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Abstract. A class of piecewise affine hyperbolic maps on a bounded subset of the plane
is considered. It is shown that if a map from this class is sufficiently area-expanding then
almost surely this map has an absolutely continuous invariant measure.

1. Introduction
In [12], Pesin studied a general class of piecewise diffeomorphisms with a hyperbolic
attractor. He showed the existence of the Sinai–Ruelle–Bowen measure, or SRB measure
for short, and studied the ergodic properties of this measure. If f : M → M is the system
in question then the SRB measure is a weak limit point of the sequence of measures

µn =
1
n

n−1∑
k=0

ν ◦ f −k,

where ν denotes the Lebesgue measure. Pesin showed that the SRB measure has at most
countably many ergodic components. This measure is the physically relevant measure as it
captures the behavior of the orbits of points from a set of positive Lebesgue measure.

For a more restricted class, Sataev [13] showed that there are only finitely many
ergodic components. Schmeling and Troubetzkoy studied in [15] a more general class than
Pesin’s and proved the existence of the SRB measure. Their method to deal with the non-
invertibility of the system was to lift the system to a higher dimension and get an invertible
system on which the calculations were carried out. In this way methods from invertible
systems could be used. The result could then be projected back to the original system.

In [1], Alexander and Yorke considered a one-parameter class of maps called the
fat baker’s transformations. These maps are piecewise affine maps of the square with
one expanding and one contracting direction. Their results, together with the result of
Solomyak in [16], imply that, for a positive measure set of parameters, there is an
absolutely continuous invariant measure.

The Belykh map, was first introduced in [2] by Belykh. Schmeling and Troubetzkoy
considered in [15] the Belykh map for a wider range of parameters. The fat baker’s
transformations are a special case of the Belykh map in this wider range of parameters.
The Belykh map was further investigated in [14].
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In this paper we consider a class of piecewise affine hyperbolic maps on a set K ⊂ R2,
with one contracting and one expanding direction. This class is contained in the class
of maps studied in [15] and it contains the Belykh maps as well as the fat baker’s
transformations.

It is shown that if a function from this class is sufficiently area-expanding then almost
surely (in the sense of Corollary 3.1) there is an absolutely continuous invariant measure.
The method used to show this is a development of the method from [10]. Here a new
problem arises: the symbolic space changes as the parameters change. In this paper a way to
handle this problem is introduced. The different symbolic spaces are embedded in a larger
space and certain estimates are carried out that makes this larger space possible to handle.

In [19] and [20], Tsujii considered two classes of maps in two dimensions and showed
that almost all of these maps have absolutely continuous invariant measure. These two
classes are different from the class of maps considered in this paper. Tsujii also used the
method from [10], but in a different way than is used in this paper.

Similar results in two dimensions, but in the case of expanding maps, were
independently obtained by Buzzi in [5] and Tsujii in [17]. The corresponding results for
arbitrary dimension are in [4] and [18].

In the last section we use a result from Chernov [6] to conclude that the maps considered
in this paper have exponential decay of correlations for Hölder continuous functions,
provided that an additional assumption is satisfied.

2. A class of piecewise hyperbolic maps
Let K ⊂ R2 be compact and connected. Assume that K can be decomposed according to

K =

a⋃
i=1

K i ,

where each Ki is an open and non-empty set with the boundary consisting of finitely many
C2 curves, such that for each of these curves the set of points where the curvature is zero
has finitely many connected components. Thus, there are closed C2 curves Ni and Mi such
that

a⋃
i=1

∂Ki =

( b⋃
i=1

Ni

)
∪

( c⋃
i=1

Mi

)
, ∂K =

c⋃
i=1

Mi .

Let Z = {Ki } denote the partion of K .
Assume that the sets Ni ∩ N j , Mi ∩ M j and Ni ∩ Mk consists of finitely many points

if i 6= j , and there exists a constant H such that if (t1, t2) ∈ Tp Ni then |t2/t1|< H . Let
N =

⋃
Ni and M =

⋃
Mi .

See Figure 1 for an example of K , Ni and Mi .
Consider maps f : K \ N → K that satisfy the following two conditions, (A1) and

(A2).
(A1) There are numbers λ1, . . . , λa < 1< γ1, . . . , γa and u1, . . . , ua, v1, . . . , va ∈ R

with ui 6= u j whenever i 6= j , such that for any i = 1, . . . , a the map f restricted to
Ki is defined by

f |Ki (x1, x2)= fi (x1, x2)= (λi x1 + ui , γi x2 + vi ).
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FIGURE 1. An example of the domain K .

The notation fλ,γ ,u,v for f will be used to emphasize the dependence on the parameters

λ= (λ1, . . . , λa), γ = (γ1, . . . , γa), u = (u1, . . . , ua) and v = (v1, . . . , va).
Let Z0 = Z and assume that Zk = {K (k)

i }
ak
i=1 is defined. (Note that a0 = a.) Then define

the partition Zk+1 = {K (k+1)
i }

ak+1
i=1 by

Zk+1 = Zk ∨ { f −1(K (k)
i )}

ak
i=1.

The set
⋃ak

i=1 K (ak )
i is the set of points x ∈ K such that for each l = 0, 1, . . . , k the point

f l(x) is defined and f l(x) 6∈ N ∪ M .
Since each Ki has piecewise C2 boundary so has each K (k)

j . There are thus closed C2

curves N (k)
i such that

ak⋃
i=1

∂K (k)
i =

bk⋃
i=1

N (k)
i

and N (k)
i ∩ N (k)

j is a finite set if i 6= j .

(A2) There is a number τ ≥ 1 such that (min γi )
τ > Dτ + 1 where

Dτ = max
{

#A

∣∣∣∣ A ⊆ {1, 2, . . . , bτ } such that
⋂
i∈A

N (τ )
i 6= ∅

}
.

That is, Dτ is the maximal number of lines from {N (τ )
i } that cross at one point. The

number Dτ is finite since the set {N (τ )
i } is finite.

Remark. Condition (A2) implies that the multiplicity entropy (see [3] and [8] for a
definition) is less than the positive Lyapunov exponent.

