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The effects of a water surface wave on the vorticity in the turbulence underneath
are studied for Langmuir turbulence using wave-phase-resolved large-eddy simulation.
The simulations are performed on a dynamically evolving wave-surface-fitted grid
such that the phase-resolved wave motions and their effects on the turbulence are
explicitly captured. This study focuses on the vorticity structures and dynamics
in Langmuir turbulence driven by a steady and co-aligned progressive wave and
surface shear stress. For the first time, the detailed vorticity dynamics of the
wave–turbulence interaction in Langmuir turbulence in a wave-phase-resolved frame is
revealed. The wave-phase-resolved simulation provides detailed descriptions of many
characteristic features of Langmuir turbulence, such as elongated quasi-streamwise
vortices. The simulation also reveals the variation of the strength and the inclination
angles of the vortices with the wave phase. The variation is found to be caused
by the periodic stretching and tilting of the wave orbital straining motions. The
cumulative effect of the wave on the wave-phase-averaged vorticity is analysed
using the Lagrangian average. It is discovered that, in addition to the tilting effect
induced by the Lagrangian mean shear gradient of the wave, the phase correlation
between the vorticity fluctuations and the wave orbital straining is also important
to the cumulative vorticity evolution. Both the fluctuation correlation effect and
the mean tilting effect are found to amplify the streamwise vorticity. On the other
hand, for the vertical vorticity, the fluctuation correlation effect cancels the mean
tilting effect, and the net change of the vertical vorticity by the wave straining is
negligible. As a result, the wave straining enhances only the streamwise vorticity
and cumulatively tilts vertical vortices towards the streamwise direction. The above
processes are further quantified analytically. The role of the fluctuation correlation
effect in the wave-phase-averaged vorticity dynamics provides a deeper understanding
of the physical processes underlying the wave–turbulence interaction in Langmuir
turbulence.

Key words: wave–turbulence interactions, ocean processes

† Email address for correspondence: shen@umn.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-0065-1394
https://orcid.org/0000-0003-1483-9694
https://orcid.org/0000-0003-3762-3829
mailto:shen@umn.edu
https://doi.org/10.1017/jfm.2019.481


174 A. Xuan, B.-Q. Deng and L. Shen

1. Introduction
Turbulence in the upper ocean is crucial to the transport of momentum, mass and

heat (Leibovich 1983; McWilliams & Sullivan 2000; Kukulka et al. 2009; D’Asaro
2014). Notably, Langmuir turbulence, often present when wind blows over surface
waves, is considered one of the most common types of upper-ocean turbulence.
Langmuir turbulence is important to many geophysical applications, including air–sea
interactions (Thorpe 2004; Sullivan & McWilliams 2010), global climate (Fan &
Griffies 2014; Li et al. 2016), transport of bubbles and pollutants (Li 2000; Thorpe
et al. 2003; Yang, Chamecki & Meneveau 2014a; Yang et al. 2015) and marine
ecosystems (Lewis 2005).

Langmuir turbulence is characterised by the presence of an array of long and
counter-rotating vortical structures under the water surface. First studied by Langmuir
(1938), these underwater motions are referred to as Langmuir circulations. The
circulating structures induce the amalgamation of buoyant materials, such as algae
and foam, on the surface, forming long and narrow bands called windrows.

There have been several theories on the generation of Langmuir circulations. The
most notable one is the Craik–Leibovich (CL) theory (Craik & Leibovich 1976;
Leibovich 1977b), which utilizes a wave–current interaction mechanism to explain
the causes of Langmuir circulations. Because the wave period is usually much shorter
than the characteristic time scales of the current and Langmuir circulations, the
current motions are averaged over multiple wave periods and the equations (CL
equations) describing the averaged current motions are obtained. The time-averaged
wave effect on the long-term evolution of the current motions is modelled as a vortex
force, us × ω, an outer product of the averaged vorticity ω and the Stokes drift of
the wave us. The CL equations are easy to use because the waves do not need to be
explicitly resolved.

In recent years, numerical simulations based on the CL equations, especially those
using large-eddy simulation (LES) (see e.g. Skyllingstad & Denbo 1995; McWilliams,
Sullivan & Moeng 1997; Li, Garrett & Skyllingstad 2005; Tejada-Martínez & Grosch
2007; Harcourt & D’Asaro 2008; Grant & Belcher 2009; Kukulka et al. 2009;
Sullivan et al. 2012; Deng et al. 2019), have been successful in reproducing many
features of the Langmuir circulations observed in the field and have advanced our
understanding of the Langmuir circulations in the turbulence setting. Langmuir
circulations are now considered as the turbulent coherent structures arising from the
wave–turbulence interaction, and span a wide range of spatial and temporal scales
(Thorpe 2004).

The wave–turbulence interaction problem is complex, partially because the
Lagrangian and Eulerian aspects of the surface gravity wave introduce different
time scales on which the wave interacts with the subsurface turbulence. The Stokes
drift in the vortex force describes the Lagrangian transport of fluid particles by the
wave (Stokes 1847; Longuet-Higgins 1953). The Stokes drift velocity is used in the
CL equations to model the accumulative long-term distortion effects of the wave on
the turbulence. Other than the accumulative drift, a progressive wave has an orbital
velocity field that induces a straining field that varies periodically with the wave
phase. As a result, the turbulence underneath the surface wave undergoes alternating
stretching and shear straining within a wave period as the wave passes by. Since the
CL equations describe only the long-term averaged flow, the motions with a time
scale shorter than a wave period are not resolved.

The direct modulation effects of the wave on the turbulence have been studied
by several theoretical (Teixeira & Belcher 2002), experimental (Jiang & Street 1991;
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Wave effect on vorticity in Langmuir turbulence 175

Rashidi, Hetsroni & Banerjee 1992) and numerical (Guo & Shen 2013, 2014)
works. Turbulence statistics, such as the Reynolds stress, are found to vary with
the wave phase. The coherence between the turbulence and wave phase is also
observed in field measurements (Veron, Melville & Lenain 2009). However, existing
theoretical and numerical studies are often restricted to the simple isotropic turbulence
set-up and shear-free surface condition, which lacks the surface wind shear and
therefore has different turbulence forcing from the Langmuir turbulence. Experimental
measurements, on the other hand, are often challenging in the near-surface region to
obtain precise quantifications of turbulence modulation by the wave. The works cited
above, however, have suggested the important role of wave-phase-correlated turbulence
fluctuations in the wave–turbulence interactions and the necessity to further study the
modelling of the wave effects.

Furthermore, the vortex force modelling of the cumulative wave effect in the
CL equations has not been directly validated, especially under a turbulence setting,
therefore the validity of the modelling still remains indefinite. There have been a
few numerical simulations of Langmuir circulations with phase-resolved wave (Zhou
1999; Kawamura 2000; Fujiwara, Yoshikawa & Matsumura 2018; Wang & Özgökmen
2018), which have provided some comparisons with the CL theory. The above works
found that, although the flow statistics from the wave-phase-resolved simulations
and CL simulations are qualitatively similar, some results are different quantitatively.
Zhou (1999) and Wang & Özgökmen (2018) found that the CL simulations produce
weaker Langmuir circulations than the wave-phase-resolved simulations due to the
lack of the Eulerian mean drift associated with a viscous gravity wave. However, the
conclusion is drawn from simulations using a constant eddy viscosity. Zhou (1999)
also performed LES of Langmuir turbulence under an explicit surface wave and
found that the wave-phase-resolved simulation results in stronger turbulence than the
CL-based LES, which is attributed to the lack of the fast turbulence fluctuations
that have time scales similar to the waves in the CL-based LES. This again implies
that the wave-phase-correlated turbulence fluctuations that are filtered out in the CL
equations can be important to the dynamics of Langmuir turbulence.

The present study aims to use wave-phase-resolved LES to perform a detailed
study of the vorticity dynamics to shed light on the mechanisms of the generation
and evolution of the Langmuir circulations, specifically the effects of wave straining
and wave-phase-correlated turbulence fluctuations. Focusing on the fundamental
mechanisms of wave–turbulence interaction, we consider a canonical set-up, where
a turbulent flow is driven by a monochromatic progressive wave and a prescribed
shear stress on the surface that are aligned in the same direction, corresponding to
the classical modelling of the CL theory (e.g. Craik 1977; Leibovich 1977a). The
simulations are carried out in a dynamically moving, wave-surface-fitted domain
(Yang & Shen 2011; Xuan & Shen 2019). The simulations resolve the wave and
turbulent motions directly, such that both the instantaneous and cumulative effects of
the wave on the turbulence are captured.

Our simulations reveal detailed information about the wave-phase variation of the
vorticity statistics and the effects of wave straining on the variation of vorticity.
The cumulative effect of wave straining on vorticity is further analysed through the
Lagrangian average of the terms in the vorticity evolution equations to obtain an
understanding of the wave-phase-averaged vorticity evolution. It is found that the
correlations between the wave-phase variation of the vorticity and the wave orbital
straining are important to the long-term evolution of the vorticity. The correlation
effect contributes to the growth of the streamwise vorticity, but offsets the change
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FIGURE 1. (Colour online) Sketch of the simulation set-up. The hollow arrow on the
surface indicates the direction of wave propagation (with phase speed c) and surface shear
stress.

of vertical vorticity, resulting in an increase in the streamwise vorticity only. The
mechanism of the correlation effect is then explained in this study with detailed
analytical quantification, providing a deeper understanding of the vorticity dynamics
in wave–turbulence interactions.

This paper is organized as follows. In § 2, the problem set-up, numerical method
and simulation parameters are given. A triple decomposition method that separates the
current, wave and turbulence is also introduced in § 2 as the basis of the subsequent
analyses. In § 3, the flow features of the Langmuir turbulence captured by our
wave-phase-resolved simulations, including an overview of the wave-phase-modulation
effect on the vortices, are presented. In § 4, the wave velocity field and the associated
straining field are assessed, which facilitates the discussion of the vorticity distortion
by the wave. Then, in § 5, we perform detailed analyses of the variation of the
turbulence vorticity with the wave phase and its mechanism. In § 6, the Lagrangian
vorticity evolution is analysed, with focus on the cumulative effect of the wave
straining on the vorticity. The conclusions of this paper and suggestions for future
studies are given in § 7.

2. Problem set-up and numerical methods
In this section, we first introduce the problem set-up and governing equations

in §§ 2.1 and 2.2. Then, the numerical method and the computational parameters
are described in §§ 2.3 and 2.4, respectively. Finally, in § 2.5, we introduce a triple
decomposition method that employs the theory of generalized Lagrangian mean
(GLM) (Andrews & Mcintyre 1978) to decompose the flow motions into the current,
wave and turbulence for the subsequent analyses.

2.1. Problem set-up
For the mechanistic study of the wave–turbulence interaction processes, we consider a
statistically steady turbulent flow driven by a monochromatic progressive wave, with
a constant surface shear stress representing the wind shear applied on the surface.
The simulations are performed in a horizontally periodic box bounded by a surface
wave, as shown in figure 1. The wave propagation direction and the surface stress
direction are aligned in the x-direction. The shear stress is tangential to the wave
surface in the x–z plane. A dynamic pressure forcing is imposed on the surface to keep
the waves from decaying or distortion (Guo & Shen 2009). With the constant wave
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and shear stress forcing, the Langmuir turbulence develops and reaches a statistically
steady state, based on which we perform the analyses on the vorticity dynamics. We
also note that the present study of Langmuir turbulence is different from the previous
study of isotropic turbulence below a surface wave by Guo & Shen (2013, 2014). In
Langmuir turbulence, the turbulence is generated due to the wind shear applied at the
wave surface and is modulated by the wave (Craik 1977; Leibovich 1977a; Leibovich
& Paolucci 1980, 1981). By contrast, in Guo & Shen (2013, 2014), no wind shear
stress is applied at the surface and isotropic turbulence is generated by a random force
in the bulk flow. Therefore, these are two different problems.

Because the present study focuses on the fundamental mechanism of the wave
effect on the turbulence, we intentionally maintain a stationary surface wave to
isolate the dynamical processes in the turbulence. We shall note that the current and
turbulence underneath can also affect the wave field, including changing the dispersion
relation (Kirby & Chen 1989; Swan, Cummins & James 2001) and inducing wave
scattering and damping (Vivanco & Melo 2004; Ardhuin & Jenkins 2006; Gutiérrez
& Aumaître 2016). Although the wave-phase-resolved simulation can be used to study
the turbulence effect on the surface waves and the effect of temporal variation of the
wave on the turbulence (Phillips 2002), they are beyond the scope of this research. In
addition, as discussed in the following sections, the current and turbulence resulting
from the set-up are weak compared with the wave orbital motions, and the wave
field evolves slowly compared with the wave period (Thorpe 2004). Therefore, it is
reasonable to maintain a steady wave such that the wave effect on the turbulence can
be quantified accurately.

2.2. Governing equations and boundary conditions
In this study, the turbulent flow is modelled by LES. For a fluid with constant
density ρ and kinematic viscosity ν, the grid-resolved flow motions in an Earth-fixed
Eulerian frame are described by the filtered incompressible Navier–Stokes equations
and continuity equation,

∂ui

∂t
+
∂(uiuj)

∂xj
=−

1
ρ

∂p
∂xi
+ ν

∂2ui

∂xjxj
−
∂τ d

ij

∂xj
, (2.1)

∂uj

∂xj
= 0. (2.2)

In the above equations, xi (i = 1, 2, 3) denote the Cartesian coordinates (x, y, z),
respectively; ui denote the components of the filtered Eulerian velocity (u, v,w); τ d

ij =

τij − τii/3 (i, j = 1, 2, 3) is the trace-free part of the subgrid-scale (SGS) stress τij;
and p is the modified dynamic pressure, which includes the isotropic part of the SGS
stress τii/3.

At the free surface z = η(x, y), where η is the surface elevation, we impose a
constant tangential shear stress τ0 in the x–z plane and a dynamic pressure pa. The
value of pa is determined based on the wave surface elevation and the surface velocity
to maintain a monochromatic progressive wave (Guo & Shen 2009). The work done
by pa compensates the wave energy loss such that the wave amplitude is sustained.
The detailed form of pa is given in appendix A. The stress balance at the interface is
given by the dynamic boundary conditions (DBCs),

n · σ · nT
=−pa, (2.3a)

t1
· σ · nT

= τ0, (2.3b)
t2
· σ · nT

= 0. (2.3c)
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The above equations relate the pressure pa and shear stress τ0 to the total stress
tensor σ =−(p− ρgz)I + 2ρνS, where I is the identity tensor, g is the gravitational
acceleration and S = (∇u + ∇uT)/2 is the resolved strain rate tensor. Also in the
above equations, n is the surface normal vector; t1 and t2 are the surface tangential
vectors in the x–z and y–z planes, respectively. These vectors are calculated by

n=
(−ηx,−ηy, 1)√
η2

x + η
2
y + 1

, t1
=
(1, 0, ηx)√

1+ η2
x

, t2
=
(0, 1, ηy)√

1+ η2
y

, (2.4a−c)

where ηx and ηy denote ∂η/∂x and ∂η/∂y, respectively.
The evolution of η is governed by the kinematic boundary condition (KBC),

∂η

∂t
=w− uηx − vηy, at z= η. (2.5)

We note here that the SGS effect on the free-surface boundary conditions is still an
open problem but is usually considered to be negligibly small (Hodges & Street 1999;
Dimas & Fialkowski 2000). Meanwhile, the SGS effect on the boundary is minimized
in the present study with a sufficient grid resolution to achieve wall-resolved LES
(§ 2.4).

