initial perturbation as ε‖V̂1,P‖/‖âp,P‖≈ 0.68× 10−4. In order
to approximate the unstable manifold, we chose nine equidistant points in [0, 1) for
δ and forward integrated these initial conditions while recording their intersections
with the Poincaré section (3.6).

Figure 2 shows the unstable manifold approximated this way. In panel (a), we show
the first 15 intersections of each trajectory with the Poincaré section, projected onto
bases formed by the unstable Floquet vector V̂1 and the real part of the least stable
Floquet vector V̂4 of LB, orthonormalized by the Gram–Schmidt procedure, namely
e1 = 〈âP − âp, V̂1,⊥〉, e2 = 〈âP − âp, ReV̂4,⊥〉, where subscript ⊥ implies that vectors
are orthonormalized. We observed that as the trajectories leave the neighbourhood
of LB (the origin of figure 2) they approach the upper branch (UB). In figure 2(b)
we visualize same trajectories as three-dimensional projections from the first Fourier
mode slice along with LB and UB, where for the third projection direction we used
the symmetry-reduced state-space velocity vector evaluated at âp, i.e. e3 = 〈â(τ ) −
âp, v̂(âp)/‖v̂(âp)‖〉. Here, relative periodic orbits are closed periodic orbits as expected;
and the unstable manifold appears two-dimensional. The manifold’s approach to the
UB is also clearly visible on this projection. Additionally, we are also able to visualize
laminarizing part of the unstable manifold.
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FIGURE 3. (a) L2 distance from UB on the Poincaré section for 20 returns. (b) Time
evolution of kinetic energy in units of the kinetic energy kHP of the laminar flow. Magenta
(solid): a trajectory on the unstable manifold of LB, cyan (dashed): puff transition initiated
by a small perturbation to the laminar state.

Another trajectory shown in figure 2(a) is an initially small perturbation developing
into a puff. We generated this perturbation by taking a typical puff state and scaling
its amplitude by 0.5. Nine discrete-time steps displayed in Figure 2(a) show its
approach to UB before redeveloping into a puff. We observed this behaviour in
numerical experiments prepared with similar initial conditions. Of course, this is
not extremely surprising: if we started with an initial condition that is only large
enough for triggering turbulence, then the trajectory would have closely followed
the unstable manifold of LB since the numerical evidence strongly suggests that the
laminar–turbulent boundary is set by its stable manifold. Nevertheless, it is worth
noting that the signatures of UB could be seen in puff formation without the need to
prepare very precise initial conditions through a bisection procedure.

In order to confirm apparent approaches to the UB, we measured the trajectories’
distance from it on the Poincaré section. Figure 3(a) shows the distance of the orbit
with initial condition âP(δ = 0) on the unstable manifold of LB (shown magenta in
figure 2) and the perturbation we show in figure 2 from the UB. For both trajectories,
we see a clear initial drop before they move away following the unstable manifold
of the UB. For further comparison, we show the time evolution of turbulent kinetic
energy for both trajectories in figure 3(b). Note for the trajectory on the unstable
manifold that before the kinetic energy goes up to puff levels (∼ 1.4kHP) it oscillates
around 0.5kHP during τ ∈ (125, 175)(D/U). Similarly, for the small perturbation, after
an initial increase, the kinetic energy stays close to 0.6kHP during τ ∈ (25, 75)(D/U)
before further increasing to puff levels. Both episodes correspond to the approach of
trajectories to UB. Note that the time interval shown in figure 3(a) is not necessarily
the same for each orbit, nor are the discrete-time intervals equal to each other. For
the perturbation, the interval n∈ [0, 20] corresponds to τ ∈ (0, 146.25)(D/U), whereas
for the trajectory on the unstable manifold, it corresponds to τ ∈ (0, 193.67)(D/U).

For further comparison, we visualized streamwise velocity and vorticity isosurfaces
for three snapshots (n = 0, 9, 20) on the orbit with initial condition âP(δ = 0)
(magenta on figure 2) respectively in figure 4(a,c,f ). At the closest approach (n= 9,
figure 4c) the resemblance of flow structures of the unstable manifold to those of
UB (figure 4e) is very close. In addition, we show flow structures for two snapshots
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(a)

(b)

(c)

(d)

(e)

( f )

FIGURE 4. Isosurfaces of streamwise vorticity at ωz =±2.0 U/D (purple and green) and
streamwise velocity at u = ±0.4 U (red and blue) for the trajectory on LB’s unstable
manifold at n= 0, 9, 20 (a,c,f ), for the small perturbation at n= 0, 4 (b,d) and for UB (e).
Shown here is the pipe region z ∈ [5, 20]D, θ ∈ [0, π/2] since the rest of the structures
can be obtained from reflection and rotation by π symmetries that are present.