3. The results
We are going to prove the following theorem.
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THEOREM 3.1. Assume that for all t ∈ I = (t0, t1), the maps ftλ,γ ,u,u satisfy the
conditions (A1) and (A2) with a uniform τ . If

t0 min{λi } min{γ 2
i }

max{γi }
> 1,

and one of the following conditions is satisfied:

(1) t1λmax < 0.5,
max{|ui − u j |, |ui |}

min{|ui − u j | : ui 6= u j }
<

1 − t1λmax

t1λmax − 2(t1λmax)3
,

(2) t1λmax < 0.61,
max{|ui − u j |, |ui |}

min{|ui − u j | : ui 6= u j }
<

1 − t1λmax

t1λmax − 2(t1λmax)4
,

(3) t1λmax < 0.68,
max{|ui − u j |, |ui |}

min{|ui − u j | : ui 6= u j }
<

1 − t1λmax

t1λmax − 2(t1λmax)5
,

where λmax = max{λi }, then for almost every t ∈ I there exists an ftλ,γ ,u,v-invariant
measure, absolutely continuous with respect to Lebesgue measure.

Remark. If the maps ftλ,γ ,u,u do not satisfy the assumptions of Theorem 3.1, but some
iterate of the maps do, then the conclusion of Theorem 3.1 is still true. It is however not
clear whether the three conditions can be exchanged by the condition t1λmax < 1, since it
is not clear that the second half of the conditions are satisfied for sufficiently high iterates
of the maps.

We can reformulate Theorem 3.1 in the following way.

COROLLARY 3.1. Let P be the set of parameters (λ, γ , u, v) such that

min{λi } min{γ 2
i }

max{γi }
> 1,

and one of the following conditions is satisfied:

(1) max{λi }< 0.5,
max{|ui − u j |, |ui |}

min{|ui − u j | : ui 6= u j }
<

1 − max{λi }

max{λi } − 2(max{λi })3
,

(2) max{λi }< 0.61,
max{|ui − u j |, |ui |}

min{|ui − u j | : ui 6= u j }
<

1 − max{λi }

max{λi } − 2(max{λi })4
,

(3) max{λi }< 0.68,
max{|ui − u j |, |ui |}

min{|ui − u j | : ui 6= u j }
<

1 − max{λi }

max{λi } − 2(max{λi })5
.

If fλ,γ ,u,u satisfies the conditions (A1) and (A2) then for Lebesgue almost every

(λ, γ , u, v) ∈ P, there is an fλ,γ ,u,v-invariant measure, absolutely continuous with respect
to Lebesgue measure.

4. A condition on transversality for power series
The corollary of the following lemma will be used to prove Theorem 3.1. The lemma
appears in a somewhat less general form in [10]. The proof from [10] works here as well.
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LEMMA 4.1. Let C ≥ 1. Then there is a constant δ > 0 such that, for any function g of the
form

g(x)= 1 +

∞∑
k=1

bk xk, bk ∈ [−C, C], (1)

the following implication holds true for n = 2, 3, 4:

g(x)≤ δ, x ∈ (0, Qn), C < fn(x)H⇒ g′(x)≤ −δ,

where fn(x)= (1 − x)/(x − 2xn+1), Q2 < 0.5, Q3 = 0.61 and Q4 = 0.68.

Proof. Let

hn(x)= 1 − C
n∑

k=1

xk
+ C

∞∑
k=n+1

xk
= 1 − C

x − 2xn+1

1 − x

and

fn(x)=
1 − x

x − 2xn+1 .

Let Q2 = 0.5, Q3 = 0.61 and Q4 = 0.68. This implies that there is a δ > 0 such that, for
n = 2, 3, 4:
(i) hn(x) > δ if C < fn(x); and
(ii) h′

n(x) <−δ if x ∈ (0, Qn).
Thus hn(x) > δ and h′

n(x) <−δ provided x < Qn and C < fn(x).
Let g(x) be of the form (1). There are ck ≥ 0 such that the function Gn(x)= g(x)−

hn(x) can be written as Gn(x)=
∑n

k=1 ck xk
−

∑
∞

k=n+1 ck xk . By the above-mentioned
properties of hn we have, for any x ∈ (0, Qn), C < fn(x),

g(x) < δ H⇒ Gn(x) < 0 H⇒ G ′
n(x) < 0 H⇒ g′(x) <−δ.

The second implication is proved by

Gn(x) < 0 H⇒

n∑
k=1

ck xk <

∞∑
k=n+1

ck xk
H⇒

∞∑
k=1

kck xk <

∞∑
k=n+1

kck xk
H⇒ G ′

n(x) < 0.

2

COROLLARY 4.1. Let n ∈ {2, 3, 4} and let Qn and fn be as in Lemma 4.1. Let sk be a
sequence with sk ∈ [−C, C]. Then for any l > 0 the set{

q ∈ (q0, Qn)

∣∣∣∣ C < fn(q),

∣∣∣∣ql
+

∞∑
k=l+1

skqk
∣∣∣∣< r

}
is contained in an interval of length at most 2δ−1q−l

0 r .

Proof. Note that
∣∣ql

+
∑

∞

k=l+1 skqk
∣∣< r implies

∣∣1 +
∑

∞

k=l+1 skqk−l
∣∣< rq−l

0 if q ≥ q0.
Lemma 4.1 implies that on the set {q ∈ (0, Qn) | C < fn(q)} the graph of the function
q 7→ 1 +

∑
∞

k=l+1 skqk−l crosses 0 transversally in at most one point and the slope is at
most −δ around this point. Hence

∣∣1 +
∑

∞

k=l+1 skqk−l
∣∣< rq−l

0 on an interval of length not
more than 2δ−1q−l

0 r and therefore
∣∣ql

+
∑

∞

k=l+1 skqk
∣∣< r can only hold in this interval.
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5. Proof of Theorem 3.1
We will use the method from [14] to prove Theorem 3.1. This method is based on [10].
This method has also been used in a similar way in [9] and [11]. The idea is to integrate the
density of the measure and then integrate with respect to the parameter. If this integral
is finite then almost surely the density is integrable and so the measure is absolutely
continuous with respect to Lebesgue measure. To prove that this is the case it is necessary
to control how the measure changes with the parameter.

We begin with some notation and general theory and then make the estimates needed
later in the proof.

