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Abstract

Let (Y , Z) denote the solution to a forward-backward stochastic differential equation
(FBSDE). If one constructs a random walk Bn from the underlying Brownian motion B
by Skorokhod embedding, one can show L2-convergence of the corresponding solu-
tions (Yn, Zn) to (Y, Z). We estimate the rate of convergence based on smoothness
properties, especially for a terminal condition function in C2,α . The proof relies on an
approximative representation of Zn and uses the concept of discretized Malliavin cal-
culus. Moreover, we use growth and smoothness properties of the partial differential
equation associated to the FBSDE, as well as of the finite difference equations associated
to the approximating stochastic equations. We derive these properties by probabilistic
methods.
Keywords: Backward stochastic differential equations; approximation scheme; finite
difference equation; convergence rate; random walk approximation
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1. Introduction

Let (�,F , P) be a complete probability space carrying the standard Brownian motion B =
(Bt)t≥0 and assume that (Ft)t≥0 is the augmented natural filtration. Let (Y , Z) be the solution
of the forward-backward stochastic differential equation (FBSDE)

Xs = x +
∫ s

0
b(r, Xr)dr +

∫ s

0
σ (r, Xr)dBr,

Ys = g(XT ) +
∫ T

s
f (r, Xr, Yr, Zr)dr −

∫ T

s
ZrdBr, 0 ≤ s ≤ T . (1)

Let (Yn, Zn) be the solution of the FBSDE if the Brownian motion B is replaced by a scaled
random walk Bn given by

Bn
t = √

h
[t/h]∑
i=1

εi, 0 ≤ t ≤ T, (2)
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where h = T
n and (εi)i=1,2,... is a sequence of independent and identically distributed (i.i.d.)

Rademacher random variables. Then (Yn, Zn) solves the discretized FBSDE

Xn
s = x +

∫
(0,s]

b(r, Xn
r−)d[Bn]r +

∫
(0,s]

σ (r, Xn
r−)dBn

r ,

Yn
s = g(Xn

T ) +
∫

(s,T]
f (r, Xn

r−Yn
r−, Zn

r−)d[Bn]r −
∫

(s,T]
Zn

r−dBn
r , 0 ≤ s ≤ T . (3)

Many authors have investigated the approximation of backward stochastic differential equa-
tions (BSDEs) using random walks, analytically as well as numerically (see, for example, [7],
[26, [29], [31], [32], [33], [16]). In 2001, Briand et al. [7] showed weak convergence of (Yn, Zn)
to (Y , Z) for a Lipschitz continuous generator f and a terminal condition in L2. The rate of con-
vergence of this method remained an open problem. Bouchard and Touzi in [6] and Zhang
in [42] proposed instead of random walks an approach based on the dynamic programming
equation, for which they established a rate of convergence. But this approach involves condi-
tional expectations. Various methods to approximate these conditional expectations have been
developed ([23], [17], [12]). Also, forward methods have been introduced to approximate (1):
a branching diffusion method ([24]), a multilevel Picard approximation ([39]), and Wiener
chaos expansion ([8]). Many extensions of (1) have been considered, among them schemes
for reflected BSDEs ([3], [14]), high order schemes ([9], [10]), fully-coupled BSDEs ([18],
[5]), quadratic BSDEs ([13]), BSDEs with jumps ([21]), and McKean–Vlasov BSDEs ([1],
[15], [11]).

The aim of this paper is to study the rate of the L2-approximation of (Yn
t , Zn

t ) to (Yt, Zt)
when X satisfies (1). For this, we generate the random walk Bn by Skorokhod embedding from

the Brownian motion B. In this case the Lp-convergence of Bn to B is of order h
1
4 for any

p > 0. The special case X = B has already been studied in [22], assuming a locally α-Hölder
continuous terminal function g and a Lipschitz continuous generator. An estimate for the rate
of convergence was obtained which is of order h

α
4 for the L2-norm of Yn

t − Yt, and of order
h

α
4√

T−t
for the L2-norm of Zn

t − Zt.
In the present paper, where we assume that X is a solution of the stochastic differential

equation (SDE) in (1), rather strong conditions on the smoothness and boundedness of f and
g and also of b and σ are needed. In Theorem 3.1, the main result of the paper, we show

that the convergence rate for (Yn
t , Zn

t ) to (Yt, Zt) in L2 is of order h
1
4 ∧ α

2 provided that g′′ is
locally α-Hölder continuous. To the best of our knowledge, these are the first cases in which a
convergence rate for the approximation of FBSDEs using random walks has been obtained.

Remark 1.1. For the diffusion setting—in contrast to the case X = B—we can derive the con-
vergence rate for (Yn

t , Zn
t ) to (Yt, Zt) in L2 only under strong smoothness conditions on the

coefficients, which include also that g′′ is locally α-Hölder continuous (see Assumption 2.3
below). These requirements appear to be necessary. This becomes visible in Subsection 2.2.2
where we introduce a discretized Malliavin weight to obtain a representation Ẑn for Zn. While
it holds that Ẑn = Zn when X = B, in our case Ẑn does not coincide with Zn. However, one
can show that the difference Ẑn

t − Zn
t converges to 0 in L2 as n → ∞ using a Hölder conti-

nuity property (see (63) in Remark 4.1) for the space derivative of the generator in (3). For
this Hölder continuity property to hold one needs enough smoothness in space from the solu-
tion un to the finite difference equation associated to the discretized FBSDE (3). Provided that
Assumption 2.3 holds, we show the smoothness properties for un in Proposition 4.2, applying
methods known for Lévy driven BSDEs.
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The paper is organized as follows. Section 2 contains the setting, the main assumptions,
and the approximative representation Ẑn of Zn. Our main results about the approximation rate
for the case of no generator (i.e. f = 0) and for the general case are in Section 3. One can see
that in contrast to what is known for time discretization schemes, for random walk schemes
the Lipschitz generator seems to cause more difficulties than the terminal condition: while in
the case f = 0 we need that g′ is locally α-Hölder continuous, in the case f 
= 0 this property
is required for g′′. In Section 4 we recall some needed facts about Malliavin weights, the
regularity of solutions to BSDEs, and properties of the associated partial differential equations
(PDEs). Finally, we sketch how to prove growth and smoothness properties of solutions to the
finite difference equation associated to the discretized FBSDE. Section 5 contains technical
results which mainly arise from the fact that the construction of the random walk by Skorokhod
embedding forces us to compare our processes on different ‘timelines’, one coming from the
stopping times of the Skorokhod embedding, the other from the equidistant deterministic times
due to the quadratic variation process [Bn].

2. Preliminaries

2.1. The SDE and its approximation scheme

We introduce

Xt = x +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ (s, Xs)dBs, 0 ≤ t ≤ T,

and its discretized counterpart

Xn
tk = x + h

k∑
j=1

b(tj, Xn
tj−1

) + √
h

k∑
j=1

σ (tj, Xn
tj−1

)εj, tj := j T
n , j = 0, . . . , n, (4)

where (εi)i=1,2,... is a sequence of i.i.d. Rademacher random variables. Letting

Gk := σ (εi:1 ≤ i ≤ k) with G0 := {∅, �}, (5)

it follows that the associated discrete-time random walk (Bn
tk )n

k=0 is (Gk)n
k=0-adapted. Recall

(2) and h = T
n . If we extend the sequence (Xn

tk )k≥0 to a process in continuous time by defining
Xn

t := Xn
tk for t ∈ [tk, tk+1), it is the solution of the forward SDE (3).

We formulate our first assumptions. Assumption 2.1(ii) will not be used explicitly for our
estimates, but it is required for Theorem 4.1 below.

Assumption 2.1.

(i) b, σ ∈ C0,2
b ([0, T] ×R), in the sense that the derivatives of order k = 0, 1, 2 with respect

to the space variable are continuous and bounded on [0, T] ×R.

(ii) The first and second derivatives of b and σ with respect to the space variable are
assumed to be γ -Hölder continuous (for some γ ∈ (0, 1], with respect to the parabolic

metric d((t, x), (t̄, x̄)) = (|t − t̄| + |x − x̄|2)
1
2 ) on all compact subsets of [0, T] ×R.

(iii) b, σ are 1
2 -Hölder continuous in time, uniformly in space.

(iv) σ (t, x) ≥ δ > 0 for all (t, x).
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Assumption 2.2.

(i) g is locally Hölder continuous with order α ∈ (0, 1] and polynomially bounded in the
following sense: there exist p0 ≥ 0, Cg > 0 such that

∀(x, x̄) ∈R
2, |g(x) − g(x̄)| ≤ Cg(1 + |x|p0 + |x̄|p0 )|x − x̄|α . (6)

(ii) The function (t, x, y, z) �→ f (t, x, y, z) on [0, T] ×R
3 satisfies

|f (t, x, y, z) − f (t̄, x̄, ȳ, z̄)| ≤ Lf

(√
t − t̄ + |x − x̄| + |y − ȳ| + |z − z̄|

)
. (7)

Notice that (6) implies

|g(x)| ≤ K(1 + |x|p0+1) =: �(x), x ∈R, (8)

for some K > 0. From the continuity of f we conclude that

Kf := sup
0≤t≤T

|f (t, 0, 0, 0)| < ∞.

Notation:

• ‖ · ‖p := ‖ · ‖Lp(P) for p ≥ 1. For p = 2 we write simply ‖ · ‖.

• If a is a function, C(a) represents a generic constant which depends on a and possibly
also on its derivatives.

• E0,x :=E( · |X0 = x).

• Let φ be a C0,1([0, T] ×R) function. Then φx denotes ∂xφ, the partial derivative of φ

with respect to x.

2.2. The FBSDE and its approximation scheme

Recall the FBSDE (1) and its approximation (3). The backward equation in (3) can
equivalently be written in the form

Yn
tk = g(Xn

T ) + h
n−1∑
m=k

f (tm+1, Xn
tm , Yn

tm , Zn
tm) − √

h
n−1∑
m=k

Zn
tmεm+1, 0 ≤ k ≤ n, (9)

if one puts Xn
r := Xn

tm , Yn
r := Yn

tm , and Zn
r := Zn

tm for r ∈ [tm, tm+1).

Remark 2.1. Equations (3) and (9) do not contain any martingale orthogonal to the random
walk Bn, since we are in a special case where the orthogonal martingale is zero (see [7, p.
3] or [34, Proposition 1.7.5]). Indeed, for the symmetric simple random walk Bn the pre-
dictable representation property holds; i.e. for any Gn-measurable (see (5)) random variable
ξ = F(ε1, . . . , εn) there exists a representation

F(ε1, . . . , εn) = c +
n∑

m=1

hmεm,

where c ∈R and hm is Gm−1-measurable for m = 1, . . . , n. To see this, consider

F(ε1, . . . , εn) =E[F(ε1, . . . , εn)] +
n∑

m=1

(
E[F(ε1, . . . , εn)|Gm] −E[F(ε1, . . . , εn)|Gm−1]

)
.
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Put c =E[F(ε1, . . . , εn)]. Our aim is to determine a Gm−1-measurable hm such that

E[F(ε1, . . . , εn)|Gm] −E[F(ε1, . . . , εn)|Gm−1] = hmεm.

We define
Fm(ε1, . . . , εm) :=E[F(ε1, . . . , εn)|Gm].

By the tower property it holds that

Fm(ε1, . . . , εm) − Fm−1(ε1, . . . , εm−1)

= Fm(ε1, . . . , εm) −E[Fm(ε1, . . . , εm)|Gm−1]

= Fm(ε1, . . . , εm) − Fm(ε1, . . . , εm−1, 1) + Fm(ε1, . . . , εm−1, −1)

2

= Fm(ε1, . . . , εm−1, 1) − Fm(ε1, . . . , εm−1, −1)

2
εm;

hence

hm = Fm(ε1, . . . , εm−1, 1) − Fm(ε1, . . . , εm−1, −1)

2
.

One can derive an equation for Zn = (Zn
tk )n−1

k=0 if one multiplies (9) by εk+1 and takes the
conditional expectation with respect to Gk, so that

Zn
tk=

E
G
k

(
g(Xn

T )εk+1
)

√
h

+E
G
k

(√
h

n−1∑
m=k+1

f (tm+1, Xn
tm , Yn

tm , Zn
tm )εk+1

)
, 0 ≤ k ≤ n − 1, (10)

where E
G
k :=E( · |Gk).

Remark 2.2. For n large enough, the BSDE (3) has a unique solution (Yn, Zn) (see [36,
Proposition 1.2]), and (Yn

tk , Zn
tk )n−1

k=0 is adapted to the filtration (Gk)n−1
k=0.

2.2.1. Representation for Z. We will use the following representation for Z, due to Ma and
Zhang (see [30, Theorem 4.2]):

Zt =Et

(
g(XT )Nt

T +
∫ T

t
f (s, Xs, Ys, Zs)N

t
sds

)
σ (t, Xt), 0 ≤ t ≤ T, (11)

where Et :=E( · |Ft), and for all s ∈ (t, T], we have (cf. Lemma 4.1)

Nt
s = 1

s − t

∫ s

t

∇Xr

σ (r, Xr)∇Xt
dBr, (12)

where ∇X = (∇Xs)s∈[0,T] is the variational process; i.e., it solves

∇Xs = 1 +
∫ s

0
bx(r, Xr)∇Xrdr +

∫ s

0
σx(r, Xr)∇XrdBr, (13)

with (Xs)s∈[0,T] given in (1).

Remark 2.3. In the following we will assume that g′′ exists. In such a case we have the
following representation for Z:

Zt =Et

(
g′(XT )∇XT +

∫ T

t
f (s, Xs, Ys, Zs)N

t
sds

)
σ (t, Xt), 0 ≤ t ≤ T . (14)
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2.2.2. Approximation for Zn. In this section we state the discrete counterpart to (11), which, in
the general case of a forward process X, does not coincide with Zn (given by (10)). In contrast
to the continuous-time case, where the variational process and the Malliavin derivative are con-
nected by ∇Xt∇Xs

= DsXt
σ (s,Xs) (s ≤ t), we cannot expect equality for the corresponding expressions if

we use the discretized versions of the processes (∇Xt)t and (DsXt)s≤t introduced in (16). This
counterpart Ẑn to Z is a key tool in the proof of the convergence of Zn to Z. As we will see in
the proof of Theorem 3.1, the study of ‖Zn

tk − Ztk‖ goes through the study of ‖Zn
tk − Ẑn

tk‖ and

‖Ẑn
tk − Ztk‖.
Before defining the discretized versions of (∇Xt)t and (DsXt)s≤t, we briefly introduce the

discretized Malliavin derivative. We refer the reader to [4] for more information on this topic.

