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Abstract. A class of piecewise affine hyperbolic maps on a bounded subset of the plane
is considered. It is shown that if a map from this class is sufficiently area-expanding then
almost surely this map has an absolutely continuous invariant measure.

1. Introduction

In [12], Pesin studied a general class of piecewise diffeomorphisms with a hyperbolic
attractor. He showed the existence of the Sinai—-Ruelle-Bowen measure, or SRB measure
for short, and studied the ergodic properties of this measure. If f: M — M is the system
in question then the SRB measure is a weak limit point of the sequence of measures

1 "i s
=- Vo ,
Hn n & f
where v denotes the Lebesgue measure. Pesin showed that the SRB measure has at most
countably many ergodic components. This measure is the physically relevant measure as it
captures the behavior of the orbits of points from a set of positive Lebesgue measure.

For a more restricted class, Sataev [13] showed that there are only finitely many
ergodic components. Schmeling and Troubetzkoy studied in [15] a more general class than
Pesin’s and proved the existence of the SRB measure. Their method to deal with the non-
invertibility of the system was to lift the system to a higher dimension and get an invertible
system on which the calculations were carried out. In this way methods from invertible
systems could be used. The result could then be projected back to the original system.

In [1], Alexander and Yorke considered a one-parameter class of maps called the
fat baker’s transformations. These maps are piecewise affine maps of the square with
one expanding and one contracting direction. Their results, together with the result of
Solomyak in [16], imply that, for a positive measure set of parameters, there is an
absolutely continuous invariant measure.

The Belykh map, was first introduced in [2] by Belykh. Schmeling and Troubetzkoy
considered in [15] the Belykh map for a wider range of parameters. The fat baker’s
transformations are a special case of the Belykh map in this wider range of parameters.
The Belykh map was further investigated in [14].
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In this paper we consider a class of piecewise affine hyperbolic maps on a set K C R?,
with one contracting and one expanding direction. This class is contained in the class
of maps studied in [15] and it contains the Belykh maps as well as the fat baker’s
transformations.

It is shown that if a function from this class is sufficiently area-expanding then almost
surely (in the sense of Corollary 3.1) there is an absolutely continuous invariant measure.
The method used to show this is a development of the method from [10]. Here a new
problem arises: the symbolic space changes as the parameters change. In this paper a way to
handle this problem is introduced. The different symbolic spaces are embedded in a larger
space and certain estimates are carried out that makes this larger space possible to handle.

In [19] and [20], Tsujii considered two classes of maps in two dimensions and showed
that almost all of these maps have absolutely continuous invariant measure. These two
classes are different from the class of maps considered in this paper. Tsujii also used the
method from [10], but in a different way than is used in this paper.

Similar results in two dimensions, but in the case of expanding maps, were
independently obtained by Buzzi in [S] and Tsujii in [17]. The corresponding results for
arbitrary dimension are in [4] and [18].

In the last section we use a result from Chernov [6] to conclude that the maps considered
in this paper have exponential decay of correlations for Holder continuous functions,
provided that an additional assumption is satisfied.

2. A class of piecewise hyperbolic maps
Let K C R? be compact and connected. Assume that K can be decomposed according to

K = O?i,
i=1

where each K; is an open and non-empty set with the boundary consisting of finitely many
C? curves, such that for each of these curves the set of points where the curvature is zero
has finitely many connected components. Thus, there are closed C? curves N; and M; such
that
a b c c

Joki = <U N,~> U (U M,~>, oK = J m;.

i=1 i=1 i=1 i=1
Let Z = {K;} denote the partion of K.

Assume that the sets N; N Nj, M; N M; and N; N My, consists of finitely many points
if i # j, and there exists a constant H such that if (¢1, 1) € T, N; then |tp/1;| < H. Let
NZUN,' andM:UM,'.

See Figure 1 for an example of K, N; and M;.

Consider maps f: K \ N — K that satisfy the following two conditions, (Al) and
(A2).

(A1) There are numbers Ay, ..., Ag <1<y, ..., v and uy, ..., uq, V1, ...,V €R
with u; # u; whenever i # j, such thatforanyi =1, ..., a the map f restricted to
K; is defined by

flg; (x1, x2) = fi(x1, x2) = (Aix1 +u;, yixo +v;).
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FIGURE 1. An example of the domain K.