The bottom is free slip, where the velocity boundary condition is given by

∂u
∂z
=
∂v

∂z
= 0, w= 0, at z=−H̄. (2.6)

Because the shear is often weak at the base of the ocean surface boundary layer
(Belcher et al. 2012), the free-slip boundary condition is imposed to minimize the
impact of the bottom of the domain as long as H̄ is sufficiently large (Shen et al.
1999). Under realistic conditions, body forces such as the Coriolis force balance
the momentum. In this study, to focus on the mechanisms of the wave–turbulence
interaction, we use a uniform adverse pressure gradient ∂p/∂x = τ0/H̄ to balance
the shear stress at the upper surface so that the total momentum in the flow does
not increase with time, which facilitates the analyses of statistics. The imposed
pressure gradient is small compared to other effects (especially the wave forcing) in
the system, therefore ought not to qualitatively change the fundamental mechanisms
of the wave–turbulence interaction that we are interested in. More details of the
magnitude of the forcing are discussed in § 2.4.

The SGS stress τ d
ij in (2.1) is computed using a Lagrangian dynamic scale-dependent

model (Bou-Zeid, Meneveau & Parlange 2005)

τ d
ij =−2C∆|Sij|Sij, (2.7)

where |Sij| =
√

2SijSij is the magnitude of the tensor Sij and C∆ is the Smagorinsky
coefficient. The C∆ is dynamically determined based on the weighted average of
the flow information along pathlines. The dynamic model removes the necessity to
determine C∆ on an ad hoc basis (Germano et al. 1991), and the Lagrangian average
formulation improves the model’s capability to address the inhomogeneity in flows
with complex geometries (Meneveau, Lund & Cabot 1996; Stoll & Porté-Agel 2006;
Yang, Meneveau & Shen 2014b,c), such as the waves in the present study. This
model also takes the scale dependency of C∆ into consideration. Traditional dynamic
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FIGURE 2. Curvilinear coordinates used in the simulations. Only one x–z (ξ–ζ ) plane
is shown.

model applies a test filter with scale ∆̃ (typically ∆̃ = 2∆) to the resolved velocity
and calculates C∆ using the flow information at both grid filter scale and test filter
scale. The calculation utilizes the assumption that C∆ does not depend on the filter
scale, i.e. C∆ = C∆̃. However, it is found that the scale-invariance assumption does
not always hold, especially near the boundary (Porté-Agel, Meneveau & Parlange
2000). The scale-dependent model introduces another test filter with width ∆̂ (e.g.
∆̂= 2∆̃= 4∆) and is thus able to determine how the Smagorinsky coefficient varies
with the filter width using three levels of the filtered flow fields. This tuning-free
scale-dependent model has been shown to yield good predictions of near-surface flow
features (Porté-Agel et al. 2000).

2.3. Numerical methods
The governing equations (2.1) and (2.2) are transformed to and solved on a surface-
boundary-fitted curvilinear coordinate system (ξ i, τ ). The numerical approach (Yang
& Shen 2011; Xuan & Shen 2019) has been proven to be accurate and effective in
resolving the flow details in the wave boundary layer, e.g. the distortion effects of
waves on turbulence (Guo & Shen 2013, 2014) and wind–wave interactions (Yang,
Meneveau & Shen 2013; Yang et al. 2014c).

The transformation between the Cartesian and curvilinear coordinates is defined as

ξ 1
= x1, ξ 2

= x2, ξ 3
=

z+ H̄
η+ H̄

, τ = t. (2.8a−c)

Hereafter, (ξ 1, ξ 2, ξ 3) are also denoted as (ξ , ψ, ζ ). In the transformation (2.8),
the varying depth in the physical space is normalized to a unit dimension in the
curvilinear coordinates (0 6 ζ 6 1). As an example, the transformation of a vertical
x–z plane is illustrated in figure 2, where the curvilinear coordinate curves for ξ and
ζ are plotted schematically.

Applying (2.8) to (2.1) and (2.2), we obtain the governing equations under the
curvilinear coordinates as

∂(J−1ui)

∂τ
−
∂(J−1Uj

gui)

∂ξ j
+
∂(J−1Ujui)

∂ξ j

=−
∂

∂ξ j

(
J−1 ∂ξ

j

∂xi
p
)
+

1
Re

∂

∂ξ j

(
J−1gij ∂ui

∂ξ j

)
−

∂

∂ξ k

(
J−1 ∂ξ

k

∂xj
τ d

ij

)
, (2.9)
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∂Uj

∂ξ j
= 0. (2.10)

Here, Ui
= uk(∂ξ

i/∂xk) is the contravariant velocity; Ui
g = δk3ηtξ

3(∂ξ i/∂xk) is the
contravariant grid velocity; J = det(∂ξ i/∂xj) is the Jacobian determinant of the
transformation; gij

= (∂ξ i/∂xk)(∂ξ
j/∂xk) is the metric tensor of the transformation. We

remark that the above equations are written and discretized in a strong conservative
form under the curvilinear coordinates. We find that this practice greatly improves the
conservation of mass and momentum in the simulations. The velocity and time scales
in Langmuir turbulence span over a wide range. The turbulent motions generally have
much smaller velocity than the wave-induced orbital velocity, and have a much longer
characteristic time scale of evolution than the wave period. The disparate scales make
the simulation of turbulence prone to the contamination by numerical errors. We find
that the strong conservative scheme greatly reduces the numerical errors in mass and
momentum conservations (Xuan & Shen 2019).

The horizontal directions ξ and ψ are discretized by uniformly distributed Fourier
collocation points. The spatial derivatives with respect to ξ and ψ are obtained in
the spectral space. The discretization in the ζ -direction employs a second-order finite-
difference scheme, which allows more flexibility in the grid distribution to have fine
resolution near the water surface. A staggered arrangement of the locations of the
dependent variables is used in the ζ -direction to avoid the odd–even decoupling. The
velocity components (u, v), (U, V) and the pressure p are located at the cell centre,
while w and W are located half a grid spacing off at the cell face.

The solution of the Navier–Stokes equations (2.10) is coupled with the evolution
of the free surface. The surface elevation η(x, y, t) is obtained from the integration
of (2.5) using a two-stage Runge–Kutta scheme,

Stage I: η̂= η|t +1t(w− uηx − vηy)|t, (2.11a)

Stage II: η|t+1t = η̂−
1t
2
(w− uηx − vηy)|t +

1t
2
(ŵ− ûη̂x − v̂η̂y), (2.11b)

where ˆ(·) denotes the intermediate prediction at t + 1t, and (·)|t denotes the terms
evaluated at time t. In each stage after obtaining η, the Navier–Stokes equations (2.9)
are integrated using a fractional-step method (Kim & Moin 1985) to update the
velocity in the new domain bounded by the water surface. The procedures to advance
the system from t to t+1t are as follows,

(i) Obtain η̂ using (2.11a).
(ii) Calculate û and p̂ in the domain with the elevation η̂ by integrating equations (2.9)

from t to t+1t subject to the constraint (2.10).
(iii) Obtain the corrected surface elevation η|t+1t using (2.11b).
(iv) Calculate u and p in the domain with the elevation η|t+1t by integrating (2.9)

again from t to t+1t as in the step (ii), but with the corrected elevation η|t+1t.

The velocity and pressure obtained from the above step (iv) are the solution of the
flow field at t+1t. The above method has been tested extensively by Xuan & Shen
(2019).

2.4. Computational parameters
In the present study, we mainly focus on the effects of the wave on the turbulence,
therefore simulations with different turbulent Langmuir numbers Lat =

√
u∗/Us
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Case Lat ak c/u∗ ω/u∗H̄−1 Fr akω/u∗H̄−1

L1 0.35 0.084 1.16× 103 4.05× 103 4.62× 10−4 3.40× 102

L1S 0.35 0.15 3.63× 102 1.27× 103 1.47× 10−3 1.90× 102

L2 0.5 0.084 5.67× 102 1.93× 103 9.43× 10−4 1.67× 102

L3 0.9 0.084 1.75× 102 6.12× 102 3.05× 10−3 51.44
S ∞ — — — — —

TABLE 1. Computational parameters of Langmuir turbulence in the present study.

and wave steepness ak are considered (table 1). The turbulent Langmuir number
(McWilliams et al. 1997) associated with the friction velocity of wind-driven shear u∗
and the surface Stokes drift Us is an important dimensionless parameter quantifying
the relative strength of wind shear forcing versus wave forcing. A smaller Lat
indicates stronger wave effects and stronger Langmuir turbulence. The friction
velocity u∗ is associated with the imposed shear stress τ0 by u∗ =

√
τ0/ρ. The

Lat ranges from 0.35 to 0.9, corresponding to cases with strong to weak wave
forcing. Strong Langmuir turbulence is expected when the wave forcing dominates
over the shear stress forcing. The flow features change to those of the shear-driven
turbulence as Lat increases (Li et al. 2005). The Lat values considered above are
consistent with the range of typical ocean conditions (Thorpe 2004). The case S is
a pure shear-driven turbulent flow with no prescribed waves for comparison with the
Langmuir turbulence cases. For cases L1, L2 and L3, we set the wave steepness
ak to 0.084, where a and k are the amplitude and the wavenumber of the surface
wave, respectively. A case L1S with a steeper wave but the same Lat as in case L1
is set up to study the effects of wave steepness. The dimensionless wavenumber kH̄
is set to 3.5, corresponding to a deep-water wave with wavelength λ= 4πH̄/7. The
remaining wave-related parameters in table 1 are derived from Lat, ak and kH̄ using
the estimation from the linear wave theory. The surface Stokes drift is related to the
wave phase speed c through Us = (ak)2c according to the linear wave theory, and
thus c/u∗ = (ak)−2La−2

t . The wave frequency ω = ck normalized by the shear strain
rate u∗/H̄ is ω/(u∗H̄−1) = (c/u∗)(kH̄), which also represents the ratio of the wave
frequency to the frequency of the eddy turnover motion in the turbulent flow. Also
given in table 1 is the Froude number Fr = u∗/(gH̄)

1/2
= u∗/c(kH̄)

1/2. For reference,
we provide an example of the typical dimensional parameters that correspond to
case L1. The wavelength and the wavenumber for the surface wave are λ = 60 m
and k= 2π/λ= 0.105 m−1, respectively, which have been used in LES of Langmuir
circulation (McWilliams et al. 1997; Li et al. 2005). The corresponding surface
Stokes drift is Us = 0.068 m s−1, and the friction velocity is u∗ = 8.3× 10−3 m s−1.

With the parameters above, we can compare the relative magnitudes of the different
quantities in the system. As shown in table 1, the velocity scale of the current and
turbulent motions, being O(u∗), is much smaller than the wave phase speed c. As a
result, it is expected that the modification of the current on the wave propagation
is small. The separation of the velocity scales also corresponds to disparate forcing
scales. The straining rate due to the wave orbital velocity, associated with the direct
forcing of the wave applied on the turbulence, is O(akω). This is significantly larger
than the shearing of the current, which is O(u∗/H̄), as shown in the last column of
table 1. Using the wave strain rate, the forcing of the wave straining on the turbulence
is estimated to be O(ρakωu∗), which is much larger than the applied pressure gradient
ρu2
∗
/H̄, also shown in the last column of table 1.
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For the 60 m wave in oceans with a 8.3× 10−3 m s−1 friction velocity discussed
above, Reτ = u∗H̄/ν is O(105). To have the same Reynolds number, the LES
would need wall-layer modelling. However, the accuracy of wall-layer modelling in
wave-phase-resolved free-surface simulation is still unknown. Here, for the purposes
of mechanistic study of wave–turbulence interactions and establishing an accurate
dataset for future wall-layer modelling study, we choose to perform wall-resolved
LES at a moderate Reynolds number Reτ = 2000 such that the near-surface dynamics
of wave–turbulence interactions is captured accurately. We note that some previous
CL equations based study of Langmuir turbulence also employed the wall-resolved
LES approach with reduced Reynolds number to resolve the boundary layer for
mechanistic study (see e.g. Tejada-Martínez et al. (2009) and more discussions in
Deng et al. (2019) recently). In the future, after the wall-layer modelling is validated
for wave-phase-resolved LES of free-surface turbulence, it would be desirable to
perform wall-modelled wave-phase-resolved LES for Langmuir turbulence with
realistic Reynolds number directly. All the simulations are performed in a domain
with a size Lx×Ly× H̄= 16πH̄/7× 16πH̄/7× H̄. This domain allows four periods of
the wave in the x-direction. The domain size is comparable with previous simulations
based on the CL equations in terms of the ratio of the mixed layer depth to the
horizontal lengths (McWilliams et al. 1997; Li et al. 2005; Kukulka et al. 2009). The
domain size is further confirmed to be sufficiently large according to the two-point
auto-correlation (appendix B). The domain is discretized by a grid of 288× 512× 217
points. The horizontal discretization is uniform with the streamwise and spanwise
grid resolutions being 1x+ = 49.9 and 1y+ = 28.0, respectively. The vertical grid is
condensed near the free surface, where the minimum grid spacing is 1z+|min = 0.49.
Here, the superscript ‘+’ denotes the wall-unit length defined as x+i = xiu∗/ν. The grid
resolution satisfies the requirement of boundary-resolving approach, i.e. 1x+ ' 50,
1y+' 30 and 1z+|min < 1, which is needed for resolving the small-scale longitudinal
vortical structures in the viscous sublayer that typically have a streamwise length of
a few hundred wall units and a spanwise spacing of approximately 100 wall units
(Chapman 1979; Piomelli & Balaras 2002; Choi & Moin 2012; Yang et al. 2013).

Simulations are initialized with a linear wave solution. Initial random disturbance
is added to the near-surface region kz > −0.2 as seeds for turbulence generation.
The shear stress is imposed on the wave surface when the simulation starts. The
simulations run for at least 20 eddy turnover time H̄/u∗, at which all cases reach the
statistically steady state. Then, the simulations are run for another 25 eddy turnover
time, which we find to be sufficiently long for statistical analyses.

2.5. Triple decomposition and averaging techniques
Because our wave-phase-resolved simulations capture the wave orbital motions,
current and turbulent fluctuations simultaneously, it is important to decompose the
flow motions so that we can consider the effects of different components separately.
The total resolved velocity u is decomposed into the mean current uc, the wave
orbital motions uw and the turbulence fluctuation u′, i.e.

u= uc + uw + u′. (2.12)

Such decomposition is similar to the triple decomposition used for the analysis of
the wind field over a progressive wave, where the velocity is decomposed into the
mean velocity, wave-coherent velocity and turbulence (see e.g. Yang & Shen 2010;
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Yang et al. 2014b). Each component of the total flow, including the current, wave
motions and the turbulence, is obtained through a decomposition described below.

Assuming that both the mean current and the wave orbital motions are spanwise
invariant and periodic with the wave period, the sum of the two can be obtained by
a phase averaging as

uc + uw = 〈u〉(x, z, t)=
1

4LyT

3∑
n=0

[∫ Ly

0

∫ t+T

t
u(x+ cτ + nλ, y, z, τ ) dτdy

]
. (2.13)

Here, T is the averaging period. The phase-averaging operator 〈·〉 is essentially a
spanwise averaging performed in the wave-following frame, and the average is also
performed over the four waves (corresponding to n= 0, 1, 2, 3) in the domain due to
the periodicity.