5.1. Notation and general theory. In [15], Schmeling and Troubetzkoy considered maps
f : K \ N → K , where K is an open, bounded and connected subset of a manifold and
N ⊂ K is a closed set, the discontinuity set. The set K \ N is a finite union of open sets
Ki on each of which f is a C2 diffeomorphism. Moreover, it is assumed that there are
invariant stable and unstable cones on which f acts uniformly contracting and expanding
and that these cones span the tangent manifold at each point; see [15] for details. The maps
considered in this paper fit into this setting and we are going to use results from [15].

The difference between the maps considered by Schmeling and Troubetzkoy, and the
maps studied by Pesin in [12] is that Schmeling and Troubetzkoy allowed the images of
the sets Ki to have non-empty intersection.

Pesin showed that under some conditions on the map there exists an invariant measure
of which the conditional measures on unstable manifolds are absolutely continuous with
respect to the Lebesgue measure on the unstable manifolds. These measures are called
SRB measures or Gibbs u-measures. They have the property that the set of typical points
has positive Lebesgue measure.

Schmeling and Troubetzkoy showed that their maps have invariant measures with the
property that the set of typical points has positive Lebesgue measure. These measures were
called SRB measures. We will stick to this terminology in this paper.

Fix λ, γ , u and v. Let λmin = min{λi }, λmax = max{λi }, γmin = min{γi } and γmax =

max{γi }. We will use the shorter notation ft to denote ftλ,γ ,u,u .

Let K̂ = K × [0, 1] and K̂i = Ki × [0, 1]. The sets N̂ , M̂, . . . are defined analogously.
We use the idea from [15] and lift the map ft to an injective map f̂t on K̂ by

f̂t |K̂i
(x1, x2, x3)= ( ft (x1, x2), θx3 + i/(a + 1)),

where 0< θ < 1/(a + 1). The map π : K̂ → K , (x1, x2, x3) 7→ (x1, x2) is the projection
of K̂ on K . It satisfies π( f̂t (x1, x2, x3))= ft (π(x1, x2, x3)).

Let D̂+
t = { p̂ ∈ K̂ | f̂ n

t ( p̂) 6∈ N̂ ∪ M̂, ∀ n ∈ N} and D̂t =
⋂

∞

n=0 f̂ n
t (D̂t ). The set 3̂t =

D̂t is the attractor of f̂t .
The condition (A2) is a more general version of condition (H9) in [12]. It appears

in [15]. Theorem 6.1 in [15] can be applied to conclude that there are constants ct > 0
such that, for any ε > 0 and any n ∈ N,

ν̂( f̂ −n
t (U (ε, N̂ ∪ M̂))) < ctε,
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where U (ε, N̂ ∪ M̂) denotes the ε-neighborhood of N̂ ∪ M̂ . This shows that the functions
f̂t are in the class of functions from [12]. Moreover, the map ft also satisfies the conditions
in [15]. This gives us the following results.
(i) Let V u

⊂ K be a curve in the unstable direction, i.e. there are numbers ρ, σ1

and σ2 such that V u
= {(x1, x2) ∈ K | x1 = ρ, σ1 < x2 < σ2}. Let V̂ u

= π−1(V u)

be the corresponding manifold in K̂ . Let νV u and ν̂V̂ u denote the normalized

Lebesgue measure on V u and V̂ u respectively. The sequence of measures µ̂t
n =

(1/n)
∑n−1

k=0 ν̂V̂ u ◦ f̂ −k
t converges weakly to an SRB measure µ̂t

SRB. The projection
of this measure µ̂t

SRB ◦ π−1 is an SRB measure for ft and we thus write µt
SRB =

µ̂t
SRB ◦ π−1.

(ii) Given ε > 0, the set

D̂t,ε,c = {x̂ ∈ 3̂t | d( f̂ n
t (x̂), N̂ )≥ ce−εn

}

is non-empty if c is sufficiently small and the set D̂t,ε =
⋃

∞

i=1 D̂t,ε,i−1 has full

µ̂t
SRB-measure, µ̂t

SRB(D̂t,ε)= 1.
(iii) The conditional measures of µ̂t

SRB on the unstable manifolds are absolutely
continuous with respect to Lebesgue measure.

(iv) The entropy of the measure µ̂t
SRB is

hµ̂t
SRB

=

∫
3̂t

log χt (x̂) dµ̂t
SRB(x̂),

where χt (x̂) is the positive Lyapunov exponent at the point x̂ for the map f̂t . In
particular, log(γmin)≤ hµ̂t

SRB
≤ log(γmax).

(v) The measure µ̂t
SRB has at most countably many ergodic components.

The results (i)–(v) make it possible to define stable manifolds for µ̂t
SRB-almost

every x̂ ∈ K̂ . If x̂ = (x1, x2, x3) ∈ D̂t,− log(tλmax) then there is a c = c(x̂) such that x̂ ∈

D̂t,− log(tλmax),c, that is d( f̂ n
t (x̂), N̂ )≥ c(tλmax)

n for all n ≥ 0. If ŷ = (y1, y2, y3) ∈ K̂
with |y1 − x1|< c and y2 = x2 then

| f̂ n
t (ŷ)− f̂ n

t (x̂)|1 ≤ |y1 − x1|(tλmax)
n < c(tλmax)

n
≤ d( f̂ n

t (x̂), N̂ ),

where | · · · |1 denotes the modulus of the difference in the first coordinate. Hence the points
f̂ n
t (ŷ) and f̂ n

t (x̂) are never separated by a discontinuity and we say that ŷ is in the stable
manifold of x̂ . The stable manifold of x̂ is thus defined to be the set

Ŵ t,s(x̂)= {ŷ ∈ K̂ | |x1 − y1|< c, y2 = x2},

where c is the largest constant such that x̂ ∈ D̂t,− log(tλmax),c. This defines the stable
manifold of µ̂t

SRB-a.e. point x̂ ∈ K̂ since µ̂t
SRB(D̂t,log(tλmax))= 1.

The stable manifold W t,s(x) is defined as the projection of corresponding stable
manifold in K̂ . All the stable manifolds will therefore be parallel line segments but the
length of the manifolds are only measurable [12].