The notation f5 7T for f will be used to emphasize the dependence on the parameters

x:()\'la "‘7)"0)’72()/]9 AR} y(l)7ﬁ=(ul7 "'7ua) andv:(v]5 AR | v(l)'
Let Z¢p = Z and assume that Z; = {K I-(k)}f.’i | is defined. (Note that agp = a.) Then define

the partition Zy4 = {Ki(kJrl)}?:rll by

Zrr1 =2k V {f_l(Ki(k))}?ir

The set | JX | K l.(”") is the set of points x € K such that for each/ =0, 1, .. ., k the point
fl(x) is defined and f'(x) ¢ N U M.
Since each K; has piecewise C2 boundary so has each K;k). There are thus closed C?

curves Ni(k) such that

o @
U KM = U N,
i=1 i=1

(k) *) . . U
and N; ﬂNJ. is a finite set if i # j.
(A2) There is a number t > 1 such that (min y;)* > D; + 1 where

D, = max{#A

AC{1,2,.... b}suchthat [ N7 # @}.
i€A
That is, D, is the maximal number of lines from {Ni(r)} that cross at one point. The

number D; is finite since the set {Ni(f)} is finite.

Remark. Condition (A2) implies that the multiplicity entropy (see [3] and [8] for a
definition) is less than the positive Lyapunov exponent.

3. The results
We are going to prove the following theorem.
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THEOREM 3.1. Assume that for all t € I = (1, t1), the maps fth
conditions (Al) and (A2) with a uniform t. If

satisfy the

LU

to min{;} min{y?}

> 1,
max{y; }
and one of the following conditions is satisfied:
max{|u; —ujl|, |u;|} I — 11 max

(D HAmax < 0.5,

min{lu; —uj|u; Fuj}  tAmax — 2(t1 Amax)? '

max{|u; —uil, luil} 1—1nA
() H1Amax < 0.61, : _l ) ] ) ! ) 3 ) m;x g
min{|u; ’/‘j| Tup # uj} 11 Amax (t1 Amax)
max{|u; —uj|, lu;|} 1 — t1 A max

(3)  f1Amax < 0.68,

minf|u; — Mj| U # uj} HAmax — 2(tl)¥m21)<)5 '

where Amax = max{A;}, then for almost every t € I there exists an erV -invariant

measure, absolutely continuous with respect to Lebesgue measure.

U0

Remark. If the maps Ji37 5 4o not satisfy the assumptions of Theorem 3.1, but some
iterate of the maps do, then the conclusion of Theorem 3.1 is still true. It is however not
clear whether the three conditions can be exchanged by the condition #] Apax < 1, since it
is not clear that the second half of the conditions are satisfied for sufficiently high iterates
of the maps.

We can reformulate Theorem 3.1 in the following way.
COROLLARY 3.1. Let P be the set of parameters (., ¥, U, v) such that

min{A; } min{y?}

>1,
max{y;}
and one of the following conditions is satisfied:
() max{i] <05 fnaX{qu ujl, luil} - max{A,;} .
min{lu; —uj|:u; #u;}  max{A;} — 2(max{A;})
@) max{’;} < 0.61, .max{|u, ujl, |uil} < max{A;} -,
min{lu; —uj|:u; #u;} max{i;} — 2(max{A;})
max{lu; —ujl, lu;l} 1 — max{A;}

3) max{A;} < 0.68,

min{u; —u;j|:u; #uj} = max{A;} — 2(max{A;})>"

If f;’?ﬁj satisfies the conditions (Al) and (A2) then for Lebesgue almost every
(A, y.,u, ) € P, thereisan f;
to Lebesgue measure.

@ v-invariant measure, absolutely continuous with respect

4. A condition on transversality for power series
The corollary of the following lemma will be used to prove Theorem 3.1. The lemma
appears in a somewhat less general form in [10]. The proof from [10] works here as well.
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LEMMA 4.1. Let C > 1. Then there is a constant § > 0 such that, for any function g of the
form

o
g =14 bx*, bel-CCl, ()
k=1
the following implication holds true forn =2, 3, 4:
gx) <8, x€(0,0,), C<fulx)=g'(x) <-4,

where f(x) =1 —x)/(x — 2x" ), 07 < 0.5, 03 =0.61 and Q4 = 0.68.

Proof. Let
cr = 2x"+1
hy(x)=1-C C =1-
I N

n—+1
and

1—x

fn¥) = T

Let Q2 =0.5, 03 =0.61 and Q4 = 0.68. This implies that there is a § > 0 such that, for
n=273,4:

1)  hy(x)>8if C < f,(x); and
() h,(x) <—=38ifx € (0, Qp).
Thus %, (x) > & and h),(x) < —& provided x < Q, and C < f,(x).

Let g(x) be of the form (1). There are c¢; > 0 such that the function G, (x) = g(x) —
hy(x) can be written as G, (x) =Y j_; cxx* — Y 72, | cxxk. By the above-mentioned
properties of i, we have, for any x € (0, Q,), C < f,(x),

g(x) < 8= G,(x) <0= G, (x) <0= g'(x) < 6.

The second implication is proved by

G(x)<O$chx < Z kX :chkx < Z kepxk = G, (x) <0.
k=n-+1 k=n+1
O

COROLLARY 4.1. Let n € {2, 3, 4} and let Q,, and f, be as in Lemma 4.1. Let sy be a

sequence with sy € [—C, C]. Then for any | > 0 the set

o0

{q € (40, On) ‘ C < fa(@), 'ql + Y sqt

k=I+1

is contained in an interval of length at most 28_1qalr.