In 〈u〉, the current part uc and the wave part uw are tangled together in a wavy
domain. To separate them, we employ the GLM theory (Andrews & Mcintyre 1978),
which provides an unambiguous way to separate the mean part (current) and the
oscillatory part (wave motions) based on a Lagrangian description of the flow. We
use the quasi-Eulerian mean velocity from the GLM theory as the current velocity
uc, i.e.

uc = uL
− p. (2.14)

Then the wave component uw is obtained as

uw = 〈u〉 − uc. (2.15)

Here, uL is the Lagrangian mean velocity and p is the pseudo-momentum. Their
definitions are given below.

The Lagrangian mean velocity uL is defined as

uL(x, t)=
1
TL

∫ TL

0
〈u〉(x+ δx(x, τ ), τ ) dτ , (2.16)

where TL is the Lagrangian wave period (Longuet-Higgins 1986) and x + δx is the
trajectory of a fluid particle convected by the mean velocity 〈u〉. The trajectory is
expressed as a displacement δx(x, t) relative to the mean position x by requiring

1
TL

∫ TL

0
δx(x, τ ) dτ = 0. (2.17)

Therefore, the GLM theory associates the Lagrangian mean quantity with the mean
location x, and δx is a fluctuating quantity. The Lagrangian fluctuation velocity is
naturally defined as

ul(x, δx, t)= 〈u〉(x+ δx(x, t))− uL. (2.18)

Due to the periodicity of the mean flow and the quasi-steadiness in our problem set-up,
the GLM depends only on the mean vertical coordinate, i.e. uL(x, t) is reduced to
uL(z). The pseudo-momentum p is defined as

pi =
1
TL

∫ TL

0

∂(δxj)

∂xi
ul

j dτ , (2.19)
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FIGURE 3. (Colour online) Vertical profiles of the different components arising from the
wave–current decomposition of case L1: —— uL, — · — px, – – – uc and · · · · · · 〈u〉xy.
The 〈u〉xy is defined only up to the wave trough, and its profile is close to uc. Only
the x-components are compared because the z-components are negligible. The results are
normalized by u∗.

which is contributed by the fluctuating quantities and is thus a property of the
oscillatory flow (wave).

We note that, strictly speaking, 〈u〉 extracted by the phase averaging (2.13) includes
the mean current and all spanwise-invariant oscillatory motions that move with the
wave phase speed c, and the latter may include turbulence structures that are spanwise
uniform and have a convection speed of c. However, in this study, the turbulence
motions are much weaker than the wave orbital motions. Therefore, we assume the
oscillatory motions uw obtained from (2.15) are all due to the gravity surface wave.
It is also confirmed later in § 4.1 that uw generally agrees with the velocity of a Stokes
wave.

The quasi-Eulerian definition of the current has the advantage of being able to
account for the region between wave troughs and crests. By contrast, the Eulerian
mean 〈u〉xy, where 〈·〉xy denotes the average over the x–y plane, is well defined up to
the wave trough. Leibovich (1980) shows that the Stokes drift us = uL

− 〈u〉xy differs
from p by O(a3k3U), where U is the characteristic velocity scale of the current and
is O(u∗) as discussed in § 2.4. The difference between the Eulerian mean 〈u〉xy and
the quasi-Eulerian velocity uc is also O(a3k3U). Therefore, the Eulerian current can
be approximated by the quasi-Eulerian current. Figure 3 shows an example of the
wave–current decomposition (2.14) and the Eulerian current 〈u〉xy. In the figure, 〈u〉xy,
which is defined only up to the wave trough, is very close to uc in the region below
the wavy surface. After the above decomposition procedure, the current and wave
components are separated, so that we can analyse the effects of waves and current on
the turbulence individually. For the shear-driven turbulence with a flat surface, there
exists no wave motions or turbulence structures that move as fast as the wave phase
speed. Therefore, both p and uw are zero, and the Lagrangian average is the same as
the Eulerian average, i.e. uL

= uc = 〈u〉xy.

3. Flow features of Langmuir turbulence
The characteristic features of Langmuir turbulence, which are successfully captured

in our wave-phase-resolved simulations, are presented and compared with those of the
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FIGURE 4. (Colour online) Profiles of current velocity uc for Langmuir turbulent flows in
cases L1 (——), L1S (— · · —), L2 (– – –), L3 (— · —) and the shear-driven turbulence
case S (· · · · · ·). (a) Plots the normalized current velocity uc/u∗, and (b) plots the current
using the velocity difference from the surface value, uc − utop. In (a), the current velocity
in cases L1, L1S and L3 are very close in the bulk region. In both (a) and (b), two
dimensionless vertical coordinates are used, which are kz (left axis) and the viscous units
z+ =−zu∗/ν (right axis).

shear-driven turbulence in this section. The mean current is first examined in § 3.1.
Then, the surface flow structures (windrows) are illustrated in § 3.2. The instantaneous
turbulence vortices are shown in § 3.2, where the wave-phase dependency of the
turbulence field is observed. In § 3.3, the characteristics of the vortex structures
are further examined based on the conditional averaging obtained from the linear
stochastic estimation method.

3.1. Current
Figure 4(a) shows the profiles of the current uc. For all the wave-forcing cases
considered in this study, the current exhibits nearly uniform distribution from the
bottom to the near-surface region, indicating that the bulk flow is well mixed vertically.
Only in the vicinity of the surface does uc increase rapidly. On the other hand, the
current profile of the shear-driven turbulence in case S has a larger gradient. As a
result, the current in the wave-forcing cases is much weaker than the shear-driven
current. This well mixed bulk flow when the wave is present is consistent with
the feature of strong vortices in Langmuir turbulence, which enhance the vertical
fluctuations and thus the mixing significantly (Thorpe 2004; Sullivan & McWilliams
2010).

To show the near-surface behaviour more clearly, figure 4(b) plots the profiles of the
current using the velocity difference from the surface value, uc − utop, with respect
to the distance from the surface in viscous units z+ = −zu∗/ν in semi-logarithmic
scale. In the shear-driven turbulence (case S), the current profile exhibits a logarithmic
region as expected. Applying a least-square fitting of the profile between z+ > 30
and z/H̄ > −0.15 (z+ < 300), we obtain the von Kármán coefficient κ = 0.39 and
b = 1.7 in the logarithmic law of the wall u/u∗ = κ−1 ln z+ + b. The coefficients
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FIGURE 5. Distribution of 104 particles after being randomly released on the surface
in the (a–c) Langmuir turbulence (case L1) and (d–e) shear-driven turbulence (case S).
(a,d) Initial particle distribution at t = 0; (b,e) at tu∗/H̄ = 0.156 (100 wave periods after
releasing); (c,f ) at tu∗/H̄ = 0.311 (200 wave periods after releasing).

are consistent with the direct numerical simulation of shear-driven turbulence in Tsai,
Chen & Moeng (2005), where κ was found between 0.35 and 0.4, and b between
1.1 and 1.9. In contrast, when the wave is present, the velocity difference between
the top and bottom is significantly reduced. Most of the velocity change occurs in the
near-surface region (figure 4a), where the viscous effect is significant. The logarithmic
region is not obvious in the cases with wave (figure 4b). As Lat decreases, the velocity
difference also becomes smaller, indicating that the momentum mixing is enhanced
by the wave forcing. The uniformity of the current in the bulk flow and the trend
of the current profile with Lat observed in the wave-forcing cases are qualitatively
consistent with the Langmuir turbulence simulations using the wave-phase-resolved
method (Zhou 1999) and the CL equations in the literature (cf. McWilliams et al.
1997; Li et al. 2005).

3.2. Instantaneous flow structures
Langmuir turbulence can lead to distinct surface structures, e.g. windrows. To compare
the surface flow structures with or without the wave, we place Lagrangian tracer
particles on the surface and track their locations x by integrating dx/dt = u(x, t)|z=η
in time. The results are shown in figure 5. Initially, 104 particles are released randomly
in the Langmuir turbulence (case L1) and the shear-driven turbulence (case S), as
shown in figures 5(a) and 5(d), respectively. Particles in Langmuir turbulence are
quickly aggregated into narrow streamwise streaks (figure 5b) and the number of
bands decreases with time as they further merge with each other (figure 5c). These
streaks show ‘Y’-shaped merging in the x-direction, as one would observe with the
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FIGURE 6. (Colour online) Instantaneous vortical structures in the flow fields in (a) case
L1 (Lat = 0.35) and (b) case S (Lat =∞). The vortices are educed by the iso-surfaces of
λ2 =−1, 650. The iso-surfaces are coloured with the contours of ωx.

windrows (Li & Garrett 1993; Farmer & Li 1995; Melville, Shear & Veron 1998).
By contrast, in shear-driven turbulence, the particles are still scattered after the same
duration of time as shown in figure 5(e,f ). This is consistent with the literature
that Langmuir turbulence is more effective in creating streaks than the shear-driven
turbulence (e.g. Teixeira & Belcher 2010).

Figure 6 compares the instantaneous vortices in Langmuir turbulence (case L1)
and shear-driven turbulence (case S). The vortical structures are visualized by
the iso-surfaces of λ2, the second largest eigenvalue of the tensor S2

+ Ω2, with
S = (∇u + ∇uT)/2 being the strain rate tensor and Ω = (∇u − ∇uT)/2 being the
rotation tensor (Jeong & Hussain 1995), widely used for identifying vortices in
turbulent flows. The iso-surfaces are coloured by the contours of the streamwise
vorticity ωx= ∂w/∂y− ∂v/∂z. Both types of flows are dominated by quasi-streamwise
vortices near the surface. However, the vortices in Langmuir turbulence are elongated
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and more aligned in the streamwise direction compared with those in shear-driven
turbulence, consistent with the results in the literature (McWilliams et al. 1997;
Teixeira & Belcher 2010). It can also be observed that most vortex tubes in
Langmuir turbulence are accompanied by vortices of opposite signs of ωx, forming
counter-rotating vortex pairs, which can induce converging/diverging zones on the
surface. The vortex pairs also show a converging trend in the +x-direction. This
corresponds to the merging of the vortices and the ‘Y’-junction of the windrows,
which are considered inherent to the wave forcing according to the analyses of the
CL equation (Li & Garrett 1993; Bhaskaran & Leibovich 2002; Zhang et al. 2015).
On the other hand, the vortices in shear-driven turbulence do not seem to appear in
pairs.

What is most interesting in figure 6(a) is that the vortex distribution exhibits a
correlation with the wave phase. Stronger turbulence vortices are located under the
wave trough. This indicates that the wave orbital motions have a direct effect on
the turbulence, leading to the wave-phase-dependent variation of the turbulence. Such
an effect can only be captured in the wave-phase-resolved frame and more in-depth
analyses of the wave-phase dependency are provided in § 5.

3.3. Coherent vortex structure
The instantaneous flow field only provides a qualitative overview of the vortex
structures. A more detailed characterization of the coherent vortex structure can be
obtained by a conditional averaging of the flow field based on a vortex identification
criterion. Here we use the linear stochastic estimation (LSE) method to obtain the
conditional average (Adrian & Moin 1988; Adrian 1994), which is shown to be able
to identify coherent turbulence structures, such as the hairpin vortices (Christensen
& Adrian 2001). The detailed definition of the LSE of a quantity f , denoted by
〈 f (x′)|Λci(x)〉, is given in appendix C. Here, f (x′) is a conditional-averaged field
around the conditioning event Λci(x), where x′ denotes the coordinates relative to
the location of the conditioning event. The parameter Λci(x) is a signed swirling
strength (Zhou et al. 1999; Christensen & Adrian 2001; Wu & Christensen 2006)
defined by (C 1), chosen as the conditioning event for the estimation of the vortex
structure. The parameter Λci contains information of the rotating direction of the
streamwise vortices, and we apply the LSE method for Λci> 0 and Λci< 0 separately
to avoid the cancellation between vortices of opposite rotating directions. The LSE
method has a few features. First, the LSE approximation is based on all instances
of Λci > 0 and Λci < 0 and no threshold needs to be determined. Second, the LSE
definition (C 2b) is closely related to the two-point correlation, therefore the LSE
approximated field reflects the statistical correlations of f with the event Λci (Adrian
1994). Third, the LSE result is linearly correlated with the value of Λci, which means
that the characteristics of the extracted structures remain independent of Λci and only
the magnitude of the LSE field varies with Λci (Christensen & Adrian 2001).

Figure 7 shows the conditional-averaged vortex structure obtained from the
Langmuir turbulence (case L1) and the shear-driven turbulence (case S). The
side views and front views of the vortex structure are shown in figure 8. In the
above figures, the same conditioning event, Λci = 1 at k(z − η) = 0.45, is used for
the reconstruction of the flow field for the comparison between the two types of
flows. We note here that the averaged field with Λci < 0 is the mirror of that with
Λci > 0 about the axis y′ = 0. Due to the reflection symmetry, we only discuss the
conditional-averaged field with positive Λci.
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FIGURE 7. Conditional-averaged vortex structure extracted by the linear stochastic
estimation with Λci = 1. The vortices are identified by the iso-surfaces of 〈ωx|Λci〉 =

0.07ku∗ (light grey) and 〈ωx|Λci〉 = −0.07ku∗ (dark grey). (a) Vortex structure in the
Langmuir turbulence Lat = 0.35 (case L1). (b) Vortex structure in the shear-driven
turbulence Lat =∞ (case S).
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FIGURE 8. (Colour online) The side views and front views of the conditional-averaged
vortex structure in Langmuir turbulence Lat = 0.35 (case L1) and shear-driven turbulence
with Lat=∞ (case S): (a) and (b) show the structure in the Langmuir turbulence; (c) and
(d) show the vortex structure in the shear-driven turbulence; (a) and (c) show the side
views of the contours of 〈ωx|Λci〉 in the plane y′ = 0; (b) and (d) show the front views
of the contours of 〈ωx|Λci〉 and the vectors of (〈v′|Λci〉, 〈w′|Λci〉) in the plane x′= 0. The
positive contours start with 0.02ku∗ in an increment of 0.04ku∗ and the negative contours
start with −0.02ku∗ in an increment of −0.04ku∗. The conditions are the same as figure 7.

As shown in figures 7 and 8, the vortices in both types of flows are quasi-
streamwise vortices that extend in the downwind direction and tilt upward towards
the surface, but the length scale and the structures are different. The streamwise
extension of the vortex tube in Langmuir turbulence (case L1) is approximately
eight times the spanwise width, as shown in figure 8(a,b). On the other hand, in
shear-driven turbulence, the streamwise length is much shorter, only approximately
three times the width (figure 8c,d). These features are consistent with our observations
from the instantaneous field (figure 6) where vortices are more elongated in the
Langmuir turbulence than in the shear-driven turbulence. Moreover, in the Langmuir
turbulence, a counter-rotating vortex appears on the −y side of the central vortex
of Λci > 0, but barely exists in the shear-driven turbulence. This implies that there
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FIGURE 9. (Colour online) Contours of wave velocity (a) uw, (b) ww for case L1. Negative
contours are denoted by dashed lines. The results are normalized by aω.

is a higher probability that counter-rotating vortices appear side by side in pairs in
Langmuir turbulence than in shear-driven turbulence. Figure 8(b) also shows that the
counter-rotating vortex pair induces a strong downwelling motion between the two
vortices and a convergence zone exists above, consistent with the enhanced vertical
mixing and surface convergence in Langmuir turbulence.