Definition 2.1. (Definition of Tm,+ , Tm,− and Dn
m) For any function F : {−1, 1}n →R, the

mappings Tm,+ and Tm,− are defined by

Tm,±F(ε1, . . . , εn) := F(ε1, . . . , εm−1, ±1, εm+1, . . . , εn), 1 ≤ m ≤ n.

For any ξ = F(ε1, . . . , εn), the discretized Malliavin derivative is defined by

Dn
mξ := E[ξεm|σ ((εl)l∈{1,...,n}\{m})]√

h
= Tm,+ξ − Tm,−ξ

2
√

h
, 1 ≤ m ≤ n. (15)

Definition 2.2. (Definition of φ
(k,l)
x ) Let φ be a C0,1([0, T] ×R) function. We define

φ(k,l)
x := Dn

kφ(tl, Xn
tl−1

)

Dn
k Xn

tl−1

:=
∫ 1

0
φx(tl, ϑTk,+ Xn

tl−1
+ (1 − ϑ)Tk,− Xn

tl−1
)dϑ .

If Dn
k Xn

t
−1

= 0, the second ‘:=’ holds as an identity.

We are now able to define the discretized versions of (∇Xt)t and (DsXt)s≤t.

Definition 2.3. (Discretized processes (∇Xn,tk,x
tm )m∈{k,...,n} and (Dn

k Xn
tm)m∈{k,...,n}) For all m in

{k, . . . , n} we define

∇Xn,tk,x
tm = 1 + h

m∑
l=k+1

bx(tl, Xn,tk,x
tl−1

)∇Xn,tk,x
tl−1

+ √
h

m∑
l=k+1

σx(tl, Xn,tk,x
tl−1

)∇Xn,tk,x
tl−1

εl, 0 ≤ k ≤ n,

Dn
k Xn

tm = σ (tk, Xn
tk−1

) + h
m∑

l=k+1

b(k,l)
x Dn

k Xn
tl−1

+ √
h

m∑
l=k+1

σ (k,l)
x (Dn

k Xn
tl−1

)εl, 0 < k ≤ n. (16)

Remark 2.4.

(i) Although ∇X
n,tk,Xn

tk
tm is not equal to

Dn
k+1Xn

tm

σ (tk+1, Xn
tk )

,

we can show that the difference of these terms converges in Lp (see Lemma 5.4).
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(ii) With the notation introduced above, (10) can be rewritten as

Zn
tk=E

G
k

(Dn
k+1g(Xn

T )
)+E

G
k

(
h

n−1∑
m=k+1

Dn
k+1f (tm+1, Xn

tm , Yn
tm , Zn

tm)

)
. (17)

In order to define the discrete counterpart to (11), we first define the discrete counterpart to
(Nt

s)s∈[t,T] given in (12):

Nn,tk
t
 := √

h

∑

m=k+1

∇X
n,tk,Xn

tk
tm−1

σ (tm, Xn
tm−1

)

εm

t
 − tk
, k < 
 ≤ n. (18)

Notice that there is some constant κ̂2 > 0 depending on b, σ, T, δ such that(
E
G
k |Nn,tk

t
 |2
) 1

2 ≤ κ̂2

(t
 − tk)
1
2

, 0 ≤ k < 
 ≤ n. (19)

Definition 2.4. (Discrete counterpart to (14).) Let the process Ẑn = (Ẑn
tk )n−1

k=0 be defined by

Ẑn
tk

:=E
G
k

(Dn
k+1g(Xn

T )
)+E

G
k

(
h

n−1∑
m=k+1

f (tm+1, Xn
tm , Yn

tm , Zn
tm )Nn,tk

tm

)
σ (tk+1, Xn

tk ). (20)

Remark 2.5. In (20) the approximate expression E
G
k (g(Xn

T )Nn,tk
tn σ (tk+1, Xn

tk )) also could have
been used, but since we will assume that g′′ exists, we work with the correct term.

The study of the convergence E
G
0,x|Zn

tk − Ẑn
tk |2 requires stronger assumptions on the coeffi-

cients b, σ , f , and g.

Assumption 2.3. Assumptions 2.1 and 2.2 hold. Additionally, we assume that all first and sec-
ond derivatives with respect to the variables x, y, z of b(t, x), σ (t, x), and f(t, x, y, z) exist and
are bounded Lipschitz functions with respect to these variables, uniformly in time. Moreover,
g′′ satisfies (6).

Proposition 2.1. If Assumption 2.3 holds, then

E
G
0,x|Zn

tk − Ẑn
tk |2 ≤ C2.1�̂

2(x)hα,

where E
G
0,x :=E

G( · |X0 = x), the function �̂ is defined in (62) below, and C2.1 depends on b,
σ , f, g, T, p0, and δ.

Proof. According to [7, Proposition 5.1] one has the representations

Yn
tm = un(tm, Xn

tm) and Zn
tm =Dn

m+1un(tm+1, Xn
tm+1

), (21)

where un is the solution of the finite difference equation (44) with terminal condition un(tn, x) =
g(x). Notice that by the definition of Dn

m+1 in (15) the expression Dn
m+1un(tm+1, Xn

tm+1
) depends

in fact on Xn
tm . Hence we can put

f (tm+1, Xn
tm , Yn

tm , Zn
tm ) = f (tm+1, Xn

tm , un(tm, Xn
tm),Dn

m+1un(tm+1, Xn
tm+1

))

=: Fn(tm+1, Xn
tm).
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From (20) and (17) we conclude the following (we use E :=E
G
0,x for ‖ · ‖):

‖Zn
tk − Ẑn

tk‖

=
∥∥∥∥∥EG

k

(
h

n−1∑
m=k+1

Dn
k+1f (tm+1, Xn

tm , Yn
tm , Zn

tm )

)

−E
G
k

(
h

n−1∑
m=k+1

f (tm+1, Xn
tm , Yn

tm , Zn
tm )Nn,tk

tm σ (tk+1, Xn
tk )

)∥∥∥∥∥
≤

n−1∑
m=k+1

h

m − k

m∑

=k+1

∥∥∥∥∥∥EG
k

⎡⎣Dn
k+1Fn(tm+1, Xn

tm) −Dn

Fn(tm+1, Xn

tm)
σ (tk+1, Xn

tk )∇X
n,tk,Xn

tk
t
−1

σ (t
, Xn
t
−1

)

⎤⎦∥∥∥∥∥∥.

With the notation introduced in Definition 2.2 applied to Fn,∥∥∥∥∥∥Dn
k+1Fn(tm+1, Xn

tm) −Dn

Fn(tm+1, Xn

tm)
σ (tk+1, Xn

tk )∇X
n,tk,Xn

tk
t
−1

σ (t
, Xn
t
−1

)

∥∥∥∥∥∥
≤ ‖(Dn

k+1Xn
tm)(Fn,(k+1,m+1)

x − Fn,(
,m+1)
x )‖

+
∥∥∥∥∥∥Fn,(
,m+1)

x

⎛⎝(Dn
k+1Xn

tm ) − (Dn

Xn

tm)
σ (tk+1, Xn

tk )∇X
n,tk,Xn

tk
t
−1

σ (t
, Xn
t
−1

)

⎞⎠∥∥∥∥∥∥
=: A1 + A2.

For A1 we use Definition 2.2 again and exploit the fact that

x �→ Fn
x (tm+1, x) := ∂xf

(
tm+1, x, un(tm, x),Dn

m+1un(tm+1, Xn,tm,x
tm+1

))
is locally α-Hölder continuous according to (63). By Hölder’s inequality and Lemma 5.4 Parts
(i) and (iii),

A1 ≤ ‖Dn
k+1Xn

tm‖4

∫ 1

0
‖Fn

x (tm+1, ϑTk+1,+Xn
tm + (1 − ϑ)Tk+1,−Xn

tm)

− Fn
x (tm+1, ϑT


,+Xn
tm + (1 − ϑ)T


,−Xn
tm )‖4dϑ

≤ C(b, σ, f , g, T, p0)�̂(x)h
α
2 .

For the estimate of A2 we notice that by our assumptions the L4-norm of Fn,(
,m+1)
x is bounded

by C�2(x), so that it suffices to estimate∥∥∥∥∥∥(Dn
k+1Xn

tm) − (Dn

Xn

tm )
σ (tk+1, Xn

tk )∇X
n,tk,Xn

tk
t
−1

σ (t
, Xn
t
−1

)

∥∥∥∥∥∥
4

≤
∥∥∥∥∥(Dn

k+1Xn
tm) − σ (tk+1, Xn

tk ) Dn

Xn

tm

σ (t
, Xn
t
−1

)

Dn
k+1Xn

t
−1

σ (tk+1, Xn
tk )

∥∥∥∥∥
4

+
∥∥∥∥∥σ (tk+1, Xn

tk ) Dn

Xn

tm

σ (t
, Xn
t
−1

)

(
∇X

n,tk,Xn
tk

t
−1
− Dn

k+1Xn
t
−1

σ (tk+1, Xn
tk )

)∥∥∥∥∥
4

. (22)
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The second expression on the right-hand side of (22) is bounded by C(b, σ, T, δ)h
1
2 as a con-

sequence of Lemma 5.4 Parts (ii) and (iii). To show that the first expression is also bounded by

C(b, σ, T, δ)h
1
2 , we rewrite it using (16) and get∣∣∣∣∣ Dn


Xn
tm

σ (t
, Xn
t
−1

)
Dn

k+1Xn
t
−1

−Dn
k+1Xn

tm

∣∣∣∣∣
=
∣∣∣∣∣
(

1 +
m∑

l=
+1

Dn

Xn

tl−1

σ (t
, Xn
t
−1

)
(b(
,l)

x h + σ (
,l)
x

√
hεl)

)

×
(

σ (tk+1, Xn
tk ) +


−1∑
l=k+2

Dn
k+1Xn

tl−1
(b(k+1,l)

x h + σ (k+1,l)
x

√
hεl)

)

−
(

σ (tk+1, Xn
tk ) +

(

−1∑

l=k+2

+
m∑

l=


)
Dn

k+1Xn
tl−1

(b(k+1,l)
x h + σ (k+1,l)

x

√
hεl)

)∣∣∣∣∣
≤ ∣∣Dn

k+1Xn
t
−1

(b(k+1,
)
x h + σ (k+1,
)

x

√
hε
)

∣∣
+
∣∣∣∣∣

m∑
l=
+1

[ Dn

Xn

tl−1

σ (t
, Xn
t
−1

)
Dn

k+1Xn
t
−1

−Dn
k+1Xn

tl−1

](
b(
,l)

x h + σ (
,l)
x

√
hεl

)∣∣∣∣∣
+
∣∣∣∣∣

m∑
l=
+1

Dn
k+1Xn

tl−1

[
b(
,l)

x h + σ (
,l)
x

√
hεl −

(
b(k+1,l)

x h + σ (k+1,l)
x

√
hεl

)]∣∣∣∣∣. (23)

We take the L4-norm of (23) and apply the Burkholder–Davis–Gundy (BDG) inequality
and Hölder’s inequality. The second term on the right-hand side of (23) will be used for

Gronwall’s lemma, while the first and last terms can be bounded by C(b, σ, T)h
1
2 , using

Lemma 5.4(iii). For the last term we also use the Lipschitz continuity of bx and σx in space and
Lemma 5.4(i). �

3. Main results

In order to compute the mean square distance between the solution to (1) and the solu-
tion to (3), we construct the random walk Bn from the Brownian motion B by Skorokhod
embedding. Let

τ0 := 0 and τk := inf{t > τk−1 : |Bt − Bτk−1 | =
√

h}, k ≥ 1. (24)

Then (Bτk − Bτk−1 )∞k=1 is a sequence of i.i.d. random variables with

P(Bτk − Bτk−1 = ±√
h) = 1

2 ,

which means that
√

hεk
d= Bτk − Bτk−1. We will denote by Eτk the conditional expectation with

respect to Fτk := Gk. In this case we also use the notation Xτk := Xn
tk for all k = 0, . . . , n, so

that (4) turns into

Xτk = x +
k∑

j=1

b(tj,Xτj−1 )h +
k∑

j=1

σ (tj,Xτj−1 )(Bτj − Bτj−1 ), 0 ≤ k ≤ n.
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Assumption 3.1. We assume that the random walk Bn in (3) is given by

Bn
t =

[t/h]∑
k=1

(Bτk − Bτk−1 ), 0 ≤ t ≤ T,

where the τk, k = 1, . . . , n, are taken from (24).

Remark 3.1. Note that for p > 0 there exists a C(p) > 0 such that for all k = 1, . . . , n it holds
that

1
C(p) (tkh)

1
4 ≤ (E|Bτk − Btk |p)

1
p ≤ C(p)(tkh)

1
4 .

The upper estimate is given in Lemma 5.1. For p ∈ [4, ∞) the lower estimate follows from [2,
Proposition 5.3]. We get the lower estimate for p ∈ (0, 4) by choosing 0 < θ < 1 and 0 < p < p1
such that 1

4 = 1−θ
p + θ

p1
. Then it holds by the log-convexity of Lp norms (see for example [35,

Lemma 1.11.5]) that

‖Bτk − Btk‖1−θ
p ≥ ‖Bτk − Btk‖4

‖Bτk − Btk‖θ
p1

≥ C(4)−1(tkh)
1
4(

C(p1)(tkh)
1
4
)θ ≥ (C(p)(tkh)

1
4
)1−θ .