Proof. Note that g + Y22, 1 skg®| < r implies |1 + 322, skg"™| < rqy’ if ¢ > qo.
Lemma 4.1 implies that on the set {g € (0, Q,) | C < f,(q)} the graph of the function
g1+, 11 skq*~! crosses 0 transversally in at most one point and the slope is at
most —§ around this point. Hence |1 + >0, 11 skgt! | <rqy ! on an interval of length not
more than 28‘1q0_ !y and therefore |ql + >0, 11 skqk | < r can only hold in this interval.

https://doi.org/10.1017/50143385707000442 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385707000442

216 T. Persson

5. Proof of Theorem 3.1
We will use the method from [14] to prove Theorem 3.1. This method is based on [10].
This method has also been used in a similar way in [9] and [11]. The idea is to integrate the
density of the measure and then integrate with respect to the parameter. If this integral
is finite then almost surely the density is integrable and so the measure is absolutely
continuous with respect to Lebesgue measure. To prove that this is the case it is necessary
to control how the measure changes with the parameter.

We begin with some notation and general theory and then make the estimates needed
later in the proof.

5.1.  Notation and general theory. In [15], Schmeling and Troubetzkoy considered maps
f: K\ N — K, where K is an open, bounded and connected subset of a manifold and
N C K is a closed set, the discontinuity set. The set K \ N is a finite union of open sets
K; on each of which f isa C? diffeomorphism. Moreover, it is assumed that there are
invariant stable and unstable cones on which f acts uniformly contracting and expanding
and that these cones span the tangent manifold at each point; see [15] for details. The maps
considered in this paper fit into this setting and we are going to use results from [15].

The difference between the maps considered by Schmeling and Troubetzkoy, and the
maps studied by Pesin in [12] is that Schmeling and Troubetzkoy allowed the images of
the sets K; to have non-empty intersection.

Pesin showed that under some conditions on the map there exists an invariant measure
of which the conditional measures on unstable manifolds are absolutely continuous with
respect to the Lebesgue measure on the unstable manifolds. These measures are called
SRB measures or Gibbs u-measures. They have the property that the set of typical points
has positive Lebesgue measure.

Schmeling and Troubetzkoy showed that their maps have invariant measures with the
property that the set of typical points has positive Lebesgue measure. These measures were
called SRB measures. We will stick to this terminology in this paper.

Fix A, vy, u and v. Let Apip = min{A;}, Apax = max{A;}, Ymin = min{y;} and ymax =
max{y; }. We will use the shorter notation f; to denote f,; - 7 -

Let K = K x [0, 1] and 1€,~ = K; x [0, 1]. The sets 1\7 M ... are defined analogously.
We use the idea from [15] and lift the map f; to an injective map f; on K by

filg (a1, x2, x3) = (fi(x1, x2), 0x3 + i /(a + 1)),

where 0 < 6 < 1/(a + 1). The map 7 : K — K, (x1, x2, x3) = (x1, x2) is the projection
of K on K. It satisfies n(ﬁ(xl, X2, x3)) = fr(mw(x1, x2, X3)).

Let D" =(peK | f"(p) g NUM, VneN}and D, = (22, f(D,). The set A, =
D; is the attractor of f;

The condition (A2) is a more general version of condition (H9) in [12]. It appears
in [15]. Theorem 6.1 in [15] can be applied to conclude that there are constants ¢; > 0
such that, for any ¢ > 0 and any n € N,

DU (e, N UM))) < cre,
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where U (e, NUM ) denotes the e-neighborhood of N U M. This shows that the functions

f, are in the class of functions from [12]. Moreover, the map f; also satisfies the conditions

in [15]. This gives us the following results.

(i) Let V' C K be a curve in the unstable direction, i.e. there are numbers p, o]
and o such that V" ={(x, xp) € K | x] = p, 01 < x3 < o03}. Let yu =7 (vY)
be the corresponding manifold in K. Let vys and Dpu denote the normalized
Lebesgue measure on VU and V" respectively. The sequence of measures i/, =
(1/n) >4 (1) Dpu 0 ft converges weakly to an SRB measure ﬂISRB. The projection
of this measure ,uSRB o~ ! is an SRB measure for f; and we thus write utSRB =
figgp 07~

(ii)) Given € > 0, the set

Diee=1% € A 1d(f1(R), N) > ce™")

is non-empty if ¢ is sufﬁc1ently small and the set D, e =U2, D, -1 has full

MSRB—measure, /"SRB (D,’E) =1.

(iii) The conditional measures of /ltSRB on the unstable manifolds are absolutely
continuous with respect to Lebesgue measure.