We have so far illustrated the current profiles and turbulence vortex structures from
our wave-phase-resolved simulations, which all show distinct features of Langmuir
turbulence. Specifically, we have observed in the instantaneous field (figure 6) that the
vortex distribution is wave-phase dependent, which is further examined and explained
in § 5. The effect of the wave-phase variation of the vorticity on the generation of the
elongated vortices in Langmuir turbulence is discussed in § 6.

4. Wave field

Before we discuss the vorticity distortion in the Langmuir turbulence (§§ 5 and 6),
we need to examine the properties of the wave field in this section. These properties
are essential to the understanding of the wave effects in the vorticity dynamics. We
first discuss the wave orbital velocity and the resulting orbital straining in § 4.1. Then,
the Lagrangian-averaged wave straining is analysed in § 4.2, which is related to the
cumulative effect of the wave on turbulence. Here, only case L1 is presented because,
as discussed below, the features of the wave field of other cases are similar.

4.1. Eulerian properties of wave
The contours of wave orbital velocity uw and ww in case L1 are shown in figures 9(a)
and 9(b), respectively. The wave elevation and the velocity distribution in general
agree with those of Stokes wave, which also holds for other cases (L2-L3 and L1S).
The turbulence-induced surface fluctuation, η′ = η − 〈η〉, is found to be negligibly
small. Among all the cases in this study, the root mean squared turbulence surface
fluctuation η′rms is less than 1.2 % of the wave amplitude, indicating that the turbulence
is relatively weak compared to the surface wave. As expected from Stokes wave, uw is
positive and negative under the wave crest and trough, respectively. The ww is positive
under the forward slope, and negative under the backward slope. The two components
of the wave velocity vary sinusoidally with the wave phase and form an orbital motion.
In the vertical direction, the velocity magnitude decays exponentially with the depth.
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FIGURE 10. (Colour online) Contours of wave strain rate (a) ∂uw/∂x, (b) ∂ww/∂z,
(c) ∂uw/∂z and (d) ∂ww/∂x for case L1. (e) A close-up view of the near-surface region
of (c). ( f ) The vorticity ∂uw/∂z − ∂ww/∂x in the near-surface region. The results are
normalized by akω.

It is worth mentioning that, when the frame translates with the wave phase speed c
such that the wave phase is fixed, fluid particles are convected in the opposite direction
to the wave propagation, i.e. the −x-direction in the wave-following frame. In other
words, the wave propagates over a particle in a cyclic order of trough, forward slope,
crest and backward slope. The perspective of the convection direction of fluid particles
in a wave-following frame is important because the following analyses of the vorticity
dynamics of the wave–turbulence interactions are performed within this frame.

The horizontally and vertically varying orbital velocity results in a straining field
that also varies with the wave phase and the depth, as shown in figure 10. We first
look at the normal gradients. The streamwise normal gradient ∂uw/∂x (figure 10a) is
positive under the backward slope and negative under the forward slope. The vertical
normal gradient (figure 10b) satisfies ∂ww/∂z = −∂uw/∂x. Therefore, fluid elements
experience stretching in the x-direction and compression in the z-direction under the
backward slope, and the opposite process occurs under the forward slope.

The gradients ∂uw/∂z and ∂ww/∂x (figure 10c,d) represent the shear deformations
of fluid elements. The value of ∂ww/∂x is positive under the crest and negative under
the trough. The distribution of ∂uw/∂z (figure 10c) shows a two-layer structure that
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FIGURE 11. (Colour online) The profiles of the Lagrangian mean wave velocity gradients:
∂uw/∂x

L
= −∂ww/∂z

L
(— · —), ∂uw/∂z

L
(——), ∂ww/∂x

L
(· · · · · ·) from our simulation

and ∂uw/∂x
L

(@), ∂uw/∂z
L

(E) based on the fifth-order Stokes wave theory (Fenton 1985).
Case L1 is shown here and the results are normalized by a2k2ω. Note that the numerical
results of ∂uw/∂x

L
(−∂ww/∂z

L
) and the theoretical result of ∂uw/∂x

L
are very close to

each other; and the numerical results of ∂uw/∂z
L

and ∂ww/∂x
L

and the theoretical result
of ∂uw/∂z

L
are also indistinguishable from each other.

is not present in the other gradients. In most of the region away from the surface,
∂uw/∂z is almost equal to ∂ww/∂z, i.e. the mean vorticity ∂uw/∂z − ∂ww/∂x, which
is in the spanwise direction, is essentially zero and the wave field is irrotational. As
the surface is approached, ∂uw/∂z changes drastically. The near-surface behaviour of
∂uw/∂z is shown with respect to the distance from the surface (z− η) in figure 10(e).
The thickness of the layer where the drastic change occurs is of the same order as
the thickness of the Stokes layer, δS = (2ν/ω)1/2, whose dimensionless value is kδS =

0.0017 in this case. This layer is associated with the viscous effect. The near-surface
change of ∂uw/∂z corresponds to a layer of non-zero mean vorticity that deviates
from the irrotational wave solution, as shown in figure 10( f ). The viscous layer is so
thin that its contribution to the overall dynamics of the wave–turbulence interaction
is small. In most of the region, ∂uw/∂z and ∂ww/∂x impose an irrotational shearing
distortion effect on fluid elements.

4.2. Lagrangian properties of wave
Next, we discuss the Lagrangian average of the wave straining, which is important
to the long-term vorticity dynamics analysed in § 6. Applying the Lagrangian average
(·)

L
(2.16) to the wave orbital velocity gradients (figure 10a–d), we obtain the

Lagrangian velocity gradients of the wave, ∂uw/∂x
L
, ∂ww/∂z

L
, ∂uw/∂z

L
and ∂ww/∂x

L
,

which represent the cumulative straining applied by the wave on fluid elements over
a Lagrangian period. The vertical profiles of the above Lagrangian velocity gradients
are shown in figure 11. Only case L1 is shown due to the similarity in the wave
field among different cases as pointed out in § 4.1.
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We first look at the normal gradients, ∂uw/∂x
L

and ∂ww/∂z
L
. Both are nearly zero,

indicating that the cumulative stretching applied on fluid elements over a Lagrangian
period is negligible. The trajectories of the fluid particles are symmetric about the
two sides of the wave crest and trough, while ∂uw/∂x (or ∂ww/∂z) is anti-symmetric
(figure 10a,d), therefore the normal straining that the fluid elements experience under
the forward slope is cancelled by that under the backward slope.

On the other hand, the Lagrangian shear straining, ∂uw/∂z
L

and ∂ww/∂x
L
, has

positive values with a magnitude of O(a2k2ω). This indicates that, over a Lagrangian
period, the wave imposes a net shearing distortion on fluid elements. This is mostly
due to the difference in the shear strain rate between under the wave crest and under
the trough, and the different convection times under the wave crest and trough. As
shown in figures 10(c) and 10(d), the magnitudes of ∂uw/∂z and ∂ww/∂x outside of
the viscous layer increase with z. Because the trajectories of the particles roughly
follow the surface geometry, the positive straining on the fluid particles when they are
under the crest is larger than the negative straining under the trough. Therefore, the
net Lagrangian shear straining is positive. Note that the effect of the viscous boundary
layer is also manifested in the sharp increase of ∂uw/∂z

L
in the vicinity of the surface.

However, in most of the region away from the surface, ∂uw/∂z
L
≈ ∂ww/∂x

L
is satisfied

due to the irrotationality of the wave flow as discussed in § 4.1.
The theoretical Lagrangian mean of wave velocity gradients based on the fifth-order

irrotational wave theory of Fenton (1985) is also shown in figure 11. It can be seen
that the Lagrangian velocity gradients from the present simulations agree well with the
theoretical prediction outside the surface viscous layer, indicating that the irrotational
wave solution is a good approximation of the wave field. The effect of the surface
viscous layer, the thickness of which scales with (2ν/ω)1/2, should diminish with a
decreasing ν (increasing Reynolds number Reτ = u∗H̄/ν). The agreement with the
irrotational wave solution is expected, because the current and turbulence are weak and
cannot lead to a significant modification of the wave kinematics (Magnaudet & Thais
1995; Ardhuin, Rascle & Belibassakis 2008). We shall note that, when the strong
current or turbulence is present or the wave is short, the waves can become rotational
(Craik 1982; Phillips & Wu 1994; Veron & Melville 2001; Gutiérrez & Aumaître
2016). Under such conditions, the coupled wave–current–turbulence evolution is more
complex and can be studied using the wave-phase-resolved simulation in the future.

The Eulerian and Lagrangian effects of the wave on fluid elements are summarized
in figure 12. In the Eulerian frame, the wave orbital straining varies periodically with
the wave phase. Under the wave forward slope, fluid elements are compressed in
the x-direction and stretched in the z-direction. The opposite occurs when the fluid
elements are under the backward slope. The wave also applies an irrotational shearing
that distorts the fluid elements, and the distortion effect is opposite under the crest and
trough. In § 5 below, the effects of the periodically varying straining on the turbulence
vortices underneath are analysed. As for the Lagrangian straining, although one order
of magnitude smaller than the orbital straining, the net shear straining on the fluid
elements can lead to cumulative distortion of the fluid elements. The cumulative effect
on the vorticity dynamics in Langmuir turbulence is discussed in detail in § 6.

5. Variation of vortex structures and statistics with wave phase
In § 3.2, the instantaneous vorticity field (figure 6) indicates that there exists a

correlation between the vortex structure and the wave phase. In this section, we
perform detailed statistical analyses of the turbulence vortex structure and vorticity
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c

Wave Eulerian orbital straining Wave Lagrangian straining

FIGURE 12. Sketch of the effects of wave Eulerian orbital straining and Lagrangian
straining on fluid elements. The arrows along the dashed line indicate the convection
direction of the fluid elements relative to the wave phase. The original fluid elements are
denoted by dashed rectangles, and the fluid elements distorted by the wave straining are
denoted by solid rectangles.

fluctuations in the wave-phase-resolved frame and examine the wave-phase variation
of the turbulence vorticity. The wave-phase dependency is examined in three aspects,
the LSE analysis of the vortex structure (§ 5.1), vorticity enstrophy (§ 5.2) and vorticity
inclination angle (§ 5.3). Then, in § 5.4, the vorticity evolution equation is evaluated
with the wave-phase resolved to explain the mechanism for the phase variation of the
vorticity.

5.1. Variation of vortex structure
The coherent vortex structure under different wave phases is obtained through the LSE
method described in § 3.3. It is found that the variation of the vortex structure is more
prominent in the x–z plane, therefore the side views of the vortex obtained from the
Langmuir case L1 are plotted in figure 13. Only the flow structure associated with
Λci > 0 is discussed below, because the flow fields corresponding to positively and
negatively rotating vortices are in reflection symmetry about y′ = 0.

As shown in figure 13, the characteristics of the quasi-streamwise counter-rotating
vortices vary with the wave phase. The difference is mainly manifested in the
vortex length and the inclination angle in the x–z plane. The dash-dotted line in
figure 13 marks the streamwise extension and the inclination angle of the contour
level 〈ωx|Λci〉 = 0.06ku∗. This level is chosen because it is relatively localized under
each phase.

We first discuss the length of the vortex. The vortex under the wave trough
(figure 13d) is longer than under the crest (figure 13b), indicating that the vortices
under the trough are stronger than those under the crest. This is consistent with our
observations of the instantaneous vortex field (figure 6a), where stronger vortices are
located under the trough. Because the vortex is convected in the −x-direction relative
to the wave, the variation of the vortex length indicates that the vortex strength
weakens under the forward slope as the wave phase changes from the trough to crest.
The opposite process occurs under the backward slope.

In addition to the vortex length, the inclination of the vortex also varies with the
wave phase. Under the wave crest, i.e. when the vortex is convected from under
the forward slope to under the backward slope, the vortex is tilted towards the
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FIGURE 13. (Colour online) Conditional-averaged vortex structure in Langmuir turbulence
with Lat=0.35 (case L1) under (a) the backward slope, (b) the crest, (c) the forward slope
and (d) the trough. The vortex structure is elucidated by the contours of 〈ωx|Λci〉 in the
plane y′ = 0. The positive contours start with 0.06ku∗ in an increment of 0.04ku∗. The
dash-dotted lines (— · —) connect the two ends of the contour level 0.06ku∗, and the
vertical dashed lines (– – –) mark the streamwise location of the two ends of the dash-
dotted lines.

Case Mean Forward slope Backward slope Difference
φm φf , φf − φm φb, φb − φm φb − φf

L1 14.4 10.9, −3.5 17.3, 2.9 6.4
L1S 13.4 6.8, −6.6 18.9, 5.5 12.1
L2 14.6 11.3, −3.3 17.5, 2.9 6.2
L3 25.1 21.7, −3.4 27.8, 2.7 6.1

TABLE 2. The values of the inclination angle (in degree), the angle between the x-axis
and the dash-dotted line (— · —) in figure 13, of the conditional-averaged vortex structure
for different cases. The second column shows the mean vortex angles of different wave
phases φm. The third column shows the vortex angles under wave forward slope φf and
their deviation from the mean angles φf − φm. The fourth column show the vortex angles
under the backward slope φb and their deviation from the mean angles φb − φm. The
forward slope and backward slope correspond to the locations of minimum and maximum
tilting, respectively. The last column shows the difference in the vortex angle between the
minimum and maximum tilting.

vertical direction. The tilting direction reverses under the wave trough. Therefore,
the variation of vortex angle roughly follows the slope of the wave surface and
the maximum and minimum tilting occurs under the backward and forward slope,
respectively. Table 2 presents the mean, maximum and minimum angles of the vortex
for the different Langmuir turbulence cases. Among the cases L1, L2 and L3, where
the wave steepness is the same, the amplitude of the vortex angle fluctuation and
the deviation of the maximum and minimum tilting angles from the mean angle
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FIGURE 14. (Colour online) Contours of phase-averaged enstrophy components for case
L1: (a) 〈ω2

x〉; (b) 〈ω′y
2
〉; (c) 〈ω2

z 〉. The enstrophy is normalized by (ku∗)2.

0 π/2 π 3π/2 2π
kx

0 π/2 π 3π/2 2π
kx

0 π/2 π 3π/2 2π
kx

1.50

1.25

1.00

0.75

0.50

¯ø
2 x˘/

¯ø
2 x˘

¯ø
2 z˘/

¯ø
2 z˘

¯ø
y�2
˘/

¯ø
y�2
˘

(a) (b) (c)

FIGURE 15. Normalized variation of enstrophy components with the wave phase,
(a) 〈ω2

x〉/〈ω
2
x〉, (b) 〈ω′y

2
〉/〈ω′y

2
〉 and (c) 〈ω2

z 〉/〈ω
2
z 〉, at depth k(z − η) = −0.2 for case L1

(——), case L2 (– – –), case L3 (— · —) and case L1S (— · · —).

are roughly the same. This indicates that the mechanism of the vortex tilting is the
same. The maximum and minimum tilting angles are slightly asymmetric about the
mean angle, indicating that the forward and backward tilting rates are different. For
case L1S with a larger wave steepness, the difference between the maximum and
minimum angle is much larger. This indicates that the amplitude of the vortex tilting
fluctuations is affected by the wave steepness, which is expected.

In summary, figure 13 gives an overall view of the wave-phase-dependent oscillation
of the vortices underneath a propagating surface wave. The vortices are elongated
and compressed periodically as the wave passes. Meanwhile, the tilting angle of the
vortices also fluctuates with the wave phase. It should be noted here that the variation
of the vortex structure lies in the change of the turbulence vorticity field. Therefore,
the vorticity statistics are examined below.

