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We study the complex dynamics of a two-dimensional suspension comprising non-
motile active particles confined in an annulus. A coarse-grained liquid crystal model
is employed to describe the nematic structure evolution, and is hydrodynamically
coupled with the Stokes equation to solve for the induced active flows in the annulus.
For dilute suspensions, coherent structures are captured by varying the particle
activity and gap width, including unidirectional circulations, travelling waves and
chaotic flows. For concentrated suspensions, the internal collective dynamics features
motile disclination defects and flows at finite gap widths. In particular, we observe an
intriguing quasi-steady-state at certain gap widths during which +1/2-order defects
oscillate around equilibrium positions accompanying travelling-wave flows that switch
circulating directions periodically. We perform linear stability analyses to reveal
the underlying physical mechanisms of pattern formation during a concatenation of
instabilities.

Key words: complex fluids, liquid crystals, pattern formation

1. Introduction

Active matter represents a class of far-away-from-equilibrium systems comprising
self-driven particles (Ramaswamy 2010; Marchetti et al. 2013; Shelley 2016). When
immersed in a fluid, motile microstructures exert forces upon the ambient liquid,
which itself acts as a coupling medium for generation of multiscale dynamics; this
presents challenges in design, analysis and control of novel active materials. To take
advantage of the anomalous properties (e.g. large-scale induced motion, enhanced
diffusion and energy conversion), it is essential to guide active matter to perform
useful mechanical work. One way of doing this is to tune the suspension concentration
and the amount of chemical fuels (Sokolov et al. 2007; Sanchez et al. 2012; Henkin
et al. 2014). Alternatively, it is possible to make use of the particle interactions, either
individually or collectively, with obstacles and geometric boundaries for more direct
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manipulation. By trapping active suspensions (such as pusher swimmers and Quincke
rollers) within straight and curved boundaries, experimental and numerical studies
have revealed stable coherent structures and flow types (Woodhouse & Goldstein
2012; Bricard et al. 2013; Ravnik & Yeomans 2013; Wioland et al. 2013; Ezhilan
& Saintillan 2015; Tsang & Kanso 2016; Guillamat, Ignés-Mullol & Sagués 2016a;
Guillamat et al. 2016b; Theillard, Alonso-Matilla & Saintillan 2017; Wu et al. 2017).

In this paper, we study the complex dynamics of a two-dimensional (2D) apolar
active suspension confined in an annulus. The rod-like microparticles are non-motile
but mobile, and are only advected by fluid flow. In the meantime, they elongate
through nearly symmetric stretching or growth to exert extensile dipolar stresses
on the solvent, and interact with one another through hydrodynamic coupling and
steric alignment torques, which we have previously referred to as ‘extensor’ particles
(Gao et al. 2017; Gao & Li 2017). Examples include bacterial cell division (Adams
& Errington 2009), microtubule (MT) bundles undergoing polarity sorting driven
by molecular motors (Sanchez et al. 2012) and tripartite Au–Pt–Au nanomotors
generating surface flows due to catalytic reactions (Jewell, Wang & Malloukl 2016;
Wykes et al. 2016). In the previous works by Gao et al. (2017) and Gao & Li
(2017), a macroscale liquid-crystal model, i.e. ‘BQ’-tensor theory, was derived from
a kinetic theory that describes the ensemble dynamics of extensors. Compared with
macro models for motile suspensions (Saintillan & Shelley 2013), where the coupled
evolution equations for the suspension concentration, polarity and tensorial order
parameter need to be solved together, we have shown that the apolar BQ-tensor
model naturally conserves the local concentration and the global particle numbers,
and can be characterized by the evolution equation of the second-moment tensor only.
Through theoretical analyses and numerical simulations for extensor suspensions both
in unbounded domains and confined in circular chambers, we have demonstrated that
this active fluid model, while being apolar, inherits all of the basic transitions and
instabilities associated with motile suspensions, and exhibits a rich set of collective
dynamics.

