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We employ lattice Boltzmann simulation to numerically investigate the two-dimen-
sional incompressible flow inside a right-angled isosceles triangular enclosure driven
by the tangential motion of its hypotenuse. While the base flow, directly evolved
from creeping flow at vanishing Reynolds number, remains stationary and stable for
flow regimes beyond Re & 13 400, chaotic motion is nevertheless observed from as
low as Re ' 10 600. Chaotic dynamics is shown to arise from the destabilisation,
following a variant of the classic Ruelle–Takens route, of a secondary solution branch
that emerges at a relatively low Re' 4908 and appears to bear no connection to the
base state. We analyse the bifurcation sequence that takes the flow from steady to
periodic and then quasi-periodic and show that the invariant torus is finally destroyed
in a period-doubling cascade of a phase-locked limit cycle. As a result, a strange
attractor arises that induces chaotic dynamics.
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1. Introduction
Following Prandtl’s (1904) seminal work on the flow at very low viscosity,

Batchelor (1956) set out to model separated eddies in the limit of infinite Reynolds
number through the study of the steady laminar flow within closed streamlines.
Burggraf (1966) extended the analysis to unfold the viscous structure of separated
eddies at finite Reynolds number by solving the recirculating flow within a fixed
finite cavity, inspired by the work of Kawaguti (1961) in this same geometry. To
overcome the computational limitation – in terms of maximum achievable Reynolds
number – of numerical methods at the time, Pan & Acrivos (1967) opted for an
experimental approach to try to elucidate the nature of eddies in the limiting case of
infinite Reynolds number for both finite and effectively infinite aspect ratio rectangular
cavities. This same set-up was also used for probing Moffatt’s (1964) predictions on
corner eddies in the limiting case of creeping flow.

The incompressible shear-driven flow inside a wall-bounded cavity has since become
a classical problem in fluid mechanics (Shankar & Deshpande 2000; Kuhlmann &
Romanò 2019). Its geometrical simplicity yet rich flow phenomenology make it a
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perfect set-up for studying a wealth of complex phenomena such as corner eddies,
vortex dynamics, flow instabilities (centrifugal and shear) and turbulent transition.

The particular case of the two-dimensional flow in a square enclosure driven by the
tangential motion of one of its sides, henceforth referred to as lid-driven square cavity
(LDSC) flow, has become a model problem against which all sorts of numerical codes,
based on a variety of alternative formulations of the incompressible Navier–Stokes
equations, are frequently benchmarked. To name but a few, these include primitive
variables u–p (Vanka 1986; Bruneau & Saad 2006), pure streamfunction ψ (Ghia,
Ghia & Shin 1982), mixed streamfunction–vorticity ψ–ω (Schreiber & Keller 1983)
and streamfunction–velocity ψ–u (Gupta & Kalita 2005) finite difference schemes;
u–p (Marchi, Suero & Araki 2009) and pure velocity u (Sahin & Owens 2003a) finite
volume discretisations; u–p finite elements (Gresho & Chan 1990); u–p (Botella &
Peyret 1998) and ψ–ω (Auteri, Quartapelle & Vigevano 2002b) spectral methods;
u–p discrete Galerkin finite/spectral elements (Romanò & Kuhlmann 2017); primitive
variable incompressible smoothed particle hydrodynamics (Khorasanizade & Sousa
2014); and lattice Boltzmann models (Hou et al. 1995).