Since for t ∈ [tk, tk+1) it holds that Bn
t = Bτk and ‖Bt − Btk‖p ≤ C(p)h

1
2 , we have for any p > 0

that

sup
0≤t≤T

‖Bn
t − Bt‖p = O(h

1
4 ). (25)

Proposition 3.1 states the convergence rate of (Yn
v , Zn

v ) to (Yv, Zv) in L2 when f = 0, and
Theorem 3.1 generalizes this result to any f which satisfies Assumption 2.3.

Proposition 3.1. Let Assumptions 2.1 and 3.1 hold. If f = 0 and g ∈ C1 is such that g′ is a
locally α-Hölder continuous function in the sense of (6), then for all 0 ≤ v < T, we have (for
sufficiently large n) that

E0,x|Yv − Yn
v |2 ≤ Cy

3.1�(x)2h
1
2 and E0,x|Zv − Zn

v |2 ≤ Cz
3.1�(x)2h

α
2,

where Cy
3.1 = C(Cg, b, σ, T, p0, δ) and Cz

3.1 = C(Cg′ , b, σ, T, p0, δ).

Theorem 3.1. Let Assumptions 2.3 and 3.1 be satisfied. Then for all v ∈ [0, T) and large
enough n, we have

E0,x|Yv − Yn
v |2 +E0,x|Zv − Zn

v |2 ≤ C3.1�̂(x)2h
1
2 ∧α,

where C3.1 = C(b, σ, f , g, T, p0, δ) and �̂ is given in (62).

Remark 3.2. As observed above, the filtration Gk coincides with Fτk , for all k = 0, . . . , n. The
expectation E0,x appearing in Proposition 3.1 and in Theorem 3.1 is defined on the probability
space (�,F , P).

Remark 3.3. In order to avoid too much notation for the dependencies of the constants, if for
example only g is mentioned and not Cg, this means that the estimate might depend also on
the bounds of the derivatives of g.
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From (25) one can see that the convergence rates stated in Proposition 3.1 and Theorem 3.1
are the natural ones for this approach. The results are proved in the next two sections. In both
proofs, we will use the following remark.

Remark 3.4. Since the process (Xt)t≥0 is strong Markov, we can express conditional expec-
tations with the help of an independent copy of B denoted by B̃. For example, Eτk g(Xn

T ) =
Ẽg(X̃ τk,Xτk

τn ) for 0 ≤ k ≤ n, where

X̃ τk,Xτk
τn =Xτk +

n∑
j=k+1

b(tj, X̃ τk,Xτk
τj−1 )h +

n∑
j=k+1

σ (tj, X̃ τk,Xτk
τj−1 )(B̃τ̃j−k − B̃τ̃j−k−1 ) (26)

(we define τ̃k := 0, τ̃j := inf{t > τ̃j−1 : |B̃t − B̃τ̃j−1 | =
√

h} for j ≥ 1, and τn := τk + τ̃n−k for

n ≥ k). In fact, to represent the conditional expectations Etk and Eτk , we work here with Ẽ

and the Brownian motions B′ and B′′, respectively, given by

B′
t = Bt∧tk + B̃(t−tk)+ and B′′

t = Bt∧τk + B̃(t−τk)+ , t ≥ 0. (27)

3.1. Proof of Proposition 3.1: the approximation rates for the zero generator case

To shorten the notation, we use E :=E0,x. Let us first deal with the error of Y . If v belongs
to [tk, tk+1) we have Yn

v = Yn
tk . Then

E|Yv − Yn
v |2 ≤ 2(E|Yv − Ytk |2 +E|Ytk − Yn

tk |2).

Using Theorem 4.1 we bound ‖Yv − Ytk‖ by

Cy
4.1�(x)(v − tk)

1
2 = C(Cg, b, σ, T, p0, δ)�(x)(v − tk)

1
2

(since α = 1 can be chosen when g is locally Lipschitz continuous). It remains to bound

E|Ytk − Yn
tk |2=E|Etk g(XT ) −Eτk g(Xn

T )|2 =E|Ẽg(X̃
tk,Xtk
tn ) − Ẽg(X̃ τk,Xτk

τn )|2.

By (6) and the Cauchy–Schwarz inequality (with �1 := Cg(1 + |X̃tk,Xtk
tn |p0 + |X̃ τk,Xτk

τn |p0 )),

|Ẽg(X̃
tk,Xtk
tn ) − Ẽg(X̃ τk,Xτk

τn )|2 ≤ (Ẽ(�1|X̃tk,Xtk
tn − X̃ τk,Xτk

τn |))2

≤ Ẽ(�2
1 )Ẽ|X̃tk,Xtk

tn − X̃ τk,Xτk
τn |2.

Finally, we get by Lemma 5.2(v) that

E|Ytk − Yn
tk |2≤

(
EẼ(�4

1 )
) 1

2
(
EẼ|X̃tk,Xtk

tn − X̃ τk,Xτk
τn |4

) 1
2 ≤ C(Cg, b, σ, T, p0)�(x)2h

1
2 .

Let us now deal with the error of Z. We use ‖Zv − Zn
v ‖ ≤ ‖Zv − Ztk‖ + ‖Ztk − Zn

tk‖ and the
representation

Zt = σ (t, Xt)Ẽ(g′(X̃t,Xt
T )∇X̃t,Xt

T )

(see Theorem 4.2), where

X̃t,x
s = x +

∫ s

t
b(r, X̃t,x

r )dr +
∫ s

t
σ (r, X̃t,x

r )dB̃r−t, (28)

∇X̃t,x
s = 1 +

∫ s

t
bx(r, X̃t,x

r )∇X̃t,x
r dr +

∫ s

t
σx(r, X̃t,x

r )∇X̃t,x
r dB̃r−t, 0 ≤ t ≤ s ≤ T .
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For the first term we get by the assumption on g and Lemma 5.2 Parts (i) and (iii) that

‖Zv − Ztk‖ = ‖σ (v, Xv)Ẽ(g′(X̃v,Xv
T )∇X̃v,Xv

T ) − σ (tk, Xtk )Ẽ(g′(X̃tk,Xtk
T )∇X̃

tk,Xtk
T )‖

≤ ‖σ (v, Xv) − σ (tk, Xtk )‖4‖Ẽ(g′(X̃v,Xv
T )∇X̃v,Xv

T )‖4

+ ‖σ‖∞‖Ẽ(g′(X̃v,Xv
T )∇X̃v,Xv

T ) − Ẽ(g′(X̃tk,Xtk
T )∇X̃v,Xv

T )‖
+ ‖σ‖∞‖Ẽ(g′(X̃tk,Xtk

T )∇X̃v,Xv
T ) − Ẽ(g′(X̃tk,Xtk

T )∇X̃
tk,Xtk
T )‖

≤ C(Cg′ , b, σ, T, p0)�(x)
[
h

1
2 + ‖Xv − Xtk‖4 +

(
EẼ|X̃v,Xv

T − X̃
tk,Xtk
T |4α

) 1
4

+
(
EẼ|∇X̃v,Xv

T − ∇X̃
tk,Xtk
T |4

) 1
4
]

≤ C(Cg′ , b, σ, T, p0)�(x)h
α
2 .

We compute the second term using Zn
tk as given in (17). Hence, with the notation from

Definition 2.2,

‖Ztk − Zn
tk‖2 =E

∣∣σ (tk, Xtk )Ẽg′(X̃tk,Xtk
tn )∇X̃

tk,Xtk
tn − ẼDn

k+1g(X̃ τk,Xτk
τn )

∣∣2
≤ ‖σ‖2∞ E

∣∣∣∣∣∣Ẽ(g′(X̃tk,Xtk
tn )∇X̃

tk,Xtk
tn ) − ẼDn

k+1g(X̃ τk,Xτk
τn )

σ (tk, Xtk )

∣∣∣∣∣∣
2

= ‖σ‖2∞ E

∣∣∣∣∣Ẽ(g′(X̃tk,Xtk
tn )∇X̃

tk,Xtk
tn ) − Ẽ

(
g(k+1,n+1)

x

Dn
k+1X̃

τk,Xτk
τn

σ (tk, Xtk )

)∣∣∣∣∣
2

.

We insert ±Ẽ(g(k+1,n+1)
x ∇X̃

tk,Xtk
tn ) and get by the Cauchy–Schwarz inequality that∣∣∣∣∣Ẽ(g′(X̃tk,Xtk

tn )∇X̃
tk,Xtk
tn ) − Ẽ

(
g(k+1,n+1)

x

Dn
k+1X̃

τk,Xτk
τn

σ (tk, Xtk )

)∣∣∣∣∣
2

≤ 2Ẽ|g′(X̃tk,Xtk
tn ) − g(k+1,n+1)

x |2Ẽ|∇X̃
tk,Xtk
tn |2 + 2Ẽ|g(k+1,n+1)

x |2Ẽ
∣∣∣∣∣∇X̃

tk,Xtk
tn −Dn

k+1X̃
τk,Xτk
τn

σ (tk, Xtk )

∣∣∣∣∣
2

.

(29)

For the estimate of Ẽ|∇X̃
tk,Xtk
tn |2 we use Lemma 5.2. Since g′ satisfies (6) we proceed with

Ẽ|g′(X̃tk,Xtk
tn ) − g(k+1,n+1)

x |2

≤
∫ 1

0
Ẽ

∣∣∣g′(X̃tk,Xtk
tn ) − g′(ϑTk+1,+X̃

τk,Xτk
τn + (1 − ϑ)Tk+1,−X̃

τk,Xτk
τn )

∣∣∣2dϑ

≤
∫ 1

0
(Ẽ�4

1 )
1
2

[
Ẽ

∣∣∣X̃tk,Xtk
tn − ϑTk+1,+X̃

τk,Xτk
τn − (1 − ϑ)Tk+1,−X̃

τk,Xτk
τn

∣∣∣4α ] 1
2
dϑ,
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where �1 := Cg′ (1 + |X̃tk,Xtk
tn |p0 + |ϑTk+1,+X̃

τk,Xτk
τn + (1 − ϑ)Tk+1,−X̃

τk,Xτk
τn |p0 ). For Ẽ�4

1 and

Ẽ

∣∣∣X̃tk,Xtk
tn − (ϑTk+1,+X̃

τk,Xτk
τn + (1 − ϑ)Tk+1,−X̃

τk,Xτk
τn )

∣∣∣4α

≤ 8

(
ϑ2α

Ẽ

∣∣∣X̃tk,Xtk
tn − Tk+1,+X̃

τk,Xτk
τn

∣∣∣4α

+ (1 − ϑ)2α
Ẽ

∣∣∣X̃tk,Xtk
tn − Tk+1,−X̃

τk,Xτk
τn

∣∣∣4α
)

≤ C(b, σ, T)h2α + C(b, σ, T)(|Xtk −Xτk |4α + hα),

we use Lemma 5.4 and Lemma 5.2(v). For the last term in (29) we notice that

EẼ|g(k+1,n+1)
x |4 ≤ C(Cg′ , b, σ, T, p0)�4(x).

By Lemma 5.2 we have EẼ|∇X̃
tk,Xtk
tn − ∇X̃ τk,Xτk

τn |p ≤ C(b, σ, T, p)h
p
4 , and by Lemma 5.4,

EẼ

∣∣∣∣∣∣∇X̃ τk,Xτk
τn − Dn

k+1X̃
τk,Xτk
τn

σ (tk, Xtk )

∣∣∣∣∣∣
p

≤ C(p)E

∣∣∣∣∇X
n,tk,Xn

tk
tn − Dn

k+1Xn
tn

σ (tk+1, Xn
tk )

∣∣∣∣p + C(p)E

∣∣∣∣ Dn
k+1Xn

tn

σ (tk+1, Xn
tk )

− Dn
k+1Xn

tn

σ (tk, Xtk )

∣∣∣∣p
≤ C(b, σ, T, p, δ)h

p
4 .

Consequently, ‖Ztk − Zn
tk‖2 ≤ C(Cg′ , b, σ, T, p0, δ)�2(x)h

α
2 .

3.2. Proof of Theorem 3.1: the approximation rates for the general case

Let u : [0, T) ×R→R be the solution of the PDE (38) associated to (1). We use the
representations Ys = u(s, Xs) and Zs = σ (s, Xs)ux(s, Xs) stated in Theorem 4.2 and define

F(s, x) := f (s, x, u(s, x), σ (s, x)ux(s, x)). (30)

From (1) and (3) we conclude

‖Ytk − Yn
tk‖ ≤ ‖Etk g(XT ) −Eτk g(Xn

T )‖

+
∥∥∥∥∥Etk

∫ T

tk
f (s, Xs, Ys, Zs)ds − hEτk

n−1∑
m=k

f (tm+1, Xn
tm , Yn

tm , Zn
tm)

∥∥∥∥∥ ,

where Proposition 3.1 provides the estimate for the terminal condition. We decompose the
generator term as follows:

Etk f (s, Xs, Ys, Zs) −Eτk f (tm+1, Xn
tm , Yn

tm , Zn
tm)

= [Etk f (s, Xs, Ys, Zs) −Etk f (tm, Xtm , Ytm , Ztm)] + [Etk F(tm, Xtm) −Eτk F(tm, Xn
tm )]

+ [Eτk F(tm, Xn
tm)−Eτk F(tm, Xtm )]+ [Eτk f (tm, Xtm , Ytm , Ztm)−Eτk f (tm+1, Xn

tm , Yn
tm , Zn

tm )]

=: d1(s, m) + d2(m) + d3(m) + d4(m).
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We use ∥∥∥∥∥Etk

∫ T

tk
f (s, Xs, Ys, Zs)ds − hEτk

n−1∑
m=k

f (tm+1, Xn
tm , Yn

tm , Zn
tm)

∥∥∥∥∥
≤

n−1∑
m=k

(∥∥∥∥∫ tm+1

tm
d1(s, m)ds

∥∥∥∥+ h
4∑

i=2

‖di(m)‖
)

and estimate the expressions on the right-hand side. For the function F defined in (30) we use
Assumption 2.3 (which implies that (6) holds for α = 1) to derive by Theorem 4.2 and the
mean value theorem that for x1, x2 ∈R there exists ξ ∈ [ min{x1, x2}, max{x1, x2}] such that

|F(t, x1) − F(t, x2)| = |f (t, x1, u(t, x1), σ (t, x1)ux(t, x1)) − f (t, x2, u(t, x2), σ (t, x2)ux(t, x2))|

≤ C(Lf , σ )

(
1 + c2

4.2�(ξ ) + c3
4.2�(ξ )

(T − t)
1
2

)
|x1 − x2|

≤ C(Lf , c2,3
4.2 , σ, T)(1 + |x1|p0+1 + |x2|p0+1)

|x1 − x2|
(T − t)

1
2

. (31)

By (7), standard estimates on (Xs), Theorem 4.1(i), and Proposition 4.1 for p = 2, we
immediately get

‖d1(s, m)‖ ≤ C(Lf , Cy
4.1, C4.1, b, σ, T)�(x) h

1
2

= C(b, σ, f , g, T, p0, δ)�(x) h
1
2 .