Similarly the unstable manifolds can be defined. They consist of parallel line segments,
orthogonal to the stable manifolds, and their length is measurable.

The partition of K into stable manifolds is thus measurable and the conditional measures
on these manifolds can be defined. Take x ∈3= π(3̂) and letµt,s,x

SRB denote the conditional
measure on the stable manifold W t,s(x).
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The sequence of measures µ̂t
n may converge to a measure which is not ergodic, but if

V̂ u
t ⊆ Ŵ t,u(x̂t ) for some x̂t ∈ 3̂t then µ̂t

n will converge to a unique ergodic component,
since then V̂ u

t ⊆ 3̂t . We choose x̂t ∈ 3̂t so that x̂t depends continuously on t . This is
possible; see [13].

To get control over µ̂t
SRB for almost all t ∈ I argue as follows. Since the size of the

unstable manifolds depends only measurably on t , it may not be possible to get a uniform
length of V̂ u

t ⊆ 3̂t . However, given ε0 > 0 there is a set J0 ⊂ I with ν(I \ J0) < ε0 such
that the sets V̂ u

t ⊆ Ŵ t,u(x̂) can be chosen to have equal length for all t ∈ J0.
This construction has the following consequence. For any t ∈ J0 the measure µ̂t

n
converges to an ergodic measure and it is not necessary to take a subsequence. Indeed,
if it is necessary to take a subsequence then there exists a set A such that

lim inf
n→∞

µ̂t
n(A) < lim sup

n→∞

µ̂t
n(A).

But this would contradict that µ̂t
n converges to a unique ergodic component.

Given a sequence {in} ∈ {1, 2, . . . , a}
Z and integers l, m we define the cylinder

Ĉm
l ({in}, t)=

m⋂
k=l

f̂ −k
t (K̂ik )

or

Ĉm
l (i0, i1, . . . , im−l , t)=

m⋂
k=l

f̂ −k
t (K̂ik−l ).

Let 6t = {{ik} | Ĉm
l ({ik}, t) 6= ∅ ∀ l, m ∈ Z} and let ρt : 6t → 3̂t be the natural

identification of sequences in 6t and points in 3̂t .

5.2. The measure’s dependence on the parameters. The first step is to estimate how
the measure µ̂t

SRB changes with the parameter t . This is done by using that µ̂t
n converges

weakly to µ̂t
SRB.

Let L1 > 0. The measure µ̂t
n = (1/n)

∑n−1
k=0 ν̂V̂ u

t
◦ f̂ −k

t converges weakly to µ̂t
SRB.

Hence there is a number n0(t, L1) such that for any cylinder of length L1

1
2

≤
µ̂t

SRB(Ĉ
0
−L1

)

µ̂t
n(Ĉ

0
−L1

)
≤ 2,

for all n ≥ n0. Since n0(t, L1) is measurable with respect to t , Lusin’s theorem implies
that for any ε1 > 0 there is a set J1 ⊂ J0 with ν(J0 \ J1) < ε1 and a number n1 such that
n1 > n0(t, L1) for all t ∈ J1.

For a fixed cylinder Ĉ0
−L1

, the measure µ̂t
n0
(Ĉ0

−L1
) depends continuously on t , because

the measure µ̂t
n0

involves taking finitely many preimages with respect to f̂t and these
preimages depend continuously on t , and the measure ν̂V̂ u

t
depends continuously on t .

It is therefore possible to partition I into finitely many subintervals I =
⋃m

k=1 Ik such that
when t1, t2 ∈ Ik then

1
2

≤
µ̂

t1
n0(Ĉ

0
−L1

)

µ̂
t2
n0(Ĉ

0
−L1

)
≤ 2,
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for any cylinder of length L1. This implies that

1
4

≤
µ̂

t1
SRB(Ĉ

0
−L1

)

µ̂
t2
SRB(Ĉ

0
−L1

)
≤ 4,

for any cylinder of length L1, provided t1, t2 ∈ Ik ∩ J1 for some k.
For each Ik , choose a tk ∈ Ik ∩ J1 and a cylinder Ĉ0

−L1
({xn(tk)}, tk) with mk =

µ̂
tk
SRB(Ĉ

0
−L1

({xn(tk)}, tk)) > 0.
For every t ∈ Ik ∩ J1, define

�̂0,t = Ĉ0
−L1

({xn(tk)}, t).

Then

µ̂t
SRB(�̂0,t )≥

1
4 mk (2)

for all t ∈ Ik ∩ J1.

5.3. Entropy. It will be necessary to control the number of cylinders and the measure
of the cylinders. As already noted, the general theory gives that the entropy of the measure
µ̂t

SRB satisfies log(γmin)≤ hµ̂t
SRB

≤ log(γmax).
The Shannon–McMillan–Breiman theorem implies that for t ∈ J1 ∩ Ik and ε2 > 0 there

is a constant A(t) such that

µ̂t
SRB

(⋂
L>0

{x̂ | ∃ Ĉ0
−L({xk}, t) 3 x̂ with

A(t)−1(γmax + ε2)
−L < µ̂t

SRB(Ĉ
0
−L) < A(t)(γmin − ε2)

−L
}

)
> 1 −

1
8

mk .

This shows that by making a different choice of A(t) a similar estimate on the stable
manifolds will be valid,

µ̂t
SRB

(⋂
L>0

{x̂ | ∃ Ĉ0
−L({xk}, t) 3 x̂ with

A(t)−1(γmax + ε2)
−L < µ̂

t,s,x
SRB(Ĉ

0
−L) < A(t)(γmin − ε2)

−L
}

)
> 1 −

1
8

mk . (3)

Let �̂SMB,t be the set whose measure is estimated above.
An application of Lusin’s theorem shows that given ε3 > 0 there exists a set J2 ⊂ J1

and numbers Ak such that

ν(J1 \ J2) < ε3,

A(t)≤ Ak, whenever t ∈ Ik ∩ J2.

For all t ∈ Ik ∩ J2, define �̂t = �̂0,t ∩ �̂SMB,t . The estimates (2) and (3) show that
µ̂t

SRB(�̂t )≥
1
8 mk .