(iv) The entropy of the measure ﬂtSRB is

t,e,0

iy = [ 102200 dies )

where x;(£) is the positive Lyapunov exponent at the point £ for the map f;. In
particular, 10g(Ymin) < h["SRB < log(Ymax)-
(v)  The measure figpp has at most countably many ergodic components.

The results (i)—(v) make it possible to define stable manifolds for ,&gRB—almost
every ek, If £ =(x1, x2, X3) € Dt log(thma) then there is a ¢ = c(X) such that % €
Dy~ tog(timp).c that is d(f'®), N) = ¢(thmax)" for all n>0. If $ = (y1, y2. y3) € K
with |y; — x1| < ¢ and y; = x; then

LA G) = P < 1yt — X1 Emax)" < c(tAmax)” < d(f1(R), N,

where | - - - |1 denotes the modulus of the difference in the first coordinate. Hence the points
f1(9) and f/*(X) are never separated by a discontinuity and we say that y is in the stable
manifold of X. The stable manifold of x is thus defined to be the set

W@ ={5 €K | 1x1 —yil <c, y2 =x2),

where ¢ is the largest constant such that x € D, log(thmax),c- This defines the stable
manifold of [ MSRB-a e. point x € K since 'U“SRB(D’ log(thmax)) = 1-

The stable manifold W'S(x) is defined as the projection of corresponding stable
manifold in K. All the stable manifolds will therefore be parallel line segments but the
length of the manifolds are only measurable [12].

Similarly the unstable manifolds can be defined. They consist of parallel line segments,
orthogonal to the stable manifolds, and their length is measurable.

The partition of K into stable manifolds is thus measurable and the conditional measures
on these manifolds can be defined. Take x € A = n([\) and let ,uts’l;’é denote the conditional
measure on the stable manifold W’:S(x).
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The sequence of measures [i/, may converge to a measure which is not ergodic, but if
ViC W '“()Et) for some % € A; then /}:1 will converge to a unique ergodic component,
since then V' € A;. We choose x; € A; so that X; depends continuously on ¢. This is
possible; see [13].

To get control over fi§pp for almost all ¢ € I argue as follows. Since the size of the
unstable manifolds depends only measurably on ¢, it may not be possible to get a uniform
length of \7,“ - [\,. However, given gy > 0 there is a set Jo C I with v(I \ Jp) < &p such
that the sets \7,“ C W"U(%) can be chosen to have equal length for all ¢ € Jy.

This construction has the following consequence. For any ¢ € Jy the measure [/,
converges to an ergodic measure and it is not necessary to take a subsequence. Indeed,
if it is necessary to take a subsequence then there exists a set A such that

lim inf 1}, (A) < lim sup /i), (A).
n—0o0 n—00
But this would contradict that i/, converges to a unique ergodic component.
Given a sequence {i,} € {1, 2, ..., a}Z and integers [, m we define the cylinder

Cl((in}. ) =) fi*(Kip)
k=l
or

m
Cl' oy it - i 1) =) (K.
k=l
Let X, = {{ix} | C‘;”({ik}, 1)#OVYI,meZ} and let p;: X — [\, be the natural
identification of sequences in X; and points in A;.

5.2. The measure’s dependence on the parameters. The first step is to estimate how
the measure [i§pp changes with the parameter 7. This is done by using that /1!, converges
weakly to flipp- A
Let L; > 0. The measure !, = (1/n) ZZ;(I) Dpu © £ converges weakly to AsRp-
t
Hence there is a number no(#, L1) such that for any cylinder of length L

Arp(CLp)
L€y
for all n > ng. Since no(¢, L1) is measurable with respect to ¢, Lusin’s theorem implies
that for any €1 > O there is a set J; C Jo with v(Jp \ J1) < &1 and a number n such that

ny > no(t, L) forall t € J;.
For a fixed cylinder co L the measure 2/, 0 (c° L1) depends continuously on ¢, because

1
—-< <2,
7=

the measure ;l,’m involves taking finitely many preimages with respect to f, and these
preimages depend continuously on ¢, and the measure Dy depends continuously on ¢.
t

It is therefore possible to partition / into finitely many subintervals / = | J;_, Ik such that
when t, t; € I then

At A0
C
Ang(CZp ) -

27 R0, )
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for any cylinder of length L. This implies that
N A0
fisrp CZ) -
figrp(C2 )
for any cylinder of length L, provided ¢, 1, € I} N J; for some k.
For each [Ii, choose a 7, € [ N J; and a cylinder Cng xn (1)}, tr) with my =
s (CO (a0}, 1)) > 0.
For every t € Iy N Ji, define

Qo =C% (a0} 1).

=<

Bl —

Then
fsrp (Q0.0) > Fmi )
forallt € I N Ji.