Lid-driven cavity flows are singular at the corners where the moving lid meets the
stationary adjacent walls. This is particularly problematic for high-order discretisations,
notably for spectral methods due to the global support of the expansion basis functions.
A standard fourth-order polynomic regularisation has occasionally been applied to the
lid velocity profile to remove the singularity (Shen 1991; Botella 1997). The resulting
regularised cavity flow problem allegedly preserves the same qualitative dynamics as
the original singular cavity, albeit at the cost of non-negligible quantitative effects.
Higher-order regularisation can be enforced to preserve a constant velocity over a wide
portion of the lid and still avoid the singularities at the corners (Batoul, Khallouf
& Labrosse 1994) as a rather straightforward solution to simulate quasi-singular
cavity flows. A more subtle (and sound) approach consists of explicitly subtracting
the leading asymptotic expansion terms of the singularity (Botella & Peyret 2001;
Auteri et al. 2002b), whose expressions can be found analytically (Gupta, Manohar
& Noble 1981). Alternatively, small leaks can be introduced at the corner junctions
to overcome the singularity in the same way this might be resolved in physically
realisable experimental set-ups (Sahin & Owens 2003a). Given that, by their nature,
low-order discretisation methods confine the effects of the singularity to a close
neighbourhood of the corners with little to no impact on the bulk of the fluid domain,
the most usual course of action is to simply ignore the issue altogether.

Our objective here is to unfold the transition process from the laminar base state
to chaotic motion of the two-dimensional flow within a right-angled triangular cavity
driven by the constant-speed tangential motion of its hypotenuse, i.e. the wall opposite
the right angle (figure 1).

The destabilisation of the flow in two-dimensional cavities is relevant to the
understanding of the onset of two-dimensional turbulence (Molenaar, Clercx &
van Heijst 2005), an active research field on account of its sharing key features
with the large-scale motions observed in geophysical flows (Boffetta & Ecke 2012).
Wall-bounded two-dimensional vortices do indeed occur in near-shore zones, such as
at the head of rip currents (Smith & Largier 1995) or in tidal channels (Wells &
van Heijst 2003).

As we shall see, the onset of chaotic motion has been treated to some extent for the
case of LDSC flow, while very little is known of the complete unfolding for cavities
of other shapes, except that the transition process appears to follow different paths.
The motivation behind our choice of a triangular geometry stems from the way in
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FIGURE 1. The two-dimensional lid-driven right-angled isosceles triangular cavity.

which the vortex arrangement becomes increasingly intricate with Reynolds number
escalation, even before the flow becomes non-stationary. In particular, the triangular
set-up we have adopted acts as a model for the onset of chaos, a necessary step
towards two-dimensional turbulence, when the base flow consists of a strong jet that
impinges on a no-slip wall in a narrowly confined domain.

A thorough dissection of what has been done on square cavities, as well as other
geometries bearing some resemblance to our hypotenuse-driven right-angled isosceles
triangular cavity (or simply lid-driven triangular cavity, LDTC) flow, is in order. For a
detailed comprehensive analysis of lid-driven cavity flows, we refer the reader to the
dedicated review by Shankar & Deshpande (2000), and references therein. Exhaustive
up-to-date results can be found in Kuhlmann & Romanò (2019).