We examine both dilute and concentrated extensor suspensions confined in an
annulus geometry. For the dilute cases, we identify emergent coherent structures that
resemble those observed in ‘polar’ active suspensions of pusher particles (Wioland,
Lushi & Goldstein 2016; Theillard et al. 2017) by varying the particle activity and
annulus gap width. Linear stability analyses are performed to reveal the underlying
physical mechanisms of a series of hydrodynamic instabilities starting from a
near-isotropic state. At a finite concentration, we show that the internal collective
dynamics can be effectively inhibited when confined in thin gaps; the particles rise
when the gap width is large enough so that a bending instability can develop in
the radial direction to generate active nematic flows. In particular, we capture an
intriguing quasi-steady-state at a finite gap width featuring oscillating +1/2-order
defects and travelling-wave flows that switch circulation directions periodically.

2. Mathematical model

We consider a collection of extensor particles suspended in a Newtonian fluid.
These active particles are non-motile but can elongate or stretch near-symmetrically
to produce extensional flows that effectively exert dipolar stresses upon the liquid.
As shown by Gao et al. (2017) and Gao & Li (2017), the ensemble dynamics of
extensor particles whose centre-of-mass position is located at x with an orientation
p (|p| = 1) can be described by a probability distribution function Ψ (x, p, t) through
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a Smoluchowski equation. The particles exert stresses Σ on the liquid to drive fluid
motion, which is governed by the (dimensionless) incompressible Stokes equation,

∇p−1u=∇ ·Σ, (2.1)
∇ · u= 0, (2.2)

where u and p are the fluid velocity and pressure respectively. The extra stress tensor
Σ can be written as (Saintillan & Shelley 2008; Gao et al. 2015b)

Σ = αD + βS : E − 2ζβ(D · D − S : D), (2.3)

where E = 1/2(∇u + ∇uT) is the rate-of-strain tensor; D =
∫

p ppΨ dp and S =∫
p ppppΨ dp are the second- and fourth-moment tensors respectively, and are

calculated by taking the average of p on the surface of a unit sphere. In (2.3), the
first term represents a dipolar extensile stress that arises from the local extensional
flows, with the dimensionless coefficient α < 0 quantifying particle activity (Saintillan
& Shelley 2008; Hohenegger & Shelley 2011). The second term is a constraining
stress due to particle rigidity (Doi & Edwards 1988; Ezhilan, Shelley & Saintillan
2013), with an effective shape factor β > 0 characterizing the particle aspect ratio.
The third term is due to steric interactions through a Maier–Saupe potential with a
strength coefficient ζ (Maier & Saupe 1958; Ezhilan et al. 2013; Gao et al. 2015b).
It should be noted that both the constraining and the steric interaction stresses are
proportional to the effective volume fraction of the suspension, and hence cannot be
neglected for concentrated suspensions (Ezhilan et al. 2013; Gao et al. 2015b).

The flow equation is coupled with the evolution equation of the D tensor, which is
derived from the kinetic model by taking a standard moment average (Doi & Edwards
1988; Gao et al. 2017; Gao & Li 2017),

D∇ + 2E : S = 4ζ (D · D − S : D)+ dT1D − 4dR

(
D −

I

2

)
, (2.4)

where D∇ = ∂D/∂t + u · ∇D − (∇u · D + D · ∇uT) is an upper-convected derivative,
and dR and dT are the rotational and translational diffusion coefficients respectively.
It is worthwhile to mention that in the classical Landau–de Gennes approach for
liquid-crystalline fluids (de Gennes 1974), dR and dT are essentially the linear terms
in a Landau potential and the Frank elastic constant for a nematic liquid crystal
respectively. In non-dimensionalization, we assume that there are N extensor particles
of length l and width b (b/l� 1) distributed in a volume V , and introduce an effective
volume fraction ν = nbl2, where n= N/V is the mean number density (Ezhilan et al.
2013; Gao et al. 2017; Gao & Li 2017). Then, we choose the length scale lc = b/ν,
the velocity scale |u0|, which represents the surface velocity due to elongation or
stretching motion, and the stress scale µ|u0|/lc. Equation (2.4) can be closed by
expressing the fourth-moment tensor S in terms of D through the so-called Bingham
closure (Bingham 1974; Chaubal & Leal 1998; Gao et al. 2017), which reconstructs
a distribution function ΨB(x, p, t) in terms of a traceless symmetric tensor T (x, t), to
yield

