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Abstract
We apply variations and extensions of structural balance theory to analyze the dynamics of geopolitical

relationsusingdata fromthevirtualworldEveOnline. Thehighlydetaileddataenableus to study the interplay
of alliance size, power, and geographic proximity on the prevalence and conditional behavior of triads built

from empirical political alliances. Through our analysis, we reveal the degree to which the behaviors of

players conform to thepredictions of structural balance theory andwhether our augmentations of the theory

improve these predictions. In addition to studying the time series of the proportions of triad types, we

investigate the conditional changes in triad types and the formation of polarized political coalitions. We

find that player behavior largely conforms to the predictions of a multipolar version of structural balance

theory that separates strong and weak configurations of balanced and frustrated triads. The high degree of

explanatory power of structural balance theory in this context provides strong support for both the theory

and the use of virtual worlds in social science research.
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1 Introduction

In order to better understand the dynamics of real-world political interactions, we analyze the

characteristics and dynamics that naturally emerge within a virtual world political environment.

We first describe an expanded version of structural balance theory that we use as a guiding

principle governing the dynamics of political relations. We then evaluate the degree to which

the virtual world dynamics cohere to the predictions of this theory in multiple ways. We further

describehowdifferencesbetween thevirtual and realworldaffect the translationof social theories

between virtual and real-world environments.

Data regarding the stability and dynamics of real-world political relations are scarce, because

the number of real-world countries is small and because political relations tend to be relatively

stable over the span of history for which reliable data are available. This paucity of data on the

dynamics of real-world political relations makes it nigh impossible to test general theoretical

claims about the drivers of change in international relations. Datasets such as the Correlates of

War (CorrelatesOfWar 2019) and the conflict in the middle east (Economist 2015), for example,

are too sparse to provide strong support for general sociopolitical theories. Furthermore, changes

in external factors, such as technology and economic activity, alter the context in which political

changes occur, thus further complicating or even invalidating the analysis of real-world political

relations across time and space. We address these problems by considering an alternative body

of empirical data on political relations that does not suffer from these limitations. In particular,

we employ data on political relations from a virtual world called Eve Online (EVE) to study the
dynamics of political relations (CCP 2019).

The core of our analytical approach derives from Structural Balance Theory (Heider 1946;

Cartwright and Harary 1956; Harary 1959). The principle of balance theory is that interpersonal
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relations have valences—some people you like and some you dislike—and we can capture those

as positive and negative links in a social network. Structural balance theory (sometimes “social

balance theory” or simply “balance theory”) provides a characterization of when such a signed

social network is balanced—and if not, then how frustrated it is. The implication is that frustrated

relations aremore likely to change than balanced ones, and so the theory implicitly also provides

a theory about the dynamics of signed social networks. There are already many variations of this

methodology, and we further extend it to explore patterns of frustration dynamics in political

networks as they evolve.

The community structure of the EVE alliance standings network reveals multiple mutually
competing coalitions. By treating this virtual world as a multipolar system engaged in structural

balance dynamics, we can explain many patterns observed in the data. Deviations from the

predictions of structural balance theory (like persistent strong frustration) reveal the limitations

of applying the theory to a conflict-driven game context (Belaza et al. 2017; Belaza et al. 2019).
Still, the high degree of explanatory power of structural balance theory in this context provides

strong support for both the theory and the use of virtual worlds in social science research.

2 Data: EVE Virtual World
Appreciating the limited data available on real-world political and/or trade networks and large-

scale conflicts, we explore the appropriateness of data collected from a massively multiplayer

onlinegamecalledEVE. Theadvantagesofusingdata froman immersive, sandboxcomputer game
(Squire 2008) are: (1) there are more data, (2) the data are reliable, (3) events in a computer game

occurmore frequently than in the real world, and (4) most of the activity is already quantified in a

consistent way. One concern about data from a computer game is that it may lack sophistication,

because the gameworld is necessarily a simplified version of the realworld. Along these lines, one

mayworry that the behaviors of players reflect constraints and interventions from thedevelopers,

rather than natural diplomatic actions. We desire data that are simpler than the real-world data in

some respects, yet still complicated in the right ways to be useful.

Few games provide the sociopolitical structure, variety of activities, and realistic motivations

necessary to be candidates for serving this role. EVE does seem to provide all the right ingredients

to generate realistic (and yet constrained) dynamics in large hierarchical political structures. Play-

ers of EVE engage in activities such as mining, harvesting, research, industry, trading, couriering,

protection, piracy, and politics in an open-ended sandbox environment. Players are free to join

corporations, which can form into alliances, which are in turn part of implicit coalitions in a

multitieredhierarchyofpolitical arrangements. Alliancemembershipdetermines friendsand foes,

which regulates conflicts on a scale ranging from single-player economic sabotage to prolonged

territorial wars involving thousands of players.

Because we wish to use these data to understand why and how certain political, economic,

and social activities occur, it is important to ensure that the underlying forces driving them—and

not just aggregate patterns—match up with corresponding real-world motivations. The political

actionsweexaminearegeneratedbyhumanplayers reacting toeachother, and toanenvironment

with fixed and known rules. The game offers players a wide range of economic activities (Milden-

berger 2013). Because these activities are connected in a complex interplay of dependencies,

players inside the game are motivated in similar ways as those real-world actors whose behavior

wewish to study.Players invest timeand real-worldmoney toacquirevirtual resources in thegame

world. These resourcesare thenused toenhance theplayers’ capabilities, influence, and/or status.

When players lose these resources in conflict or throughmistake, the time, effort, andmoney they

used to acquire themare permanently lost. This feature creates genuine scarcity and risk aversion

that fuels realistic economic behaviors (BBCNews 2014; Goh 2018; Hoefman et al. 2019).
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The constraints imposedby a virtualworld are also a blessing. Although the scale of the game is

large,withhundredsof thousandsof players, it is stillmanageable. For example, alliances set sales

taxes for their stations and income taxes for their members, but there is just a single rate for each,

rather than an encyclopedic tax code. Political standings between pairs of alliances are captured

bya single valuebetween−10and+10, rather thanacomplicatedmixtureof treaties, international
laws, and historical conventions. All the necessary ingredients for complex sociopoliticoeconomic

dynamics exist, but theyareall simplified. A virtualworld is likea computer simulation, exceptwith

humans instead of algorithms as the driving force. What we get is a “frictionless pulley” type of

environment inwhich to test social and economic theorieswithout the noise, confounding factors

and size limitations that plague real-world datasets. Below we highlight some relevant aspects of

EVE, with additional details in the Supplementary Material.

2.1 Players
There are between 400,000 and 500,000 accounts created for playing EVE. On average, 33,000
accounts are signed on simultaneously during our analysis period (Eve-Offline 2018).