It follows by (3) that the number of cylinders of length L in �̂t satisfies

Nt (L)≤ Ak(γmax + ε2)
L . (4)

Let L2 > 0 and consider for each t ∈ Ik the set of words of length L2 + 1:

Ct = {x0, x1, . . . , xL2 | xi ∈ {1, 2, . . . , a}, Ĉ L2
0 (x0, x1, . . . , xL2 , t) 6= ∅}.
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The cylinders Ĉ L2
0 ({xk}, t) change continuously with t , i.e. the cylinders are sets with

smooth boundaries and the boundaries depend continuously on t . This follows from the fact
that iterates of the maps are piecewise affine and they depend continuously on t . The fact
that the sets K̂i have piecewise C2 boundaries with finitely many connected components
with zero curvature allows us to draw the following conclusion. There is a partition of Ik

into finitely many intervals Ik,l(L2) such that Ct = Ct ′ if t ′, t ∈ Ik,l(L2) for some l. Indeed,
when t runs over Ik , each cylinder appears and disappears only finitely many times. Let
the finite set of t , for which some cylinder Ĉ L2

0 ({xk}, t) appears and disappears, define the
endpoints of the intervals Ik,l(L2).

Any sequence in 6t ∩ ρ−1
t (�̂t ) can be written as a concatenation of words from Ct .

Together with (4) this implies that for each Ik,l the number of words of length n in⋃
t∈Ik,l∩J2

6t ∩ ρ−1
t (�̂t ) does not exceed (A1/L2

k (γmax + ε2))
n+L2 for any n. Hence, we

have the following lemma.

LEMMA 5.1. For any ε4 > 0 there is a number L3 = L3(ε4) such that if L2 > L3 then for
each Ik,l(L2) the symbolic space 6Ik,l (L2) =

⋃
t∈Ik,l (L2)∩J2

6t ∩ ρ−1
t (�̂t ) satisfies

NIk,l (L2)(n)≤ Bk,l(γmax + ε2 + ε4)
n,

for some Bk,l , where NIk,l (L2)(n) denotes the number of words of length n in 6Ik,l (L2).

In order to make use of Lemma 5.1, choose L2 > L3.

5.4. Integrability of the densities. The conditional measures of µt
SRB on unstable

manifolds are absolutely continuous with respect to Lebesgue measure. We will prove that
the conditional measures on the stable manifolds are almost surely absolutely continuous
with respect to Lebesgue measure. The local product structure of µt

SRB then implies that
µt

SRB is absolutely continuous with respect to Lebesgue measure.
Take x ∈3= π(3̂) and let W t,s

r (y, x)= {z ∈ W t,s(x) | d(y, z)≤ r}. The derivative of
µ

t,s,x
SRB at y is the limit

D(µt,s,x
SRB , y)= lim inf

r→0

µ
t,s,x
SRB(W

t,s
r (y, x))

2r
.

If the function D(µt,s,x
SRB , y) is integrable on W t,s(x) then the measure µt,s,x

SRB is absolutely
continuous with respect to Lebesgue measure.

Let k be fixed. We want to prove that for a.e. t ∈ Ik ∩ J2∫
�t

∫
�t

D(µt,s,x
SRB |�t , y) dµt,s,x

SRB(y) dµt
SRB(x) <∞. (5)

This implies that the measure µt,s,x
SRB restricted to the set �t is absolutely continuous for

a.e. x ∈�t . Since the conditional measures on the unstable manifolds are absolutely
continuous with respect to Lebesgue measure, this implies that µt

SRB|�t is absolutely
continuous with respect to Lebesgue measure. Since µt

SRB(�t ) > 0, ergodicity then
implies that this also holds for the measure µt

SRB. Since k is arbitrary this implies that
µt

SRB is absolutely continuous with respect to Lebesgue for a.e. t ∈ I ∩ J2.
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Fatou’s lemma implies that in order to prove (5) it suffices to prove that

lim inf
r→0

1
r

∫
�t

∫
�t

µ
t,s,x
SRB(�t ∩ W t,s

r (y, x)) dµt,s,x
SRB(y) dµt

SRB(x) <∞.

We may rewrite this as

lim inf
r→0

1
r

∫
�t

∫
�t

∫
�t

χ{|y1−z1|<r} dµt,s,x
SRB(z) dµt,s,x

SRB(y) dµt
SRB(x) <∞. (6)

To prove that this holds for a.e. t ∈ Ik ∩ J2 we prove that for any l

lim inf
r→0

1
r

∫
Ik,l∩J2

∫
�t

∫
�t

∫
�t

χ{|y1−z1|<r} dµt,s,x
SRB(z) dµt,s,x

SRB(y) dµt
SRB(x) dt <∞. (7)

This then implies that µt
SRB � ν for a.e. t ∈ Ik ∩ J2. Instead of proving (7) we use that

µt
SRB = µ̂t

SRB ◦ π−1 and prove the equivalent condition

lim inf
r→0

1
r

∫
Ik,l∩J2

∫
�̂t

∫
�̂t

∫
�̂t

χ{|y1−z1|<r} dµ̂t,s,x̂
SRB(ẑ) dµ̂t,s,x̂

SRB(ŷ) dµ̂t
SRB(x̂) dt <∞. (8)

Recall that ρt : 6t → 3̂t maps sequences in 6t to points in 3̂t in the natural way. Put
µt
6 = µ̂t

SRB ◦ ρt and rewrite (8) as

lim inf
r→0

1
r

∫
Ik,l∩J2

∫
�̂t

∫
ρ−1

t (�̂t )

∫
ρ−1

t (�̂t )

χ{|ρ({in})−ρ({ jn})|1<r}

dµt,s,x̂
6 ({in}) dµt,s,x̂

6 ({ jn}) dµ̂t
SRB(x̂) dt <∞, (9)

where | · · · |1 denotes the difference in the first coordinate.
Embed all subshifts 6t , t ∈ Ik,l ∩ J1, into the larger subshift 6Ik,l as in Lemma 5.1.

The measures µt
6 extend from 6t to 6Ik,l in a natural way since 6t is a subset of 6Ik,l . A

cylinder in 6Ik,l will be denoted by

l [{in}]m = l [il · · · im]m = {{ jn} ∈6Ik,l | jn = in, n = l, . . . , m}.