5.2. Variation of enstrophy
The enstrophy indicates the intensity of vorticity fluctuations. The near-surface
distribution of the enstrophy within the wave-phase-resolved frame is shown in
figure 14 for the Langmuir turbulence case L1. Figure 15 shows the relative variation
of the enstrophy at a constant distance from the surface for the different Langmuir
turbulence cases. For the spanwise component, the turbulence vorticity ω′y is used, i.e.
the mean-flow-induced vorticity 〈ωy〉 is subtracted from the total vorticity ωy.

As expected, the streamwise vorticity is dominant, because the vortical structures
observed in §§ 3.2 and 3.3 are streamwise oriented mostly. The streamwise enstrophy
also shows a strong dependence on the wave phase. Both figures 14 and 15 show
that the maximum and minimum of 〈ω2

x〉 occur roughly under the trough and under
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the crest, respectively. This is also consistent with the variation of the vortex length
(figure 13), indicating that the elongation and compression of the vortices are related
to the variation of ωx. It should be pointed out that the locations of maximum and
minimum 〈ω2

x〉, as shown in figure 15, are actually slightly ahead of the trough and
crest, respectively, for which the reason is explained later in § 5.4.

Compared with 〈ω2
x〉, 〈ω

′2
y 〉 (figure 14b) is weaker and more concentrated near

the surface, therefore the turbulence vortices are mostly tilted in the x–z plane. The
contour lines of 〈ω′2y 〉 follow the surface geometry, indicating that the dependence of
spanwise vorticity fluctuations on the wave phase is weak, which is confirmed by
figure 15(b).

Figure 14(c) shows the distribution of the vertical enstrophy 〈ω2
z 〉. The contour

lines of 〈ω2
z 〉 are shifted compared with the surface shape, indicating that the vertical

vorticity fluctuations are modulated by the wave. Figure 15(c) shows that high
intensity of 〈ω2

z 〉 occurs under the backward slope and behind the crest. The value
of 〈ω2

z 〉 reaches minimum under the forward slope, right after the wave trough
passes. Teixeira & Belcher (2002) pointed out that the amplification of the vertical
vorticity should be associated with an increase in the streamwise turbulence velocity
fluctuations. Therefore, the increase in the vertical vorticity leads to a maximum
streamwise Reynolds normal stress slightly behind the crest, which is consistent with
the observations of Veron et al. (2009) and our results (not plotted).

Comparing the variation of the enstrophy among the different cases in figure 15,
we can see that the maximum and minimum phases are similar. However, the relative
amplitude of the wave-phase-dependent fluctuations of 〈ω2

x〉 and 〈ω2
z 〉 in case L1S is

larger than the other cases, indicating that the modulation effect of the wave on the
vorticity increases with wave steepness.

5.3. Variation of inclination angle of vorticity vectors
The tilting of the vortex structures indicates variations in the orientation of the local
vorticity vectors. Following Moin & Kim (1985), Kida & Tanaka (1994) and Guo &
Shen (2013), we analyse the statistical distribution of the vorticity inclination angles.
Here, we focus on the inclination angle between the x-axis and the projection of ω
onto the x–z plane, i.e.

θxz = arctan
(
ωz

ωx

)
, (5.1)

because most vortices are vertically slanted in the x–z plane and their spanwise tilting
is negligible. The histograms of θxz under different wave phases are shown in figure 16.
Here, the statistics of θxz are weighted by the vorticity magnitude ω2

x +ω
2
z to highlight

the contributions from strong vortices. The statistics reflect the properties of the local
vorticity vectors under specific wave phases, which are related to but different from
the vortex structures analysed in § 5.1. The vortices are three-dimensional structures
and thus are related to vorticity distribution at different phases and depth. As shown
in figure 16, the histograms have two peaks, located symmetrically in the first and
third quadrants, corresponding to positive and negative vorticity, respectively. The peak
locations indicate that the vorticity vectors are mostly inclined at a small angle to the
+x-axis, consistent with the orientation of the vortical structures shown in preceding
sections.

The peaks of the distributions of θxz (figure 16) vary with the wave phase. Peak θxz
reaches minimum under the forward slope, and increases as the wave passes by until
it reaches maximum under the backward slope. After the backward slope passes by,
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FIGURE 16. Histograms of the statistics of vorticity inclination angle θxz under:
(a) backward slope; (b) crest; (c) forward slope; (d) trough. The statistics are taken at
k(z − η) = −0.2 below the surface from case L1. The histograms are weighted by the
vorticity magnitude ω2

x + ω
2
z . The azimuthal direction corresponds to θxz, while the radial

direction corresponds to the weighted frequency of occurrence.

the opposite process occurs, i.e. θxz decreases until the vortices are under the forward
slope. The fluctuations of the vorticity angle θxz agree with the vortex tilting direction
discussed in § 5.1. The differences between the maximum and minimum θxz are 10◦,
9.5◦, 10.5◦ and 18◦ for cases L1, L2, L3 and L1S, respectively. This also agrees with
the result in § 5.1 that the amplitude of the vortex angle fluctuation mainly depends
on the wave steepness. We note that the values of θxz are larger than the vortex angles
presented in table 2. This is because the conditional averaging in § 5.1 samples the
flow around the chosen location and the coherent vortex structures are associated
with the vorticity at different phases and depth. Take figure 13(a) (backward slope)
as an example, the two ends of the vortex extend towards the wave crest and trough,
respectively, where the vorticity angles decrease. The inner contours, which are more
closely related to local vorticity vectors, have larger angles, consistent with the
observations in this section.

In §§ 5.2 and 5.3, we have examined the statistical distribution of the vorticity
field under different wave phases. The fluctuations of the vorticity statistics, i.e. the
enstrophy and the inclination angles, are qualitatively consistent the variation of the
coherent vortex structure obtained from the LSE method in § 5.1. This indicates
that the physical mechanisms for the variation of the vortex structures are related
to the vorticity dynamics. Next, we evaluate the vorticity evolution equations in the
wave-phase-resolved frame to illustrate the mechanisms for the wave-phase modulation
of the vorticity.

5.4. Effects of wave straining on variation of vorticity
In this section, we focus on the evolution of streamwise vorticity ωx and vertical
vorticity ωz because the components of turbulence vorticity in these two directions are
more prominent. The evolution of ωx and ωz is described by the vorticity equations

Dωx

Dt
= ωx

∂uc

∂x
+ωz

∂uc

∂z︸ ︷︷ ︸
Dc

x

+ωx
∂uw

∂x
+ωz

∂uw

∂z︸ ︷︷ ︸
Dw

x

+ωx
∂u′

∂x
+ωy

∂u′

∂y
+ωz

∂u′

∂z︸ ︷︷ ︸
Dt

x

−u′
∂ωx

∂x
− v′

∂ωx

∂y
−w′

∂ωx

∂z︸ ︷︷ ︸
T t

x

+ ν∇2ωx − [∇× (∇ · τ )]x︸ ︷︷ ︸
Fx

, (5.2)
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FIGURE 17. (Colour online) Contours of the terms of the wave distortion Dw:
(a) 〈ωx∂uw/∂x〉, (b) 〈ωz∂uw/∂z〉, (c) 〈ωx∂ww/∂x〉, and (d) 〈ωz∂ww/∂z〉.

Dωz

Dt
= ωx

∂ww

∂x
+ωz

∂ww

∂z︸ ︷︷ ︸
Dw

z

+ωx
∂w′

∂x
+ωy

∂w′

∂y
+ωz

∂w′

∂z︸ ︷︷ ︸
Dt

z

−u′
∂ωz

∂x
− v′

∂ωz

∂y
−w′

∂ωz

∂z︸ ︷︷ ︸
T t

z

+ ν∇2ωz − [∇× (∇ · τ )]z︸ ︷︷ ︸
Fz

. (5.3)

Here, the material derivative is defined based on the mean velocity, D(·)/Dt =
∂(·)/∂t + 〈u〉 · ∇(·); Dc, Dw and Dt denote the terms representing the distortion
(stretching and tilting) on the vorticity by the current, wave and turbulence,
respectively; the terms denoted by T t are the turbulence transport of the vorticity; and
F represents the forcing due to the viscous force and the SGS stress; the subscripts
‘x’ and ‘z’ denote the x and z components of the corresponding terms, respectively. To
avoid the cancellation between positive and negative vorticity, the terms in (5.2)–(5.3)
are computed using a sign-based conditional phase averaging (Guo & Shen 2013),
where we multiply each equation with a sign function of the corresponding vorticity
component, sign (ωi), before applying the phase averaging (2.13). We find that
the root mean squared values of Dw along the x-direction are at least 20 times
larger than other terms. This indicates that the wave distortion Dw is dominant, i.e.
the wave-phase-variation of the vorticity statistics is the result of the wave orbital
straining. The contours of different terms of Dw are shown in figure 17. Here, we
continue to use case L1 as the representative case for discussion.

We first discuss the variation of the streamwise vorticity due to the wave distortion,
which is contributed by two terms, ωx∂uw/∂x and ωz∂uw/∂z, plotted in figures 17(a)
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and 17(b), respectively. The former is dominant, which means that the variation
of the streamwise vorticity mainly results from the streamwise stretching of the
vortex filaments by ∂uw/∂x. As shown in figure 17(a), under the backward slope,
ωx∂ux/∂x is positive, indicating that ωx increases. This is due to the stretching of
the vortices in the x-direction by the positive ∂uw/∂x (plotted in figure 10a). The
opposite process occurs under the backward slope. Because the vorticity convection
is in the −x-direction in the frame moving with the wave, the accumulative effect
of the alternating stretching and compression results in maximum ωx under the wave
trough and minimum under the crest. The effect of stretching on ωx is consistent
with the variation of the streamwise component of the enstrophy discussed in § 5.2.

The other term ωz∂uw/∂z, shown in figure 17(b), represents the change of the
streamwise vorticity ωx by the tilting of vortex filaments. Under the crest, the term is
positive, indicating that ωx is generated by the tilting of the vertical vortex filaments.
Under the trough, the tilting reverses and weakens ωx. The tilting effect is weaker
than the aforementioned stretching effect, and hence only results in a forward phase
shift of the peaks of the streamwise vorticity, which explains the distribution shown
in figure 15(a). Although the tilting-induced variation of ωx does not significantly
affect the phase distribution of ωx, it can affect the long-term vorticity evolution when
interacting with the wave orbital straining, as discussed later in § 6.3.

Next, we examine the tilting effect ωx∂ww/∂x (figure 17c) and the stretching effect
ωz∂ww/∂z (figure 17d) on the variation of the vertical vorticity ωz. The tilting effect is
positive under the crest and negative under the trough, indicating that the streamwise
vortex filaments are tilted towards the vertical direction under the crest and tilted back
under the trough. In general, the tilting direction is consistent with the variation of the
vortex structure (§ 5.1) and the inclination angle of the vorticity (§ 5.3), because the
flow is dominated by quasi-streamwise vortices and the apparent tilting of the vortices
are mainly associated with the tilting of the streamwise vortex filaments.

The stretching and compression of ωz (figure 17d) is related to the normal wave
orbital straining ∂ww/∂z (figure 10b). Under the forward slope, the wave stretches the
vortex filaments in the z-direction, which increases ωz. Under the backward slope, the
compression of the filaments decreases ωz.

The stretching and tilting effects have similar magnitudes, therefore both affect the
strength of ωz. The stretching-induced variation of ωz leads to a maximum (minimum)
ωz under the crest (trough), while the tilting-induced ωz leads to a maximum
(minimum) ωz under the backward (forward) slope. Therefore, the maximum of
the vertical component of the enstrophy is reached between the crest (kx = π/2)
and the backward slope (kx = 0) due to the combined effects of the stretching and
tilting, as shown in figure 15(c). Correspondingly, the minimum is reached between
the trough (kx= 3π/2) and the forward slope (kx=π).

To summarize, the variation of the vorticity with the wave phase is the result of
the periodic stretching and tilting by wave orbital straining, as sketched in figure 18.
Under the forward slope, the wave stretching weakens the streamwise vorticity and
amplifies the vertical vorticity. Under the backward slope, the stretching incurs the
opposite process. The tilting effect of the wave is the strongest under the wave
crest and trough, while the tilting direction is opposite. As the wave passes, the
periodic variation of the wave straining leads to fluctuations of vortices with the
wave phase. To our knowledge, this is the first time that the vorticity dynamics in
Langmuir turbulence is numerically analysed with wave-phase-resolved details. In
the following section, we shall see that, by interacting with the local wave orbital
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c

Stretching

Tilting

Eulerian effects of wave orbital straining on the
variation of the vortex filaments

Lagrangian effects
of wave straining on
the vortex filaments

FIGURE 18. (Colour online) Sketch of the wave effect on the evolution of vortices.
On the left part (discussed in § 5.4), the variation of the vortex filaments induced by
the wave orbital straining is illustrated in the Eulerian frame. The upper row shows
the stretching-induced vorticity fluctuations, and the lower row shows the tilting-induced
vorticity fluctuations. Note that relative to the wave, the vortex is convected in the opposite
direction of the wave propagation direction as indicated by the arrows along the dashed
line. An extra quarter of wavelength is plotted for the purpose of illustrating the wave
periodicity in space. On the right part (discussed in § 6), the Lagrangian cumulative effect
of the wave on the vortex filaments is illustrated, where the solid and dash-dotted arrows
denote the mean effect and the correlation effect, respectively.

straining, the wave-phase variation of the vorticity is an important factor contributing
to the long-term vorticity evolution.

6. Perspective on cumulative effect of wave on vorticity evolution

Langmuir turbulence is attributed to the cumulative distortion imposed by the
surface wave (Leibovich 1983; Thorpe 2004). In this section, the cumulative distortion
effect of wave on wave-phase-averaged vorticity is analysed through Lagrangian
average. First, in § 6.1, we assess the contributions from different effects, including
the wave, current and turbulence, to the cumulative vorticity evolution. Then in § 6.2,
the wave effect is decomposed based on the Lagrangian mean and fluctuation, where
we find that the wave-phase variation of the vorticity is important to the cumulative
vorticity evolution. The mechanism of how the wave-phase variation of the vorticity
affects the long-term vorticity evolution is further discussed in § 6.3, which provides
insights into the physical process of the wave distortion. At last, the relation between
the CL vortex force and the modelling of the wave effect based on the Lagrangian
decomposition is discussed in § 6.4.

Here, we continue focusing on ωx and ωz because the spanwise turbulence vorticity
is relatively weak and is not directly affected by the wave (§ 5). The Lagrangian
averaging (2.16) is applied to the vorticity evolution equations (5.2) and (5.3), and
the equations governing the Lagrangian mean vorticity ωL are
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DL
ωx

L

Dt
= ωx

∂uc

∂x

L

+ωz
∂uc

∂z

L

︸ ︷︷ ︸
Dc

x
L

+ωx
∂uw

∂x

L

+ωz
∂uw

∂z

L

︸ ︷︷ ︸
Dw

x
L

+ωx
∂u′

∂x
+ωy

∂u′

∂y
+ωz

∂u′

∂z

L

︸ ︷︷ ︸
Dt

x
L

−u′
∂ωx

∂x
− v′

∂ωx

∂y
−w′

∂ωx

∂z

L

︸ ︷︷ ︸
T t

x
L

+ ν∇2ωx
L
− [∇× (∇ · τ )]x

L︸ ︷︷ ︸
Fx

L

; (6.1)

DL
ωz

L

Dt
= ωx

∂ww

∂x

L

+ωz
∂ww

∂z

L

︸ ︷︷ ︸
Dw

z
L

+ωx
∂w′

∂x
+ωy

∂w′

∂y
+ωz

∂w′

∂z

L

︸ ︷︷ ︸
Dt

z
L

−u′
∂ωz

∂x
− v′

∂ωz

∂y
−w′

∂ωz

∂z

L

︸ ︷︷ ︸
T t

z
L

+ ν∇2ωz
L
− [∇× (∇ · τ )]z

L︸ ︷︷ ︸
Fz

L

. (6.2)

The aforementioned sign-based average method is also applied here, i.e. the vorticity
equations are multiplied by sign (ωi) such that the positive and negative vorticities
do not cancel each other during the averaging. The Lagrangian average gives the
evolution of the Lagrangian mean vorticity ωi

L when the fluid elements are convected
by the mean flow for several Lagrangian periods.