2.2 Corporations
All charactersbelong toacorporation, someofwhicharedefault nonplayer character corporations

runby thegame itself, andotherswhichareownedand runbyplayers. Players cancreateandclose

corporations, so the number of corporations and their memberships change over time; however,

there are consistently around 380,000 distinct corporations. Many of the successful, long-lived

corporations have memberships in thousands (EveWho 2017).

2.3 Alliances
Corporations can unite to form alliances. The largest alliance has more than 28,000 player mem-

bers combined from more than 500 corporations. Most successful and long-lived alliances have

thousands of player members and dozens of corporations (EveWho 2017). The player who is

elected to run the alliance has the authority to set the political standings toward other alliances,

corporations, and/or individual players.

2.4 Geography
The game universe consists of 7,930 solar systems, located in three-dimensional space and

connected by a network of (mostly) short-range transportation channels called “gates.” Although

some expensive ships are capable of ignoring the connections network by directly jumping to

systems within a certain range, most travel is done by traveling to neighboring systems through

the gate network.

2.5 Security Levels
Of the 7,930 solar systems, 5,201 are normally navigable. These are further divided into three

categories by their security level: protected high security systems (1,090), low security systems

(817), and unregulated null security systems (3,294).

2.6 Sovereignty
Of the 3,294 null security systems, 2,712 are conquerable by players, meaning alliances hold

sovereignty (ownership) over a system and can control access to its stations and resources. Many

alliances do not hold sovereignty over any systems, for example, because they operate solely

within high-security space or in abnormal wormhole space. We perform separate analyses for (1)

all alliances with more than 200 members and (2) alliances holding sovereignty over at least one

system (all of which have more than 200members).
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2.7 Coalitions
Alliances sometimes further coalesce into emergent social superstructures called “coalitions” that

cooperate for purposes of mutual protection and coordinated attack. Their existence was neither

planned, nor foreseen by the gamedesigners, and there is no in-game support for these structures

nor any inclusion in the game mechanics. The existence of these social superstructures can only

be seen via player chat logs and online forums; however, in Section 5, we show that the structure

of the coalitions mirrors the polarized groups predicted by structural balance theory.

3 Methods: Structural Balance Theory

As stated earlier, the core of our analytical approach is based on structural balance theory (Heider

1946; Cartwright and Harary 1956; Harary 1959). The technical aspects of balance theory have

evolved over time, and we further develop the method in this paper. Starting with Abell (1968),

it has become standard practice to examine only triads (aka triangles, connected triplets, and 3-

cycles) in thenetwork (althoughalso see Facchetti, Iacono, andAltafini (2011)). Typically, the triads

are consideredbalanced (or stable)when there are zeroor twonegative edges, andunbalanced (or

unstable) if there are either one or three negative edges. However, it can bemore insightful to look

at all four types of triads separately (see Figure 1). Rather than classifying a network as balanced

or unbalanced, we are interested in the proportions of each type of triad.

From a static perspective, we can determine whether the proportion of frustrated triads is

smaller or larger than expected compared to random signed networks. However, since balance

theory is really about network dynamics, it has becomecommon tomeasure aggregate frustration

over time. This approachhasbeenapplied toboth simulations (HummonandDoreian 2003; Antal,

Krapivsky, andRedner2006) andempirical networks (Leskovec,Huttenlocher, andKleinberg2010;

Szell, Lambiotte, and Thurner 2010; DuBois, Golbeck, and Srinivasan 2011). Balance theory implies

that not only should the frustrated triads constitute a small proportion of the total network, but

also their prevalence in the system should exhibit a decreasing trend (unless some event injects

new information into the system). Although the theory operates at the level of individual triads,

because triads share edges, the change of a single edge can set in motion a series of subsequent

edgechanges, as the frustrationcascades throughout thenetwork (Bramson,Hoefmanetal.2017).
EVEoffers agreatdeal of anecdotal evidence suggesting thatplayers face situationsandchoices

matching the premises of social balance. When an alliance sets a positive or negative standing to

another alliance, this has a direct effect on the behaviors of everybody in both alliances (often

many thousands of players), as well as indirect effects on other alliances. One such example is

described in an anecdote from the history of the BRUCE alliance:

When BRUCE first arrived in Y4Y7, a constellation in southern Syndicate at the invitation of

COE, theywere forced toalsobecome friendswithAnarchyEmpire–a ratherunpleasantgroup

of pirates that COE had befriended. BRUCE held a closer philosophy to that of the OSS at the

time andbecameblueboxed [i.e. had positive standing] to bothOSS and the COE/AE pair. This

was a strange step as the OSS faction and COE/AE faction were hostile to each other, and led

almost immediately to problems in the area.

Weakly

Frustrated

Strongly

Frustrated

Strongly

Balanced

Weakly

Balanced

++ +

+ ++ − −− − −

−

Figure 1. The four distinct triad types of balance theory and their looser categorization into weaker and
stronger levels of frustration.
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This very early diplomatic challenge for BRUCE was, in their own words, handled poorly.

BRUCE ended up dumping the OSS bluebox less than a week after gaining it because they,

understandably, didnotwant to fireonCOEwhominvited themtoSyndicate.DespiteBRUCE’s

loathing of Anarchy Empire’s philosophies they valued their word to COE more. [Soon after]

. . .war erupted between BRUCE/COE and the OSS (EVE-history.net 2011).

Such a story strongly indicates that theories for the dynamics of international relations in general,

and structural balance theory specifically, have gainful application to alliance relations in EVE.

3.1 Making the Edges Symmetric
Although early versions of balance theory were based on directed networks, and Hart (1974)

proposed a measure of frustration as the proportion of balanced 2- and 3-semicycles, nearly all

work on structural balance theory uses undirected networks. In EVE, alliance leaders set alliance

standings toward other alliances, so standings are directed edges. Although not completely sym-

metric, theyarenearly sowithanaveragematchedsign reciprocityof 84%(see theSupplementary

Material for additional details of directed standings and a plot of reciprocity over time).

Near symmetry has been observed in other signed networks as well; for example, Facchetti

etal. (2011) report that thedirectededges inEpinions, Slashdot, andWikiElections signednetworks
are nearly symmetric. The reason for symmetry is clear in the game’s context: if X is an ally of Y,
while Y is an enemy of X, then players in Y may get penalized if they return fire when players in X
attack them. Such reasoning/motivationwould be present in any aggression-modulating political

standings. Therefore, in the current analysis, use symmetrified standingweights in the counts and

typesof triads. Todetermine thevalence forourundirectednetwork,weset the links tobenegative

if either direction is negative/neutral, and positive if both directions are positive, or one is positive

and the other is unset.