For the estimate of d2 one exploits

Etk F(tm, Xtm) −Eτk F(tm, Xn
tm ) = ẼF(tm, X̃

tk,Xtk
tm ) − ẼF(tm, X̃

n,tk,Xn
tk

tm )

and then uses (31) and Lemma 5.2(v). This gives

‖d2(m)‖≤C(Lf , c2,3
4.2 , b, σ, T, p0)�(x)

1

(T − tm)
1
2

h
1
4 .

For d3 we start with Jensen’s inequality and then continue similarly as above to get

‖d3(m)‖ ≤ ‖F(tm, Xn
tm) − F(tm, Xtm )‖ ≤ C(Lf , c2,3

4.2 , b, σ, T, p0)�(x)
1

(T − tm)
1
2

h
1
4 ,

and for the last term we get

‖d4(m)‖≤Lf (h
1
2 + ‖Xtm − Xn

tm‖ + ‖Ytm − Yn
tm‖ + ‖Ztm − Zn

tm‖).

This implies

‖Ytk − Yn
tk‖ ≤ C�(x)h

1
4 + hLf

n−1∑
m=k

(‖Ytm − Yn
tm‖ + ‖Ztm − Zn

tm‖), (32)

where C = C(Lf , Cy
3.1, Cy

4.1, C4.2, c2,3
4.2 , b, σ, T, p0) = C(b, σ, f , g, T, p0, δ).
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For ‖Ztk − Zn
tk‖ we use the representations (14) and (17), the approximation (20), and

Proposition 2.1. Instead of Nn,tk
tn we will use here the notation Nn,τk

τn to indicate its measurability
with respect to the filtration (Ft). It holds that

‖Zn
tk − Ztk‖≤‖Zn

tk − Ẑn
tk‖ + ‖Ztk − Ẑn

tk‖

≤C2.1�̂(x)h
α
2 + ‖σ (tk, Xtk )Ẽg′(X̃tk,Xtk

tn )∇X̃
tk,Xtk
tn − ẼDn

k+1g(X̃
n,tk,Xn

tk
tn )‖

+
∥∥∥∥∥Etk

∫ T

tk+1

f (s, Xs, Ys, Zs)N
tk
s ds σ (tk, Xtk )

−Eτk h
n−1∑

m=k+1

f (tm+1, Xn
tm , Yn

tm , Zn
tm )Nn,τk

τm
σ (tk+1, Xn

tk )

∥∥∥∥∥
+
∥∥∥∥Etk

∫ tk+1

tk
f (s, Xs, Ys, Zs)N

tk
s ds σ (tk, Xtk )

∥∥∥∥. (33)

For the terminal condition, Proposition 3.1 provides∥∥∥σ (tk, Xtk )Ẽg′(X̃tk,Xtk
tn )∇X̃

tk,Xtk
tn − ẼDn

k+1g(X̃
n,tk,Xn

tk
tn )

∥∥∥≤ (Cz
3.1)

1
2 �(x)h

1
4 . (34)

We continue with the generator terms and use F defined in (30) to decompose the difference

Etk f (s, Xs, Ys, Zs)N
tk
s σ (tk, Xtk ) −Eτk f (tm+1, Xn

tm , Yn
tm , Zn

tm )Nn,τk
τm

σ (tk+1, Xn
tk )

=Etk f (s, Xs, Ys, Zs)N
tk
s σ (tk, Xtk ) −Etk f (tm, Xtm , Ytm , Ztm)Ntk

tmσ (tk, Xtk )

+Etk F(tm, Xtm)Ntk
tmσ (tk, Xtk ) −Eτk F(tm, Xn

tm )Nn,τk
τm

σ (tk+1, Xn
tk )

+Eτk

[
[F(tm, Xn

tm ) − F(tm, Xtm )]Nn,τk
τm

σ (tk+1, Xn
tk )
]

+Eτk

[
[f (tm, Xtm , Ytm , Ztm ) − f (tm+1, Xn

tm , Yn
tm , Zn

tm )]Nn,τk
τm

σ (tk+1, Xn
tk )
]

=: t1(s, m) + t2(m) + t3(m) + t4(m),

where s ∈ [tm, tm+1). For t1 we use that Etk f (tm, Xtk , Ytk , Ztk )(Ntk
s − Ntk

tm ) = 0, so that

‖t1(s, m)‖ ≤ ‖Etk f (s, Xs, Ys, Zs)N
tk
s σ (tk, Xtk ) −Etk f (tm, Xtm , Ytm , Ztm)Ntk

s σ (tk, Xtk )‖
+ ‖Etk (f (tm, Xtm , Ytm , Ztm ) − f (tm, Xtk , Ytk , Ztk ))(Ntk

s − Ntk
tm )σ (tk, Xtk )‖.

As before, we rewrite the conditional expectations with the help of the independent copy B̃.
Then

Etk f (s, Xs, Ys, Zs)N
tk
s −Etk f (tm, Xtm , Ytm , Ztm)Ntk

s

= Ẽ[(f (s, X̃
tk,Xtk
s , Ỹ

tk,Xtk
s , Z̃

tk,Xtk
s ) − f (tm, X̃

tk,Xtk
tm , Ỹ

tk,Xtk
tm , Z̃

tk,Xtk
tm ))Ñtk

s ]

and

Etk (f (tm, Xtm , Ytm , Ztm) − f (tm, Xtk , Ytk , Ztk ))(Ntk
s − Ntk

tm)

= Ẽ[(f (tm, X̃
tk,Xtk
tm , Ỹ

tk,Xtk
tm , Z̃

tk,Xtk
tm ) − f (tm, Xtk , Ytk , Ztk ))(Ñtk

s − Ñtk
tm)].
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We apply the conditional Hölder inequality, and from the estimates (37) and

Ẽ|Ñtk
s − Ñtk

tm |2 ≤ C(b, σ, T, δ)
h

(s − tk)2

we get

‖t1(s, m)‖≤ κ2‖σ‖∞
(s − tk)

1
2

‖f (s, Xs, Ys, Zs) − f (tm, Xtm , Ytm , Ztm)‖

+C(b, σ, T, δ)
h

1
2

s − tk
‖f (tm, Xtm , Ytm , Ztm ) − f (tk, Xtk , Ytk , Ztk )‖

≤C(Lf , Cy
4.1, C4.1, κ2, b, σ, T, p0, δ)�(x)

h
1
2

(s − tk)
1
2

,

since for 0 ≤ t < s ≤ T we have by Theorem 4.1 and Proposition 4.1 that

‖f (s, Xs, Ys, Zs) − f (t, Xt, Yt, Zt)‖ ≤ C(Lf , Cy
4.1, C4.1, b, σ, T, p0)�(x)(s − t)

1
2 . (35)

For the estimate of t2, Lemma 5.2, Lemma 5.3, (31), and (37) yield

‖t2(m)‖ = ‖ẼF(tm, X̃
tk,Xtk
tm )Ñtk

tmσ (tk, Xtk ) − ẼF(tm, X̃ τk,Xτk
τm )Ñn,τk

τm
σ (tk+1,Xτk )‖

≤ C(κ2, σ )

(tm − tk)
1
2

(
EẼ(F(tm, X̃

tk,Xtk
tm ) − F(tm, X̃ τk,Xτk

τm ))2
) 1

2

+ (EẼ|F(tm, X̃ τk,Xτk
τm ) − F(tm,Xτk )|2Ẽ|Ñtk

tmσ (tk, Xtk ) − Ñn,τk
τm

σ (tk+1,Xτk )|2)
1
2

≤ C(Lf , c2,3
4.2 , κ2, b, σ, T, p0, δ)

�(x)

(T − tm)
1
2

h
1
4

(tm − tk)
1
2

.

For t3 we use the conditional Hölder inequality, (31), (19), and Lemma 5.2:

‖t3(m)‖ = ∥∥Eτk

[
[F(tm, Xn

tm ) − F(tm, Xtm )]Nn,τk
τm

σ (tk+1,Xτk )
]∥∥

≤ C(̂κ2, σ )

(tm − tk)
1
2

∥∥F(tm, Xn
tm) − F(tm, Xtm)

∥∥
≤ C(Lf , c2,3

4.2 , b, σ, T, p0, δ)
�(x)

(T − tm)
1
2

h
1
4

(tm − tk)
1
2

.

The term t4 can be estimated as follows:

‖t4(m)‖ = ∥∥Eτk

[
[f (tm, Xtm , Ytm , Ztm ) − f (tm+1, Xn

tm , Yn
tm , Zn

tm)]Nn,τk
τm

σ (tk+1,Xτk )
]∥∥

≤ C(Lf , b, σ, T, δ)

(tm − tk)
1
2

(h
1
2 + ‖Xtm − Xn

tm‖ + ‖Ytm − Yn
tm‖ + ‖Ztm − Zn

tm‖).

Finally, for the remaining term of the estimate of ‖Ztk − Zn
tk‖, we use (35) and (37) to get∥∥Etk f (s, Xs, Ys, Zs)N

tk
s σ (tk, Xtk )

∥∥= ‖Etk [(f (s, Xs, Ys, Zs) − f (s, Xtk , Ytk , Ztk ))Ntk
s ] σ (tk, Xtk )‖

≤ C(Lf , Cy
4.1, C4.1, κ2, b, σ, T, p0)�(x).
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Consequently, from (33), (34), and the estimates for the remaining term and for t1, . . . , t4, it
follows that

‖Ztk − Zn
tk‖ ≤ C2.1�̂(x)h

α
2 + (Cz

3.1)
1
2 �(x)h

1
4 + C(Lf , Cy

4.1, C4.1, b, σ, T, p0, κ2)�(x)h

+ C(Lf , Cy
4.1, C4.1, κ2, b, σ, T, p0, δ)�(x)h

1
2

∫ T

tk

ds

(s − tk)
1
2

+ C(Lf , c2,3
4.2 , κ2, b, σ, T, p0, δ)h

n−1∑
m=k+1

�(x)

(T − tm)
1
2

h
1
4

(tm − tk)
1
2

+ C(Lf , b, σ, T, δ)h
n−1∑

m=k+1

(‖Ytm − Yn
tm‖ + ‖Ztm − Zn

tm‖)
1

(tm − tk)
1
2

≤ C(C2.1, Cz
3.1)�̂(x)h

α
2 ∧ 1

4 + C(Lf , c2,3
4.2 , Cy

4.1, C4.1, κ2, b, σ, T, p0, δ)�(x)h
1
4

+ C(Lf , b, σ, T, δ)
n−1∑

m=k+1

(‖Ytm − Yn
tm‖ + ‖Ztm − Zn

tm‖)
1

(tm − tk)
1
2

h.

Then we use (32) and the above estimate to get

‖Ytk − Yn
tk‖ + ‖Ztk − Zn

tk‖
≤ C(C2.1, Cz

3.1)�̂(x)h
α
2 ∧ 1

4 + C(Lf , Cy
3.1, Cy

4.1, C4.1, c2,3
4.2 , κ2, b, σ, T, p0, δ)�(x)h

1
4

+ C(Lf , b, σ, T, δ)
n−1∑

m=k+1

(‖Ytm − Yn
tm‖ + ‖Ztm − Zn

tm‖)
1

(tm − tk)
1
2

h.

Consequently, summarizing the dependencies, there is a C = C(b, σ, f , g, T, p0, δ) such that

‖Ytk − Yn
tk‖ + ‖Ztk − Zn

tk‖≤C�̂(x)h
α
2 ∧ 1

4 .

By Theorem 4.1 (note that by Assumption 2.3 on g we have α = 1) it follows that

‖Yv − Yn
v ‖ ≤ ‖Yv − Ytk‖ + ‖Ytk − Yn

tk‖ ≤ Cy
4.1�(x)h

1
2 + �̂(x)h

α
2 ∧ 1

4 ,

while Proposition 4.1 implies that

‖Zv − Ztk‖ ≤ C4.1�(x)h
1
2 ,

and hence we have

E0,x|Yv − Yn
v |2 +E0,x|Zv − Zn

v |2 ≤ C3.1�̂(x)2h
1
2 ∧α

with C3.1 = C3.1(b, σ, f , g, T, p0, δ).

4. Some properties of solutions to BSDEs and their associated PDEs

4.1. Malliavin weights

We use the SDE from (1) started in (t, x),

Xt,x
s = x +

∫ s

t
b(r, Xt,x

r )dr +
∫ s

t
σ (r, Xt,x

r )dBr, 0 ≤ t ≤ s ≤ T, (36)

and recall the Malliavin weight and its properties from [20, Subsection 1.1 and Remark 3].
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Lemma 4.1. Let H : R→R be a polynomially bounded Borel function. If Assumption 2.1
holds and Xt,x is given by (36), then setting

G(t, x) :=EH(Xt,x
T )

implies that G ∈ C1,2([0, T) ×R). Specifically, it holds for 0 ≤ t ≤ r < T that

∂xG(r, Xt,x
r ) =E[H(Xt,x

T )Nr,(t,x)
T |F t

r],

where (F t
r)r∈[t,T] is the augmented natural filtration of (Bt,0

r )r∈[t,T],

Nr,(t,x)
T = 1

T − r

∫ T

r

∇Xt,x
s

σ (s, Xt,x
s )∇Xt,x

r
dBs,

and ∇Xt,x
s is given in (13). Moreover, for q ∈ (0, ∞) there exists a κq > 0 such that

(E[|Nr,(t,x)
T |q|F t

r])
1
q ≤ κq

(T − r)
1
2

and E[Nr,(t,x)
T |F t

r] = 0 almost surely, (37)

and we have

‖∂xG(r, Xt,x
r )‖Lp(P) ≤ κq

‖H(Xt,x
T ) −E[H(Xt,x

T )|F t
r]‖p√

T − r

for 1 < q, p < ∞ with 1
p + 1

q = 1.