The first instability of the two-dimensional LDSC flow is of three-dimensional
nature. This was first realised by Koseff & Street (1984) experimentally in a cavity of
span-to-width aspect ratio Λ=3. Certain aspects of the three-dimensionalisation of the
flow could be ascribed to end-wall effects, but the appearance of Taylor–Görtler-like
vortices pointed to a legitimate three-dimensional instability of the underlying
two-dimensional flow. These vortices originate from a centrifugal instability caused
by the concavity of the spanwise core vortex streamlines in the presence of the
bottom downstream corner vortex. Further experiments by Aidun, Triantafillopoulos
& Benson (1991) and Benson & Aidun (1992) on a cavity with the same proportions
(and a small throughflow that allegedly had little effect) placed the instability at
ReH ' 875 ± 50, which gave rise to a periodic three-dimensional state in the
form of spiral waves of non-dimensional angular frequency ωH ' 0.7. They also
identified a transition to chaotic motion at Re< 1000 via a Ruelle–Takens-type path
(Ruelle & Takens 1971; Newhouse, Ruelle & Takens 1978), as suggested by the
detection of an intervening quasi-periodic state. Numerical stability analysis later
showed that the infinite span system undergoes a Hopf bifurcation at ReH ' 920
with spanwise wavenumber κH ' 7.4 and ωH ' 0.495 (Ding & Kawahara 1999).
Albensoeder, Kuhlmann & Rath (2001) showed numerically that the first instability
is in fact steady (a pitchfork-type disruption of the translational invariance implied
by the O(2) = SO(2) o Z2 spanwise symmetry of the problem; here, O(2) is the
orthogonal group in two dimensions, which results from the semidirect product
of SO(2), the special orthogonal or rotation group in two dimensions – spanwise
translational invariance – and the normal subgroup Z2, the second-order cyclic
or dihedral group – reflection with respect to planes orthogonal to the spanwise
direction) and occurs for ReP ' 785 and κP ' 15.4. The resulting three-dimensional
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flow consists of an infinite array of steady Taylor–Görtler vortices. The stability
analysis was supplemented with experimental results for a cavity with Λ= 6.55 that
confirmed the appearance of Taylor–Görtler vortices in the centre of the domain,
away from the side walls. They also detected a secondary transition at around
ReH ' 930 ∼ 980, consisting of the intermittent ejection of spiralling waves from
the central pattern towards either side. Theofilis, Duck & Owen (2004) and Non,
Pierre & Gervais (2006) confirmed through linear stability analysis the occurrence of
the first steady bifurcation and reported additional bifurcations of the base flow that
broke the translational invariance and the reflection symmetry simultaneously, among
which the one at Re ' 922 with κ ' 15.8 and ωH ' 0.496 seemed to be related
to the secondary transition observed by Albensoeder et al. (2001). This type of
bifurcation gives rise to branches of conjugate-symmetric spanwise-travelling waves
much as observed in the aforementioned experiments. The frequency associated
with this kind of solutions is degenerate in the sense that it represents a mere drift
along the group orbit such that the resulting drift dynamics is in fact trivial (Krupa
1990). The situation is somewhat different in experiments, where the presence of
end walls destroys the translational invariance of the system and the appearance
of Eckman layers results in a degeneration of the infinite system dynamics, such
that nominally two-dimensional flow is confined to only the central region of the
cavity at sufficiently low Reynolds numbers, the appearance of only a finite number
of Taylor–Görtler vortices follows the first bifurcation and the secondary Hopf
bifurcation of the resulting fully three-dimensional flow state induces real temporal
dynamics. The onset of time dependence becomes yet more involved when the
bounding end walls are close to one another and the span-to-depth/length cavity ratio
is not sufficiently large. This is the case of the cubic lid-driven cavity flow (Lopez
et al. 2017), for which the subcritical nature of the first instability of the base steady
flow and its interplay with a second bifurcation set the stage for intermittent bursts
at irregular times.

In spite of the known early three-dimensionalisation of the base two-dimensional
LDSC flow, many efforts have been devoted to elucidating its linear stability to
purely two-dimensional perturbations. This has extended the value of the lid-driven
cavity flow as a benchmark problem beyond the realm of nonlinear time-steppers and
steady-state solvers to the wider domain of stability analysis and bifurcation-tracking
methods. But the relevance of analysing bifurcation sequences of unstable solutions
reaches much further than its mere use for code validation. The strange saddle
that is embedded in chaotic motion, and therefore organises turbulent dynamics,
consists of collections of unstable solutions and their connecting manifolds (Procaccia
1988). Restricting the analysis to certain symmetries or severely truncated domains,
however unrealistic this may appear from a merely experimental point of view,
allows for a detailed analysis that is otherwise unaffordable and provides access to
the basic ingredients that might be at play in the real problem (Hof et al. 2004;
de Lozar et al. 2012). In the case of systems that feature translational invariance
along an extended spatial coordinate, one such possible symmetry restriction consists
of constraining the dynamics to be two-dimensional (Jimenez 1990; Mellibovsky &
Meseguer 2015). The first two-dimensional instability of LDSC flow is a supercritical
Hopf bifurcation. Its exact occurrence in parameter space has been subject to much
controversy, as it is extremely dependent on both resolution and the way the corner
singularity is treated. Shen (1991) provided the first estimate for regularised LDSC
flow from mere nonlinear time evolution, in combination with Re bisection to find
the border between steady and periodic dynamics. His estimate was later refined by
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Fortin et al. (1997) and Abouhamza & Pierre (2003), through Newton steady-state
computation and Arnoldi stability analysis, to the now widely accepted critical point
at ReH ' 10 267± 12 and non-dimensional angular frequency ωH ' 2.080.