3.2 Strong and Weak Frustration
As mentioned above, we examine the proportions of all four types of symmetric triads, rather

than classifying them as balanced or unbalanced. We consider the triple negative triads as being

weakly frustrated (essentially neither frustrated nor balanced) compared to strongly frustrated

single negative triads (Davis 1967; Szell et al. 2010). We can also consider triple positive triads
as being more strongly balanced than the weaker “mutual enemy” single positive triads. The

reasoning here is that if a strongly balanced triad changes via a single edge flip, then it would

necessarily turn into a strongly frustrated one. However, a weakly balanced triad may become

strongly or weakly frustrated, the latter of which exerts less pressure on the stability of the system

of standings. Figure 1 shows a breakdown of all the four types of triads according to this looser

version of balance theory.

3.3 Multipolar Political System
Compared to the tenets of classic balance theory, one specific deviation we expect to see is that

triple negative triads will be over-represented. Or, more precisely, that the original structural

balance theory overstates the amount of frustration, because triple negative triads do not actually

represent an unstable situation. Essentially, classic balance theory implicitly assumes that there

are only two real teams, and the bulk of early work focused on this “bipolar world” (Waltz 1964,

1979). In this bipolar case, one pair of nodes in the triple negative triad would find it preferable

to team up against a mutual enemy, thus converting into a weakly balanced triad, the so-called

common enemy effect. We see temporary cooperative behavior like this in the World Wars (Antal

et al. 2006), and this dynamic certainly does occur in EVE. But EVE also exhibits long-standing,
three-way mutual antagonism among independent political entities (Davis 1967; Axelrod and
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Bennett 1993). Separating strongly andweakly frustrated triads allowsone to capture the structure

and dynamics of multipolar political systems in a more refined way.

3.4 Triadic Network Transformation
Our second analytical method aims to better understand triad dynamics and contingent behav-
iors. Although solutions for studying dyadic network dynamics already exist (e.g., Snijders 2017),

we needed to develop a way to capture the system as a network of triads changing through
time. To build a triadic network, we generate a triadic node for each triplet of alliances in the
network. These triadic nodes store the relevant properties for the state of the triad that we are

interested in (e.g., howmany positive and negative edges or whether it is frustrated), allowing us

to track triad changes over time, as well as apply weights to the triads based on their properties.

Additional details of the triadic network can be found in the Supplementary Material and in

Bramson, Hoefman et al. (2017).

4 Results: Structural Balance in EVE

Figure 2 shows the stacked proportions of triad types for sovereign alliances in EVE from February

4, 2015 to April 17, 2016 . The proportions for large alliances (those with more than 200 members)

are very similar (see the Supplementary Material). Although the proportions clearly fluctuate over

time, they are remarkably stable in light of the volatile game environment (Belaza et al. 2017;
Belaza et al. 2019). Considering themean over time, the strongly balanced triadsmake up 20.26%
of the total, while the strongly frustrated triads make up only 5.69%. According to the bipolar

interpretation of classic balance theory, that first number is too small and the second too large.We

also see a persistent level of 27.76%weakly frustrated and 46.29%weakly balanced triads. Nearly

two-thirds of the triads are balanced, but that also means one-third of the triads are consistently

unbalanced.

Although coalitions are not officially recognized within the game, the unofficial data (Chuggi

and Sky 2017) report that strongly balanced triads are mostly (but not exclusively) internal links

within coalitions—mutually friendly relations are what makes it a coalition. Coalition members

nearly all share the same enemies as well as friends, so every alliance in coalition A is aggressive
to both alliances X and Y in coalition B, thus creating a large number of weakly balanced triads. In
addition, nearly every alliance in coalition A is an enemywith all alliances in both coalitions B and
C, and this generates the largenumberof triplenegative (weakly frustrated) triads. Theexistenceof

Strongly Frustrated Strongly Balanced Weakly Frustrated Weakly Balanced

2/5/2015 4/19/2015 7/1/2015 9/12/2015 11/24/2015 2/5/2016 4/17/2016
0.0
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Figure 2. The stacked daily unweighted proportions of each triad type among alliances that hold sovereignty
during our time frame.
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coalitions thus helps make sense of why these two kinds of weak triads typically make up around

three-quarters of the triads in the system.

The distributions of triad types are similar for large and sovereign alliances, indicating that

the same general forces are operating in both contexts. Furthermore, the results in both cases

support amodified structural balance analysis: grouping theweakly and strongly frustrated triads

together drastically overestimates the number of triad changes we should expect to see. That is,

strongly frustrated triads always make up less than 10% of the total, thus indicating that these

arrangements are indeed avoided. The large percent of weakly frustrated (triple negative) triads

supportour conjecture that theydonotactually inject frustration intoamultipolarpolitical system

like this one.

In order to establish a baseline for comparison, we randomly assign the valence properties of

the network edges while maintaining the same network structure and numbers of positive and

negative links. This is repeated 100 times for each day’s network, and we capture the time series

of proportions of each triad type. Plots of stacked mean proportions, and a line plot showing the

mean and three standard deviations, are shown in the Supplementary Material. Due to the large

numbers of negative links in the system, randomly assigning their location dramatically increases

thenumberof strongly frustrated triads (from5.69%(sov) to26.92%)whiledramaticallydecreases

the number of strongly balanced triads (from20.26% (sov) to 5.6%). Although less dramatic, there

is a substantial increase in the triple negative weakly frustrated triads as well (27.76% (sov) to

43.66%). Clearly, thepolitical dynamicsof EVEaddmeaningful structure to thedistributionof edge

valences in a way that reflects the social tensions of strong frustration and presence of friendly

coalitions.

The numbers of both large and sovereign alliances grew dramatically during our analysis

period, and the specific alliances making up each set experienced significant churn (see the

Supplementary Material for details). Despite these changes in alliance numbers and participants,

the overall fluctuation in proportions is small. Collectively, these results support our hypothesis

that the alliance politics in EVE are consistent with multipolar balance theory. On the other hand,

we expected to find (1) even less strong frustration, (2) more dynamics in frustration over time

rather than a steady level, and (3) a larger difference between sovereign and large alliances’ strong

frustration (which are roughly equal here). In order to explain these discrepancies, we extend the

analysis in two directions. First, in Section 4.1, we start from the intuition that not all alliances

matter equally for systemic frustration and weigh the triads based on a variety of importance

indicators. Then, in Section 4.2, we dive into the contingent behavior of the alliance triads to

evaluate whether resolving frustration is actually driving edge changes in the triads.

4.1 Extension 1: Weighted Structural Balance
In the previous analysis, we discovered more strong frustration than expected, and nearly similar

levels for large and sovereign alliances. Here, we consider that not all alliances are equally

important in assessing systemic frustration levels. We use properties of the components of each

triad to weight that triad’s contribution to the counts of each type of triad. For example, alliances

thatare far away fromeachothermay formastrongly frustrated triadwithout it actually interfering

with their activities, and so it should be weighted less in computing total system frustration.