5.3. Entropy. It will be necessary to control the number of cylinders and the measure
of the cylinders. As already noted, the general theory gives that the entropy of the measure

IELISRB satisfies 10g(¥min) < h[‘tSRB < log(Ymax)-
The Shannon—McMillan—-Breiman theorem implies that for ¢ € J; N Iy and &2 > O there
is a constant A(¢) such that

/115R3<ﬂ {x13 égL({Xk}, t) > x with
L>0

-1 —L At ~0 . L 1
A@) (Ymax +€2) 7 < ggp(CZp) < A@)(Ymin —€2)” "} ) >1— gk

This shows that by making a different choice of A(f) a similar estimate on the stable
manifolds will be valid,

ﬁgRB(ﬂﬁ 13C%, ({x). 1) 3 & with
L>0

n N _ 1
A Ymax +62)7F < A (€2 1) < A(®) (Vmin — £2) L}) > 1= gme. (3)

Let SAZSMB,, be the set whose measure is estimated above.
An application of Lusin’s theorem shows that given 3 > 0 there exists a set J, C J;
and numbers Ay such that
v(J1\ 2) <é€3,
A(t) < Ay, whenevert € I N Js.

For all t € I} N J,, define Q, = SAZO‘, N QSMBJ. The estimates (2) and (3) show that
filpn Q) = gmy.
It follows by (3) that the number of cylinders of length L in €2, satisfies

Ni(L) < Ak (Ymax + £2)". )
Let L, > 0 and consider for each ¢ € I} the set of words of length L, + 1:
Ct = {x07 X1y ovvy -xLZ |xl € {1’ 25 L a}a ééz('x07 X1y ovvs -xLza t) ;éw}'
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The cylinders CA’é 2({xx}, t) change continuously with 7, i.e. the cylinders are sets with
smooth boundaries and the boundaries depend continuously on ¢. This follows from the fact
that iterates of the maps are piecewise affine and they depend continuously on ¢. The fact
that the sets K; have piecewise C? boundaries with finitely many connected components
with zero curvature allows us to draw the following conclusion. There is a partition of I
into finitely many intervals Iy ; (L) such that C; = Cy if ', t € Iy ;(L2) for some /. Indeed,
when ¢ runs over Ii, each cylinder appears and disappears only finitely many times. Let
the finite set of ¢, for which some cylinder éé 2({xx}, 1) appears and disappears, define the
endpoints of the intervals I ;(L2).

Any sequence in X; N p; ! (flt) can be written as a concatenation of words from C;.
Together with (4) this implies that for each [;; the number of words of length n in
Utelk_mlz N pt_l(fZ,) does not exceed (AIIC/Lz (Vmax + &))" tL2 for any n. Hence, we
have the following lemma.

LEMMA 5.1. For any g4 > O there is a number L3 = L3(e4) such that if L, > L3 then for
each Iy (L) the symbolic space Yy (L) = Uzelk,,(Lz)ﬂJz % N oo, () satisfies

N1 (L2) (1) < Bi i (Ymax + €2 + 84)",
Jor some By |, where Ny, (L,)(n) denotes the number of words of length n in Zlk,z(Lz)~

In order to make use of Lemma 5.1, choose L, > L3.

5.4. Integrability of the densities. The conditional measures of ,LL’SRB on unstable
manifolds are absolutely continuous with respect to Lebesgue measure. We will prove that
the conditional measures on the stable manifolds are almost surely absolutely continuous
with respect to Lebesgue measure. The local product structure of ,LL’SRB then implies that
,utSRB is absolutely continuous with respect to Lebesgue measure.

Take x € A = (A) and let W,Z’S(y, x) ={z € Wh%(x) | d(y, z) <r}. The derivative of
sgp at y is the limit
Hsrs (Wi (v, %))

2r ’

D(ugpps Y) = lim inf

If the function D(uggy, y) is integrable on W'(x) then the measure /gy is absolutely
continuous with respect to Lebesgue measure.
Let k be fixed. We want to prove that for a.e. t € Iy N J>

/ / D(iganlar ¥) ditgan () ditlgp (x) < 00, 5)
Q Jo

This implies that the measure pgyy restricted to the set €, is absolutely continuous for
a.e. x € ;. Since the conditional measures on the unstable manifolds are absolutely
continuous with respect to Lebesgue measure, this implies that ,ugRB|Q, is absolutely
continuous with respect to Lebesgue measure. Since MgRB(Q,) > 0, ergodicity then
implies that this also holds for the measure /,LtSRB. Since k is arbitrary this implies that
;ﬁSRB is absolutely continuous with respect to Lebesgue for a.e. t € I N Ja.
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Fatou’s lemma implies that in order to prove (5) it suffices to prove that

lim inf / / MR (R VWIS, 30) s () ditly () < 00.