The first singular LDSC flow stability analysis was due to Poliashenko &
Aidun (1995). Steady-state tracking with a Newton solver and direct stability
analysis provided a fair estimate for the Hopf point, while extrapolation to zero
of a square-root fit to the oscillation amplitude of bifurcated periodic orbits
obtained through nonlinear time evolution unveiled its supercritical nature. Numerous
computational studies have since aimed at providing the exact location of this
first instability. Some researchers have followed Poliashenko & Aidun (1995) in
employing direct or Arnoldi linear stability analysis on steady states tracked by
continuation methods or obtained from nonlinear time evolution (Fortin et al. 1997;
Tiesinga, Wubs & Veldman 2002; Abouhamza & Pierre 2003; Sahin & Owens
2003b; Boppana & Gajjar 2010; Kalita & Gogoi 2016; Nuriev, Egorov & Zaitseva
2016), while others have aimed at analysing the decay rate of linear perturbations
onto the stable steady-state branch as the bifurcation is approached (Bruneau &
Saad 2006; Boppana & Gajjar 2010). Linear stability analysis of low-dimensional
projections on a reduced number of proper orthogonal decomposition modes has also
provided fair estimates (Cazemier, Verstappen & Veldman 1998). Direct numerical
simulation has also been used to determine the Hopf point by adjusting a square-root
fit to the Reynolds number dependence of the amplitude of the periodic orbits
branch issued from the bifurcation (Cazemier et al. 1998; Peng, Shiau & Hwang
2003; Murdock, Ickes & Yang 2017). This approach has occasionally been used
as a mere complement to steady-state computation and stability analysis to provide
evidence of the supercritical nature of the bifurcation (Fortin et al. 1997). Finally,
straightforward nonlinear time evolution, combined with Reynolds bisection to find
the border separating convergence onto steady states from departure towards limit
cycles, has also allowed estimation of the critical point (Auteri, Parolini & Quartapelle
2002a; Lin, Chang & Lin 2013; Zhuo, Zhong & Cao 2013). All in all, there is now
wide consensus that the Hopf bifurcation of the singular lid-driven cavity flow is
supercritical and occurs at ReH ∼ 8020 with angular frequency ωH ∼ 2.83.

Most of the aforementioned studies involving nonlinear time evolution have gone
beyond the first bifurcation to show the onset of quasi-periodic motion (including
frequency locking episodes) and the eventual transition to chaos (Poliashenko &
Aidun 1995; Cazemier et al. 1998; Auteri et al. 2002a). Auteri et al. (2002a) report
quasi-periodic states with a modulational angular frequency of around ωNS ' 1.72
on top of the oscillation frequency (rotation number r = ωH/ωNS ' 1.64), in fair
agreement with the Neimark–Sacker bifurcation found by Cazemier et al. (1998)
with their truncated proper orthogonal decomposition model through Floquet stability
analysis of the branch of periodic orbits issued from the preceding Hopf bifurcation.
Additional instabilities predicted by the model such as period-doubling bifurcations
seem to be an artifact of its low dimensionality. In their attempt to unfold the
route to chaos, Peng et al. (2003) detected bistability (possibly associated with
hysteretical behaviour), a seemingly unrelated Neimark–Sacker bifurcation and direct
and inverse period-doubling cascades that have not been confirmed by any other
study since. Tiesinga et al. (2002) analysed the stability of the base steady flow
beyond the first bifurcation and found a succession of additional supercritical Hopf
bifurcations, whose associated imaginary parts could be traced back to distinct spectral
frequency peaks of a chaotic direct numerical simulation at Re= 10 000 by Cazemier
et al. (1998). Floquet stability analysis of the periodic orbit branch issued from the
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original Hopf revealed a Neimark–Sacker bifurcation at ReNS ∼ 9150 with properties
perfectly compatible with quasi-periodic solutions reported in the literature at slightly
higher Reynolds numbers. The branch issued from the second Hopf (ReH2 ∼ 8600)
undergoes a stabilising Neimark–Sacker bifurcation at around ReNS2 ∼ 8800, thus
foreseeing bistability over a fairly wide range of Reynolds numbers. As an aside, the
uniqueness of the laminar base state has recently been belied by Nuriev et al. (2016)
who unveiled, using homotopy continuation, the existence of multiple disconnected
branches of unstable steady states that appear in saddle-node bifurcations at Reynolds
numbers as low as 5800.