Consider a triad made up of three alliances A, B, and C. First, we standardize each property for
eachnodeor edge i to bebetween0and 1using theminimumandmaximumvalues over the entire
time series. (Additional measurement details can be found in the Supplementary Material.)

1. M =
3√
MA ·MB ·MC for the number of member players (Mi ),

2. S =
3√
SA · SB · SC for the number of systems over which an alliance has sovereignty (Si ),

3. D = 1− 3√
DAB ·DBC ·DCA for Euclidean distances between alliances’ centroids (Dij ),
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4. W = 1
60

∑3,3
i=1,j=1,i�j |Wij | for directed edge standing weights (Wij ), and

5. C is the arithmetic mean of the four above measures.
Our reasoning for (1) and (2) is that the larger thealliance, thegreater the impact its involvement

in a frustrated situation will have, and hence the more pressure it will experience to alleviate

the frustration (McDonald and Rosecrance 1985). Distance clearly plays a role in the importance

of political ties (Neumayer and Plümper 2010; Sommerer and Tallberg 2019), and we propose

that being far apart spatially, (3) implies little de facto inconvenience, and hence less pressure
to alleviate the frustration. If the roughly 6% of triads that are strongly frustrated involve small

alliances, or alliances that are far away from each other, then the actual frustration in the system

would be lower than the unweighted analysis above suggests. Although our construction of the

triads uses symmetrified edges to determine the triad type, we use the sum of the absolute value

of theweights of the six includeddirectededges todetermine the standingweight (4). Thedirected

edges have weights between −10 and 10, so this weight amplifies triads among close friends

(coalition members), sworn enemies, and mixtures of the two. We focus on the geometric mean,

because it assigns a small weight to a triad if any of the three values is small, making it a natural

match for this application. The larger alliances A and B are, the less likely they are to care about
their relations with small alliance C.

4.1.1 Weight-Adjusted Frustration. For each of the fiveweightings above, we recalculate the number of

each of the four types of triads by summing up theweights of the triads on each day. Although the

sums of theweights are always smaller than the sums of the counts, by looking at the proportions

of each type of triad, we can directly assess their relative incidence in a parsimonious way.

Figures 3–6 show the triad proportions using each weighting scheme (solid line) compared to the

unweighted sovereign proportions (dotted line) for sovereign alliances (plots for large alliances

appear in the Supplementary Material). Tables 1 and 2 summarize the differences in average

proportions for both large and sovereign alliances for comparison alongwith a statisticalmeasure

of the significance of that difference.

For sovereign alliance triads, weighting by membership (Figure 3) yields 0.95% fewer strongly

frustrated and 2.18% fewer strongly balanced triads. This indicates slightly less participation in

coalitions, and slightly stronger pressure to alleviate situations that would be awkward for its

members. The total effect of membership weighting is more than twice the size for sovereign

Strongly Frustrated Strongly Balanced Weakly Frustrated Weakly Balanced
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Figure 3. The daily membership-weighted proportions of each triad type among sovereign alliances (bold
line) compared to the unweighted proportions (dashed line).
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Figure4.Thedaily sovereignty-weighted proportions of each triad type among sovereign alliances (bold line)
compared to the unweighted proportions (dashed line).
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Figure 5. The daily distance-weighted proportions of each triad type among sovereign alliances (bold line)
compared to the unweighted proportions (dashed line).
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Figure 6. The daily standing-weighted proportions (bold line) of each triad type among sovereign alliances
compared to the unweighted proportions (dashed line).
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Table 1. The mean percent change (proportions ×100) between the unweighted triads and each type of
weighted triad for the large alliances.

Strongly Strongly Weakly Weakly Sum of abs

Weighting balanced frustrated balanced frustrated differences

Membership + 1.06 − 0.67 − 0.86 + 0.47 + 3.06

Sovereignty + 9.78 + 0.4 − 4.49 − 5.69 + 20.37

Distance + 0.18 − 0.05 + 0.29 − 0.42 + 0.95

Standing + 2.19 − 0.63 + 1.86 − 3.43 + 8.11

Combined + 1.01 − 0.27 + 0.77 − 1.5 + 3.55

Table 2. The mean percent change (proportions ×100) between the unweighted triads and each type of
weighted triad for the sovereign alliances.

Strongly Strongly Weakly Weakly Sum of abs

Weighting balanced frustrated balanced frustrated differences

Membership − 2.18 − 0.95 + 1.46 + 1.67 + 6.26

Sovereignty + 3.59 − 0.06 − 0.57 − 2.96 + 7.19

Distance + 2.66 + 0.1 − 0.5 − 2.26 + 5.52

Standing + 3.28 − 0.72 + 1.94 − 4.5 + 10.44

Combined + 2.72 − 0.26 + 0.49 − 2.95 + 6.42

alliances than large alliances; however, a stricter adherence to balance theory is not clearly the

best explanation.

Weighting by sovereignty (Figure 4) has nearly zero (−0.06%) effect on strong frustration for the
sovereign alliances, and the effect on large alliances is onlymarginally positive (+0.4%).Weighting

the sovereign alliance triads by the number of systems they hold sovereignty over has an effect

similar in total size to membership weighting, but in the reverse direction. For example, instead

of a −2.18% change for strongly balanced triads, with sovereignty weighting, we see a +3.59%

increase. This means that alliances with large populations are less likely, but alliances with large

territories are more likely, to be in the same coalition.

The total effects of sovereignty for large alliances (+20.37%) are nearly three times the effect on

the sovereign alliances (+7.19%). So, among large alliances (and recall that the sovereign alliances

are also large), holding sovereignty has the largest impact on triad types (especially strongly

balanced at +9.78%), although conditional on being sovereign the effects are smaller (+3.59%).

The effect of sovereignty weighting on the strongly frustrated triads is too small to tout it as a

validation of balance theory; however, the sensitivity of large alliances to sovereignty lends strong

support to the idea that impacting alliancemembers with alliance-induced frustration does affect

political decision-making within EVE.