4.2. Regularity of solutions to BSDEs

The following result originates from [20, Theorem 1], where path-dependent cases were
also included. We formulate it only for our Markovian setting but use Pt,x since we are inter-
ested in an estimate for all (t, x) ∈ [0, T) ×R. A sketch of a proof of this formulation can be
found in [22].

Theorem 4.1. Let Assumptions 2.1 and 2.2 hold. Then for any p ∈ [2, ∞) the following
assertions are true.

(i) There exists a constant Cy
4.1 > 0 such that for 0 ≤ t < s ≤ T and x ∈R,

‖Ys − Yt‖Lp(Pt,x) ≤ Cy
4.1�(x)

(∫ s

t
(T − r)α−1dr

) 1
2

.

(ii) There exists a constant Cz
4.1 > 0 such that for 0 ≤ t < s < T and x ∈R,

‖Zs − Zt‖Lp(Pt,x) ≤ Cz
4.1�(x)

(∫ s

t
(T − r)α−2dr

) 1
2

.

The constants Cy
4.1 and Cz

4.1 depend on (Lf , Kf , Cg, c1,2
4.2 , κq, b, σ, T, p0, p), and �(x) is

defined in (8).
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4.3. Properties of the associated PDE

The theorem below collects properties of the solution to the PDE associated to the FBSDE
(1). For a proof see [43, Theorem 3.2], [41], and [22, Theorem 5.4].

Theorem 4.2. Consider the FBSDE (1) and let Assumptions 2.1 and 2.2 hold. Then for the
solution u of the associated PDE⎧⎪⎨⎪⎩

ut(t, x) + σ 2(t,x)
2 uxx(t, x) + b(t, x)ux(t, x) + f (t, x, u(t, x), σ (t, x)ux(t, x)) = 0,

t ∈ [0, T), x ∈R,

u(T, x) = g(x), x ∈R,

(38)

we have the following:

(i) Yt = u(t, Xt) almost surely, where u(t, x) =Et,x

(
g(XT ) + ∫ T

t f (r, Xr, Yr, Zr)dr
)

, and

|u(t, x)| ≤ c1
4.2�(x) for � given in (8), where c1

4.2 depends on Lf , Kf , Cg, T, and p0,
as well as on the bounds and Lipschitz constants of b and σ .

(ii) (a) ∂xu exists and is continuous in [0, T) ×R.
(b) Zt,x

s = ux(s, Xt,x
s )σ (s, Xt,x

s ) almost surely.
(c)

|ux(t, x)| ≤ c2
4.2�(x)

(T − t)
1−α

2

,

where c2
4.2 depends on Lf , Kf , Cg, T, p0, and κ2 = κ2(b, σ, T, δ), as well as on the bounds

and Lipschitz constants of b and σ , and hence c2
4.2 = c2

4.2(Lf , Kf , Cg, b, σ, T, p0, δ).

(iii) (a) ∂2
x u exists and is continuous in [0, T) ×R.

(b)

|∂2
x u(t, x)| ≤ c3

4.2�(x)

(T − t)1− α
2
,

where c3
4.2 depends on Lf , Cg, T, p0, κ2 = κ2(b, σ, T, δ), Cy

4.1, and Cz
4.1, as

well as on the bounds and Lipschitz constants of b and σ , and hence c3
4.2 =

c3
4.2(Lf , Kf , Cg, b, σ, T, p0, δ).

Using Assumption 2.3, we are now in a position to improve the bound on ‖Zs − Zt‖Lp(Pt,x)
given in Theorem 4.1.

Proposition 4.1. If Assumption 2.3 holds, then there exists a constant C4.1 > 0 such that for
0 ≤ t < s ≤ T and x ∈R,

‖Zs − Zt‖Lp(Pt,x) ≤ C4.1�(x)(s − t)
1
2 ,

where C4.1 depends on c2,3
4.2 , b, σ , f, g, T, p0, and p, and hence C4.1 = C4.1(b, σ, f , g, T, p0, p, δ).

Proof. From Zt,x
s = ux(s, Xt,x

s )σ (s, Xt,x
s ) and

∇Yt,x
s = ∂xu(s, Xt,x

s ) = ux(s, Xt,x
s )∇Xt,x

s ,

we conclude that

Zt,x
s = ∇Yt,x

s

∇Xt,x
s

σ (s, Xt,x
s ), 0 ≤ t ≤ s ≤ T . (39)
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It is well-known (see e.g. [19]) that the solution ∇Y of the linear BSDE

∇Ys =g′(XT )∇XT +
∫ T

s
(fx(�r)∇Xr + fy(�r)∇Yr + fz(�r)∇Zr)dr

−
∫ T

s
∇ZrdBr, 0 ≤ s ≤ T, (40)

can be represented as

∇Ys

∇Xs
=Es

[
g′(XT )∇XT�s

T +
∫ T

s
fx(�r)∇Xr�

s
rdr

]
1

∇Xs

= Ẽ

[
g′(X̃s,Xs

T )∇X̃s,Xs
T �̃

s,Xs
T +

∫ T

s
fx(�̃s,Xs

r )∇X̃s,Xs
r �̃s,Xs

r dr

]
, 0 ≤ t ≤ s ≤ T, (41)

where �r := (r, Xr, Yr, Zr), �s denotes the adjoint process given by

�s
r = 1 +

∫ r

s
fy(�u)�s

udu +
∫ r

s
fz(�u)�s

udBu, s ≤ r ≤ T,

and

�̃t,x
s = 1 +

∫ s

t
fy(�̃t,x

r )�̃t,x
r dr +

∫ s

t
fz(�̃

t,x
r )�̃t,x

r dB̃r, t ≤ s ≤ T, x ∈R,

where B̃ denotes an independent copy of B. Notice that ∇Xt,x
t = 1, so that

∇Yt,x
t

∇Xt,x
t

= ∇Yt,x
t = Ẽ

[
g′(X̃t,x

T )∇X̃t,x
T �̃

t,x
T +

∫ T

t
fx(�̃t,x

r )∇X̃t,x
r �̃t,x

r dr

]
.

Then, by (39),

‖Zs − Zt‖Lp(Pt,x)≤C(σ )

[∥∥∥∥∇Ys

∇Xs
− ∇Yt

∇Xt

∥∥∥∥
Lp(Pt,x)

+‖∇Yt‖L2p(Pt,x)[(s − t)
1
2 + ‖Xt,x

s − x‖L2p(Pt,x)]

]
.

Since (∇Ys, ∇Zs) is the solution to the linear BSDE (40) with bounded fx, fy, fz, we have that

‖∇Yt‖L2p(Pt,x) ≤ C(b, σ, f , g, T, p). Obviously, ‖Xt,x
s − x‖L2p(Pt,x) ≤ C(b, σ, T, p)(s − t)

1
2 . So it

remains to show that ∥∥∥∥∇Ys

∇Xs
− ∇Yt

∇Xt

∥∥∥∥
Lp(Pt,x)

≤ C�(x)(s − t)
1
2 .

We intend to use (41) in the following. There is a certain degree of freedom in how to connect
B and B̃ in order to compute conditional expectations. Here, unlike in (27), we define the
processes

B′
u = Bu∧s + B̃u∨s − B̃s and B′′

u = Bu∧t + B̃u∨t − B̃t, u ≥ 0,
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as driving Brownian motions for ∇Ys∇Xs
and ∇Yt∇Xt

, respectively. This will especially simplify the

estimate for Ẽ|�̃s,Xs
T − �̃

t,x
T |q below. From the above relations we get the following (with Xs :=

Xt,x
s ): ∥∥∥∥∇Ys

∇Xs
− ∇Yt

∇Xt

∥∥∥∥
Lp(Pt,x)

≤
∥∥∥Ẽ[g′(X̃s,Xs

T )∇X̃s,Xs
T �̃

s,Xs
T − g′(X̃t,x

T )∇X̃t,x
T �̃

t,x
T

]∥∥∥
p

+
∫ s

t

∥∥∥Ẽ[fx(�̃t,x
r )∇X̃t,x

r �̃t,x
r

]∥∥∥
p

dr

+
∥∥∥∥∫ T

s
Ẽ

[
fx(�̃s,Xs

r )∇X̃s,Xs
r �̃s,Xs

r − fx(�̃t,x
r )∇X̃t,x

r �̃t,x
r

]
dr

∥∥∥∥
p

=: J1 + J2 + J3.

Since g′ is Lipschitz continuous and of polynomial growth, we have

J1 ≤ C(b, σ, g, T, p)�(x)(s − t)
1
2

by Hölder’s inequality and the Lq-boundedness for any q > 0 of all the factors, as well as from
the estimates for X̃s,Xs

T − X̃t,x
T and ∇X̃s,Xs

T − ∇X̃t,x
T as in Lemma 5.2. For the � differences we

first apply the inequalities of Hölder and BDG:

Ẽ|�̃s,Xs
T − �̃

t,x
T |q ≤ C(T, q)

[
(s − t)q−1

Ẽ

∫ s

t
|fy(�̃s,Xs

r )�̃s,Xs
r |qdr + Ẽ

( ∫ s

t
|fz(�̃s,Xs

r )�̃s,Xs
r |2dr

) q
2

+ Ẽ

∫ T

s
|fy(�̃s,Xs

r )�̃s,Xs
r − fy(�̃t,x

r )�̃t,x
r |qdr

+ Ẽ

( ∫ T

s
|fz(�̃s,Xs

r )�̃s,Xs
r − fz(�̃

t,x
r )�̃t,x

r |2dr

) q
2
]

.

Since fy and fz are bounded we have Ẽ|�̃s,Xs
r |q + Ẽ|�̃t,x

r |q ≤ C(f , T, q). Similarly to (31), since
fx, fy, fz are Lipschitz continuous with respect to the space variables,

|fx(�̃s,Xs
r ) − fx(�̃t,x

r )| = |fx(r, X̃s,Xs
r , u(r, X̃s,Xs

r ), σ (r, X̃s,Xs
r )ux(r, X̃s,Xs

r ))

− fx(r, X̃t,x
r , u(r, X̃t,x

r ), σ (r, X̃t,x
r )ux(r, X̃t,x

r ))|

≤ C(c2,3
4.2 , σ, f , T)(1 + |X̃s,Xs

r |p0+1 + |X̃t,x
r |p0+1)

|X̃s,Xs
r − X̃t,x

r |
(T − r)

1
2

,

so that Lemma 5.2 yields

Ẽ|fx(�̃s,Xs
r ) − fx(�̃t,x

r )|q ≤ C(c2,3
4.2 , b, σ, f , T, p0, q)(1 + |Xs|p0+1 + |x|p0+1)q |Xs − x|q + |s − t| q

2

(T − r)
1
2

.

The same holds for |fy(�̃s,Xs
r ) − fy(�̃t,x

r )| and |fz(�̃s,Xs
r ) − fz(�̃t,x

r )|. Applying these inequalities
and Gronwall’s lemma, we arrive at

‖Ẽ[�̃s,Xs
T − �̃

t,x
T ]‖p≤C(c2,3

4.2 , b, σ, f , g, T, p0, p)�(x)|s − t| 1
2

for p > 0.
For J2 ≤ C(t − s) it is enough to realise that the integrand is bounded. The estimate for J3

follows similarly to that of J1. �
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4.4. Properties of the solution to the finite difference equation

Recall the definition of Dn
m given in (15). By (4),

Xn,tm,x
tm+1

= x + hb(tm+1, x) + √
hσ (tm+1, x)εm+1, (42)

so that

Tm+1,±un(tm+1, Xn,tm,x
tm+1

) = un(tm+1, x + hb(tm+1, x) ± √
hσ (tm+1, x)). (43)

While for the solution to the PDE (38) one can observe in Theorem 4.2 the well-known smooth-
ing property which implies that u is differentiable on [0, T) ×R even though g is only Hölder
continuous, in the following proposition, for the solution un to the finite difference equation
we have to require from g the same regularity as we want for un.

Proposition 4.2. Let Assumption 2.3 hold and assume that un is a solution of

un(tm, x) − hf (tm+1, x, un(tm, x),Dn
m+1un(tm+1, Xn,tm,x

tm+1
))

= 1

2
[Tm+1,+un(tm+1, Xn,tm,x

tm+1
) + Tm+1,−un(tm+1, Xn,tm,x

tm+1
)], m = 0, . . . , n − 1, (44)

with terminal condition un(tn, x) = g(x). Then, for sufficiently small h, the map x �→ un(tm, x)
is C2, and it holds that

|un(tm, x)| + |un
x(tm, x)| ≤ Cun,1 �(x), |un

xx(tm, x)| ≤ Cun,2 �2(x),

and

|un
xx(tm, x) − un

xx(tm, x̄)| ≤ Cun,3 (1 + |x|6p0+7 + |x̄|6p0+7)|x − x̄|α, (45)

uniformly in m = 0, . . . , n − 1. The constants Cun,1, Cun,2, and Cun,3 depend on the bounds of
f, g, b, σ , and their derivatives, and on T and p0.

Proof. Step 1. From (44), since g is C2 and fy is bounded, for sufficiently small h we con-
clude by induction (backwards in time) that un

x(tm, x) exists for m = 0, . . . , n − 1, and that

un
x(tm, x) = hfx(tm+1, x, un(tm, x),Dn

m+1un(tm+1, Xn,tm,x
tm+1

))

+ hfy(tm+1, x, un(tm, x),Dn
m+1un(tm+1, Xn,tm,x

tm+1
)) un

x(tm, x)

+ hfz(tm+1, x, un(tm, x),Dn
m+1un(tm+1, Xn,tm,x

tm+1
)) ∂xDn

m+1un(tm+1, Xn,tm,x
tm+1

)

+ 1
2

(
∂xTm+1,+un(tm+1, Xn,tm,x

tm+1
) + ∂xTm+1,−un(tm+1, Xn,tm,x

tm+1
)
)

.