ΨB[T ] =
exp(T : pp)∫

p
exp(T : pp) dp

. (2.5)
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We determine the tensor T numerically by solving the relation D =
∫

p ΨB[T ]pp dp.
Given T , the fourth-moment tensor S is then approximated by SB=

∫
pΨB[T ]pppp dp as

ΨB is determined by assuming that S and D are co-aligned in the principal coordinates
of D. We refer to the above model as the ‘BQ-tensor’ model (Gao et al. 2017; Gao
& Li 2017). In the following, we define the 2D tensor order parameter Q(x, t) =
D/φ(x, t) − I/2 (here φ(x, t) =

∫
p Ψ dp is the concentration) whose maximal non-

negative eigenvalue λmax of Q satisfies 0 6 λmax 6 1/2. We call its associated unit
eigenvector the nematic director m, and 0 6 s= 2λmax 6 1 the scalar order parameter.

3. Results and discussion
When simulating the confined active fluid motion, we solve the D dynamics

equation (2.4) together with the incompressible Navier–Stokes equation at small
Reynolds numbers (Re = 10−3) using a mixed finite element method (Hu, Zhu &
Patankar 2001; Gao & Hu 2009; Gao et al. 2017). At the inner (r = R1) and outer
(r = R2) boundaries, a no-slip condition u= 0 is imposed for the velocity field, and
a no-flux condition (n · ∇)D = 0 is used for the second-moment tensor D. It should
be noted that, in this way, we do not enforce any particular alignment direction
at the boundary but guarantee global particle number conservation. For all of the
simulation results below, we vary α and R1,2, and fix dT = dR = 0.025 (for both
dilute and concentrated suspensions), as well as ζ = 0.5, β = 0.874 (for concentrated
suspensions).

3.1. Dilute suspension
We first examine the case of a confined dilute suspension by neglecting both the steric
interaction stress (ζ = 0) and the constraining stress (β = 0), and start simulations
from an initially near-isotropic state. As shown in figure 1(a–f ), where R1 = 1.0 and
R2 = 2.0 are fixed, characteristic nematic structures and flow patterns are highlighted
at different regimes of |α|. As shown in (a), a unidirectional circulating flow first
appears when |α| goes beyond a certain critical value αcr (in this case, αcr =−1.23).
While the nematic order is still low, as shown in (d), it clearly shows that particles
become aligned in the azimuthal direction due to fluid shear (Saintillan & Shelley
2008; Thampi et al. 2015), with a stronger alignment near rigid walls. As |α|
further increases up to 10.0 in (b), a circulating flow pattern still dominates but
the streamlines exhibit periodic bending deformations in the radial direction to form
travelling waves, leading to counterclockwise (CCW) and clockwise (CW) vortices
near the inner and outer boundaries respectively. Such oscillatory patterns have
also been seen in other active liquid crystal systems due to bending (or splay)
deformations (Voituriez, Joanny & Prost 2005; Giomi et al. 2011, 2012). In (e), the
flow-induced alignment is further enhanced to form low-order structures (blue colour).
At even higher values of |α|, the flow pattern in (c) becomes seemingly chaotic. The
resultant nematic field exhibits a typical active liquid-crystalline phase (Sanchez et al.
2012; Giomi et al. 2013; Thampi, Golestanian & Yeomans 2014; Gao et al. 2015b;
Shelley 2016), in which ±1/2 disclination defects stream around, and are constantly
generated/annihilated during interactions (see f ).