We may rewrite this as

r—=0 r

lim inf — /Q/Q/ Xl —zil<r) ditgRp (2) digep (v) dppp (x) < oo, (6)
1 Il

To prove that this holds for a.e. t € Iy N J> we prove that for any /

lim inf ~ / / / / Xiiyi—211<r} iR (@) dpgry () dplspp (¥) dt < 00, (7)
lkzﬁlz Q JQ I

r—0 r

This then implies that H’SRB < v for a.e. t € Iy N J,. Instead of proving (7) we use that
hrp = Akgp © ! and prove the equivalent condition

lim inf — / ///X{I)’l Z]\<,}duSRB(z)d/ltsﬁg(y)dMSRB(x)dt<oo 8)
T NIy S J S

r—-0 r

Recall that p;: X; — f\t maps sequences in X, to points in A, in the natural way. Put
uks, = flspp © pr and rewrite (8) as

lim inf — / / / /71 X{lpUinh—p(Lin Dl <r)
r=0 " Jnang Ja o7 @0 o @

WS (i) dpsSF () dihgs R) di < 00, (9)

where | - - - |1 denotes the difference in the first coordinate.

Embed all subshifts ¥, t € I ; N Ji, into the larger subshift ¥, , as in Lemma 5.1.
The measures u% extend from X, to Xy, , in a natural way since X; is a subset of Xj, ;. A
cylinder in X, , will be denoted by

1Hin}m =li lm]m—{{]n}ezlkl | jn=in,n=I,...,m}

To prove (9) we estimate the quantity

T,({ | 1 € Ity N o))

L>Ly _liog.miolo 1<i1.la<a /Ik,lﬂfz /Qt /pfl(@r)ﬂ[ll»iu--,io] //)Fl(ﬁt)ﬂ[lz,iL,...,io]

.....

CZny L #h
Xllor(Ginh=pr Ul <r) A5 (Uin)) dis™ ({in)) d g () dr - (10)

and show that 7, < nr for all » > 0 and some constant 5. This implies (9) as follows. The
product X, ; X ¥y, can be written as

Yy X X, = U
L _pli—g,..iolo 1=li,b=<a
CEy, hi#l

——ill,icp, .. iolo X —p—1ll2, i—p, ..., iolos
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ie. Xy, x Xy, is the union over L of the set of pair of sequences with the first L letters
equal. This implies that

hmlgf / // f . XlpUin)—pWin Dl <r}
r— F Jrnnh JQ Jp, (o L@

] . N N ! A
dus™ () dﬂtg’s’x({Jn}) dfiggp (%) dt = hIIi)lélf ;Tr({Qt [1 €l 02},
r

so (10) implies (9).
It remains to show (10). This will be done in §5.6. To do this, the estimate in §5.5 is
needed.

5.5. An estimate on power series. The expression |p;({in}) — p:({jn})|1 appearing in
(10) can be expressed as a power series. The following estimate on this power series is an
important part in proving (10).

If (x1, x2, x3) € f\, and {i,} € Xy, is the sequence such that p;({in}) = (x1, x2, x3),
then it is easy to see that

oo n—1 oo n—1

=y [ u, Z]‘[ s, Oomax)"
n=1 I=1 Am

n=1 I=1 ax

So the expression in the brackets of the integrand in (10) can be rewritten in the form

n—1
Z (H Aip_ Ui, — 1_[ )‘jzn"‘j—n>tn_1 <r (11)
n=L+1 =1
Multiplying both sides of (11) with
1 1
|, — | TT/ (e2,,)
we see that (11) holds if
’1 + i (ﬁ )\’il —-n .. _n . )\'/l —n . )(tkmax)n_l_L
n=L+2 \=1 )Vmax )‘max up —up
r 1 (12)
< .
|, — | TT/ (e2,,)
The coefficients of (t)\max)”’l’L in the sum in (12) are bounded by
(" i, Mo ) 1 max{ju; — u;l, ui])
max = j < — =
{in} {jn}.n =1 )Vmax )\max up —up mln{'”i - M]' | uj # uj}
so an application of Corollary 4.1 with C as above shows that
oo ,n—1 n—1
{t)\’max <1_[ )\’ilfnuifn - 1_[ )\’jlnujn>tn1 < r}
n=L =1 I=1
1oAmin) "L
5! (0 nin) r = Edmax (foAmin) L7, (13)

min{|u; —uj| | u; #uj)
if 1 Amax < min{(1/2C), 0.68}.
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5.6. The final step. Put F(t, {in}, {jn}) = X{Ip(tin})—pi (Ljn 11 <r} and rewrite (10) as

T,({$ | 1 € Ity N o))

Z Z Z /Ik,,mz /ﬁt /p,(fz,)m[h,i_u..,io] /prz,)n[lz,i_b.‘.,io]

L>Ly _pli-L,...iolo 1=l,lr<a
CEp, h#la

F(t, {in}, (Un}) dus™ (Un}) dis™ ({in)) disgp (D) dr. - (14)
To estimate the quantity in (14) we want to change the order of integration to integrate with
respect to ¢ first and then use the estimate (13). This cannot be done immediately because
the other integrals depend on ¢. To get around this problem the function F' (¢, {i, }, {j,}) will
be bounded by a function G (z, {i,}, {j,}) which is constant on cylinders. More precisely
we have the following lemma.