6.1. Lagrangian vorticity dynamics
The characteristics of the Lagrangian vorticity dynamics are found to depend mainly
on Lat, and three representative cases, L1, L3 and S, are assessed. As pointed out
above, the case L1 with Lat= 0.35 represents the Langmuir turbulence scenario where
the wave forcing is strong, and the case L3 with Lat = 0.9 represents the condition
when the wave forcing is relatively weak. The case S is the shear-driven turbulence
without the wave. The three cases demonstrate the transition of vorticity balance from
strong Langmuir turbulence to purely shear-driven turbulence.

We first look at the dynamics of the Lagrangian mean of the streamwise vorticity
ωx

L. As shown in figure 19(a), where the vertical profiles of the right-hand side terms
in (6.1) are plotted, the positive contributions to ωx

L are mainly due to the distortion
by the wave and current, DwL

and DcL
, respectively. However, the vertical distributions

of the two effects are different. The wave effect DwL
penetrates deeper into the domain

and dominates in the region away from the surface. The distortion by the current, DcL
,

is small at most of the depths because of the weak current shearing associated with the
strong vertical mixing in Langmuir turbulence (§ 3.1). Only when the viscous region
at the surface is approached does the current effect become comparable to the wave
effect. This indicates that the streamwise vorticity in most of the region is mainly
enhanced by the wave straining.

As Lat increases and the current gradient becomes larger, the current effect becomes
increasingly important in the generation of the streamwise vorticity. At Lat= 0.5 (case
L2, results not plotted), the wave effect is still dominant at most of the depths. As Lat
increases to 0.9 (case L3), the distortion by the current prevails over the wave effect,
as shown in figure 19(b). In the shear-driven turbulence (case S), ωx is completely
driven by the tilting by the current (figure 19c).
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FIGURE 19. (Colour online) Vertical profiles of the terms in the Lagrangian-averaged
vorticity equation for ωx

L (6.1) for (a) case L1, (b) case L3 and (c) case S: distortion by
the wave DwL

(——), distortion by the current DcL
(– – –), distortion by the turbulence

DtL (— · · —), turbulence transport T tL (— · —) and viscous force and SGS stress F L

(· · · · · ·). The results are normalized by u2
∗
/H̄2.
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FIGURE 20. (Colour online) Vertical profiles of the terms in the Lagrangian-averaged
vorticity equation for ωz

L (6.2) for (a) case L1, (b) case L3 and (c) case S: distortion by
the wave DwL

(——), distortion by the turbulence DtL (— · · —), turbulence transport
T tL (— · —) and viscous force and SGS stress FL

(· · · · · ·). The results are normalized
by u2

∗
/H̄2.

The terms related to the dynamics of ωz
L (6.2) are plotted in figure 20. For the

Langmuir turbulence cases L1 and L3 (figures 20a and 20b, respectively), the wave
distortion effect, DwL

, is negligible. This indicates that the wave straining barely
has any cumulative effect on the vertical vorticity, in contrast to its enhancement
effect on the streamwise vorticity. The current distortion effect, DcL

, is not present
in (6.2). However, the current can still generates vertical vorticity through ωy∂w′/∂y
in the turbulence distortion term DtL because the current has a spanwise vorticity
∂uc/∂z. Vertical vorticity can be generated as the turbulence velocity gradient ∂w′/∂y
turns the current-associated vorticity towards the vertical direction. Meanwhile, we
note that ∂w′/∂y is associated with the streamwise vorticity. As a result, when the
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shearing current amplifies the streamwise vorticity through DcL
, the generation of the

vertical vorticity is also enhanced. This process, associated with the current shearing,
is consistent with the analyses by Kida & Tanaka (1994) and Teixeira & Belcher
(2002, 2010), and is found to be strong in cases L3 and S where the current effect
is dominant.

The above analyses of Lagrangian vorticity dynamics show that the wave distortion
effect is the dominant factor in the generation of the vorticity in Langmuir turbulence.
The wave cumulatively enhances the streamwise vorticity, but has a negligible net
effect on the vertical vorticity. This behaviour is distinctively different from the
vortex distortion by the current, which not only enhances the streamwise vorticity,
but also induces an increase in the vertical vorticity (through the DtL term as analysed
above). Therefore, the wave leads to more effective amplification and elongation of
the streamwise vortices, as observed in Langmuir turbulence.

6.2. Lagrangian decomposition of wave effect
To obtain a better understanding of how the wave straining enhances only the
streamwise component of the vorticity but not the vertical component, we apply the
Lagrangian-average-based decomposition defined in § 2.5,

〈 f 〉 = f
L
+ f l, (6.3)

to the wave stretching and tilting terms DwL
in (6.1) and (6.2). To obtain the

decomposition of DwL
, we first invoke the triple decomposition, (2.12) and (2.13),

DwL
=ω · ∇uw

L
= (〈ω〉 +ω′) · ∇uw

L
. (6.4)

Recalling that the wave velocity is obtained from the phase averaging, i.e. ∇uw =

〈∇uw〉, we obtain
DwL
= 〈ω〉 · 〈∇uw〉

L
+ω′ · 〈∇uw〉

L
. (6.5)

Note that the Lagrangian average (2.16) is defined based on the phase averaging,
therefore the second term on the right-hand side of (6.5) is zero. Then (6.5) can be
further decomposed as

DwL
= (ωL

+ωl) ·
[
∇uw

L
+ (∇uw)

l
]L

=ωL
· ∇uw

L
+ωl · (∇uw)

l
L
. (6.6)

The Lagrangian-average-based decomposition of the each individual term in DwL
is

ωx
∂uw

∂x

L

=ωx
L ∂uw

∂x

L

+ωl
x

(
∂uw

∂x

)l
L

, (6.7a)

ωz
∂uw

∂z

L

=ωz
L ∂uw

∂z

L

+ωl
z

(
∂uw

∂z

)l
L

, (6.7b)

ωx
∂ww

∂x

L

=ωx
L ∂ww

∂x

L

+ωl
x

(
∂ww

∂x

)l
L

, (6.7c)
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FIGURE 21. (Colour online) Lagrangian decomposition of the wave distortion effect Dw
x

L

(6.7a) and (6.7b) for (a) case L1, (b) case L1S, (c) case L2 and (d) case L3: mean effects
ωx

L∂uw/∂x
L

(— · —), ωz
L∂uw/∂z

L
(——) and the estimation based on the potential wave

solution (6.9) (@); correlation effects ωl
x(∂uw/∂x)l

L
(– – –), ωl

z(∂uw/∂z)l
L

(· · · · · ·) and the
estimation based on (6.14a) or (6.14b) in § 6.3 (A). Note that (6.14a) and (6.14b) have
the same values. The results are normalized by u∗a2k3ω.

ωz
∂ww

∂z

L

=ωz
L ∂ww

∂z

L

︸ ︷︷ ︸
mean effects

+ωl
z

(
∂ww

∂z

)l
L

︸ ︷︷ ︸
correlation effects

. (6.7d)

The first terms on the right-hand side of (6.7) are in the form of a product of two
Lagrangian-averaged quantities, representing the effects of Lagrangian mean wave
straining (§ 4.2) on the vorticity. In other words, these are the change rate of the
vorticity if we neglect the wave-phase variation of the vorticity within the wave
period. The second terms account for the contribution from the interactions between
the wave-phase-varying vorticity and the local wave orbital straining. For brevity, we
call the first terms the mean effects and the second terms the correlation effects.

The vertical profiles of the terms from the decomposition (6.7a) and (6.7b), which
contribute to the cumulative evolution of streamwise vorticity (6.1), are plotted in
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figure 21. The dominant terms are found to be

ωz
L ∂uw

∂z

L

, ωl
z

(
∂uw

∂z

)l
L

, ωl
x

(
∂uw

∂x

)l
L

, (6.8a−c)

which are all positive and hence enhance ωx
L. The mean effect ωz

L∂uw/∂z
L

represents
the generation of the streamwise vorticity from the vertical vorticity component
through the tilting by the Lagrangian wave shear gradient. The tilting effect increases
towards the surface due to the stronger wave straining near the surface. When the
surface is further approached, the tilting effect increases rapidly due to the strong
∂uw/∂z

L
within the viscous surface boundary layer discussed in § 4.2. The variation of

ωz
L∂uw/∂z

L
is not fully shown in the vicinity of the surface in figure 21 because the

viscous layer is thin and we focus mainly on the region below. Using the potential
wave solution ∂uw/∂z

L
= (ak)2ωe2kz (Ardhuin & Jenkins 2006), we estimate the mean

tilting effect as

ωz
L ∂uw

∂z

L

≈ωz
Le2kz(ak)2ω. (6.9)

As shown in figure 21, this estimation agrees with the numerical solution below the
surface layer, where the irrotational wave solution represents ∂uw/∂z

L
well (figure 11).

We also note here that the other mean effect, ωx
L∂uw/∂x

L
, is small because the

Lagrangian mean stretching ∂uw/∂x
L

is essentially zero (§ 4.2).

Other than the mean tilting effect, the two correlation terms, ωl
z(∂uw/∂z)l

L
and

ωl
x(∂uw/∂x)l

L
, also make appreciable contributions to the enhancement of ωx

L.
The contributions from the correlation terms indicate that the variation of the
vorticity within a wave period is important to the long-term vorticity evolution.
The quantification and the physical mechanism of the correlation effect are further
discussed in § 6.3 below.

Next, we show the terms from (6.7c) and (6.7d) in figure 22, which contribute to
the evolution of ωz

L (6.2). It is found that the dominant terms are

ωx
L ∂ww

∂x

L

, ωl
z

(
∂ww

∂z

)l
L

, ωl
x

(
∂ww

∂x

)l
L

. (6.10a−c)

The mean effect, ωx
L∂ww/∂x

L
, is positive, indicating that the Lagrangian wave shear

gradient tends to tilt the streamwise vortices towards the vertical direction and
increases the vertical vorticity. Note that the viscous surface layer does not affect
∂ww/∂x

L
and thus does not lead to the sharp change of the profile near the surface.

Also plotted in figure 22 is the estimation of the mean effect using the potential wave
solution ∂ww/∂x

L
= (ak)2ωe2kz,

ωx
L ∂ww

∂x

L

≈ωx
Le2kz(ak)2ω, (6.11)

which yields a good agreement with the simulation result. On the other hand, the

correlation effects, ωl
z(∂ww/∂z)l

L
and ωl

x(∂ww/∂x)l
L
, are negative, which, interestingly,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.481


Wave effect on vorticity in Langmuir turbulence 207

-40 -20 0 20 40 -40 -20 0 20 40

-40 -20 0 20 40 -40 -20 0 20 40

0

-0.2

-0.4

-0.6

-0.8

0

-0.2

-0.4

-0.6

-0.8

0

-0.2

-0.4

-0.6

-0.8

0

-0.2

-0.4

-0.6

-0.8

kz

kz

(a) (b)

(c) (d)

FIGURE 22. (Colour online) Lagrangian decomposition of the wave distortion effect Dw
z

L

(6.7c) and (6.7d) for (a) case L1, (b) case L1S, (c) case L2 and (d) case L3: mean effects
ωx

L∂ww/∂x
L

(——), ωz
L∂ww/∂z

L
(— · —) and the estimation based on the potential wave

solution (6.11) (@); correlation effects ωl
x(∂ww/∂x)l

L
(– – –), ωl

z(∂ww/∂z)l
L

(· · · · · ·) and the
estimation based on (6.15a) or (6.15b) in § 6.3 (A). Note that (6.15a) or (6.15b) have the
same values. The results are normalized by u∗a2k3ω.

cancel the mean effect. The cancellation between the mean effect and the correlation
effect results in nearly no net change of ωz

L, in direct contrast to ωx
L discussed in

§ 6.1.
In summary, the correlation effect associated with the wave-phase variation of

the vorticity is found to play an important role in the cumulative wave distortion
of vortices. Notably, the near-zero change of the vertical vorticity is a result of the
cancellation between the mean tilting effect and the correlation effect. Meanwhile,
the correlation effect is as important as the mean effect in enhancing the streamwise
vorticity. The mean effect and the correlation effect on the Lagrangian vorticity
evolution are illustrated in the right part of figure 18.

6.3. Quantification of correlation effect in cumulative vorticity dynamics
Due to the importance of the correlation effect shown in § 6.2, we further investigate
it by quantifying the correlation terms to understand the underlying process. Because
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the correlation effect involves the interactions between the Lagrangian fluctuation of
the vorticity and the wave straining, we first estimate the fluctuation of the vorticity,
ωl, and then consider its correlation with the wave straining, (∇uw)

l. Based on the
definitions in (2.16) and (2.18), the Lagrangian fluctuation is essentially the variation
with the wave phase, which is shown in § 5.4 to be mainly driven by the wave orbital
straining. Therefore, the evolution of ωl is estimated by

Dωl

Dt
≈ωL

· (∇uw)
l, (6.12)

and the vorticity fluctuation with the wave phase is then

ωl
x ≈ω

L
·

∫
(∇uw)

l dt, ωl
z ≈ω

L
·

∫
(∇ww)

l dt. (6.13a,b)

Using (6.13), we can calculate the leading order of the correlation terms in (6.7). The
details of the derivations are given in appendix D.

As derived in appendix D (D 4 and D 5), the correlation terms from (6.7a)
and (6.7b), which affect the evolution of ωx

L (6.1), are

ωl
x

(
∂uw

∂x

)l
L

≈

[
ωz

L

∫ (
∂uw

∂z

)l

dt

](
∂uw

∂x

)l
L

≈ 0.5ωz
Le2kz(ak)2ω, (6.14a)

ωl
z

(
∂uw

∂z

)l
L

≈

[
ωz

L

∫ (
∂ww

∂z

)l

dt

](
∂uw

∂z

)l
L

≈ 0.5ωz
Le2kz(ak)2ω. (6.14b)

The estimations at the end of (6.14a) and (6.14b) are plotted in figure 21 and agree
with the simulation result. The combined contribution from the two correlation terms
is approximately the same as the mean effect (6.9). We also note that the magnitudes
of the above correlation terms are positively proportional to ωz

L, which means that the
streamwise vorticity of the same sign as ωz

L is generated from the correlation effect
as if the vertical vortices are ‘tilted’ towards the streamwise direction. The physical
processes associated with (6.14a) and (6.14b) are illustrated in figures 23(a) and 23(b),
respectively, and discussed in more detail below.