Not many researchers have ventured into analysing the stability of LDSC flow
using the lattice Boltzmann method (LBM). Lin et al. (2013) and Zhuo et al. (2013)
produced rather high estimates for the Hopf point using Reynolds bisection on
simulations done with filter matrix LBM and multiple relaxation time (MRT) LBM,
respectively. A much finer prediction has recently been obtained by Murdock et al.
(2017) through the periodic oscillation amplitude square-root fit and extrapolation
procedure. The improved accuracy in the prediction is possibly related to their using
higher resolutions with the incompressible LBM (iLBM) model of Guo, Shi & Wang
(2000), in conjunction with MRT as implemented by Du, Shi & Chen (2006).

Popular as LDSC flow has become, it represents but one possibility among the
infinite shapes that a shear-driven cavity may have and, as it happens, even very
slight variations in the geometry entail dramatic changes in terms of flow topology
and vortex dynamics. For instance, small variations in the aspect ratio rendering the
cavity effectively rectangular make the first three-dimensional instability switch from
steady to oscillatory (Albensoeder et al. 2001; Theofilis et al. 2004). Back to the
two-dimensional problem, the stability of the base flow in deep rectangular cavities
(Goodrich, Gustafson & Halasi 1990; Abouhamza & Pierre 2003; Boppana & Gajjar
2010; Lin et al. 2013; Zhuo et al. 2013) has been studied in some detail. Shallow
cavities have rarely been given attention (Poliashenko & Aidun 1995) beyond the bare
determination of the steady-flow vortex patterns (Gupta & Kalita 2005; Cheng & Hung
2006).

Triangular cavities have been analysed in several configurations, and then only for
steady-state flow pattern illustration at low to moderate Reynolds numbers. These
include equilateral (McQuain et al. 1994; Ribbens, Watson & Wang 1994; Li &
Tang 1996; Gaskell, Thompson & Savage 1999; Kohno & Bathe 2006; Erturk &
Gokcol 2007; Paramane & Sharma 2008; Pasquim & Mariani 2008), various aspect
ratio isosceles (McQuain et al. 1994; Jyotsna & Vanka 1995; Gaskell et al. 1999;
Jagannathan, Mohan & Dhanak 2014) and a few scalene (Li & Tang 1996) triangular
geometries.