To prove (9) we estimate the quantity

Tr ({�̂t | t ∈ Ik,l ∩ J2})

=

∑
L>L2

∑
−L [i−L ,...,i0]0

⊂6Ik,l

∑
1≤l1,l2≤a

l1 6=l2

∫
Ik,l∩J2

∫
�̂t

∫
ρ−1

t (�̂t )∩[l1,i−L ,...,i0]

∫
ρ−1

t (�̂t )∩[l2,i−L ,...,i0]

χ{|ρt ({in})−ρt ({ jn})|1<r} dµt,s,x̂
6 ({ jn}) dµt,s,x̂

6 ({in}) dµ̂t
SRB(x̂) dt (10)

and show that Tr < ηr for all r > 0 and some constant η. This implies (9) as follows. The
product 6Ik,l ×6Ik,l can be written as

6Ik,l ×6Ik,l =

⋃
L

⋃
−L [i−L ,...,i0]0

⊂6Ik,l

⋃
1≤l1,l2≤a

l1 6=l2

−L−1[l1, i−L , . . . , i0]0 × −L−1[l2, i−L , . . . , i0]0,
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i.e. 6Ik,l ×6Ik,l is the union over L of the set of pair of sequences with the first L letters
equal. This implies that

lim inf
r→0

1
r

∫
Ik,l∩J2

∫
�̂t

∫
ρ−1

t (�̂t )

∫
ρ−1

t (�̂t )

χ{|ρ({in})−ρ({ jn})|1<r}

dµt,s,x̂
6 ({in}) dµt,s,x̂

6 ({ jn}) dµ̂t
SRB(x̂) dt = lim inf

r→0

1
r

Tr ({�̂t | t ∈ Ik,l ∩ J2}),

so (10) implies (9).
It remains to show (10). This will be done in §5.6. To do this, the estimate in §5.5 is

needed.

5.5. An estimate on power series. The expression |ρt ({in})− ρt ({ jn})|1 appearing in
(10) can be expressed as a power series. The following estimate on this power series is an
important part in proving (10).

If (x1, x2, x3) ∈ 3̂t and {in} ∈6Ik,l is the sequence such that ρt ({in})= (x1, x2, x3),
then it is easy to see that

x1 =

∞∑
n=1

n−1∏
l=1

(tλil−n )ui−n =

∞∑
n=1

n−1∏
l=1

λil−n

λmax
ui−n (λmaxt)n−1.

So the expression in the brackets of the integrand in (10) can be rewritten in the form∣∣∣∣ ∞∑
n=L+1

(n−1∏
l=1

λil−n ui−n −

n−1∏
l=1

λ jl−n u j−n

)
tn−1

∣∣∣∣< r. (11)

Multiplying both sides of (11) with

1
|ul1 − ul2 |

1∏L
l=1(tλil−n )

we see that (11) holds if∣∣∣∣1 +

∞∑
n=L+2

(n−1∏
l=1

λil−n

λmax
ui−n −

n−1∏
l=1

λ jl−n

λmax
u j−n

)
(tλmax)

n−1−L

ul1 − ul2

∣∣∣∣
<

r

|ul1 − ul2 |

1∏L
l=1(tλil−n )

. (12)

The coefficients of (tλmax)
n−1−L in the sum in (12) are bounded by

max
{in},{ jn},n

(n−1∏
l=1

λil−n

λmax
ui−n −

n−1∏
l=1

λ jl−n

λmax
u j−n

)
1

ul1 − ul2
≤

max{|ui − u j |, |ui |}

min{|ui − u j | | ui 6= u j }
=: C,

so an application of Corollary 4.1 with C as above shows that∣∣∣∣{tλmax

∣∣∣∣ ∣∣∣∣ ∞∑
n=L

(n−1∏
l=1

λil−n ui−n −

n−1∏
l=1

λ jl−n u j−n

)
tn−1

∣∣∣∣< r

}∣∣∣∣
< δ−1 (t0λmin)

−L

min{|ui − u j | | ui 6= u j }
r = Eλmax(t0λmin)

−Lr, (13)

if t1λmax <min{(1/2C), 0.68}.
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5.6. The final step. Put F(t, {in}, { jn})= χ{|ρt ({in})−ρt ({ jn})|1<r} and rewrite (10) as

Tr ({�̂t | t ∈ Ik,l ∩ J2})

=

∑
L>L2

∑
−L [i−L ,...,i0]0

⊂6Ik,l

∑
1≤l1,l2≤a

l1 6=l2

∫
Ik,l∩J2

∫
�̂t

∫
ρt (�̂t )∩[l1,i−L ,...,i0]

∫
ρt (�̂t )∩[l2,i−L ,...,i0]

F(t, {in}, { jn}) dµt,s,x̂
6 ({ jn}) dµt,s,x̂

6 ({in}) dµ̂t
SRB(x̂) dt. (14)

To estimate the quantity in (14) we want to change the order of integration to integrate with
respect to t first and then use the estimate (13). This cannot be done immediately because
the other integrals depend on t . To get around this problem the function F(t, {in}, { jn})will
be bounded by a function G(t, {in}, { jn}) which is constant on cylinders. More precisely
we have the following lemma.

LEMMA 5.2. Assume that the conditions of Theorem 3.1 are satisfied. For each pair of
cylinders [l1, i−L , . . . , i0] and [l2, i−L , . . . , i0] appearing in (14) there is a partition into
finitely many cylinders

[l1, i−L , . . . , i0] =

nα⋃
p=1

S p
α , [l2, i−L , . . . , i0] =

nβ⋃
q=1

Sq
β ,

where S p
α , p = 1, . . . , nα , and Sq

β , q = 1, . . . , nβ , are cylinders, and functions GS p
α ,S

q
β
(t)

with

GS p
α ,S

q
β
(t)≥ F(t, {in}, { jn}) for all t ∈ Ik,l ∩ J1, for all {in} ∈ S p

α , for all { jn} ∈ Sq
β

and ∫
Ik,l

GS p
α ,S

q
β
(t) dt < 2Eλmax(t0λmin)

−Lr. (15)

Proof. For fixed ŷ and ẑ the estimate (13) implies that

|{t | F(t, {in}, { jn}) < r}|< Eλmax(t0λmin)
−Lr

and

|{t | |ρt ({in})− ρt ({ jn})|1 < 2r}|< 2Eλmax(t0λmin)
−Lr. (16)

The function (t, {in}, { jn}) 7→ |ρt ({in})− ρt ({ jn})|1 depends continuously on t , {in} and
{ jn}. Choose L ′ so large that

2 max{ui − u j }(t1λmax)
L ′

+3

1 − t1λmax
< r.