The interaction between ωz
L
∫
(∂uw/∂z)l dt and (∂uw/∂x)l in (6.14a) is illustrated in

figure 23(a). In (6.14a), ωz
L
∫
(∂uw/∂z)l dt represents the periodic tilting of vertical

vortex filaments, which induces streamwise vorticity fluctuation ωl
x, as shown in the

left part of figure 18 and the first row of figure 23(a). The vorticity fluctuation
ωl

x is positively correlated with the wave orbital straining (∂uw/∂x)l, leading to a
net increase in the streamwise vorticity. For example, if ωz

L is positive, the tilting
results in positive ωl

x under the backward slope and negative ωl
x under the forward

slope. The positive ωl
x is amplified under the backward slope due to the streamwise

stretching, which outweighs the negative ωl
x that is suppressed under the forward

slope due to compression (figure 23a). As a result, net positive streamwise vorticity
is generated. A similar process occurs with negative ωz

L, which eventually generates
negative streamwise vorticity (not plotted in figure 23a). In summary, the correlation
effect (6.14a) amplifies the streamwise vorticity, due to the periodic tilting of vertical
vortex filaments combined with streamwise stretching and compression.

Figure 23(b) illustrates the correlation between ωz
L
∫
(∂ww/∂z)l dt and (∂uw/∂z)l

in (6.14b). The value of ωz
L
∫
(∂ww/∂z)l dt represents the fluctuation ωl

z induced
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FIGURE 23. Sketch of the correlation between the fluctuating vorticity and the wave
straining, and how the correlation contributes to the cumulative evolution of ωx

L: (a) the
correlation between ωl

x and (∂uw/∂x)l (6.14a); (b) the correlation between ωl
z and

(∂uw/∂z)l (6.14b). The first rows of (a) and (b), which are similar to the left part of
figure 18, show the generation of the Lagrangian fluctuation, ωl (vortex tubes with dashed
lines), due to the tilting and stretching of vertical vortices, respectively. The second rows
of (a) and (b) illustrate the interaction of ωl with the local wave straining of stretching and
tilting, respectively. The third rows illustrate the net vorticity generated by the correlation
effect, denoted by solid grey tubes.

by the vertical stretching and compression of vertical vortex filaments (the left part
of figure 18 and the first row of figure 23b). If ωz

L is positive, the resulting ωl
z

is positive under the crest and negative under the trough. Because (∂uw/∂z)l is
positive under the crest, the vorticity vector with positive ωl

z is tilted clockwise and
generates positive streamwise vorticity. Under the trough, (∂uw/∂z)l is negative and
the counter-clockwise tilting of the vorticity vector with negative ωl

z also generates
positive streamwise vorticity. Therefore, positive streamwise vorticity is cumulatively
generated. The correlation process for negative ωz

L is similar, and the net effect is
the increase of negative streamwise vorticity. The above discussion explains (6.14b).
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c
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Stretching of øx
L induces fluctuation øl

x

Tilting of øx
L induces fluctuation øl

z

Stretching of øl
z

by (™ww/™z)l

Tilting of øl
x

by (™ww/™x)l
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(b)

FIGURE 24. (Colour online) Sketch of the correlation between the fluctuating vorticity
and the wave straining, and how the correlation contributes to the cumulative evolution
of ωz

L: (a) the correlation between ωl
x and (∂ww/∂x)l (6.15a); (b) the correlation between

ωl
z and (∂ww/∂z)l (6.15b). The first rows of (a) and (b), which are similar to the left part

of figure 18, show the generation of the Lagrangian fluctuation, ωl (vortex tubes with
dashed lines), due to the stretching and tilting of streamwise vortices, respectively. The
second rows of (a) and (b) illustrate the interaction of ωl with the local wave straining
of tilting and stretching, respectively. The third rows illustrate the net vorticity generated
by the correlation effect, denoted by solid grey tubes.

Next, we discuss the correlation terms in (6.7c) and (6.7d) for the dynamics of
ωz

L (6.2). Following appendix D (D 6 and D 7), we have

ωl
x

(
∂ww

∂x

)l
L

≈

[
ωx

L

∫ (
∂uw

∂x

)l

dt

](
∂ww

∂x

)l
L

≈−0.5ωx
Le2kz(ak)2ω, (6.15a)

ωl
z

(
∂ww

∂z

)l
L

≈

[
ωx

L

∫ (
∂ww

∂x

)l

dt

](
∂ww

∂z

)l
L

≈−0.5ωx
Le2kz(ak)2ω. (6.15b)
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As shown in figure 22, the estimation given by (6.15a) and (6.15b) is also in good
agreement with the LES result. Note that the two correlation terms are related to ωx

L,
and they together cancel the mean tilting effect (6.11), indicating that the correlation
effect effectively prevents the streamwise vortices from being tilted back to the vertical
direction, consistent with preceding analyses of the Lagrangian vorticity dynamics.
Figure 24 illustrates the correlations between the vorticity fluctuation and the wave
straining associated with (6.15a) and (6.15b).

Equation (6.15a) reduces to the interaction between the vorticity fluctuation
ωx

L
∫
(∂uw/∂x)l and the local wave straining (∂ww/∂x)l, which is sketched in

figure 24(a). The vorticity fluctuation is associated with the periodic stretching and
compression of ωx

L by the wave, as illustrated in the left part of figure 18 and the
first row of figure 24(a). If ωx

L is positive, the corresponding ωl
x is positive under the

trough and negative under the crest. Under the trough, the negative (∂ww/∂x)l tilts the
positive vorticity vector ωl

x clockwise and results in the generation of negative vertical
vorticity. Under the crest, both (∂ww/∂x)l and ωl

x reverse signs, which still leads to
negative vertical vorticity. As a result, net negative vertical vorticity is generated. For
negative ωx

L, the above correlation process results in net positive vertical vorticity.
The above discussion explains (6.15a).

The correlation between ωx
L
∫
(∂ww/∂x)l dt and (∂ww/∂z)l in (6.15b) is illustrated

in figure 24(b). The value of ωx
L
∫
(∂ww/∂x)l dt represents the vertical vorticity

fluctuation ωl
z generated from the tilting of streamwise vortex filaments (the left part

of figure 18 and the first row of figure 24b). If ωx
L is positive, the tilting leads to

negative ωl
z under the forward slope and positive ωl

z under the backward slope. The
negative ωl

z is amplified by the vertical stretching due to the positive (∂ww/∂z)l under
the forward slope. On the other hand, under the backward slope, the positive ωl

z is
suppressed by the compression due to the negative (∂ww/∂z)l. Therefore, the negative
ωl

z outweighs the positive ωl
z, and net negative vertical vorticity is generated. The

correlation process for negative ωx
L is similar, which results in net positive vertical

vorticity. The above discussion explains (6.15b).
To summarize, the correlation effects in (6.14a) and (6.14b) indicate that streamwise

vorticity can be generated from the interactions between the wave straining and the
vorticity fluctuation induced by the periodic tilting and stretching of vertical vortices.
This means that the mean effect and the correlation effect together ‘tilt’ vertical
vortices towards the streamwise direction, as illustrated step by step in figure 23
and summarized in the right part of figure 18. Furthermore, the streamwise vorticity
generated by the correlation effect has the same estimated value as that generated
by the mean tilting effect (6.9). On the other hand, (6.15a) and (6.15b) represent
the generation of vertical vorticity from the correlation between the wave straining
and the vorticity fluctuation due to the stretching and tilting of streamwise vortices
(figure 24). This correlation effect, of which the values are opposite to the mean
tilting effect (6.11), effectively cancels the tilting of the streamwise vortex filaments
by the mean effect (the right part of figure 18). The physical processes underlying
the correlation effects indicate that the phase variation of the vorticity within a wave
period is important to the cumulative vorticity evolution in Langmuir turbulence.

6.4. Discussion on the CL vortex force
Now we compare the above analyses of the cumulative vorticity dynamics with the
vortex force in the CL vorticity equation (Craik & Leibovich 1976)

∇× (us ×ω)=−us · ∇ω+ω · ∇us. (6.16)
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Here, us · ∇ω is the convection of the vorticity due to the wave Stokes drift, and
ω · ∇us represents the change rate of the vorticity due to vortex distortion by the
wave Stokes drift. For uni-directional waves in the streamwise direction, the Stokes
drift only has one non-zero component that varies in the vertical direction, i.e. us =

(us(z), 0, 0). The vortex distortion ω · ∇us reduces to

ω · ∇us|x =ωz
∂us

∂z
, ω · ∇us|y = ω · ∇us|z = 0. (6.17a,b)

The only vorticity distortion term, ωz(∂us/∂z), appears in the x-direction. It indicates
that the vertically varying Stokes drift acts like a shearing effect that tilts vertical
vorticity filaments to generate streamwise vorticity.

If we use us = a2kωe2kz (Phillips 1977), the generation rate of streamwise vorticity
due to the Stokes drift is

ωz
∂us

∂z
= 2ωze2kz(ak)2ω. (6.18)

Compared with our analyses of the Lagrangian dynamics of the vorticity (§ 6.2
and 6.3), (6.18) is consistent with the combined contribution from the mean
effect (6.9) and the correlation effect (6.14). On the other hand, the vortex force
has no effect on the vertical vorticity, which is also consistent with our Lagrangian
analysis above that the correlation effect (6.15) cancels the mean effect (6.11) in the
evolution of vertical vorticity. Therefore, the vortex force modelling of the wave effect
on the wave-phase-averaged vorticity agrees with our wave-phase-resolved simulation
and analyses.

The agreement is interesting yet not surprising. In the derivation of the CL equations
(Craik & Leibovich 1976; Leibovich 1977b), the estimation of the order of magnitude
and the multiscale asymptotic analysis show that the first-order perturbation to
the vorticity is driven by the interactions between the wave and the leading-order
(averaged) vorticity; then the first-order vorticity perturbation interacts with the wave
cumulatively, of which the effect is obtained through an integration, leading to the
vortex force term. The first-order vorticity perturbation estimated in the CL theory
is similar to the phase variation of the vorticity in our Lagrangian analysis in that
they both are related to the wave orbital straining and the mean vorticity (§ 5.4
and the quantitative estimation 6.13a,b). In other words, the vortex force includes
the effect of the wave-phase-correlated vorticity fluctuation and models it using the
wave-phase-averaged quantities, therefore the vortex force shows good agreement with
our evaluation of the wave effect. This again confirms that the fluctuating vorticity is
important to the correct modelling of the wave-phase-averaged vorticity dynamics.

The Lagrangian decomposition of the wave distortion terms separates the effect of
the wave-phase-correlated fluctuating vorticity from the mean effect, further revealing
the physical process underlying the phase-averaged vorticity dynamics. The increase of
the streamwise vorticity, which appears to be due to the tilting of the vertical vortices
by the Stokes drift according to the Stokes force, is caused by two effects, the mean
tilting by the Lagrangian wave shear gradient and the ‘oscillatory tilting’ due to the
correlation between the vorticity fluctuation and the wave orbital straining within a
wave period. The mean effect (6.9) and the correlation effect (6.14) both account
for half of the total increase rate of the streamwise vorticity. By contrast, for the
vertical vorticity, the mean effect (6.11) and the correlation effect (6.15) cancel each
other, which is why while the wave distortion turns vertical vortices into horizontal
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vortices, it does not turn the latter back to the former. Therefore, the phase variation
of the vorticity and its associated correlation effect is as crucial as the effect of the
Lagrangian wave velocity gradient.

It should be pointed out that both the CL modelling and the present study focus on
the first-order moments of turbulence statistics, i.e. the wave-phase-averaged vorticity
(or equivalently velocity after integration). High-order moments, such as the Reynolds
stress and turbulent kinetic energy (TKE), are also important to various applications
but are more complex to model because they are often associated with stronger
nonlinear effects. Zhou (1999) conjectured that the nonlinear interactions between the
wave straining and the turbulence fluctuations with time scales similar to the wave
period lead to the differences in Reynolds stress between the wave-phase-resolved
simulation and the CL-based simulation. Meanwhile, it is evident from the analyses
of the correlation effects in the vorticity dynamics that the wave-phase-correlated
turbulence vorticity contributes to the wave-phase-averaged vorticity through its
correlation with the wave straining, which we show can be modelled using the
phase-averaged vorticity as (6.14) and (6.15). For high-order moments, it is not clear
yet whether such correlation effects can be accounted for by the wave-phase-averaged
equations. For example, in wall turbulence, the nonlinear interaction among vortices is
an important mechanism for the generation of Reynolds stress (Ganapathisubramani,
Longmire & Marusic 2003). The wave-phase-correlated fluctuating vortices may
also have effects on the wave-phase-averaged Reynolds stress through nonlinearity.
The effects of the wave-phase-correlated turbulence fluctuations on higher-order
moments of turbulence statistics, which are beyond the scope of this paper, should
be investigated in future studies.

7. Conclusions

The purpose of this study is to mechanistically investigate the wave effects on
turbulence vorticity in Langmuir turbulence using wave-phase-resolved simulation.
The unified simulation of the surface wave and turbulence fields is enabled by the
wave-phase-resolved LES on a surface-fitted curvilinear grid. This approach resolves
the wave effect explicitly, and thus avoids the modelling of the wave effects as
in the CL-based simulations in the literature. In this work, we set up LES of the
turbulent flow with wind shear stress applied at the wave surface subject to fully
nonlinear free-surface kinematic and dynamic boundary conditions. This numerical
set-up facilitates mechanistic analyses of the role of wave in the vorticity evolution.
We have been able to gain insights into the direct distortion of turbulence vorticity
by the wave orbital straining, and the long-term effects of the wave straining on the
wave-phase-averaged vorticity.

To analyse the current, wave and turbulence in the wave-phase-resolved frame, we
have proposed a triple decomposition method based on the GLM theory to separate the
wave-induced velocity and the current. After examining the current profile, the surface
flow structures and the vortex structures, we have found that the wave-phase-resolved
simulation successfully captures the characteristic features of Langmuir turbulence.
The current is nearly uniformly distributed over the water column due to the enhanced
vertical mixing associated with the Langmuir turbulence. The windrows are illustrated
by tracer particles. Both the instantaneous vorticity field and the reconstructed vortex
structure using the LSE method show that quasi-streamwise vortices dominate the
near-surface region. Compared with the vortices in a shear-driven flow, the vortices
in Langmuir turbulence are more elongated in the streamwise direction and usually
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appear in pairs. Most interestingly, we have observed a strong dependence of the
distribution of the vortices with the wave phase.

To understand the wave effect on the turbulence vorticity, the wave properties
are assessed, including the orbital straining varying with the wave phase and the
Lagrangian mean wave straining (figure 12). The analyses of the wave orbital
straining and the Lagrangian straining show that the wave is largely irrotational.
The viscosity and the imposed surface shear stress only affect the wave motion in a
thin viscous surface layer.

We then investigated the variation of the vortex structures and the vorticity statistics
with the wave phase. Both the length and tilting angles of the vortices are found to
be dependent on the wave phase. The enstrophy and the histograms of the inclination
angles of the vorticity vectors also show variation with the wave phase. The analyses
of the vorticity evolution equations reveal that the wave-phase variation of the vorticity
and the resulting vortex structure are caused by the periodic stretching and tilting
of the wave straining (figure 18). The streamwise vortices are stretched by the wave
normal straining under the backward slope and compressed under the forward slope.
The vertical vortices are stretched under the forward slope and compressed under
the backward slope. Under the wave crest, the wave shear straining turns streamwise
vortices and vertical vortices in the counter-clockwise and clockwise directions,
respectively. Under the wave trough, the tilting directions reverse.