LEMMA 5.2. Assume that the conditions of Theorem 3.1 are satisfied. For each pair of
cylinders [l1,i—p,...,ipland[lr,i—p, ..., io] appearing in (14) there is a partition into
finitely many cylinders

Ny ng
icr, il = SE lavioz. ... iol= ] S§,
p=1 q=1

where SE, p=1,...,ny and Sg, q =1, ..., ng, are cylinders, and functions GSO'Z.,SZ (1)
with

GSS’SZ ®) = F(t, {in}, {jn}) forallt € ;N Ji, forall{in} €SP, forall {j,} € Sg
and

f Gsp syt dt < 2E A (foAmin) 7. (15)
I

Proof. For fixed y and Z the estimate (13) implies that
{01 F (@, {ind. Und) <7} < Edmax(t0Amin) "7

and

e 1 1or(ind) = o {in D1 < 27} < 2E Amax (t0Amin) - (16)

The function (¢, {i,}, {jn}) — |p:({in}) — p:({jn} |1 depends continuously on ¢, {i,} and
{jn}. Choose L’ so large that
2 max{u; — Iftj}(l‘l)\max)L/-i_3
1 - 11 Amax
The sets [l1,i—r,...,ipland [l1,i_, ..., ip] can be partitioned into cylinders of length
L'+ L+3:

<r.

Ny Ny
yir, ... il=J S =Jler(p)....¢0p), 11 i1, ..., iol,
p=1 p=1

ng g
Unicre.. iol=J S =B @ Bo(@. bip.....io)
g=1 g=1

Note that n, and ng can be bounded uniformly by ny, ng < al’+1!,
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Asin (11) the expression | |0, (i} — o (s D11 — Lo (il — pr (P D11 | can be
written as

e ((i0D — o (DI = 1o P D — o (LGP D1 |

Z(H AU, (1) — 1_[ A. (1) u (1)>

I—n

(Hk(z)u(z)—l_[l(z)u(z))n !

J—n

If {i 1)} {1(2)} e sk, {j,gl)}, {j,?)} € Sg for some p and ¢, then since {zn )} and {i 2)},

respectively { j,(,l)} and { j,?)}, are equal on the first L’ 4+ L + 3 letters, the first L' + L + 3
terms in this power series are zero. Hence

Hec (i) = o (D1 = 1o iPD — o (P D1 |

Z <l—[)»(1)u(1)—1_[)»(1)u(1)>nl

n—= L+L/+4 l—n —n l—n —n

&

Z <1_[)»[(2)nu(2)—1_[)» ou (2))

n=L+L'+4 I=n

e8]

Z 2 max{u; — uj}()»maxl‘)n_l
n=L+L'+4

/
2 max{u; — uj}()\maxtl)L+L +3

1 - )\maxtl

IA

<r (17)

The last inequality follows from the choice of L’ that

2 max{u; — Mj}(tl)\max)L/+3
1 - tl)"max

For each pair S} and Sg, take {i\"} € SL and {j\?'} e Sg. Put
G558 = Xiip (P p-n GOl <201
Then the estimates (16) and (17) imply that

GSJZ,SZ (t) = F(t, {in}, {ju}) forallze ;N J, forall{i,} e SE, forall {j,} e Sg

and

/ Gsf‘sg (t)dt < ZE)Mmax(IO)Mmin)_Lr
Ik
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Lemma 5.2 is used to estimate the integrals in (14) in the following way:

v=f /
LN I o7 Qo iz eio] d o7 (QONi— L .nio]

Fri_p i ik (Un}) dis> (Un)) dis™ ({in)) ditlsgy (6) dit

v /Ik,zmz /fzt /p,‘%fz,)rws{; /p,‘ H(@onsg

Fri yoioG linds Un)) disS  Un) dinss* (in}) dftigp (%) dt

v /Ik,zmz /fzt /p;‘@z,)msg /p,‘ H(@onsg

G 9 (0 dus™ (Un)) s> (lin)) d s (5) di

= Z/ / Gsp.s1(®)
P.q I iNJy I

g (o7 Q) N SDHIE™ (o () N SE) ity (2) dr.
This can be estimated by

Ifmax(/ G q(t)dt)
P4 \J Ny S5

x sup(Z fg w5 o (@) 0 S (o () msg)dﬁSRBo%)).
b \pg I

IA

The maximum is estimated by (15) and the sum can be eliminated using that {S%} and {Sg}

are partitions of the cylinders [l1, iy, ..., ipland [l1,i_r, ..., io] respectively:
T < 2Ehmax(t0dmin) "7 sup< f w5 (o7 Q) N ip, - . do])
t Q,
x W (o7 Q) NIl ier, - - o)) d,zgRB()e))_