Similarly one can show that un
xx(tm, x) exists and solves the derivative of the previous equation.

Step 2. As stated in the proof of Proposition 2.1, the finite difference equation (44) is the
associated equation to (9) in the sense that we have the representations (21). We will use that
un(tm, x) = Yn,tm,x

tm and exploit the BSDE

Yn,tm,x
tm = g(Xn,tm,x

T ) +
∫

(tm,T]
f (s, Xn,tm,x

s− , Yn,tm,x
s− , Zn,tm,x

s− )d[Bn]s

−
∫

(tm,T]
Zn,tm,x

s− dBn
s , (46)
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in which we will drop the superscript tm, x from now on. For un
x(tm, x) we will consider

∇Yn
tm := ∂xYn

tm = g′(Xn
T )∂xXn

T +
∫

(tm,T]
fx∂xXn

s− + fy∂xYn
s− + fz∂xZn

s−d[Bn]s

−
∫

(tm,T]
∂xZn

s−dBn
s . (47)

Similarly as in the proof of [30, Theorem 3.1], the BSDE (47) can be derived from (46) as a
limit of difference quotients with respect to x. Notice that the generator of (47) is random but
has the same Lipschitz constant and linear growth bound as f . Assumption 2.3 allows us to
find a p0 ≥ 0 and a K > 0 such that

|g(x)| + |g′(x)| + |g′′(x)| ≤ K(1 + |x|p0+1) = �(x).

In order to get estimates simultaneously for (46) and (47) we prove the following lemma.

Lemma 4.2. We fix n and assume a BSDE

Ytk=ξn +
∫

(tk,T]
f(s, Xs−, Ys−, Zs−)d[Bn]s −

∫
(tk,T]

Zs−dBn
s , m ≤ k ≤ n, (48)

with ξn = g(Xn,tm,x
T ) or ξn = g′(Xn,tm,x

T )∂xXn,tm,x
T , and Xs := Xn,tm,x

s or Xs := ∂xXn,tm,x
s , such that

f:� × [0, T] ×R
3 →R is measurable and satisfies

|f(ω, t, x, y, z) − f(ω, t, x′, y′, z′)| ≤ Lf (|x − x′| + |y − y′| + |z − z′|),
|f(ω, t, x, y, z)| ≤ (Kf + Lf )(1 + |x| + |y| + |z|). (49)

Then for any p ≥ 2,

(i)

E|Ytk |p + γp

4
E

∫
(tk,T]

|Ys−|p−2|Zs−|2d[Bn]s ≤ C�p(x)

for k = m, . . . , n and some γp > 0,

(ii) E suptm<s≤T |Ys−|p ≤ C�p(x), and

(iii) E

( ∫
(tm,T] |Zs−|2d[Bn]s

) p
2 ≤ C�p(x),

for some constant C = C(b, σ, f , g, T, p, p0).
Proof.

(i) By Itô’s formula (see [25, Theorem 4.57]) we get for p ≥ 2 that

|Ytk |p = |ξn|p − p
∫

(tk,T]
Ys−|Ys−|p−2Zs−dBn

s

+ p
∫

(tk,T]
Ys−|Ys−|p−2f(s, Xs−, Ys−, Zs−)d[Bn]s

−
∑

s∈(tk,T]

[|Ys|p − |Ys−|p − pYs−|Ys−|p−2(Ys − Ys−)]. (50)
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Following the proof of [27, Proposition 2] (which is carried out there in the Lévy process
setting but can be done also for martingales with jumps, like Bn) we can use the estimate

−
∑

s∈(tk,T]

[|Ys|p − |Ys−|p − pYs−|Ys−|p−2(Ys − Ys−)] ≤ −γp

∑
s∈(tk,T]

|Ys−|p−2(Ys−Ys−)2,

where γp > 0 is computed in [40, Lemma A4]. Since

Yt
+1 − Yt
+1− = f(t
+1, Xt
 , Yt
 , Zt
 )h − Zt


√
hε
+1

we have

−
∑

s∈(tk,T]

[|Ys|p − |Ys−|p − pYs−|Ys−|p−2(Ys − Ys−)]

≤ −γp

n−1∑

=k

|Yt
 |p−2
(
f(t
+1, Xt
 , Yt
 , Zt
)h − Zt


√
hε
+1

)2

= −γp h
∫

(tk,T]
|Ys−|p−2 f2(s, Xs−, Ys−, Zs−)d[Bn]s − γp

∫
(tk,T]

|Ys−|p−2|Zs−|2d[Bn]s

+ 2γp

∫
(tk,T]

|Ys−|p−2 f(s, Xs−, Ys−, Zs−)Zs−(Bn
s − Bn

s−)d[Bn]s.

Hence we get from (50) that

|Ytk |p ≤ |ξn|p − p
∫

(tk,T]
Ys−|Ys−|p−2Zs−dBn

s

+ p
∫

(tk,T]
Ys−|Ys−|p−2 f(s, Xs−, Ys−, Zs−)d[Bn]s

− γp

∫
(tk,T]

|Ys−|p−2 |Zs−|2d[Bn]s

+ 2γp

∫
(tk,T]

|Ys−|p−2 f(s, Xs−, Ys−, Zs−)Zs−(Bn
s − Bn

s−)d[Bn]s.

From Young’s inequality and (49) we conclude that there is a c′ = c′(p, Kf , Lf , γp) > 0
such that

p|Ys−|p−1 |f(s, Xs−, Ys−, Zs−)| ≤ γp
4 |Ys−|p−2 |Zs−|2 + c′(1 + |Xs−|p + |Ys−|p),

and for
√

h < 1
8(Lf +Kf ) we find a c′′ = c′′(p, Lf , Kf , γp) > 0 such that

2γp
√

h|Ys−|p−2 |f(s, Xs−, Ys−, Zs−)||Zs−| ≤ γp
4 |Ys−|p−2 |Zs−|2

+ c′′ (1 + |Xs−|p + |Ys−|p).

Then for c = c′ + c′′ we have

|Ytk |p ≤ |ξn|p − p
∫

(tk,T]
Ys−|Ys−|p−2 Zs−dBn

s + c
∫

(tk,T]
1 + |Xs−|p + |Ys−|pd[Bn]s

− γp
2

∫
(tk,T]

|Ys−|p−2 |Zs−|2d[Bn]s. (51)
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By standard methods, approximating the terminal condition and the generator by
bounded functions, it follows that for any a > 0,

E sup
tk≤s≤T

|Ys|a < ∞ and E

( ∫
(tk,T]

|Zs−|2d[Bn]s

) a
2

< ∞.

Hence
∫

(tk,T] Ys−|Ys−|p−2Zs−dBn
s has expectation zero. Taking the expectation in (51)

yields

E|Ytk |p + γp
2 E

∫
(tk,T]

|Ys−|p−2|Zs−|2d[Bn]s ≤E|ξn|p

+ cE
∫

(tk,T]
1 + |Xs−|p + |Ys−|pd[Bn]s. (52)

Since E|ξn|p and E
∫

(tk,T] 1 + |Xs−|pd[Bn]s are polynomially bounded in x, Gronwall’s
lemma gives

‖Ytk‖p ≤ C(b, σ, f , g, T, p, p0)(1 + |x|p0+1), k = m, . . . , n,

and inserting this into (52) yields(
E

∫
(tk,T]

|Ys−|p−2|Zs−|2d[Bn]s

) 1
p ≤ C(b, σ, f , g, T, p, p0)(1 + |x|p0+1),

k = m, . . . , n − 1.

(ii) From (51) we derive by the inequality of BDG and Young’s inequality that for
tm ≤ tk ≤ T ,

E sup
tk<s≤T

|Ys−|p

≤E|ξn|p + C(p)E

( ∫
(tk,T]

|Ys−|2p−2|Zs−|2d[Bn]s

) 1
2

+ cE
∫

(tk,T]
1 + |Xs−|p + |Ys−|pd[Bn]s

≤E|ξn|p + cE
∫

(tk,T]
1 + |Xs−|pd[Bn]s

+ C(p)E

[
sup

tk<s≤T
|Ys−| p

2

(∫
(tk,T]

|Ys−|p−2|Zs−|2d[Bn]s

) 1
2
]

+ cE
∫

(tk,T]
|Ys−|pd[Bn]s

≤E|ξn|p + cE
∫

(tk,T]
1 + |Xs−|pd[Bn]s + C(p)E

∫
(tk,T]

|Ys−|p−2|Zs−|2d[Bn]s

+E sup
tk<s≤T

|Ys−|p( 1
4 + c(T − tk)).
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We assume that h is sufficiently small so that we find a tk with c(T − tk) < 1
4 . We rear-

range the inequality to have E suptk<s≤T |Ys−|p on the left-hand side, and from (i) we
conclude that

E sup
tk<s≤T

|Ys−|p ≤ 2E|ξn|p + 2cE
∫

(tk,T]
1 + |Xs−|pd[Bn]s

+ 2C(p)E
∫

(tk,T]
|Ys−|p−2|Zs−|2d[Bn]s

≤ C(b, σ, f , g, T, p, p0)(1 + |x|(p0+1)p).

Now we may repeat the above step for E supt
<s≤tk |Ys−|p with c(tk − t
) < 1
4 and

ξn = YT replaced by Ytk , and continue doing so until we eventually get the assertion (ii).

(iii) We proceed from (48):

sup
k≤
≤n

∣∣∣ ∫
(t
,T]

Zs−dBn
s

∣∣∣p
≤ C(p)

(
|ξn|p + sup

k≤
≤n
|Yt
 |p +

∣∣∣ ∫
(tk,T]

|f(s, Xs−, Ys−, Zs−)| d[Bn]s

∣∣∣p),

so that by (49) and the inequalities of BDG and Hölder we have that

E

( ∫
(tk,T]

|Zs−|2d[Bn]s

) p
2

≤ C(p)

(
E|ξn|p +E sup

k≤
≤n
|Yt
 |p

)
+ C(p, Lf , Kf )E

( ∫
(tk,T]

1 + |Xs−| + |Ys−|d[Bn]s

)p

+ C(p, Lf , Kf )(T − tk)
p
2 E

(∫
(tk,T]

|Zs−|2d[Bn]s

) p
2

.

Hence for C(p, Lf , Kf )(T − tk)
p
2 < 1

2 we derive from the assertion (ii) and from the
growth properties of the other terms that

E

( ∫
(tk,T]

|Zs−|2d[Bn]s

) p
2 ≤ C(b, σ, f , g, T, p, p0)(1 + |x|(p0+1)p). (53)

Repeating this procedure eventually yields (iii). �

Step 3. Applying Lemma 4.2 to (46) and (47) we see that for all m = 0, . . . , n we have

|un(tm, x)| = |Yn,tm,x
tm | = (E(Yn,tm,x

tm )2)
1
2 ≤ C(b, σ, f , g, T, p0)(1 + |x|p0+1)

and

|un
x(tm, x)| = (E(∂xYn,tm,x

tm )2)
1
2 ≤ C(b, σ, f , g, T, p0)(1 + |x|p0+1). (54)

Our next aim is to show that un
xx(tm, x) is locally Lipschitz in x. We first show that un

xx(tm, x)
has polynomial growth. We introduce the BSDE which describes un

xx(tm, x), for simplicity
writing

f (t, x1, x2, x3) := f (t, x, y, z) and Da := ∂ i1
x1

∂ i2
x2

∂ i3
x3

with a := (i1, i2, i3),

https://doi.org/10.1017/apr.2020.17 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.17


Random walk approximation of FBSDEs 761

and consider

∂2
x Yn

tm = g′′(Xn
T )(∂xXn

T )2 + g′(Xn
T )∂2

x Xn
T

+
∫

(tm,T]

∑
a∈{0,1,2}3

i1+i2+i3=2

(Daf )(s, Xn
s−, Yn

s−, Zn
s−)(∂xXn

s−)i1 (∂xYn
s−)i2 (∂xZn

s−)i3d[Bn]s

+
∫

(tm,T]

∑
a∈{0,1}3

i1+i2+i3=1

(Daf )(s, Xn
s−, Yn

s−, Zn
s−)(∂2

x Xn
s−)i1 (∂2

x Yn
s−)i2 (∂2

x Zn
s−)i3d[Bn]s

−
∫

(tm,T]
∂2

x Zn
s−dBn

s . (55)

We denote the generator of this BSDE by f̂ and notice that it is of the structure

f̂ (ω, t, x, y, z) = f0(ω, t) + f1(ω, t)x + f2(ω, t)y + f3(ω, t)z.

Here f0(ω, t) denotes the integrand of the first integral on the right-hand side of (55), and
from the previous results one concludes that E(

∫
(tm,T] |f0(s −)|d[Bn]s)p < ∞. The functions

f1(t) = (D(1,0,0)f )(t, ·) = (∂xf )(t, ·), f2(t) = (∂yf )(t, ·), and f3(t) = (∂zf )(t, ·) are bounded by our
assumptions. We put

ξ̂n := g′′(Xn
T )(∂xXn

T )2 + g′(Xn
T )∂2

x Xn
T .

Denoting the solution by (Ŷ, Ẑ), we get for C(f3)(T − tm) ≤ 1
2 that

E|Ŷtm |2 + 1

2
E

∫
(tm,T]

|Ẑs−|2d[Bn]s

≤ C

[
E|ξ̂n|2 +E

( ∫
(tm,T]

|f0(s − )|d[Bn]s

)2

+E

∫
(tm,T]

|X̂s−|2 + |Ŷs−|2d[Bn]s

]
. (56)

Now we derive the polynomial growth E|ξ̂n|2 ≤ C�2(x) from the properties of g′ and g′′ and
from the fact that E suptm<s≤T |∂ j

xXn
s |p is bounded for j = 1, 2 under our assumptions. Then the

estimate

E

( ∫
(tm,T]

|f0(s − )|d[Bn]s

)2

≤ C�4(x)

can be derived from Lemma 4.2 Parts (ii) and (iii), so that Gronwall’s lemma implies

|Ŷtm,x
tm | = |uxx(tm, x)| ≤ C�2(x). (57)

Finally, to show (45), one uses (55) and derives an inequality as in (56), but now for the
difference ∂2

x Yn,tm,x
tm − ∂2

x Yn,tm,x̄
tm .