Gonzalez et al. (2011) and Ahmed & Kuhlmann (2012) have shown both experi-
mentally and numerically that, as for LDSC flow, the first instability in lid-driven
right-angled triangular cavities of various length-to-depth aspect ratios with the
moving wall adjacent to the rectangular corner is also three-dimensional. For an
aspect ratio such that the cavity is an isosceles triangle with the lid moving towards
the rectangular corner, the leading mode is complex (oscillatory) and becomes unstable
at Re= 777.9 (Re= 730± 20 according to experiments) with spanwise wavenumber
kc = 10.3 (kc = 11.2 ± 0.6) and angular frequency ωc = 1.14 (ωc = 1.121 ± 0.05),
values that are fully consistent with those of a rectangular cavity of aspect ratio
0.5, for which (Rec, kc, ωc) = (706, 10.6, 1.16) (Albensoeder et al. 2001). When the
lid moves away from the rectangular corner instead, the leading mode is real and
becomes unstable somewhat earlier at Re = 540.2 (Re = 570 ± 20 experimentally)
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with spanwise wavenumber kc = 2.86 (kc = 2.89 ± 0.11). Taking shallower aspect
ratios, Rec is shifted to higher values and up to five distinct instability modes of
various spanwise wavenumbers, some steady, some oscillatory, are observed (Ahmed
& Kuhlmann 2012). As long as the flow remains two-dimensional, at Re = 500, a
propensity for boundary layer separation (in experiments), or at least flow deceleration
(in numerics), is observed on the slanted wall when the top lid moves away from the
sharp corner towards the rectangular corner. This same effect has been reported by
Erturk & Gokcol (2007) on the same exact configuration and also for an equilateral
triangle, showing that the separated zone evolves into a vortical separation bubble as
Re is increased. As a matter of fact, this feature is discernible in all aforementioned
studies of equilateral triangular cavities reaching beyond Re = 500. When the top
lid moves away from the right-angled corner instead, the primary vortex becomes
elongated along the top lid, with a bias towards the downstream acute corner. This
effect is already perceptible at Re = 1000 and becomes more pronounced as Re is
further increased. At higher Re & 3000, however, published results disagree as to the
flow topology inside the equilateral triangular cavity. While some studies point to the
further development of the vortical separation bubble on the upstream wall (Kohno
& Bathe 2006), others report a downstream-biased elongated-top-vortex arrangement
along the moving lid (Pasquim & Mariani 2008).

Steady solutions for our particular configuration of interest (LDTC) have been
computed by Erturk & Gokcol (2007) and Gaskell et al. (1999) in the case of Stokes
flow and very low Reynolds numbers up to 100, and by Sidik & Munir (2012) up
to Re = 10 000. Ozalp, Pinarbasi & Sahin (2010) performed experiments in a water
channel of open right-angled triangular cavity flow at Re ∈ [1230–1700], but any
attempt of comparison with our numerical analysis is rendered futile by the intrinsic
three-dimensionality of the flow in this Reynolds regime and by the fact that, in their
rig, the fluid in the cavity was driven by an outer flow and not a rigid lid.

The best chance for comparison with our results, if only qualitatively, is offered
by the MRT-iLBM lid-driven isosceles trapezoidal cavity simulations of Zhang, Shi &
Chai (2010). In a trapezoidal cavity with height-to-length aspect ratio Γ =

√
3/3 '

0.577 (0.5 in our case) and corner angles of 60◦ (to be compared with 45◦ for the
right-angled isosceles triangle), they detected a non-trivial path from laminar flow to
chaos that included a Hopf bifurcation between Re = 7500 and 8150 and, possibly,
a Neimark–Sacker bifurcation between 8500 and 10 000 as hinted at by a seemingly
frequency-locked quasi-periodic solution at this latter Reynolds number.

The paper is structured as follows. In § 2 we present the problem formulation
and the numerical approach that we adopt. The various types of solutions found are
presented in § 3, alongside a detailed description and characterisation. The transitions
between different states are discussed in § 4 in the light of dynamical systems and
bifurcation theory. Some concluding remarks are finally summarised in § 5.

2. Problem statement and numerical approach
2.1. The lid-driven right-angled isosceles cavity flow

Consider an incompressible flow in a two-dimensional right-angled isosceles triangular
cavity driven by the tangential motion of its hypotenuse at constant velocity (LDTC;
figure 1). The flow dynamics is governed by the incompressible Navier–Stokes
equations, which, after suitable non-dimensionalisation with lid size L and lid velocity
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U as length and velocity scales, result in

∂tu+ (u · ∇)u=−∇p+
1

Re
1u,

∇ · u= 0.