The sets [l1, i−L , . . . , i0] and [l1, i−L , . . . , i0] can be partitioned into cylinders of length
L ′

+ L + 3:

[l1, i−L , . . . , i0] =

nα⋃
p=1

S p
α =

nα⋃
p=1

[α−L ′(p), . . . , α0(p), l1, i−L , . . . , i0],

[l2, i−L , . . . , i0] =

nβ⋃
q=1

Sq
β =

nβ⋃
q=1

[β−L ′(q), . . . , β0(q), l2, i−L , . . . , i0].

Note that nα and nβ can be bounded uniformly by nα, nβ ≤ aL ′
+1.
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As in (11) the expression | |ρt ({i
(1)
n })− ρt ({ j (1)n })|1 − |ρt ({i

(2)
n })− ρt ({ j (2)n })|1 | can be

written as

| |ρt ({i
(1)
n }) − ρt ({ j (1)n })|1 − |ρt ({i

(2)
n })− ρt ({ j (2)n })|1 |

=

∣∣∣∣ ∣∣∣∣ ∞∑
n=1

(n−1∏
l=1

λ
i (1)l−n

u
i (1)−n

−

n−1∏
l=1

λ
j (1)l−n

u
j (1)−n

)
tn−1

∣∣∣∣
−

∣∣∣∣ ∞∑
n=1

(n−1∏
l=1

λ
i (2)l−n

u
i (2)−n

−

n−1∏
l=1

λ
j (2)l−n

u
j (2)−n

)
tn−1

∣∣∣∣ ∣∣∣∣.
If {i (1)n }, {i (2)n } ∈ S p

α , { j (1)n }, { j (2)n } ∈ Sq
β for some p and q, then since {i (1)n } and {i (2)n },

respectively { j (1)n } and { j (2)n }, are equal on the first L ′
+ L + 3 letters, the first L ′

+ L + 3
terms in this power series are zero. Hence

| |ρt ({i
(1)
n }) − ρt ({ j (1)n })|1 − |ρt ({i

(2)
n })− ρt ({ j (2)n })|1 |

=

∣∣∣∣ ∣∣∣∣ ∞∑
n=L+L ′+4

(n−1∏
l=1

λ
i (1)l−n

u
i (1)−n

−

n−1∏
l=1

λ
j (1)l−n

u
j (1)−n

)
tn−1

∣∣∣∣
−

∣∣∣∣ ∞∑
n=L+L ′+4

(n−1∏
l=1

λ
i (2)l−n

u
i (2)−n

−

n−1∏
l=1

λ
j (2)l−n

u
j (2)−n

)
tn−1

∣∣∣∣ ∣∣∣∣
≤

∞∑
n=L+L ′+4

2 max{ui − u j }(λmaxt)n−1

≤
2 max{ui − u j }(λmaxt1)L+L ′

+3

1 − λmaxt1
< r. (17)

The last inequality follows from the choice of L ′ that

2 max{ui − u j }(t1λmax)
L ′

+3

1 − t1λmax
< r.

For each pair S p
α and Sq

β , take {i (p)n } ∈ S p
α and { j (q)n } ∈ Sq

β . Put

GS p
α ,S

q
β
(t)= χ

{|ρt ({i
(p)
n })−ρt ({ j (q)n })|1<2r}

.

Then the estimates (16) and (17) imply that

GS p
α ,S

q
β
(t)≥ F(t, {in}, { jn}) for all t ∈ Ik,l ∩ J1, for all {in} ∈ S p

α , for all { jn} ∈ Sq
β

and ∫
Ik,l

GS p
α ,S

q
β
(t) dt < 2Eλmax(t0λmin)

−Lr.
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Lemma 5.2 is used to estimate the integrals in (14) in the following way:

I :=

∫
Ik,l∩J2

∫
�̂t

∫
ρ−1

t (�̂t )∩[l1,i−L ,...,i0]

∫
ρ−1

t (�̂t )∩[l2,i−L ,...,i0]

FL ,i−L ,...,i0(t, {in}, { jn}) dµt,s,x̂
6 ({ jn}) dµt,s,x̂

6 ({in}) dµ̂t
SRB(x̂) dt

=

∑
p,q

∫
Ik,l∩J2

∫
�̂t

∫
ρ−1

t (�̂t )∩S p
α

∫
ρ−1

t (�̂t )∩Sq
β

FL ,i−L ,...,i0(t, {in}, { jn}) dµt,s,x̂
6 ({ jn}) dµt,s,x̂

6 ({in}) dµ̂t
SRB(x̂) dt

≤

∑
p,q

∫
Ik,l∩J2

∫
�̂t

∫
ρ−1

t (�̂t )∩S p
α

∫
ρ−1

t (�̂t )∩Sq
β

GS p
α ,S

q
β
(t) dµt,s,x̂

6 ({ jn}) dµt,s,x̂
6 ({in}) dµ̂t

SRB(x̂) dt

=

∑
p,q

∫
Ik,l∩J2

∫
�̂t

GS p
α ,S

q
β
(t)

µ
t,s,x̂
6 (ρ−1

t (�̂t ) ∩ S p
α )µ

t,s,x̂
6 (ρ−1

t (�̂t ) ∩ Sq
β ) dµ̂t

SRB(x̂) dt.

This can be estimated by

I ≤ max
p,q

(∫
Ik,l∩J1

GS p
α ,S

q
β
(t) dt

)
× sup

t

(∑
p,q

∫
�̂t

µ
t,s,x̂
6 (ρ−1

t (�̂t ) ∩ S p
α )µ

t,s,x̂
6 (ρ−1

t (�̂t ) ∩ Sq
β ) dµ̂t

SRB(x̂)

)
.