of the orbit shown with cyan markers in figure 2(a) at times n = 0, 4 respectively
in figure 4(b,d). While not as dramatic, at the closest approach (n = 4, figure 4d)
to the UB, we also see structural resemblance. The same isosurfaces for the LB are
visually indistinguishable from the initial point (n = 0, figure 4a) on the unstable
manifold, and hence not shown separately in figure 4. Note that puffs are structurally
(figure 4f ) much more complicated than LB and UB.

In order to compare sizes of turbulent structures, we plotted the kinetic energy of
fluctuations as a function of axial position, i.e. k(z)= (1/2)

∫ D/2
0

∫ 2π

0 u · ur dr dθ , for
the trajectory on the unstable manifold of LB. Figure 5(a) shows the time interval
n ∈ [0, 9], during which the orbit leaves the neighbourhood of LB and approaches
UB. During the time interval n∈ [10, 20] shown in figure 5(b), the orbit moves away
from UB and becomes a puff.

5. Conclusion and outlook

In this paper, we presented strong numerical evidence that the unstable manifold
of a localized relative periodic orbit of pipe flow approaches the neighbourhood of
the corresponding upper-branch solution. It is remarkable that this dynamical structure
in the state space persists at Re = 1700, which is much higher than Re ≈ 1430, at
which these orbits are born of a saddle-node bifurcation. Even though the UB is stable
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k(z)

FIGURE 5. Fluctuating kinetic energy k(z) contained at an axial location (z) for n =
0, 1, . . . , 9 (a) and n = 10, 11, . . . , 20 (b). THe darkest shade of blue corresponds to
initial time n=0, and the plotting colour becomes lighter as time increases. Dashed yellow
and red curves correspond to the LB and the UB. Values of k(z) are normalized by its
maximum at n= 19.

(within the symmetry subspace) initially after the bifurcation, it quickly undergoes a
series of bifurcations. At Re= 1700, the Arnoldi method yields seven unstable Floquet
multipliers (Λ > 1) (three pairs of complex conjugates and one real), rendering its
unstable manifold nine-dimensional including marginal directions. We repeated our
calculation of the unstable manifold at Re= 1900 and obtained a qualitatively similar
picture.

While the qualitative features of the unstable manifold’s approach towards the UB
appear to be robust, proving whether or not is there an exact connection between
the unstable manifold of LB and the stable manifold of UB is a highly challenging
computational task, which we did not address here. Since the sum of the dimensions
of LB’s unstable manifold and UB’s stable manifold does not exceed the dimension
of the state space, one cannot expect a generic intersection of these manifolds
without fine-tuning the parameters Re and L. Our computational method is ultimately
prone to the dynamical instabilities of UB, which become effective in its vicinity.
Experimenting with δ values in (4.1) yielded only a marginal change in the closest
distance between the unstable manifold and the UB. The numerical representation of
the manifold can be improved by implementing van Veen, Kawahara & Atsushi
(2011)’s formulation of the boundary value problem after symmetry reduction;
however, this would be very heavy on computational resources because the problem
studied here has more than two orders of magnitude more computational degrees of
freedom than the ones they consider.

Previous studies (Halcrow et al. 2009; van Veen & Kawahara 2011) reported
homoclinic and heteroclinic connections in Couette flow, which can accommodate
equilibria and periodic orbits without spatial drifts. This is not the case for
pressure-driven flows since all invariant solutions except the laminar equilibrium
have non-zero streamwise drifts. In this regard, the current work fills an important
technical gap and provides a new set of tools for study of pressure-driven flows. While
the methods we used here appeared in different publications (Budanur et al. 2015;
Ding et al. 2016; Budanur & Cvitanović 2017), where they are applied to much
lower-dimensional systems, this is their first application to the full Navier–Stokes
equations.

While Avila et al. (2013) show that the chaotic motion emerges from the
bifurcations of the UB, as the Reynolds number is increased from 1430 to 1545,
the role of the UB in transition is not obvious at Re = 1700. Our result shows that
far from the bifurcation point, the UB takes the role of mediating the transition.
Note that the UB, whose kinetic energy swings around k = 0.5kHP, is energetically
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separated from turbulent puffs, which have typical kinetic energies k ≈ 1.2kHP. This
is also clearly visible from the axial distribution of kinetic energies in figure 5 and
flow structures in figure 4, where the UB clearly has a much simpler structure than
puffs.