}
(2.1)

Here, u=u(x; t)= (u, v) and p= p(x; t) are the velocity and pressure fields, x= (x, y)
and t are the spatial and time coordinates and Re = UL/ν is the Reynolds number,
with ν the kinematic viscosity of the fluid. No-slip Dirichlet boundary conditions
u(xw; t)= 0 are imposed on both side walls while a constant tangential unit velocity
is imposed on the top wall or lid u(xl; t)= (1, 0).

Solutions will be characterised through the two velocity components at the centre
of the cavity (uc, vc) and the lid shear force coefficient

(uc(t), vc(t))≡ uc(t)= u(xc; t); xc = (0.5, 0.25),

CF(t)≡
F

1
2ρLU2

=
2

Re

∫ 1

0
∂yu(xl; t) dx; xl = (x, 0.5).

 (2.2)

Wall shear diverges at either end of the lid due to corner singularities. The total
shear force is therefore defined by an improper integral that we choose to approximate
with an open Newton–Cotes-type quadrature. The LBM is of second-order accuracy.
For consistency, we have chosen to employ second-order methods in the computation
of the lid driving shear force. The wall-normal derivative of horizontal velocity has
been estimated with second-order finite differences, and its integral over the lid
approximated with Simpson’s rule. To avoid the singular end points, Simpson’s rule
has been replaced with the midpoint rule in the immediate vicinity of the corners. We
must admit that the lid force computation is not particularly accurate, but it flawlessly
fulfils its purpose as a phase space variable as long as simulations are run on the
same exact grid. Resolution changes have a large impact on CF, such that lid force
coefficient cannot be used for mesh convergence analysis.

We have made extensive use of first-recurrence or Poincaré maps in order to
characterise periodic and quasi-periodic solutions and to analyse their stability.
Interpreted as an infinite-dimensional continuous-time dynamical system, the Navier–
Stokes equations in the LDTC generate a flow (a trajectory) in phase space (the set
of all possible system configurations, understood here as all possible velocity/pressure
fields). By conveniently picking a hyperplane in phase space that is transversal to
the flow (the Poincaré section), the corresponding Poincaré map is defined as the
discrete-time dynamical system that maps one crossing of this hyperplane to the
next. Periodic orbits and quasi-periodic solutions of the continuous-time dynamical
system are thus reduced to fixed points and discrete periodic orbits, respectively, of
the associated Poincaré map. We visualise LDTC solutions both in physical space via
flow-field snapshots (be it streamfunction isocontours or vorticity colour maps) and
in phase space, using two-dimensional projections of trajectories.

In order to produce vorticity colour maps and streamfunction contour plots, vorticity
and streamfunction have been approximated with second-order central differences and
second-order quadratures, respectively.

2.2. The iLBM
Here we chose to simulate the fluid flow in the cavity using the LBM (Chen & Doolen
1998). The discrete kinetic equation (or lattice Boltzmann equation) for the particle
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FIGURE 2. The D2Q9 lattice Boltzmann model. (a) Discrete momentum directions.
(b) Treatment of flat and diagonal wall boundary conditions.

distribution function reads

fi(x+ ei1x, t+1t)− fi(x, t)=−
1
τ
[ fi(x, t)− f eq

i (x, t)], (2.3)

where fi(x, t)= f (x, ei, t) is the discrete single-particle velocity distribution function in
the momentum direction ei, and density ρ and momentum ρu are defined as particle
velocity moments of the distribution function:

ρ =
∑

i

fi,

ρu=
∑

i

ei fi.

 (2.4)

The left-hand side of (2.3) represents the streaming step in the method, with 1x and
1t the lattice spacing and time step, respectively. The right-hand side corresponds
to the collision step. The collision operator by Bhatnagar, Gross & Krook (1954)
(BGK) naturally arises from assuming that 1x and 1t are small and of the same
order ε, Taylor-expanding in space and time up to second order and then employing a
formal multiscaling Chapman–Enskog expansion on the resulting continuum equation,
allowing for different time scales for advection and diffusion and assuming that the
local particle distribution relaxes to an equilibrium state at a single rate. Function f eq

i is
the equilibrium distribution function and τ is the non-dimensional collision relaxation
time.