The maximum is estimated by (15) and the sum can be eliminated using that {S p
α } and {Sq

β }

are partitions of the cylinders [l1, i−L , . . . , i0] and [l1, i−L , . . . , i0] respectively:

I ≤ 2Eλmax(t0λmin)
−Lr sup

t

(∫
�̂t

µ
t,s,x̂
6 (ρ−1

t (�̂t ) ∩ [l1, i−L , . . . , i0])

× µ
t,s,x̂
6 (ρ−1

t (�̂t ) ∩ [l2, i−L , . . . , i0]) dµ̂t
SRB(x̂)

)
.

The measure of the cylinders is estimated with (3):

I ≤ 2Eλmax(t0λmin)
−Lr sup

t

(∫
�̂t

A2
k(γmin − ε2)

−2(L+1) dµ̂t
SRB(x̂)

)
≤ 2Eλmax(t0λmin)

−Lr A2
k(γmin − ε2)

−2(L+1).

Thus

Tr ({�̂t | t ∈ Ik,l ∩ J2})

≤

∞∑
L=L2

∑
i

m∑
l=1

∑
1≤l1,l2≤a

l1 6=l2

2Er(t0λmin)
−L A2

k(γmin − ε2)
−2(L+1)

≤

∞∑
L=L2

2Er Bk,l(γmax + ε2 + ε4)
Lm(a2

− a)(t0λmin)
−L A2

k(γmin − ε2)
−2L

=

∞∑
L=L2

2E A2
k Bk,lm(a

2
− a)r

(
γmax + ε2 + ε4

t0λmin(γmin − ε2)2

)L

,

where Bk,l is defined in Lemma 5.1.
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If t0λminγ
2
min/γmax > 1 then it is possible to choose ε2 and ε4 so small that

τ =
γmax + ε2 + ε4

t0λmin(γmin − ε2)2
< 1.

Then Tr ≤ 2E A2
k Bk,l(a2

− a)τ L2 [1/(1 − τ)]r . This implies that µt
SRB is absolutely

continuous with respect to Lebesgue measure for a.e. t ∈ I ∩ J2. Let ε0, ε1, ε3 → 0.
Then ν(I ∩ J2) > ν(I )− ε0 − ε1 − ε3 → ν(I ) and this shows that µ̂t

SRB is absolutely
continuous with respect to Lebesgue measure for a.e. t ∈ Ik .

6. Application to fat Belykh maps
The Belykh maps are defined as follows. Let −1< k < 1 and put K = [−1, 1]

2,
K1 = {(x1, x2) ∈ (−1, 1)2 | x2 > kx1} and K2 = {(x1, x2) ∈ (−1, 1)2 | x2 < kx1}. The
discontinuity set is N = {(x1, x2) | x2 = kx1} and the border is M = {(x1, x2) ∈ K | x1 =

±1 or x2 = ±1}. The Belykh maps fλ,γ,k : K1 ∪ K2 → K are defined by

fλ,γ,k |K1(x1, x2)= (λx1 + (1 − λ), γ x2 − (γ − 1)),

fλ,γ,k |K2(x1, x2)= (λx1 − (1 − λ), γ x2 + (γ − 1)),

where 0< λ < 1 and 1< γ ≤ 2/(1 + |k|).
These maps were first introduced for λ < 1/2 by Belykh in [2] as a model of a Poincaré

map from phase synchronization. It was investigated in the case λ < 1/2 in [12] and [13].
Schmeling and Troubetzkoy studied in [15] the Belykh maps when λ > 1/2 and called this
case the fat Belykh map.

The Belykh maps satisfy the conditions (A1) and (A2). Here

C = 1 and C < f4(x) if x < Q4 = 0.61

and we conclude.

THEOREM 6.1. Let P = {(λ, γ, k) | γ λ > 1, λ < 0.61}. For Lebesgue almost all
(γ, λ, k) ∈ P the fat Belykh map fλ,γ,k has an absolutely continuous invariant measure.

7. Decay of correlations
Applying Young’s scheme from [21], Chernov proved in [6] the exponential decay of
correlations for Hölder continuous functions for a class of piecewise hyperbolic systems
with singularities in arbitrary dimensions. This result can be used in the following way.

Let Hη = {φ : K → R | ∃ C : |φ(x)− φ(y)| ≤ Cd(x, y)η, ∀ x, y ∈ K } be the set of
Hölder continuous functions on K .

COROLLARY 7.1. Assume that f : K → K satisfies the assumptions (A1) and (A2) and
assume that ( f n, µSRB) is ergodic for every n ≥ 1, where µSRB is the SRB measure. For
every η > 0 there exists a constant θ ∈ (0, 1) such that for every φ, ψ ∈ Hη there is a
constant C(φ, ψ) such that∣∣∣∣∫

K
φ ◦ f n

· ψ dµSRB −

∫
K
φ dµSRB

∫
K
ψ dµSRB

∣∣∣∣ ≤ Cθn

for all n ∈ N.
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Proof. Lift f : K → K to f̂ : K̂ → K̂ as in §5.1. The lift f̂ is just a model for the natural
extension of f . The natural extension is ergodic if and only if the original system is ergodic;
see [7, Theorem 1 in Chapter 10, §4]. Hence ( f̂ n, µ̂SRB) is ergodic for every n ≥ 1.

The function φ : K → R is lifted to φ̂ : K̂ → R by φ̂ = φ ◦ π and ψ̂ is lifted in the same
way.

Note that φ̂, ψ̂ ∈ Ĥη = {φ̂ : K̂ → R | ∃ C : |φ̂(x)− φ̂(y)| ≤ Cd(x, y)η, ∀ x, y ∈ K̂ }

and ∫
K
φ ◦ f n

· ψ dµSRB =

∫
K̂
φ̂ ◦ f̂ n

· ψ̂ dµ̂SRB,∫
K
φ dµSRB =

∫
K̂
φ̂ dµ̂SRB,

∫
K
ψ dµSRB =

∫
K̂
ψ̂ dµ̂SRB.

Theorem 1.1 in [6] states that ( f̂ , µ̂SRB) has exponential decay of correlations so this
implies that ( f, µSRB) has exponential decay of correlations.
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