The measure of the cylinders is estimated with (3):

A ZEAmax(tO)Lmin)_Lr SUP</A A%(Vmin - 82)_2(L+1) d,&tSRB (£)>
t

=< 2E)hmax(tO)hmin)_L"A%(Vmin - 32)_2(L+1)~
Thus
T,({$ |t € Iy N 1Y)

m

o
= Z Z Z Z 2Er([0)»min)_LA]%(ymin _ 82)—2(L+1)

L=L, i I[=11<l},h<a
hi#l

o
< Z 2E7 Byt (Vmax + €2 + £)Em(a® — a) (tohmin) "5 AZ (Vmin — £2) " 2F
L=L,
00 L
+ée+¢
= Z 2EA%Bk,lm(a2 — a)r( Vimax 2 4 2> ,
=L, 10Amin (Vmin — €2)

where By ; is defined in Lemma 5.1.
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If f9Amin Vrﬁin /Vmax > 1 then it is possible to choose ¢ and 4 so small that

Ymax + €2 + &4
— o) <
10Amin (Vmin — €2)

1.

Then T, <2EA7By(a®> —a)t™[1/(1 — ©)]r. This implies that uLpp is absolutely
continuous with respect to Lebesgue measure for a.e. r € I N Jo. Let &g, €1, &3 — 0.
Then v(I N Jy) >v(I) —eg — &1 — e3 — v(I) and this shows that [HSRB is absolutely
continuous with respect to Lebesgue measure for a.e. ¢t € I.

6. Application to fat Belykh maps

The Belykh maps are defined as follows. Let —1 <k <1 and put K =[—1, 1]%,
Ki={(x1,x2) € (=1, D% | xa > kx;} and Ks={(x1, x2) € (=1, D? | xp <kx;}. The
discontinuity set is N = {(x, x2) | x = kx1} and the border is M = {(x1, x2) € K | x1 =
=£1 or xo = &1}. The Belykh maps f; , x: K1 U K2 — K are defined by

Savklg (1, x2) = xp + (1 = A), yx2 — (y — 1)),
froyklks(x1, x2) = (Ax1 — (1 = A), yx2 + (y — 1)),

where 0 <A <land 1 <y <2/(1 + |k|).

These maps were first introduced for A < 1/2 by Belykh in [2] as a model of a Poincaré
map from phase synchronization. It was investigated in the case A < 1/2 in [12] and [13].
Schmeling and Troubetzkoy studied in [15] the Belykh maps when A > 1/2 and called this
case the fat Belykh map.

The Belykh maps satisfy the conditions (A1) and (A2). Here

C=1land C < f4(x)if x < Q4 =0.61
and we conclude.

THEOREM 6.1. Let P ={(\,y,k)|yrA>1,A<0.61}. For Lebesgue almost all
(¥, A, k) € P the fat Belykh map f. ) x has an absolutely continuous invariant measure.

7. Decay of correlations

Applying Young’s scheme from [21], Chernov proved in [6] the exponential decay of

correlations for Holder continuous functions for a class of piecewise hyperbolic systems

with singularities in arbitrary dimensions. This result can be used in the following way.
Let Hy={¢: K—>R[IC:|p(x) —dp()| <Cd(x,y)",Vx,ye€ K} be the set of

Holder continuous functions on K.

COROLLARY 7.1. Assume that f: K — K satisfies the assumptions (Al) and (A2) and
assume that (f", usrp) is ergodic for every n > 1, where usrg is the SRB measure. For
every n > 0 there exists a constant 6 € (0, 1) such that for every ¢, ¥ € Hy, there is a
constant C(¢p, V) such that

’/ ¢0f"'1ﬂdMSRB—/ ¢dMSRB/ Y dusrp| < C0"
K K K

foralln e N.
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Proof. Lift f: K — K to f: K — K asin §5.1. The lift f is just a model for the natural
extension of f. The natural extension is ergodic if and only if the original system is ergodic;
see [7, Theorem 1 in Chapter 10, §4]. Hence ( f " [srB) is ergodic for every n > 1.

The function ¢: K — Ris lifted to qS: K—>R by $ =¢ om and & is lifted in the same
way.

Note that ¢,y € Hy={¢: K - R|[IC:|d(x) — ¢(y)| < Cd(x, y)",¥x, y € K}
and

/¢°fn'¢dMSRB:/Aqgo]?n'&dllSRB,
K 4

f ¢dMSRB=/A ¢ djisrs, / I/fdlLSRBZ/A ¥ djisks.
K K K K

Theorem 1.1 in [6] states that ( f , srB) has exponential decay of correlations so this
implies that (f, usrp) has exponential decay of correlations.
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