For the distance-weighted triads (Figure 5), themain effect ismore strongly balanced (+2.66%)

and fewer weakly frustrated (−2.26%) triads. Although the total effect of distance is small for
sovereign alliances (+5.52%), it is essentially negligible for large alliances (+0.93%). We initially

expected distance to have a larger impact, but two factors appear to mitigate the effect. First, the

territory of some alliances is very spread out, and as a result, our use of the mean location places

that alliance in a location that is unrepresentative for the actual situation, sometime even placing

them in a spot where they do not own any territory. Second, although there do exist clusters of

nearby systems owned by a coalition of friendly alliances, when such a cluster is under a focused

attack, the attacking alliance(s) often set up a base adjacent to the enemy’s territory, or even
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relocate there altogether. Combined, we can see that the mean location of an alliance’s systems

maybeapoor indicatorofwho itsneighborsare, andalliancesoftenhave largenumbersof friendly

and enemy neighbors.
As an alternative to the centroid-based distance measure, we also investigate a distance

weight using the distance between the two closest systems owned by each alliance. There is

evidence that closer physical relationships are positively correlatedwith increased violence (Maoz

et al. 2007; Gibler and Braithwaite 2013) due to territorial disputes or long-standing cultural
differences. What we find is that the closest-system distance generates triad proportions very

similar to centroid-based distance but slightly closer on average to the unweighted triads. The

combined weight incorporating closest-system distance also reveals a slightly smaller change

from unweighted triads (details in the Supplementary Material). For either version, distance has

the weakest overall effect. The high mobility of alliance locations in EVE implies that, unlike

geographically bounded states, close proximity (by centroid or by nearest system) does not

generate substantially increased conflict or partnership.

The standing weights (Figure 6) provide the strongest support for balance theory in two ways:

(1) the total effect is the largest for sovereign alliances and second largest for large alliances, and

(2) the directions of the effects all correspond to those implied by the theory. That is, it is only for

the standing weightings (and the combined weighting in virtue of them) that we seemore of both

types of balanced triads and less of both types of frustrated triads. The largest effects occur on

the triple positive and triple negative triads, which lends support to the existence of a multipolar

political structure among coalitions.

The plots of the time series reveal that the effects ofweights dependondynamic features of the

world. However, to ease further comparison, Table 1 shows themean differences in proportions of

all triad types between the unweighted and each weighted analyses for the large alliances, while

Table 2 does so for the sovereign alliances.

We do not show the time series for the combined weighting here (see the Supplementary

Material), but the results in the tables are enough to understand the most interesting points.

The changes for the combined weights are smaller than most of the single weightings. For the
large alliances, this is particularly striking: despite the sovereign weighting having a 20% impact,

the combined weighting (of which sovereignty makes up 1/4) only has a 3.55% impact. What

this means is that, in those triads for which sovereignty had a big impact, the other weights

were negligible/countervailing, and similarly for otherweightings. Rather than finding that closely

located, large allianceswithmanymembers and/or territories are strongly bonded (or some other

combination effect), we find for both large and sovereign alliances that the four weightings are

strongly complimentary. That said, the inclusion of the standing weights does pull the combined

weights in the right direction to conform to the predictions of balance theory.

The largest surprise for the weighted triads proportion analysis is the lack of a clear effect on

the strongly frustrated triads. Not only are the changes among the smallest, only the strongly

frustrated triads reveal insignificant changes fromweighting (for distance). If anyof theweightings

had brought strong frustration to near zero, this would have offered decisive support for our

modified structural balance in this context. Although finding persistent frustration across all the

weightings is consistent with empirical data on political relations (McDonald and Rosecrance

1985), to more deeply explore the source of this structural frustration, we move on to the next

extension.

4.2 Extension 2: Conditional Behavior of Alliances
The previous analysis revealed a persistent level of strong frustration in the network, belying the

tenet of balance theory that frustrated triads indicate relations that need to be straightened out,

and that we should expect to see decreasing levels over time. One explanation in our domain is
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that there exists a constant stream of exogenous events that push triads into frustrated political

relations. That is, the level of frustrationmay be rather consistently around 6%, but the particular

alliances involved in frustrated triads may be changing due to exogenous influences. This is

especially plausible considering the churn we saw in the set of alliances holding sovereignty at a

given time. Here, we test the ideas that (1) alliances in frustrated triads tend to resolve those triads

into balanced configurations, and (2) that the persistence of strong frustration occurs primarily

through an influx of new relations.

As the anecdote about the BRUCE alliance in Section 3 illustrated, frustrated triads can lead

to problems in collective action. Many factors typically go into the decision-making process of

which allies to keep and which to drop, but structural balance theory implies that the change

whichminimizes local frustration is themost likely, even if this is not explicitly part of the decision

process. Keep in mind that alliances can only change their own standings to other alliances, a

change which may or may not be (but usually is) reciprocated. The triad network is extremely

dense, and a change in one edge to balance a frustrated triad can (and usually does) propagate

across the triad network, inducing more triads to become frustrated (Bramson, Hoefman et al.
2017).

In the previous two analyses, we looked at changes in the proportions of triad types. Here, we

look at individual triads, and the propensity of each kind of triad to change to each other kind.

Balance theory implies that balanced triads will tend to stay balanced, and strongly frustrated

triads will be either avoided in the first place, or be resolved. Because the proportion of strongly

frustrated triads remains fairly steady throughout the analysis period, the hypothesis we test here

is that the existing, frustrated triads are indeed balancing out, but there are other, exogenous

sources of frustration that are being injected into the system, causing the whole to maintain a

systemic, aggregate level of frustration.

4.2.1 Triad Dynamics. Here, we focus on sovereign alliances, to determine whether the behavioral

predictions of balance theory materialize at the microlevel, and to what degree the pressure

to resolve frustration is affected by alliance sizes and distances. Our triadic network framework

allows us to examine specific changes in the state of each triad in the system. Unlike previous

analyses that examine changes in the system through dyadic changes in the network, using our

triadic network construction, we directly examine the triadic dynamics of the system. First, we

examine differences in the creation, persistence, and dissolution rates for each type of triad in

Table 3. Dissolution of a triad means that at least one of the three symmetrified edges is removed

(requiring both directed edges no longer exist), while triad creation implies a link formation that

suffices to create a new triad.

The strongly frustrated triad creation rate (8.61%) is slightly higher than its persistence rate

(5.88%), and slightly lower than its dissolution rate (9.17%). This confirms that there is a pro-

portional influx of frustration when links/triads are created, and a proportional outflux of strong

frustration through removed links/triads. The proportions of both types of balanced triads are

highly similar across entrance, persistence, and removal, but the weakly frustrated triads have

a 28%persistence level, despite a 24% creation rate. This implies that triads are becomingweakly

frustrated from the three other types. Next, we examine conditional changes in triad types, that is,

what kind of triad turns into what other kind of triad.

A table of the results is available in the Supplementary Material, but the most salient feature

is that more than 98% of the triads stay in the same state from day to day. The stability in the

proportions of triad types we saw in the time series above can be attributed to the proportions

of triads when created combined with the high persistence of triad types. That said, strongly

frustrated triads are the least persistent andmost likely to becomenonexistent. Here,weagain see
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Table 3. Summary results showing the percentages of unweighted sovereign alliance triad types when they
are created, that persist in the system over time, and when they are removed. This only includes adding and
removing triads through link creation and destruction, that is, excluding nodes entering/leaving the system.