It should be noted that while our model is apolar, the observed phenomena
are very similar to those reported for polar active suspensions where effects of
self-swimming motions of microparticles (e.g. bacteria) are taken into account
(Lushi, Wioland & Goldstein 2014; Wioland et al. 2016; Theillard et al. 2017). It
is essential to recognize that the nonlinear dynamics is governed by a concatenation
of hydrodynamic instabilities as α increases, and can be characterized by a series
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FIGURE 1. (Colour online) (a–c) Characteristic flow patterns (streamline overlaid on the
colourmap of vorticity Ω) and (d–f ) nematic structures (nematic director m field overlaid
on the colourmap of scalar order parameter s) when choosing R1= 1.0 and R2= 2.0. The
insets in (a) and (d) are comparisons between the analytical (solid lines) and numerical
(open circles) results for normalized uθ and Drθ components taken along the white lines
when |α| slightly goes beyond the critical value |α|cr = 1.23 for the isotropy–circulation
instability. (g) Phase diagram of (|α|,R2−R1) when fixing R1= 1.0. The solid and dashed
lines characterize the isotropy–circulation instability in an annulus and a straight channel
respectively. The dash–dotted line characterizes the circulation–travelling-wave instability
in a straight channel for sharply aligned rods by neglecting the rotational diffusion.

of instabilities including isotropy to circulation, circulation to travelling wave and
travelling wave to chaos. An overview of the instabilities is presented in a phase
diagram plotted in the (|α|, R2 − R1) plane in (g), where R1 is fixed to be 1.0.
Furthermore, the marginal stability curve that delineates the isotropy–circulation
instability can be calculated analytically in the polar coordinates. To do this, we
perturb the near-isotropic solutions as D = I/2 + εD′(r) and u = εu′(r) (ε � 1) by
assuming azimuthal symmetry. Following the procedure of Woodhouse & Goldstein
(2012), we examine an initially exponential growth ∂D′/∂t = κD′ with the growth
factor κ > 0. After some algebra, we find D′rr = D′θθ = 0, and the hydrodynamic
instability arises from the following coupled linearized equations for u′θ and D′rθ :

∂u′θ
∂r
−

u′θ
r
+ αD′rθ =

A0

2r2
, (3.1)

r2 ∂
2D′rθ
∂r2
+ r

∂D′rθ
∂r
+ (γ r2

− 4)D′rθ =−
A0

4dT
, (3.2)

where γ = −((16dR + 4κ + α)/4dT). We are able to seek the solutions D′rθ =
−(A0/4γ dTr2) + A1(∂J2(

√
γ r)/∂r) + A2(∂N2(

√
γ r)/∂r) and u′θ = −(A0/2r)(1 +

α/4γ dT) + (2A1/
√
γ )J1(
√
γ r) + (2A2/

√
γ )N1(

√
γ r) + A3r, where Jj and Nj are

respectively Bessel functions of the first and second kinds, with coefficients Aj to be
determined. By applying boundary conditions ∂D′rθ/∂r = 0 and u′θ = 0 on the two
walls, we then solve the eigenvalues of γ numerically at κ = 0 (solid line in g), as
well as the velocity and D field (insets in a,d), which, again, confirm our simulation
results.
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Next, we reveal the nature of the hydrodynamic instabilities and gain physical
insight into the formation of the observed coherent structures in figure 1. As shown
below, while analytical approaches are feasible for the isotropy–circulation and
circulation–travelling-wave transitions, the travelling-wave–chaos instability is highly
nonlinear and hence can only be explored numerically. Here, we avoid tedious
mathematical manipulations in the polar coordinates to simplify our analysis by
considering confinement in a straight periodic channel (i.e. in the limit R1,2 →∞),
where very similar collective dynamics and hydrodynamic instabilities are observed
(Theillard et al. 2017). For the two cases considered, we employ a homogeneous
base-state solution of D0 without background flow (i.e. u0= 0, p0= 0), and introduce
perturbations (D′, u′, p′) to yield the following linearized equations:

∂D′

∂t
− (∇u′) · D0 − D0 · (∇u′T)+ 2E ′ : S0 = dT∇

2D′ − 4dRD′, (3.3)

∇p′ −1u′ =∇ · (αD′), (3.4)
∇ · u′ = 0, (3.5)

with boundary conditions ∂D′/∂y = 0 and u′ = 0 on the upper (y = h) and bottom
(y = −h) walls. (It should be noted here that D′11 + D′22 = 0.) We then take
a Fourier transform in the x direction of all perturbed quantities f ′ such that
f ′(x, y)= f̃ (k, y) exp(ikx+ σ t), where f̃ is the amplitude function, k is the wavenumber
and σ is the complex-valued growth rate.

Case 1: isotropy–circulation instability. In this case, the instability grows from an
initially isotropic state, i.e. D0 = I/2. The linearized equations in (3.3) and (3.5)
become

(δ(2) − k2)2ṽ + 2αk2δD̃11 − ikα(δ(2) + k2)D̃12 = 0, (3.6)
2dT(δ

(2)
−ω)D̃11 − δṽ = 0, (3.7)

4dTk(δ(2) −ω)D̃12 + i(δ(2) + k2)ṽ = 0, (3.8)

where δ(n)= dn/dyn represents the nth derivative of y, and ω= (σ + 4dR)/dT + k2. We
find that the general solution of the above equations has the vector form

(D̃11, D̃12, ṽ) = (B1F1 + B2F2)eky
+ (B3F3 + B4F4)e−ky

+B5F5e
√
ωy
+ B6F6e−

√
ωy
+ B7F7ei

√
−χy
+ B8F8e−i

√
−χy, (3.9)

where χ =ω+ α/4dT , and Fj can be written as

F1 = {ik, k, 2idT(k2
−ω)}, F2 = {ik2y, k2y, 2idT[k(k2

−ω)y+ k2
+ω]}, (3.10a,b)

F3= {−ik, k, 2idT(k2
−ω)}, F4= {−ik2y, k2y, 2idT[k(k2

−ω)y− k2
−ω]}, (3.11a,b)

F5 = {i(k2
+ω), 2

√
ωk, 0}, F6 = {−i(k2

+ω), 2
√
ωk, 0}, (3.12a,b)

F7 = {2k
√
−χ,−χ − k2,−iαk}, F8 = {−2k

√
−χ,−χ − k2,−iαk}. (3.13a,b)

By implementing the eight boundary conditions δD̃11 = δD̃12 = δṽ = ṽ = 0 at
y = ±h, we obtain a linear system for Bj. The existence of non-trivial solutions
gives ω and hence σ . On the other hand, we find that the long-wave solution has
to be solved separately due to a singularity at k = 0. By making use of the fact
that the solution is unidirectional, we are able to obtain the equilibrium solution,
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FIGURE 2. (Colour online) (a) The growth rate Re(σ ) for the long-wave (diamonds)
and finite-wavelength (lines) instabilities as a function of the wavenumber k for
isotropy–circulation instabilities in a periodic straight channel when choosing h = 0.5,
dT = dR = 0.025. (b) Streamlines overlaid on the colourmap of the u velocity component
at α = −4.0. (c) Velocity profiles at α = −2.0 (umax = 0.07) and α = −4.0 (umax = 0.13)
respectively.