Before proving (45), let us state the following lemma.

Lemma 4.3 Let Assumption 2.3 hold. We have(
E sup

s
|Zn,tm,x

s− − Zn,tm,x̄
s− |p

)1/p

≤ C(�(x)2 + �(x̄)2)|x − x̄|, p ≥ 2, (58)
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E

( ∫
(tm,T]

|∂xZn,tm,x
s− − ∂xZn,tm,x̄

s− |2d[Bn]s

) p
2 ≤ C(�4p(x) + �4p(x̄))|x − x̄|p, p ≥ 2, (59)

E

(∫
(tm,T]

|∂2
x Zn,tm,x

s− |2d[Bn]s

) p
2 ≤ C�4p(x), p ≥ 2, (60)

for some constant C = C(b, σ, f , g, T, p, p0).

Proof of Lemma 4.3. Proof of (58): Introduce G(tk+1, x) :=Dn
k+1un(tk+1, Xn,tk,x

tk+1
). Using the

relations (42)–(43) and the bounds (54) and (57) for un
x and un

xx, respectively, one obtains

|G(tk+1, x) − G(tk+1, x̄)| ≤ C(1 + |x|2(p0+1) + |x̄|2(p0+1))|x − x̄|, x, x̄ ∈R,

uniformly in tk+1. Since Zn,tm,x
tk =Dn

k+1un(tk+1, Xn,tk,η
tk+1

) = G(tk+1, η), where η = Xn,tm,x
tk , the

previous bound yields

|Zn,tm,x
tk − Zn,tm,x̄

tk | ≤ C(1 + |Xn,tm,x
tk |2(p0+1) + |Xn,tm,x̄

tk |2(p0+1))|Xn,tm,x
tk − Xn,tm,x̄

tk |
uniformly for each tm ≤ tk < T . The inequality (58) then follows by applying the Cauchy–
Schwarz inequality and standard Lp-estimates for the process Xn.

Proof of (59): This can be shown similarly to Lemma 4.2(iii), by considering the BSDE for
the difference ∂xYn,tm,x

tm − ∂xYn,tm,x̄
tm instead of (47) itself.

Proof of (60): This can again be shown by repeating the proof of Lemma 4.2(iii), but now
for the BSDE (55). �

We return to the main proof. By our assumptions we have

E|ξ̂n,tm,x − ξ̂n,tm,x̄|2 ≤ C(�2(x) + �2(x̄))(1 + |x|2 + |x̄|2)|x − x̄|2α,

where we use |x − x̄|2 ≤ C(1 + |x|2 + |x̄|2)|x − x̄|2α . (The term |x − x̄|2 appears, for example,
in the estimate of (∂xXn,tm,x

T )2 − (∂xXn,tm,x̄
T )2.) To see that

E

( ∫
(tm,T]

|f tm,x
0 (s − ) − f tm,x̄

0 (s − )|d[Bn]s

)2

≤ C(�10(x) + �10(x̄))(1 + |x|2 + |x̄|2)|x − x̄|2α,

we check the terms with the highest polynomial growth. We have to deal with terms like

E

(∫
(tm,T]

|Zn,tm,x
s− − Zn,tm,x̄

s− | |∂xZn,tm,x
s− |2d[Bn]s

)2

and

E

(∫
(tm,T]

|∂xZn,tm,x
s− |2 − |∂xZn,tm,x̄

s− |2d[Bn]s

)2

,

for example. We bound the first term by using (53) and (58):

E

( ∫
(tm,T]

|Zn,tm,x
s− − Zn,tm,x̄

s− | |∂xZn,tm,x
s− |2d[Bn]s

)2

≤
(
E sup

s
|Zn,tm,x

s− − Zn,tm,x̄
s− |4

) 1
2
(
E

( ∫
(tm,T]

|∂xZn,tm,x
s− |2d[Bn]s

)4) 1
2

≤ C(�4(x) + �4(x̄))|x − x̄|2�4(x).
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We bound the second term by using (53) and (59):

E

( ∫
(tm,T]

|∂xZn,tm,x
s− |2 − |∂xZn,tm,x̄

s− |2d[Bn]s

)2

≤ CE

∫
(tm,T]

|∂xZn,tm,x
s− |2 + |∂xZn,tm,x̄

s− |2d[Bn]s

∫
(tm,T]

|∂xZn,tm,x
s− − ∂xZn,tm,x̄

s− |2d[Bn]s

≤ C(�2(x) + �2(x̄))(�8(x) + �8(x̄))|x − x̄|2
≤ C(�10(x) + �10(x̄))(|x|2−2α + |x̄|2−2α)|x − x̄|2α

≤ C(�10(x) + �10(x̄))(1 + |x|2 + |x̄|2)|x − x̄|2α .

While all the other terms can be easily estimated using the results we have obtained
already, for

E

( ∫
(tm,T]

|(f tm,x
3 (s −) − f tm,x̄

3 (s −))∂2
x Zn,tm,x

s− |d[Bn]s

)2

≤ C(�12(x) + �12(x̄))(1 + |x|2 + |x̄|2)|x − x̄|2α

we need the bound (60).
The result then follows from Gronwall’s lemma. �

Remark 4.1. Under Assumption 2.3 we conclude that by Proposition 4.2 there exists a
constant C = C(b, σ, f , g, T, p, p0) > 0 such that

|un(tm, x) − un(tm, x̄)| ≤ C(1 + �(x) + �(x̄))|x − x̄|,
|Dn

m+1un(tm+1, Xn,tm,x
tm+1

) −Dn
m+1un(tm+1, Xn,tm,x

tm+1
)| ≤ C(1 + �2(x) + �2(x̄))|x − x̄|,

|un
x(tm, x) − un

x(tm, x̄)| ≤ C(1 + �2(x) + �2(x̄))|x − x̄|,
|∂xDn

m+1un(tm+1, Xn,tm,x
tm+1

) − ∂xDn
m+1un(tm+1, Xn,tm,x̄

tm+1
)| ≤ C(1 + �̂(x) + �̂(x̄))|x − x̄|α,

|∂xDn
m+1un(tm+1, Xn,tm,x

tm+1
)| ≤ C(1 + �2(x)), (61)

uniformly in m = 0, 1, . . . , n − 1, where

�̂(x) := 1 + |x|6p0+8. (62)

In addition, for

∂xFn(tm+1, x) := ∂xf (tm+1, x, un(tm, x),Dn
m+1un(tm+1, Xn,tm,x

tm+1
)),

we have

|∂xFn(tm+1, x) − ∂xFn(tm+1, x̄)| ≤ C(1 + �̂(x) + �̂(x̄))|x − x̄|α (63)

uniformly in m = 0, 1, . . . , n − 1. The latter inequality follows from the assumption that the
partial derivatives of f are bounded and Lipschitz continuous with respect to the spatial
variables, from estimates proved in Proposition 4.2, and from those stated in (61) above.
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From the calculations it can be seen that in general Assumption 2.3 cannot be weakened if
one needs ∂xFn(tm+1, x) to be locally α-Hölder continuous.

5. Technical results and estimates

In this section we collect some facts which are needed for the proofs of our results. We start
with properties of the stopping times used to construct a random walk.

Lemma 5.1 (Proposition 11.1 in [38], Lemma A.1 in [22]) For all 0 ≤ k ≤ m ≤ n and p > 0, it
holds for h = T

n and τk as defined in (24) that

(i) Eτk = kh;

(ii) E|τ1|p ≤ C(p)hp;

(iii) E|Bτk − Btk |2p ≤ C(p)E|τk − tk|p ≤ C(p)(tkh)
p
2 .

The next lemma lists some estimates concerning the diffusion X defined by (28) and its
discretization (26), where we assume that B and B̃ are connected as in (27).

Lemma 5.2 Under Assumption 2.1 on b and σ , for p ≥ 2 there exists a constant C =
C(b, σ, T, p) > 0 such that the following hold:

(i) E
∣∣Xs,y

T − Xt,x
T

∣∣p ≤ C(|y − x|p + |s − t| p
2 ), x, y ∈R, s, t ∈ [0, T].

(ii) Ẽ supτ̃l∧tm≤r≤τ̃l+1∧tm |X̃tk,x
tk+r − X̃tk,x

tk+τ̃l∧tm
|p ≤ Ch

p
4 , 0 ≤ k ≤ n, 0 ≤ l ≤ n − k − 1, 0 ≤

m ≤ n − k.

(iii) E|∇Xs,y
T − ∇Xt,x

T |p ≤ C(|y − x|p + |s − t| p
2 ), x, y ∈R, s, t ∈ [0, T].

(iv) E sup0≤l≤m

∣∣∇Xn,tk,x
tk+tl

∣∣p ≤ C, 0 ≤ k ≤ n, 0 ≤ m ≤ n − k.

(v) Ẽ
∣∣X̃tk,x

tk+tm − X̃ τk,y
τk+τ̃m

∣∣p ≤ C(|x − y|p + h
p
4 ), 0 ≤ k ≤ n, 0 ≤ m ≤ n − k.

(vi) Ẽ|∇X̃tk,x
tk+tm − ∇X̃ τk,y

τk+τ̃m
|p ≤ C(|x − y|p + h

p
4 ), 0 ≤ k ≤ n, 0 ≤ m ≤ n − k.

Proof.

(i) This estimate is well-known.

(ii) For the stochastic integral we use the inequality of BDG and then, since b and σ are
bounded, we get by Lemma 5.1(ii) that

Ẽ sup
τ̃l∧tm≤r≤τ̃l+1∧tm

|X̃tk,x
tk+r − X̃tk,x

tk+τ̃l∧tm
|p

≤ C(p)(‖b‖p∞Ẽ|τ̃l+1 − τ̃l|p + ‖σ‖p∞E|τ̃l+1 − τ̃l|
p
2 ) ≤ C(b, σ, T, p) h

p
2 .

(iii) This can be easily seen because the process (∇Xs,y
r )r∈[s,T] solves the linear SDE (13)

with bounded coefficients.

(iv) The process solves (65). The estimate follows from the inequality of BDG and
Gronwall’s lemma.
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(v) Recall that from (4) and (26) we have

X̃ τk,y
τk+τ̃m

= X̃n,tk,y
tk+tm = y +

∫
(0,tm]

b(tk + r, X̃n,tk,y
tk+r−)d[B̃n, B̃n]r +

∫
(0,tm]

σ (tk + r, X̃n,tk,y
tk+r−)dB̃n

r ,

and X̃tk,x
tk+tm is given by

X̃tk,x
tk+tm = x +

∫ tm

0
b(tk + r, X̃tk,x

tk+r)dr +
∫ tm

0
σ (tk + r, X̃tk,y

tk+r)dB̃r.

To compare the stochastic integrals of the previous two equations we use the relation

∫
(0,tm]

σ (tk + r, X̃n,tk,y
tk+r−)dB̃n

r =
∫ ∞

0

m−1∑
l=0

σ (tk+l+1, X̃n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r.

We define an ‘increasing’ map, i(r) := tl+1 for r ∈ (tl, tl+1], and a ‘decreasing’ map,
d(r) := tl for r ∈ (tl, tl+1], and split the differences as follows (using Assumption 2.1(iii)
for the coefficient b):

Ẽ
∣∣X̃tk,x

tk+tm − X̃n,tk,y
tk+tm

∣∣p
≤ C(b, p)

(
|x − y|p + Ẽ

∫ tm

0
|r − i(r)| p

2 + |X̃tk,x
tk+r − X̃tk,x

tk+d(r)|p + |X̃tk,x
tk+d(r) − X̃n,tk,y

tk+d(r)|pdr

)
+ C(p)Ẽ|

∫ tm

tm∧τ̃m

σ (tk + r, X̃tk,x
tk+r)dB̃r|p

+ C(p)Ẽ|
∫ τ̃m

tm∧τ̃m

m−1∑
l=0

σ (tk+l+1, X̃n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r|p

+ C(p)Ẽ|
∫ tm∧τ̃m

0
σ (tk + r, X̃tk,x

tk+r) −
m−1∑
l=0

σ (tk+l+1, X̃n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r|p. (64)

We estimate the terms on the right-hand side as follows: by standard estimates for SDEs
with bounded coefficients one has that

Ẽ

∫ tm

0
|r − i(r)| p

2 + |X̃tk,x
tk+r − X̃tk,x

tk+d(r)|pdr ≤ C(b, σ, T, p)h
p
2 .

By the BDG inequality, the fact that σ is bounded, and Lemma 5.1, we conclude that

Ẽ

∣∣∣∣ ∫ tm

tm∧τ̃m

σ (tk + r, X̃tk,x
tk+r)dB̃r

∣∣∣∣p + Ẽ

∣∣∣∣ ∫ τ̃m

tm∧τ̃m

m−1∑
l=0

σ (tk+l+1, X̃n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r

∣∣∣∣p
≤ C(σ, p)‖σ‖p∞Ẽ|τ̃m − tm| p

2 ≤ C(σ, p)(tmh)
p
4 .
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Finally, by the BDG inequality,

Ẽ

∣∣∣∣∣
∫ tm∧τ̃m

0
σ (tk + r, X̃tk,x

tk+r) −
m−1∑
l=0

σ (tk+l+1, X̃n,tk,y
tk+l

)1(τ̃l,τ̃l+1](r)dB̃r

∣∣∣∣∣
p

≤ C(p)Ẽ

( ∫ tm

0

m−1∑
l=0

|σ (tk + r, X̃tk,x
tk+r) − σ (tk+l+1, X̃n,tk,y

tk+l
)|21(τ̃l,τ̃l+1](r)dr

) p
2

≤ C(σ, p)Ẽ

(
m−1∑
l=0

∫ τ̃l+1∧tm

τ̃l∧tm
|τ̃l+1 − tl+1|

p
2 + |τ̃l − tl+1|

p
2 + |X̃tk,x

tk+r − X̃tk,x
tk+τ̃l∧tm

|p

+ |X̃tk,x
tk+τ̃l∧tm

− X̃n,tk,y
tk+l

|pdr

)

≤ C(σ, T, p)

(
h

p
2 + max

1≤l<m
(Ẽ|τ̃l − tl|p)

1
2

+ max
0≤l<m

(
Ẽ sup

τ̃l∧tm≤r≤τ̃l+1∧tm

|X̃tk,x
tk+r − X̃tk,x

tk+τ̃l∧tm
|2p

) 1
2

+ Ẽ

m−1∑
l=0

|X̃tk,x
tk+τ̃l∧tm

− X̃n,tk,y
tk+l

|p(τ̃l+1 − τ̃l)

)
.