Strongly Strongly Weakly Weakly

balanced frustrated balanced frustrated

Triad creation 21.96 8.61 45.53 23.91

Triad persistence 20.24 5.88 45.93 27.95

Triad dissolution 20.43 9.17 44.23 26.17

Table 4. Percentage summary of unweighted sovereign alliance triad type changes, including changes
through the deletion of edges. Because we use daily data, it is possible for triads to change multiple edge
valences in one iteration.

To strongly To strongly To weakly To weakly To

From balanced frustrated balanced frustrated nonexistent

Strongly balanced – 39.78 8.85 0.04 51.33

Strongly frustrated 29.13 – 35.44 0.74 34.69

Weakly balanced 2.17 11.98 – 36.32 49.53

Weakly frustrated 0.03 0.35 56.62 – 43.00

the relatively high dissolution of strongly balanced triads (more below) and the greatest stability

occurring for weakly frustrated triads.

We now examine changes in triad types conditional on there being a change. We show these

conditional triad change proportions, including triads that dissolve, in Table 4. (The analogous

tables for large alliances and weighted triads can be found in the Supplementary Material.)

The first observation is the size of the proportions of triads that are dissolved through link

removal (right-most column of Table 4). It is worth noting that strongly balanced triads are more

likely to be dissolved altogether, rather than to change type. The second observation is that when

a triad does change its state, it is proportionally much more likely to change by a single valence

flip. Because we use daily data, more than one edge change can occur in a single time step. And

although this does happen, we find that 94.5% of changes (excluding deletion) are a single edge

flip away.

This second observation is especially interesting in the context of the first one. Because a

single edge change will always bring a strongly balanced triad to the strongly frustrated state, the

fact that strongly balanced triads are disproportionately dissolved rather than changed can be

explained by the avoidance of the frustration it would otherwise create. Comparing this dynamic

to the weakly balanced triads further supports this conclusion: weakly balanced triads are more

than three times more likely to transition to a weakly frustrated state (36.32%) than to a strongly

frustrated state (11.98%). Dissolving the triad is more than four times more likely (49.53%) than

changing toastrongly frustratedstate. Although thepersistenceof strongly frustrated triads seems

to conflict with the predictions of balance theory, we find that when there are changes, strongly

frustrated triads tend to be preferentially avoided. This result provides reasonable support for

balance theory as a partial explanation of triad dynamics.

4.2.2 Weighted Triad Dynamics. Here, we augment the unweighted analysis with a brief treatment of

the effects of weights on triad changes. The tables for triad change rates for all weightings, for

both large and sovereign alliances, appear in the SupplementaryMaterial. Here, we present tables
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Table 5. Summary results showing percentage changes resulting from applying the combined weighting to
sovereignalliance creation, persistence, and removal rates (i.e., combinedweighting ratesminusunweighted
rates). This only includes adding and removing triads through link creation anddestruction, that is, excluding
nodes entering/leaving.

Strongly Strongly Weakly Weakly

balanced frustrated balanced frustrated

Triad creation + 2.26 − 0.3 + 0.02 − 1.99
Triad persistence + 2.99 − 0.3 + 0.42 − 3.11
Triad dissolution + 8.5 + 4.82 − 2.69 − 10.64

Table 6. Summary results of the differences in the proportions of triad type changes between combined-
weighted and unweighted sovereign alliances conditional on there being a change, including though the
deletion of edges.

To strongly To strongly To weakly To weakly To

From balanced frustrated balanced frustrated nonexistent

Strongly balanced – + 2.7 + 0.45 − 0.01 − 3.14
Strongly frustrated + 5.03 – − 1.03 − 0.11 − 3.89
Weakly balanced + 0.69 + 2.02 – − 0.42 − 2.3
Weakly frustrated + 0.01 + 0.05 + 4.15 – − 4.21

for the differences in change rates between the unweighted analysis and the combined weights,
for creation, persistence, and dissolution (Table 5), and for conditional changes (Table 6), both

using thedata fromsovereignalliances. Althoughwepresent theseonly for the combinedweights,

the patterns in changes are similar across the individual weights (available in the Supplementary

Material) with only specific numerical difference by weight.

Table 5 shows that the total effect of the weightings is small in most places, but there are some

interesting observations. First, creation and persistence of strongly frustrated triads have very

small negative effects (−0.3%), but the combined weighting produces a 4.82% increase in their

dissolution. Second, thepersistence effect onboth strongly andweakly balanced triads is positive,

while the effect on weakly and strongly frustrated triads is negative. Thus, the marginal effect of

the weights is an increased adherence to balance theory with respect to the kinds of triads that

persist. Third, the effect is strongest for triad dissolution, where strongly balanced triads are 8.5%

more likely, andweakly frustrated triads are 10.64% less likely, to bedissolvedwhen the combined

weights are applied. The strong changes in triad dissolution, however, are not clearly indicative of

a stronger or weaker adherence to balance theory as a result of the weightings.

We next examine our hypothesis that the inclusion of weights increases the predictive power of

structural balance theory on triad changes. Table 6 reports the changes from Table 4 by including

the combinedweighting. The top row reveals that strongly balanced triads are 2.7%more likely to
becomestrongly frustrated, and3.14% less likely tobecomenonexistent. Strongly frustrated triads
are 5.03%more likely to become strongly balanced, and 3.89% less likely to become nonexistent.
The effect on transitions from strongly balanced and strongly frustrated triads is too small to

make any strong claims, and the effect on other transitions is even smaller. However, we do note

that these effects are not in the directions wewould expect from balance theory. So, although the

unweighted conditional triad changes did lend support to balance theory, our addition of weights

to amplify these changes had little effect, and the overall effect does not strengthen our support

for the predictions of structural balance.
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5 Coalitions and Polarization

In addition to a tendency toward alleviating systemic frustration, balance theory also predicts a

tendency for political entities to cluster into mutually friendly coalitions, separated by negative

links. This kind of signed network clustering is often referred to as “polarization,” and received a

lot of attention in early studies of balance theory. The term “polarization” takes on many senses

(Bramson, Grim et al. 2017), and there are various measures for each of those senses (Bramson
et al. 2016). Although polarization is most often measured on distributions of values on a scale
(e.g., of political opinions or beliefs; Esteban and Ray 1994), one can alsomeasure polarization on

spatial ornetworkedvalues (Maoz2006; EstebanandRay2008). Importantly, onemustdistinguish

between polarization of attributes across a network and polarization in the network structure

itself.

Most social and political analyses are concerned with the effect of network structure on

the polarization of social, political, and economic attributes, but structural balance has a long

tradition of analyzing structural polarization directly (Cartwright and Harary 1956; Hart 1974). The

earliest literature focused on determining whether a network could be split into two “polarized”

groups. Latter work also examined how well networks were split into (possibly more than two)

polarized groups (Kulakowski 2007; Doreian and Mrvar 2009). We are interested in the latter;

specifically, we are interested in using the EVE standings data to determine how well balance

theory’s predictions about group formation describe the observed system of political relations

in this virtual world.