(D̃11, D̃12, ṽ) = (0, sin (
√
(α + 4σ + 16dR)/4dTy), cos (

√
(α + 4σ + 16dR)/4dTy)),

which yields the growth rate

σ =−
α

4
−

( π

2h

)2
dT − 4dR at k= 0. (3.14)

As shown by the comparisons in figure 2(a), we find that the real parts of the growth
rates of the long-wave modes (diamond symbols) are always larger than those of the
corresponding finite-wavelength ones (solid lines), and hence dominate the instability.
Moreover, (3.14) suggests a marginal stability condition, |α| > 4(π/2h)2dT + 16dR,
which recovers the theoretical predictions for unbounded suspensions in the limit
h→∞ (Gao et al. 2015b). When making connections to the annulus geometry by
replacing the gap width 2h by R2 − R1, we find that the marginal instability curve in
figure 1(g) can be accurately fitted as a function of the form K(R2 − R1)

−2dT + 16dR
but with a different constant K due to curved geometries (in this case, K≈ 28.7). It is
apparent that the prediction in the straight periodic channel (dashed line in figure 1g)
agrees well with that of the curved annulus, suggesting that (3.14) in fact provides
a reasonable estimate of the time scale of the isotropy–circulation instability under a
general parallel confinement.

Case 2: circulation–travelling-wave instability. It needs to kept in mind that the
circulation–travelling-wave instability is in fact a secondary instability developed from
a shear-induced aligned state whose analytical form, however, is lacking. Nevertheless,
we consider a reduced model where all of the extensor particles are initially aligned
in the x direction, and neglect the rotational diffusion by choosing dR = 0 (Gao
et al. 2017). For such a ‘sharply aligned’ configuration, the homogeneous base-state
solution is simply D0=diag{1,0}. After some algebra, we are able to eliminate several
unknown variables, and show that the hydrodynamic instability is determined by the
following sixth-order ordinary differential equation for the off-diagonal component
D̃12:(

δ(6) − k2

(
σ

dTk2
+ 3
)
δ(4) + k4

(
2σ − α

dTk2
+ 3
)
δ(2) − k6

(
σ + α

dTk2
+ 1
))

D̃12 = 0,

(3.15)
which admits the general solution D̃12 =

∑6
j=1 Cj exp(λjy). The eigenvalues λj and

hence the growth rate σ are then solved numerically by applying the converted
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FIGURE 3. (Colour online) (a) The growth rate Re(σ ) as a function of the wavenumber
k for bending instabilities of the sharply aligned extensors when confined in a periodic
straight channel when choosing h=0.5, dR=0 and dT =0.025. The maximum growth rates
at the critical wavenumbers kcr are marked by solid circles. (b,c) The vorticity field Ω as
the bending instability starts to grow at α = −4.0 and α = −8.0 respectively. The solid
black scales represent the length scales π/kcr that match the separation distance between
the neighbouring vortices.

boundary conditions (σ + dTk2)D̃12 − dTδ
(2)D̃12 = 0 and δD̃12 = δ

(3)D̃12 = 0 at y=±h,
and seeking non-trivial solutions. The real parts of the growth rates as a function
of k are plotted in figure 3(a) at different values of α, showing that the maximum
growth rates occur at finite critical wavenumbers kcr > 0. In (b,c), we set up the
corresponding numerical simulations with the same initial conditions, and highlight
the snapshots of the vorticity field Ω = ∂u/∂y− ∂v/∂x. The simulation results show
the generation of fluid jets that are perpendicular to the particle alignment direction
due to the nematic bending instability, which leads to uniformly spaced vortices of
alternating signs. The separation distance between neighbouring vortex pairs can be
accurately measured by the characteristic length scale π/kcr.

While the above analysis is for a reduced model by assuming particle alignment in
the x direction without background flow, it reveals the finite-wavelength nature of the
bending instability, and provides quantitative measurements for the intrinsic time and
length scales selected by the parallel confinement. Similarly to case 1, the predicted
circulation–travelling-wave borderline (dash–dotted line in (g)) in the straight channel
indeed agrees with the simulation results for the annulus geometry, especially in the
regime of high |α| and small R2−R1, where particles are strongly aligned and hence
close to the sharp-alignment approximation. Beyond the travelling-wave regime, the
transition towards chaotic flows is highly nonlinear, and can only be determined by
numerical simulations.