The time evolution of the spatial distribution of the kinetic energy in figure 5
suggests a two-stage transition scenario, where the spatial complexity of a puff
forms as trajectories follow the unstable manifold of the UB (figure 5b). Mellibovsky
et al. (2009) studied the transition to turbulence in a long computational domain
and observed a two-stage process similar to ours at Re = 2800. Via ‘edge tracking’
(Skufca, Yorke & Eckhardt 2006) they found that a localized disturbance with
chaotic dynamics resides in between the laminar and turbulent regions of the state
space. When they studied the transition to turbulence from this state, they observed
that the initial linear energy amplification is followed by the spread of turbulent
structures accompanied by an exponential increase in the kinetic energy. Our results
show that, in our symmetry-restricted setting at lower Re, this change from local
amplification to spatial expansion takes place when the unstable manifold of the LB
reaches the vicinity of the UB.

Ritter, Mellibovsky & Avila (2016) recently reported a detailed numerical study,
where they used turbulent kinetic energy and pressure gradient as indicators to
support the hypothesis that spatial complexity in this system arises as different
chaotic regions in the state space merge with the neighbourhood of the UB. These
observations along with ours motivate a detailed study of the UB’s unstable manifold
in order to understand the spatial expansion of chaotic spots. The tools we introduce
here can be useful for such a study.

Acknowledgements

We are indebted to A. P. Willis for making his DNS code and invariant solutions
available on openpipeflow.org, to P. Cvitanović, M. Avila and G. Kawahara for
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Appendix A. Projection operator

The projection operations (3.5) and (3.7) follow from the same geometrical
principle, which we are going to derive here. Let f φ(a) be the nonlinear semi-group
action that transforms the state-space vector a according to the parameter φ as

a′ = f φ(a), φ ∈ [0, φmax) (A 1a,b)

and let U(a) be a scalar-valued function of a that defines a codimension-1
hypersurface U(â) = 0 in the state space such that at â = f φ̂(a) a semi-group orbit
of a intersects this hypersurface transversely as illustrated in figure 6. Now let us
consider a small perturbation δa to a and its transformation onto this hypersurface:

â+ δâ= f φ̂+δφ̂(a+ δa). (A 2)

Taylor-expanding the right-hand side to linear order in δφ̂ and δa, we obtain

δâ= ∂φf φ(a)|φ=φ̂δφ̂ +
df φ(a′)

da′

∣∣∣∣
a′=a

δa. (A 3)
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FIGURE 6. Schematic illustration of the transformation of a and a small perturbation δa
to it by the nonlinear group action f φ(a) onto the hypersurface U(â)= 0.

Our goal is to find an expression for δâ; however, (A 3) gives us one condition with
two unknowns, δâ and δφ̂. The second condition comes from the fact that (A 2) also
satisfies the hypersurface equation, i.e. U(â+ δâ)= 0. Taylor expansion to the linear
order yields 〈

dU(a)
da

∣∣∣∣
a=â

, δâ
〉
= 0,〈

dU(a)
da

∣∣∣∣
a=â

, ∂φf φ(a)|φ=φ̂

〉
δφ̂ +

〈
dU(a)

da

∣∣∣∣
a=â

,
df φ(a′)

da′

∣∣∣∣
a′=a

δa
〉
= 0,

 (A 4)

where in the second step we inserted (A 3) for δâ. Solving (A 4) for δφ̂ and inserting
its expression into (A 3), we find

δâ=
df φ(a′)

da′

∣∣∣∣
a′=a

δa− ∂φf φ(a)|φ=φ̂

〈
dU(a)

da

∣∣∣∣
a=â

,
df φ(a′)

da′

∣∣∣∣
a′=a

δa
〉

〈
dU(a)

da

∣∣∣∣
a=â

, ∂φf φ(a)|φ=φ̂

〉 , (A 5)

which we can rewrite as

δâ=

1−
∂φf φ(a)|φ=φ̂ ⊗

dU(a)
da

∣∣∣∣
a=â〈

dU(a)
da

∣∣∣∣
a=â

, ∂φf φ(a)|φ=φ̂

〉
 df φ(a′)

da′

∣∣∣∣
a′=a

δa, (A 6)

where ⊗ denotes the outer product. Both projection operators (3.5) and (3.7) can be
obtained from (A 6) by substitutions (l, g(l)a)→ (φ, f φ(a)) and (τ , f τ (a))→ (φ, f φ(a))
respectively.
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