Besides the direct distortion effects of the wave on the phase variation of vorticity
statistics, we have also analysed the vorticity dynamics in the Lagrangian frame to
study the cumulative effects of the wave straining. In Langmuir turbulence, the wave
straining leads to a cumulative enhancement of the streamwise vorticity, while its net
effect on the vertical vorticity is negligible. This results in an overwhelming titling of
vortices to the streamwise direction, and the elongation of the vortices.

To understand the mechanisms of the wave distortion effect, we have employed a
Lagrangian-based Reynolds decomposition to analyse the effects of the Lagrangian
mean quantities and the effects of the correlation between the wave-phase-dependent
fluctuations. It is found that the phase correlation between the vorticity fluctuations
and the wave orbital straining results in a net contribution to the streamwise vorticity,
working together with the Lagrangian mean straining to tilt vertical vortices to the
streamwise direction. On the other hand, the correlation effect cancels the tendency
of the mean effect to increase the vertical vorticity, resulting in a negligible net
change in the vertical vorticity. Therefore, the wave-phase variation of the turbulence
vorticity is an important factor for the wave distortion effects to be selective on the
different vorticity components. Overall, the stretching and tilting of the vorticity by
the wave straining results in the enhancement of the streamwise vorticity. Because
the streamwise vortical structures are important to the generation of Reynolds shear
stress (McWilliams et al. 1997; Teixeira & Belcher 2002; Ganapathisubramani et al.
2003), the dominance of the streamwise vortices leads to a more efficient vertical
mixing in the ocean surface boundary layer.

We have also performed a quantitative analysis of the correlation effect of the
wave-phase-dependent fluctuations and obtained a physical picture of how the
correlation effect contributes to the cumulative vorticity evolution. For the increase
of the streamwise vorticity, the correlation effect is related to the vorticity variation
induced by the vertical vorticity (figure 23). On the other hand, the correlation
terms in the evolution of the vertical vorticity are related to the vorticity variation
induced by the streamwise vorticity (figure 24). The vortex force modelling of
the wave-phase-averaged vorticity has been found to agree with our quantitative
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analyses of the combined mean and correlation effects in the cumulative vorticity
dynamics because the effect of the fluctuating vorticity is modelled using the
wave-phase-averaged quantities in the multiscale asymptotic analysis.

The present study is performed at a moderate Reynolds number Reτ = 2000, which
is lower than the realistic oceanic environment (§ 2.4). In appendix E, a simulation
of Langmuir turbulence with Reτ = 500 is performed and shows that the vorticity
distortion terms associated with the wave straining are qualitatively the same as
those from Reτ = 2000. The result suggests that the fundamental mechanism of the
wave effect on the turbulence vorticity is insensitive to the Reynolds number and
we conjecture that the mechanism can apply to higher Reynolds number flows. This
is likely similar to the fact that the features of the turbulence structures near the
boundary are weakly dependent on the Reynolds number in other types of flows
(Klewicki et al. 1995; Morris et al. 2007).

We shall also note that under realistic conditions, misaligned wind and wave can
occur due to swells and non-equilibrium wind seas (Gnanadesikan & Weller 1995;
Polonichko 1997; Van Roekel et al. 2012; Sullivan et al. 2012; McWilliams et al.
2013; Rabe et al. 2014; Chen et al. 2016). Compared with the canonical condition
considered in this study where the wind and the wave are co-aligned, the orientation
of Langmuir cells is found to depend on the angles between the wave and wind. In
terms of the vorticity dynamics, the tilting and stretching direction of the vorticity
by the surface wave is not the same as the tilting direction of the wind-shear-driven
current. The two mechanisms compete with each other and affect the balance of the
vorticity evolution equations (6.1) and (6.2). In some cases, the current and wave
may apply opposing effect on the vorticity distortion and suppress the Langmuir
turbulence. However, for the wave straining effect on the vorticity considered in this
work, ω · ∇uw

L
, because the order of magnitude of uw is significantly larger than the

turbulence velocity scale, we conjecture that the modelling of the mean effect and
the fluctuation effect can be generalized to apply to the misaligned cases. This can
be evaluated in future work using the wave-phase-resolved simulations.

The vorticity and coherent vortical structures are important features of turbulent
flows. The analyses of vorticity tilting and stretching due to the mean and correlation
effects provide better understanding of the dynamical connection between the wave
distortion and the generation of the turbulence vorticity in Langmuir turbulence.
The new perspective highlights the role of the wave-phase-coherent turbulence in
the dynamics of wave–turbulence interactions, i.e. the correlation effects. These
findings also suggest considering the potential importance of the wave-phase-coherent
turbulent motions in other aspects of the wave–turbulence interactions. For example,
the CL equation and the Lagrangian mean vorticity evolution both describe the
wave-phase-averaged quantities of the flow that are first-order moments of turbulence
statistics (e.g. velocity or vorticity). Considering that the vortices are closely associated
with the generation of the Reynolds shear stress and the production of the TKE, the
fluctuating vortices due to the stretching and tilting also indicate the variation of the
Reynolds stress and TKE with the wave phase (Xuan & Shen 2019), and the present
work provides a possibility to investigate and quantify other wave-phase-correlated
turbulence statistics. In future work, it would be desirable to investigate the effects of
the wave-phase-dependent turbulent motions on higher-order turbulence statistics, such
as the TKE and Reynolds stresses, and their relations with the wave-phase-averaged
turbulence statistics.
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Appendix A. Surface pressure for maintaining the wave amplitude

Assuming that the elevation of the surface wave is η(x, t)= at(t) sin ϕ(x, t), where
the wave amplitude at and the phase ϕ are evaluated at every time step, the pressure
pa is given by

pa = p0 cos ϕ, (A 1)

which lags the wave by a phase difference of π/2. The energy input rate over one
wavelength from the applied pressure is

dE
dt
=−

∫ λ
0
ηtpa dx=

aωp0

2
λ. (A 2)

Because the energy difference from the target wave amplitude is 1E=ρg(a2
− a2

t )λ/2,
where a is the target wave amplitude, we specify p0 as

p0 =
1E
1t

2
aωλ
=
ρ(a2
− a2

t )c
a1T

(A 3)

to supply energy to maintain the wave amplitude or suppress the wave. Here, 1T is
a parameter to smooth the pressure forcing, for which we use 1T =π/2ω.

Appendix B. Two-point correlations of turbulence velocity fluctuations

The two-point correlations of the turbulence fluctuation velocity are calculated to
evaluate whether the domain size is sufficiently large to capture the coherent structures
in the turbulent flow. The two-point auto-correlation for the velocity fluctuation u′i, Ru′i ,
is defined as

Ru′i(r, z)=
〈u′i(x)u′i(x+ rê1)〉xy

〈u′i(x)u′i(x)〉xy
. (B 1)

Here, ê1 is the unit vector in the x-direction, and Ru′i is defined based on the
average on a horizontal x–y plane, 〈·〉xy. As shown in figure 25(a), for case L1, the
correlation functions Ru′i of different velocity components fall off to almost zero at
the mid-point of the domain (less than 0.05), which is usually considered to be small
enough in different types of turbulent flows (Komminaho, Lundbladh & Johansson
1996; Zikanov, Slinn & Dhanak 2003). The studies of the effect of the domain size
for plane Couette flows by Komminaho et al. (1996) and Tsukahara, Kawamura
& Shingai (2006) also show that the flow statistics only vary slightly when the
correlation function at the mid-point of the domain decreases from 0.2 to 0.05.
Among the three components, the spanwise velocity fluctuations have a relatively
strong correlation, corresponding to the elongated streamwise vortices (Teixeira &
Belcher 2010). Figure 25(b) shows that the correlation functions for the spanwise
velocity fluctuations, Rv′ , are sufficiently small for all cases considered in this study,
and thus the domain size is sufficiently large.
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FIGURE 25. (Colour online) Two-point auto-correlation of velocity fluctuations.
(a) Ru′i(kr1) of the streamwise (——), spanwise (– – –) and vertical velocity (— · —) at
kz = −0.1 for case L1; (b) Rv′ at kz = −0.1 for cases L1 (——), L1S (— · · —), L2
(– – –), L3 (— · —) and the shear-driven turbulence case S (· · · · · ·). Only half of the
domain size is plotted due to the periodicity.

Appendix C. Linear stochastic estimation of coherent vortex structure

The linear stochastic estimation (LSE) is the linear least squares approximation
of a random variable with respect to a conditioning event (Adrian & Moin 1988;
Adrian 1994). Here, the conditioning event is chosen to be the presence of a vortex
identified by the swirling strength λci (Zhou et al. 1999; Christensen & Adrian 2001),
the imaginary part of the complex eigenvalues of the velocity gradient tensor ∇u.
The λci is always non-negative, and it measures the strength of the rotation, but not
the direction. To avoid the cancellation between the vortices of the opposite rotating
directions when performing the LSE, we employ a signed swirling strength Λci (Wu
& Christensen 2006) as the conditioning event,

Λci = λci
ωx

|ωx|
. (C 1)

Here, ωx is used to decide the sign because of the dominance of the streamwise
vortices. The LSE of a quantity f subject to the event Λci, denoted by 〈 f (x′)|Λci(x)〉,
is given by

〈f (x′)|Λci(x) > 0〉 =
〈Λci(x)f (x+ x′)〉

+

〈Λci(x)Λci(x)〉+
Λci(x), (C 2a)

〈f (x′)|Λci(x) < 0〉 =
〈Λci(x)f (x+ x′)〉

−

〈Λci(x)Λci(x)〉−
Λci(x), (C 2b)

where 〈·〉+ and 〈·〉− denote that the averaging is taken at all locations of Λci > 0 and
Λci< 0, respectively, and x′ denotes the coordinates relative to x. The above definition
of LSE allows the vortices of opposite rotation directions to be averaged separately.

Appendix D. Calculation of correlation terms

Substituting (6.13) into the correlation term in (6.7a), we have

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.481


218 A. Xuan, B.-Q. Deng and L. Shen

ωl
x

(
∂uw

∂x

)l
L

≈

[
ωx

L

∫ (
∂uw

∂x

)l

dt+ωz
L

∫ (
∂uw

∂z

)l

dt

](
∂uw

∂x

)l
L

= ωx
L
∫ (

∂uw

∂x

)l

dt
(
∂uw

∂x

)l
L

+ωz
L
∫ (

∂uw

∂z

)l

dt
(
∂uw

∂x

)l
L

. (D 1)

If we use the linear wave expression,(
∂uw

∂x

)l

=−

(
∂ww

∂z

)l

≈ akωekz cos ϕ, (D 2)(
∂uw

∂z

)l

=

(
∂ww

∂x

)l

≈ akωekz sin ϕ, (D 3)

where ϕ = kx − ωt is the wave phase. We can see that in the first term of (D 1),
the phase difference between

∫
(∂uw/∂x)ldt and (∂uw/∂x)l is π/2. As a result, the

Lagrangian average (2.16) of the product of these two variables has a negligible net
effect. In the second term of (D 1), the values of

∫
(∂uw/∂z)ldt and (∂uw/∂x)l are

positively correlated and yield a net contribution as

ωl
x

(
∂uw

∂x

)l
L

≈ωz
L
∫ (

∂uw

∂z

)l

dt
(
∂uw

∂x

)l
L

≈ 0.5ωz
Le2kz(ak)2ω. (D 4)

Similarly, we can calculate the correlation term in (6.7b) as

ωl
z

(
∂uw

∂z

)l
L

≈

[
ωx

L

∫ (
∂ww

∂x

)l

dt+ωz
L

∫ (
∂ww

∂z

)l

dt

](
∂uw

∂z

)l
L

= ωx
L
∫ (

∂ww

∂x

)l

dt
(
∂uw

∂z

)l
L

+ωz
L
∫ (

∂ww

∂z

)l

dt
(
∂uw

∂z

)l
L

= ωz
L
∫ (

∂ww

∂z

)l

dt
(
∂uw

∂z

)l
L

≈ 0.5ωz
Le2kz(ak)2ω. (D 5)

Here, the first term has no contribution because the phase difference between∫
(∂ww/∂x)ldt and (∂uw/∂z)l is π/2.
Using (6.13) and (D 3), we can calculate the correlation terms in (6.7c) and (6.7d)

as

ωl
x

(
∂ww

∂x

)l
L

≈

[
ωx

L

∫ (
∂uw

∂x

)l

dt+ωz
L

∫ (
∂uw

∂z

)l

dt

](
∂ww

∂x

)l
L

= ωx
L
∫ (

∂uw

∂x

)l

dt
(
∂ww

∂x

)l
L

+ωz
L
∫ (

∂uw

∂z

)l

dt
(
∂ww

∂x

)l
L

≈ ωx
L
∫ (

∂uw

∂x

)l

dt
(
∂ww

∂x

)l
L

≈−0.5ωx
Le2kzakS, (D 6)
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FIGURE 26. (Colour online) Contours of the terms of the wave distortion Dw in the flow
with Reτ = 500: (a) 〈ωx∂uw/∂x〉, (b) 〈ωz∂uw/∂z〉, (c) 〈ωx∂ww/∂x〉 and (d) 〈ωz∂ww/∂z〉.

ωl
z

(
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L
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∂ww
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)l

dt+ωz
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∂ww

∂z

)l

dt

](
∂ww

∂z

)l
L

= ωx
L
∫ (

∂ww

∂x

)l

dt
(
∂ww

∂z

)l
L

+ωz
L
∫ (

∂ww

∂z

)l

dt
(
∂ww

∂z

)l
L

≈ ωx
L
∫ (

∂ww

∂x

)l

dt
(
∂ww

∂z

)l
L

≈−0.5ωx
Le2kzakS. (D 7)

In (D 6), the phase difference between
∫
(∂uw/∂z)ldt and (∂ww/∂x)l is π/2 and the

corresponding term is omitted. The same applies to
∫
(∂ww/∂z)l dt(∂ww/∂z)l

L
in (D 7).

Appendix E. Reynolds number effect
To investigate whether the dominant mechanism of the wave effect on the vorticity

evolution is affected by the Reynolds number, a simulation of Langmuir turbulence
with Reτ = 500 is carried out. The remaining parameters are the same as those of
case L1 (table 1). The grid size is 128 × 160 × 73 and the resolution satisfies the
criteria for wall-resolved LES.

Figure 26 shows the wave distortion terms Dw as in figure 17. The positive and
negative regions and the vertical distribution of the terms are similar to those in the
flow at Reτ = 2000. This indicates that the vorticity fluctuations due to the stretching
and tilting by the wave orbital straining are similar at the two different Reynolds
numbers.

Figures 27(a) and 27(b) show the Lagrangian decomposition of the wave distortion
effect for the evolution of ωx

L and ωz
L (6.7), respectively. Compared with figures 21(a)
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FIGURE 27. (Colour online) Lagrangian decomposition of the wave distortion term
(a) Dw

x
L

((6.7a) and (6.7b)) and (b) Dw
z

L
((6.7c) and (6.7d)) in the flow with Reτ = 500.

See the captions of figures 21 and 22 for the meanings of the line types in (a) and (b),
respectively.

and 22(a), these profiles are very similar. For the dynamics of ωx
L, both the mean

effect and the phase correlation between the vorticity fluctuations and the wave orbital
straining result in a net enhancement of the streamwise vorticity. Meanwhile for the
evolution of ωz

L, the mean effect is cancelled by the correlation effect. In addition,
the theoretical predictions, (6.9), (6.11), (6.14) and (6.15), agree with the numerical
results. The above comparisons show that although the Reynolds number can affect
the flow statistics quantitatively, the mechanisms of the vorticity dynamics under the
distortion of the surface wave appear to be the same.
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