3.2. Concentrated suspension
In this section, we examine the nonlinear dynamics of concentrated suspensions where
both β and ζ are non-zero. A mean-field torque is introduced to govern the rotational
dynamics of extensor particles in the kinetic model through a Maier–Saupe steric
potential (Maier & Saupe 1958). As shown by Gao et al. (2015a,b, 2017), for rod-
like particles, the resultant enhanced steric interactions spontaneously drive the system
away from an initially isotropic state to form a nematically aligned state when ζ >4dR.

Compared with the dilute cases where isotropy is the only admissible equilibrium
state, we have obtained the steady-state solutions of D without flows at relatively small
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0.94 0.92 0.94 0.9 0.92 0.9 0.92

1 2r
0.03

0.06 Analytical

(a) (b) (c) (d)

FIGURE 4. (Colour online) Equilibrium solutions of nematically aligned states at different
values of α when choosing R1 = 1.0 and R2 = 2.0; the nematic director field is overlaid
on the colourmap of s. Inset in (d): comparisons between the analytical (solid line) and
numerical (open symbols) results at α=−0.5,−2.0 for the Drr component. The numerical
data are taken along the white line marked in (c).

values of |α|, which exhibit much more complicated nematic configurations, as shown
in figure 4. For passive particles, when choosing α = 0, figure 4(a) reveals that the
system quickly relaxes to a homogeneous nematic state where the equilibrium solution
satisfies a 2D distribution of Bingham form (Gao et al. 2015b, 2017; Gao & Li 2017),

ΨB(φ)=
exp[δ(ξ) cos(2φ)]∫ 2π

0
dφ′ exp[δ(ξ) cos(2φ′)]

, (3.16)

where φ is the rod orientation angle and δ is a function of the coefficient ξ = 2ζ/dR.
Therefore, the degree of alignment is in fact determined by the ratio between ζ and dR.
As α increases, it is seen that the nematic field lines in figure 4(b) become distorted
to spiral outwards to the annulus boundaries, reminiscent of the defect structures
of active nematics when confined in a circular disk (Woodhouse & Goldstein 2012;
Gao et al. 2017). As |α| approximately goes beyond 0.5, the nematic structures in
figure 4(c,d) switch to become azimuthal-symmetric and independent of the values of
α, which can be solved analytically by setting the right-hand side of (2.5) to be zero
and then seeking the steady-state solution of D as a function of r only. The observed
variations in the equilibrium nematic states can be illustrated by examining the system
transient dynamics that evolves from near-isotropy. One interesting example is shown
in figure 5 when choosing α = −2.0. An isotropy–circulation instability first occurs
in figure 5(a) to reorient particles, due to the combined effect of the circulating flow
and the Maier–Saupe steric interactions. However, in this case, the confinement effect
in the thin gap is so strong that it suppresses the bending deformation occurring in
the radial direction. As a result, the induced circulating flow gradually diminishes and
the system eventually relaxes to an axisymmetric equilibrium state where all particles
are approximately aligned in the azimuthal direction; see the insets in figure 5(b–d).

Increase of the gap width relaxes the confinement effect to facilitate the active
flow generation through the bending instability, which can be similarly explained
by the analysis in the dilute cases above. As shown in figure 6, the system
long-time dynamics clearly exhibits an isotropy–circulation (b, f ) and then a
circulation–travelling-wave (c,g) instability. Compared with the stable structures
observed in the dilute cases, the structure formation and evolution in concentrated
suspensions are much more complicated. In (c), it is shown that the active flows
bend the streamlines to form travelling waves, leading to six evenly spaced ‘incipient
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0 –0.5 0.6

0.1 0.9 0.1 0.9 0.9 0.92 0.9 0.92

–0.04 0.08 0(a) (b) (c) (d)

FIGURE 5. (Colour online) Evolution of the flow patterns for a concentrated extensor
suspension when choosing α =−2.0, R1 = 1.0 and R2 = 2.0. Insets: the nematic director
field overlaid on the colourmap of s.