Moreover, since τ̃l+1 − τ̃l is independent of |X̃tk,x
tk+τ̃l∧tm

− X̃n,tk,y
tk+tl |p, by Lemma 5.1(i)

we get

Ẽ

m−1∑
l=0

|X̃tk,x
tk+τ̃l∧tm

− X̃n,tk,y
tk+l

|p(τ̃l+1 − τ̃l)

= Ẽ

m−1∑
l=0

|X̃tk,x
tk+τ̃l∧tm

− X̃n,tk,y
tk+l

|p(tl+1 − tl)

≤ C(T, p)

(
Ẽ

∫ tm

0
|X̃tk,x

tk+d(r) − X̃n,tk,y
tk+d(r)|pdr + max

0≤l<m
Ẽ|X̃tk,x

tk+τ̃l∧tm
− X̃tk,x

tk+tl |p
)

.

Using Lemma 5.1(iii), one concludes similarly as in the proof of (ii) that

Ẽ|X̃tk,x
tk+τ̃l∧tm

− X̃tk,x
tk+tl |p ≤ C(b, σ, T, p)h

p
4 .

Then (64) combined with the above estimates implies that

Ẽ
∣∣X̃tk,x

tk+tm − X̃n,tk,y
tk+tm

∣∣p ≤ C(b, σ, T, p)

(
|x − y|p + h

p
4 + Ẽ

∫ tm

0
|X̃tk,x

tk+d(r) − X̃n,tk,y
tk+d(r)|pdr

)
.

Gronwall’s lemma yields

Ẽ
∣∣X̃tk,x

tk+tm − X̃n,tk,y
tk+tm

∣∣p ≤ C(b, σ, T, p)(|x − y|p + h
p
4 ).

(vi) We have

∇X̃n,tk,y
tk+tm = 1 +

∫
(0,tm]

bx(tk + r, Xn,tk,y
tk+r−)∇X̃n,tk,y

tk+r−d[B̃n, B̃n]r

+
∫

(0,tm]
σx(tk + r, X̃n,tk,y

tk+r−)∇X̃n,tk,y
tk+r−dB̃n

r (65)
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and

∇X̃tk,x
tk+tm = 1 +

∫ tm

0
bx(tk + r, X̃tk,x

tk+r)∇X̃tk,x
tk+rdr +

∫ tm

0
σx(tk + r, X̃tk,x

tk+r)∇X̃tk,x
tk+rdB̃r. (66)

We may proceed similarly as in (v), except that this time the coefficients are not bounded but
have linear growth. Here one uses that the integrands are bounded in any Lp(P). �

Finally, we estimate the difference between the continuous-time Malliavin weight and its
discrete-time counterpart.

Lemma 5.3 Let B and B̃ be connected via (27). Under Assumption 2.1 it holds that

Ẽ|Ñtk
tmσ (tk, Xtk ) − Ñn,τk

τ̃m
σ (tk+1,Xτk )|2 ≤ C(b, σ, T, δ)

|Xtk −Xτk |2 + h
1
2

(tm − tk)
3
2

, m = k + 1, . . . , n.

Proof. For Nn,τk
τ̃m

and Ntk
tm given by (12) and (18), respectively, we introduce the notation

Ñtk
tmσ (tk, Xtk ) =:

1

tm−k

∫ tm−k

0
atk+sdB̃s, Ñn,τk

τ̃m
σ (tk+1,Xτk ) =:

1

tm−k

∫ τ̃m−k

0
an
τk+sdB̃s,

with

atk+s:=∇X̃
tk,Xtk
tk+s

σ (tk, Xtk )

σ (tk+s, X̃
tk,Xtk
tk+s )

, an
τk+s:=

m−k∑

=1

∇X̃ τk,Xτk
τk+τ̃
−1

σ (tk+1,Xτk )

σ (tk+
, X̃ τk,Xτk
τk+τ̃
−1

)
1s∈(τ̃
−1,τ̃
].

By the inequality of BDG,

(tm − tk)2
Ẽ|Ñtk

tmσ (tk, Xtk ) − Ñn,τk
τ̃m

σ (tk+1,Xτk )|2

= Ẽ

∣∣∣ ∫ tm−k

0
atk+sdB̃s −

∫ τ̃m−k

0
an
τk+sdB̃s

∣∣∣2
= Ẽ

∫ tm−k∧τ̃m−k

0
(atk+s − an

τk+s)
2ds + Ẽ

∫ ∞

0
a2

tk+s1(τ̃m−k,tm−k](s)ds

+ Ẽ

∫ ∞

0
(an

τk+s)
21(tm−k,τ̃m−k](s)ds

≤
m−k∑

=1

(
Ẽ sup

s∈[0,tm−k]∩(τ̃
−1,τ̃
]

∣∣atk+s − an
τk+τ̃


∣∣4) 1
2

(Ẽ|τ̃
 − τ̃
−1|2)
1
2

+
(
Ẽ sup

s∈[0,tm−k]
|atk+s|4 + Ẽ max

1≤
≤m−k
|an

τk+τ̃

|4
) 1

2

(Ẽ|tm−k − τ̃m−k|2)
1
2 .

The assertion then follows from Lemma 5.1 and from the estimates

Ẽ sup
s∈[0,tm−k]∩[τ̃
−1,τ̃
]

|atk+s − an
τk+τ̃


|4 ≤ C(b, σ, T, δ)(|Xtk − Xn
tk |4 + h), (67)

Ẽ sup
s∈[0,tm−k]

|atk+s|4 + Ẽ max
1≤
≤m−k

|an
τk+τ̃


|4 ≤ 2‖σ‖4∞δ−4. (68)
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So it remains to prove these inequalities. We put

K̃tk
tk+s := σ (tk, Xtk )

σ (tk + s, X̃
tk,Xtk
tk+s )

and K̃n,τk
τk+τ̃
−1

:= σ (tk+1,Xτk )

σ (tk+
, X̃ τk,Xτk
τk+τ̃
−1

)

and notice that by Assumption 2.1 both expressions are bounded by ‖σ‖∞δ−1. To show (67)
let us split atk+s − an

τk+τ̃

in the following way:

atk+s − an
τk+τ̃


= K̃tk
tk+s(∇X̃

tk,Xtk
tk+s − ∇X̃

tk,Xtk
tk+t
−1

) + ∇X̃
tk,Xtk
tk+t
−1

(K̃tk
tk+s − K̃tk

tk+t
−1
)

+ K̃tk
tk+t
−1

(∇X̃
tk,Xtk
tk+t
−1

− ∇X̃ τk,Xτk
τk+τ̃
−1

) + ∇X̃ τk,Xτk
τk+τ̃
−1

(K̃tk
tk+t
−1

− K̃n,τk
τk+τ̃
−1

).

Then

Ẽ sup
s∈[τ̃
−1∧tm−k,τ̃
∧tm−k]

|K̃tk
tk+s(∇X̃

tk,Xtk
tk+s − ∇X̃

tk,Xtk
tk+t
−1

)|4

≤ ‖σ‖4∞δ−4
Ẽ sup

s∈[τ̃
−1∧tm−k,τ̃
∧tm−k]
|∇X̃

tk,Xtk
tk+s − ∇X̃

tk,Xtk
tk+t
−1

|4 ≤ C(b, σ, T, δ)h,

since one can show similarly to Lemma 5.2(ii) that

Ẽ sup
s∈[τ̃
−1∧tm−k,τ̃
∧tm−k]

|∇X̃
tk,Xtk
tk+s − ∇X̃

tk,Xtk
tk+t
−1

|4 ≤ C(b, σ, T, δ)h.

Notice that ∇X̃
tk,Xtk
t and ∇X̃ τk,Xτk

τm solve the linear SDEs (66) and (65), respectively.
Therefore,

Ẽ sup
s∈[0,tm−k]

|∇X̃
tk,Xtk
tk+s |p ≤ C(b, σ, T, p) and Ẽ max

0≤
≤m−k
|∇X̃ τk,Xτk

τ̃
+τk
|p ≤ C(b, σ, T, p). (69)

For the second term we get

Ẽ sup
s∈[τ̃
−1∧tm−k,τ̃
∧tm−k]

|∇X̃
tk,Xtk
tk+t
−1

(K̃tk
tk+s − K̃tk

tk+t
−1
)|4

≤ C(σ, δ)(Ẽ|∇X̃
tk,Xtk
tk+t
−1

|8)
1
2 (Ẽ sup

s∈[τ̃
−1∧tm−k,τ̃
∧tm−k]
(|t
 − s|4 + |X̃tk,Xtk

tk+s − X̃
tk,Xtk
tk+t
 |8)

1
2

≤ C(b, σ, T, δ)h.

For the third term, Lemma 5.2(vi) implies that

Ẽ|K̃tk
tk+t
−1

(∇X̃
tk,Xtk
tk+t
−1

− ∇X̃ τk,Xτk
τk+τ̃
−1

)|4 ≤ C(b, σ, T)‖σ‖4∞δ−4(|Xtk −Xτk |4 + h).

The last term we estimate similarly to the second one:

Ẽ|∇X̃ τk,Xτk
τk+τ̃
−1

(K̃tk
tk+t
−1

− K̃n,τk
τk+τ̃
−1

)|4

≤ C(σ, δ)(Ẽ|∇X̃ τk,Xτk
τk+τ̃
−1

|8)
1
2 (|Xtk −Xτk |8 + Ẽ|X τk,Xτk

τk+τ̃
−1
− X̃

tk,Xtk
tk+t
−1

|8)
1
2

≤ C(b, σ, T, δ)(|Xtk −Xτk |4 + h).

To see (68), use the estimates (69). �
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We close this section with estimates concerning the effect of Tm,± and the discretized
Malliavin derivative Dn

k (see Definition 2.1) on Xn.

Lemma 5.4 Under Assumption 2.1, and for p ≥ 2, we have the following:

(i) E|Xn
tl − Tm,±Xn

tl |p ≤ C(b, σ, T, p)h
p
2 , 1 ≤ l, m ≤ n.

(ii) E

∣∣∣∣∇X
n,tk,Xn

tk
tm − Dn

k+1Xn
tm

σ (tk+1, Xn
tk )

∣∣∣∣p ≤ C(b, σ, T, p)h
p
2 , 0 ≤ k < m ≤ n.

(iii) E|Dn
k Xn

tm |p ≤ C(b, σ, T, p), 0 ≤ k ≤ m ≤ n.

Proof.

(i) By definition, Tm,±Xn
tl = Xn

tl for l ≤ m − 1, and for l ≥ m we have

Tm,±Xn
tl = Xn

tm−1
+ b(tm, Xn

tm−1
)h ± σ (tm, Xn

tm−1
)
√

h

+ h
l∑

j=m+1

b(tj, Tm,±Xn
tj−1

) + √
h

l∑
j=m+1

σ (tj, Tm,±Xn
tj−1

)εj.

By the properties of b and σ , and thanks to the inequality of BDG and Hölder’s
inequality, we see that

E|Xn
tl − Tm,±Xn

tl |p

≤ C(p)

(
E
∣∣σ (tm, Xn

tm−1
)
√

h(1 ± εm)
∣∣p + hp

E

∣∣∣∣∣
l∑

j=m+1

(
b(tj, Xn

tj−1
) − b(tj, Tm,±Xn

tj−1
)
)∣∣∣∣∣

p

+ h
p
2 E

∣∣∣∣∣
l∑

j=m+1

(
σ (tj, Xn

tj−1
) − σ (tj, Tm,±Xn

tj−1
)
)2∣∣∣∣∣

p
2
)

≤ C(p)

(
‖σ‖p∞h

p
2 + h(‖bx‖p∞tp−1

l−m + ‖σx‖p∞t
p
2 −1
l−m )

l∑
j=m+1

E|Xn
tj−1

− Tm,±Xn
tj−1

|p
)

.

It remains to apply Gronwall’s lemma.

(ii) By the inequality of BDG and Hölder’s inequality,

E

∣∣∣∣∇X
n,tk,Xn

tk
tm − Dn

k+1Xn
tm

σ (tk+1, Xn
tk )

∣∣∣∣p
≤ C(p, T)

(
|bx(tk+1, Xn

tk )h + σx(tk+1, Xn
tk )

√
hεk+1|p

+ hp
m∑

l=k+2

E

∣∣∣∣bx(tl, Xn
tl−1

)∇X
n,tk,Xn

tk
tl−1

− b(k+1,l)
x

Dn
k+1Xn

tl−1

σ (tk+1, Xn
tk )

∣∣∣∣p

+ h
p
2

m∑
l=k+2

E

∣∣∣∣σx(tl, Xn
tl−1

)∇X
n,tk,Xn

tk
tl−1

− σ (k+1,l)
x

Dn
k+1Xn

tl−1

σ (tk+1, Xn
tk )

∣∣∣∣p).
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Since by Lemma 5.4(i) we conclude that

E|b(k+1,l)
x − bx(tl, Xn

tl−1
)|2p +E|σ (k+1,l)

x − σx(tl, Xn
tl−1

)|2p ≤ C(b, σ, T, p)hp,

and Lemma 5.2 implies that

E sup
k+1≤l≤m

∣∣∣∇X
n,tk,Xn

tk
tl−1

∣∣∣2p ≤ C(b, σ, T, p),

the assertion follows by Gronwall’s lemma.

(iii) This is an immediate consequence of (i). �
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