As discussed in Section 2, the alliances in EVE form unofficial coalitions: political super-entities

that are not part of the game’s mechanics, yet are widely recognized by players. Coalition dynam-

ics include tacit internal no-conflict pacts, and joint strategizing among member alliances. We

use player-reported, daily coalition data from Chuggi and Sky (2017) in the form of unofficial, yet

widely used, coalition maps to assess howwell the network structure of actual alliance standings

corresponds to these player-reported coalitions. Although data that are collected and reported by

players have several limitations (discussed in detail in the Supplementary Material), these player-

reported maps are the best record of alliances’ membership in coalitions, and we can use them

to perform a preliminary test of the hypothesis that structural balance guides the formation of

polarized coalitions.

5.1 Detecting Coalitions
We use the same standings data here as were used in the triad analysis, but now we are using

them to assess polarization patterns in the network. Figure 7 displays the adjacency matrices

of standings using the same intuitive color scheme the players see in the game. On the left, it is

among the 38 sovereign alliances known to be involved in coalitions on February 4, 2015, and on

the right, the80 sovereignalliances in coalitionsonApril 17, 2016.By sorting the rowsby (Canberra)

similarity, we can easily discern a block structure of friendly links that is typical of network

community structure and reminiscent of polarization in classical balance theory networks. To

formalize the detection of coalitions, we apply two categories ofmethods: (1) network community

structuremethods and (2) vector distance-basedmeasures. For allmethods, we apply them to the

directed standings, the reverse directed standings, and the unweighted symmetric matrix.

5.1.1 Network Community Detection. Community detection algorithms are sophisticated techniques

from network theory, specifically designed to find clusters of nodes that are densely connected

internally, and sparsely connected externally. In the past decade, several research groups have

turned to the challenge of detecting communities in signed social networks (Doreian and Mrvar

2009; Traag and Bruggeman 2009; Anchuri and Magdon-Ismail 2012; Amelio and Pizzuti 2013;

Chen et al. 2014; Esmailian and Jalili 2015), but these methods are not yet well-tested or easily
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Figure 7. Plots of the adjacency matrices of alliance standings on February 4, 2015 (left) and April 17, 2016
(right) between the sovereign alliances included in Chuggi and Sky’s (2017) alliance and coalition maps.
Blocks of dark and light blue (standings of 10 and 5, respectively) represent clusters of alliances that are
densely interconnected with positive links. Negative links are represented by red (−10) and orange (−5),
and neutral relationships by yellow (0) cells. White space indicates unset standings. The black mesh lines
indicate coalitions discovered through clustering by Hamming distance on out-edges, one of the measures
we compare to the player-reported coalition data.

accessible. One simple and obvious method to detect network communities is based solely on

the positive links (Yang, Cheung, and Liu 2007). Although this technique ignores the repulsive

force that negative links should have between communities, it suffices for our purposes, because,

in practice, alliances with no set positive standings act hostile toward each other by default. We

include six different algorithms for identifying community structure in the networks (Hierarchical,

Centrality, Vertex Moving, Modularity, Spectral, and Clique Percolation; Wolfram Research 2019).

5.1.2 Measures of Distance. Vector-basedmethods take each row (or column) as a vector of values, and

apply a standard distance metric to perform pairwise tests of similarity. We applied the following

list of distance measures here: Canberra, Euclidean, Normalized Squared Euclidean, Squared

Euclidean, Cosine, Manhattan, Bray Curtis, Damerau–Levenshtein, Hamming, Correlation, and

Chessboard (Wolfram Research 2019).

5.1.3 Measureof Accuracy. Afterusinga vector distanceornetwork communitymethod topartition the

alliances into proposed coalitions, we need to determine how accurately they matched our best

reference for the “real” coalitions. Naturally, a perfect match (getting “full points”) occurs when

each member of a discovered coalition is a member of that coalition in the player-reported data

aswell. For eachdiscoveredcoalition,we find thedistributionof real coalitions for thosemembers.

We then identify the real coalition with plurality within the discovered coalition, and use it as the

matching real coalition. For each member of a discovered coalition that is not in the same real

coalition as the plurality, we reduce the accuracy by one point. The points are then normalized

by the number of alliances to create a percent accuracy score. More details are available in the

Supplementary Material.
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Table 7. The top five ranked accuracy methods used to identify the coalitions reported by Chuggi and Sky
(2017) using the rows of the directed weighted standings matrix (i.e., the out-edges).

First day Last day

Distancemeasure out-edges out-edges Mean

Hierarchical community* 0.895 0.675 0.785

Vertex moving community* 0.816 0.688 0.752

Centrality community* 0.816 0.675 0.745

Spectral community* 0.816 0.662 0.739

Modularity community* 0.816 0.662 0.739

Note: Network-based community detection algorithms are marked with an asterisk.

5.1.4 Results of Detecting Coalitions. The mean accuracy among the best five methods for the out-

edges, in-edges, and symmetric edges are 0.752, 0.765, and 0.766, respectively. These very similar

scores belie the fact that the five best-performing methods for each category are actually quite

different. When analyzing out-edges (the values actually set by alliance leaders), the network

community detection methods are the most accurate (see Table 7; full tables available in the

Supplementary Material). The best method, hierarchical community detection, only mismatched

4 of the 38 alliances.

When clustering on the in-edges, we find that the vector-based measures outperform the

network measures. Furthermore, the best measure (Hamming Distance) achieves scores of 0.895

and 0.675 for the first and last days, respectively; this is the same as Hierarchical Community

Detection on the out-edges. We find that the vector-based measures also perform better on the

symmetric data, yet the ranking of the measures is again very different. For example, Hamming

Distance drops from #1 to #13, and Damerau–Levenshtein Distance jumps from #15 to #1. Although

the performance of any givenmeasuremay varywidely among the three data representations, the

overall performance of the suite of measures is consistent (making it difficult to choose a single

best method).

One formof this consistency is that nearly everymeasure on all three representations performs

better on the first day than on the last day. Recall Figure 7, showing the adjacency matrices; not

only are there many fewer alliances on the first day, but they are also more clearly organized

in a block structure. Some alliances form strong coalitions, and these are almost universally

discovered. Other coalitions are weakly bound and more fluid. Upon analysis, some of the actual

coalition members seem out of place and perhaps about to leave; thus, some inaccuracy can be

attributed to performing a static analysis on a changing, dynamic situation.

Using these techniques, we find a match between predicted and player-reported coalitions of

roughly 70%– 80%. This result indicates that the unofficial, organically player-created coalitions

in the game correspond to the emergent metastructures predicted by balance theory reasonably

well. It is rare to see such a clear demonstration of a theory of political organization.