0.5–0.6 0.5–0.7(a) (b) (c) (d)

(e) ( f ) (g) (h)

0 0.8–1.2

0.90.10.90.1 0.90.1 0.90.1

FIGURE 6. (Colour online) (a–d) Flow patterns (streamline overlaid on the colourmap of
Ω) and (e–h) nematic structures (nematic director field overlaid on the colourmap of s)
that characterize the long-time dynamics of a confined extensor suspension when choosing
α =−2.0, R1 = 0.75 and R2 = 2.0.

cracks’ growing from the inner wall into the bulk regime shown in (g). Disclination
defects of charge ±1/2 are seen to be born along these cracks, move around and
undergo nucleation/annihilation when interacting with each other as well as with rigid
boundaries. Interestingly, the system gradually approaches a quasi-steady-state where
four +1/2 defects oscillate around their equilibrium positions; see (h). The flow field
remains travelling-wave-like but also periodically switches directions; see (d). The
entire history of the complex dynamics is shown in the supplementary movie S1
(available at https://doi.org/10.1017/jfm.2017.759).

As shown in figure 7, a close look at the short-time dynamics of oscillating +1/2
defects and the accompanying swirling flow reveals the subtle interplay among the
nematic structure variation, the active flow generation and their interactions with
the curved walls. The swirling flow drives the upward movement of the +1/2
disclination defect and, in the mean time, induces an opposite bending deformation
nearby to form an incipient crack. As shown in ( f,g), the crack ‘head’ keeps moving
downward to become a +1/2 defect (see (h)), while its ‘tail’ gradually merges with
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0.8–0.8 0.8–0.8

0.90.10.90.10.90.10.80.1

0.8–1 0.8–1

Crack

(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 7. (Colour online) (a–d) Short-time evolution of the flow (velocity vector overlaid
on the colourmap of Ω) and (e–h) nematic fields (nematic director overlaid on the
colourmap of s) for the case shown in figure 6. In (e–h), the black arrows show the
direction of the crack formation and +1/2 defect movement.

the up-moving +1/2 defect before it hits the wall. Corresponding to the nematic
structure change, the resultant CCW (CW) vorticity is seen to be strengthened
(weakened) when the crack and defect interact, and then weakened (strengthened)
during their annihilation. We find that such an oscillating state is very robust when
choosing R1 less than 1.5, and the gap width R2 − R1 between 1.0 and 1.5 (see
also movie S2 for the similar dynamics observed in a smaller annulus). As shown
in movie S3, more complex defect dynamics and seemingly chaotic flows dominate
when R2 − R1 > 2.0, resembling the active nematic flows observed in an unbounded
domain (Gao et al. 2015b, 2017).

4. Conclusion

In this work, we have studied the nonlinear dynamics and flow patterns of
apolar extensor suspensions confined in an annulus geometry through modelling
and simulation. The BQ-tensor model with the Bingham closure, which was
coarse-grained from a mesoscale kinetic model, was used to describe the evolution
of the second-moment D tensor (Gao et al. 2017). The D dynamics equation
was coupled with the incompressible Navier–Stokes equations, which were solved
by using a Galerkin mixed element method at low Reynolds numbers. We have
observed active flow generation and spontaneous coherent structures in both dilute
and concentrated suspensions. We have gained physical insights into the analytical
structure, hydrodynamic instabilities, and characteristic time and length scales under
parallel confinement by performing stability analyses for dilute suspensions in a
periodic straight channel. In particular, we have shown analytically the long-wave and
finite-wavelength nature of the isotropy–circulation and circulation–travelling-wave
instabilities respectively. By using similar models and analyses, we will be able
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to explore more challenging situations when active fluids are confined in complex
geometries at high dimensions.
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