5.2 Polarization Among Coalitions
We nowmove from the accuracy of the coalitions found to the analysis of the link valences among

coalitions. Figures 8 and 9 show network diagrams, both based on the standings on the first day

of our data. The nodes represent the alliances, and the edge colors again reflect the directed

standings between the alliances. The clusters, shown in Figure 8, reflect the real coalitions, while

in Figure 9, the clusters represent the communities discovered by hierarchical partitioning based

on positive edges.
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Figure 8. A network diagram of the alliance standings within each coalition on February 4, 2015 according
to Chuggi and Sky (2017). Alliance nodes are grouped by their collation, and the edges are colored by their
directed standings as in Figure 7. Additional visualizations are available in the Supplementary Material.

Figure 9. A network diagram of the coalitions discovered by hierarchical clustering on the positive edges,
based on the standings data on February 4, 2015.

The first thing to notice are several small coalitions at the top of Figure 8, joined solely by pos-

itive edges. These would naturally be considered as one single cluster by any network clustering

algorithm. Two of these small coalitions are also mostly positively connected to the cluster on
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the bottom right. But with very few exceptions, the remaining intercoalition edges are negative,

and the remaining intracoalition edges are positive. So, although some of the coalitions could

be fused, by and large, the coalitions created by players conform to the predictions of balance

theory.

That said, we can also consider balance theory to claim that social ties will be partitionable

(but not necessarily de facto partitioned) into groups of internally positive and externally negative
relations. For this, we look at the results of hierarchical clustering in Figure 9, where we discover

four clusters with only four negative edges within any of the clusters, and two positive edges

between clusters (out of a total of 543 edges). So both the actual and the discovered coalitions

are highly polarized, as predicted by balance theory.

Although we cannot make any bold claims based on this preliminary analysis, the results here

are sufficiently strong to merit deeper study. Because the coalitions are not part of the game

mechanics, there are no official rules guiding their formation or behavior. There is no official

need for political organizations above the alliance level to exist. Demonstrating that not only do

coalitions emerge, but that the emergent coalitions are highly polarized, is a big win for balance

theory.

6 Conclusions

Our analysis of political relationships between alliances in the virtual world of EVE revealedmixed
support for balance theory. The persistence of strongly negative triads in Section 4.1 goes against

balance theory,while the fact that these stronglynegative triads consistentlymakeup the smallest

proportion of triads conforms with what we would expect based on the theory. The analysis

of contingent behaviors in Section 4.2 showed that strongly frustrated triads are preferentially

avoided, but that they are still tolerated more than expected. Section 5 makes the case that the

mere existence of coalitions is already in support of balance theory. The clear polarization of the

empirical and discovered coalitions provides the best support.

Our findings also highlight the importance of considering the system as multipolar rather

than bipolar, that is, splitting the frustrated and balanced triads into weak and strong versions

of each, and tracking the four distinct structures. By doing so, we find that the prevalence of

mutual antagonism (triple-negative = weakly frustrated triads) is much greater than predicted

by traditional balance theory. In the game, as in real politics, there are more than two factions

vying for power. And although unfriendly factions may temporarily team up to defeat a stronger

mutual enemy, long-term three-way animosity seems a natural occurrence in large-scale political

networks.

The effects of weighting the triads by membership, sovereignty, and distance is smaller than

expected, implying triads of all types are somewhat evenly distributed over alliance sizes and

locations. Furthermore, the combined weight effects are smaller than the individual weights,

implying that at least one of the three weights is very low when another is high. One exception is

weighting by sovereignty, which has an appreciable effect for large alliances, and amuch smaller

effect for sovereign alliances. This supports our belief that sovereignty itself is important for

political relations in EVE because of how it affects access to resources. We expected the weighted

analyses to reveal a small subset of major players (e.g., large and well-managed dominating

alliances), adhering more strongly to balance theory than the average participant. Although the

effects of the weights were in the right direction, further investigation is required to explain the

deviations of alliance behavior from the predictions of balance theory.

6.1 Future Work
One of our broader goals is to explore whether data such as these can provide evidence for

generalized law-like features of sociopolitical systems. Other work based on EVE data aims to
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demonstrate that economic principles apply, and in fact apply more cleanly, in the partially

idealized reality of virtual worlds (Hoefman et al. 2019). Balance theory is one candidate for a
sociopolitical theory that could hold generally. Going forward, wewill extend the analysis to other

sociopolitical theories, and other aspects of EVE. Potentially, andmost excitingly, the cleaner and

simpler data fromvirtualworlds such as EVEmayprovide the inspiration and fuel to developnovel

sociopolitical theories.

In the current work, we use the actual directed edge standing weights (i.e., 0, 5, or 10) in the

standing-weighted frustration, but otherwise use symmetric positive versus negative valences to

define triad types. This coincides with the binary conflict conditions faced bymost players (either

shoot, ordonot shoot), but settingastanding to5 insteadof 10,or setting it to zero (neutral) instead

of leaving it unset, is intentional, andpresumablymeaningful signals about the relationship.Doing

so requires a technique that does not yet exist for balance theory (althoughBelaza et al. (2017) and
Belaza et al. (2019) account for neutral ties and degeneracies in triad composition); therefore, we
are developing newmethods for this research thrust.

Although balance theory is a popular and well-supported model, it is not the only model

for analyzing tensions in social/political relations. Axelrod and Bennett (1993) offer a Landscape
Theory that utilizes features of states to partition them into coalitions. Although not explicitly a

network approach, the factors considered there (trade relations, distance, etc.) could be given a

signedmultigraph representation and analyzed for structural polarization.

One can also explore the change and spread of policies/properties across networks through

econometric methods on dyadic data. For example, Neumayer and Plümper (2010) examine

spatial effects in bilateral investment treaties, andSommerer andTallberg (2019) performa similar

analysis for the diffusion of participatory governance. Although these dyadic models may offer

improvements over monadic models (Simmons and Elkins 2004), to understand the dynamics

of signed international relations, one must at least analyze triadic relationships (Maoz et al.
2007). Further examining the statistical properties of the triad changes through something like

SIENA (Snijders, Van de Bunt, and Steglich 2010; Snijders 2017) may yield deeper insight into the
structural and temporal dependencies driving the dynamics. Although statistical models looking

at dyadic, triadic, and even larger relationships face serious theoretical andmethodological issues

compared to network analytical methods (Cranmer and Desmarais 2016), given the richness of

the EVE dataset, we are interested in exploring alternatives to balance theory for explaining the

political dynamics among alliances in future work.

Overall, our results bolster the relevance of balance theory for understanding a wide range

of human behaviors—including video game politics. They also demonstrate the usefulness of

data from virtual worlds for evaluating social theories. People are still social beings, even when

interacting in virtual worlds, as long as the incentives structures are sufficiently realistic.
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