We adopt the nine-bit D2Q9 lattice Boltzmann model of Qian, D’Humières &
Lallemand (1992), corresponding to a two-dimensional problem on a square lattice
with nine discrete momentum directions as shown in figure 2(a). The discrete
momentum directions are given by

ei =


(0, 0) i= 0
(cos ((i− 1)π/2), sin ((i− 1)π/2)) i ∈ {1, 2, 3, 4}
(cos ((2i− 9)π/4), sin ((2i− 9)π/4))

√
2 i ∈ {5, 6, 7, 8}.

(2.5)

Using the classic equilibrium distribution function

f eq
i = ρ [wi + si(u(x; t))] , (2.6)
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with

si(u)=wi

[
3

ei · u
c
+

9
2
(ei · u)2

c2
−

3
2
‖u‖2

c2

]
, (2.7)

and weights

wi =

4/9 i= 0
1/9 i ∈ {1, 2, 3, 4}
1/36 i ∈ {5, 6, 7, 8},

(2.8)

where c=1x/1t is the particle velocity across the lattice, the compressible Navier–
Stokes equations are recovered in the limit of vanishing Mach number. The pressure
is p= c2

sρ, with cs = c/
√

3 the speed of sound, and the kinematic viscosity is given
by ν = (1/6)(2τ − 1)(1x)2/1t. The classic lattice BGK method (LBGK) is thus only
appropriate for incompressible flows, but, at the same time, the restriction for the
Mach number M= ‖u‖/cs� 1 results in a requirement for prohibitively small time
steps, as measured in advective time units.

In order to recover the exact incompressible Navier–Stokes equations, Guo et al.
(2000) modified the equilibrium distribution function in their incompressible LBGK
model (iLBM) to

f eq
i = αip+ si(u), αi =

1
c2

−4σ i= 0
λ i ∈ {1, 2, 3, 4}
γ i ∈ {5, 6, 7, 8},

(2.9)

where σ , λ and γ are parameters that must satisfy λ+ γ = σ and λ+ 2γ = 1/2. The
velocity and pressure fields are then given by

u= c
∑

i

ei fi,

p=
c2

4σ

[∑
i

fi + s0(u)

]
.

 (2.10)

The kinematic viscosity is still related to the relaxation time, lattice spacing and time
step through

ν =
2τ − 1

6
(1x)2

1t
. (2.11)

The Navier–Stokes equations thus recovered are second-order accurate in both space
and time. As a matter of fact, if 1x,1t∼O(ε), mass conservation is accurate to order
O(ε2), while momentum conservation has order O(ε2

+ εM2).

2.3. The MRT-iLBM
In the single relaxation time LBM (SRT-LBGK), the bulk and shear viscosities are
both determined by the same relaxation time, such that spurious pressure waves
are poorly damped at high Reynolds numbers (Yu et al. 2003). Regions with high
gradients, such as singular corners, introduce spatial oscillations which can propagate
into the fluid domain. It is possible to define as many independent velocity moments
as discrete moment directions are considered in the model. These moments can
be chosen to represent physical quantities of the system or modes. d’Humières
(1992) suggested applying individual relaxation times to different dynamic modes in
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the collision operator. The main idea is to leave unaltered the conserved moments
(density and the two components of momentum) and, among the non-conserved
moments, relax faster those associated with acoustic modes, while hydrodynamic
viscous/shear modes are relaxed as dictated by the Reynolds number.

The collision operator for the MRT lattice Boltzmann equation couples all discrete
distribution function components

fi(x+ ei1x, t+1t)− fi(x, t)=−Sij[ fj(x, t)− f eq
j (x, t)], (2.12)

where S is the relaxation matrix, which is assumed to diagonalise in moment/mode
space Ŝ=MSM−1

= diag{si}. Matrix M is the transformation matrix from momentum/
velocity { fi} space to moment space { f̂i}: f̂ =Mf .

The MRT technique, thoroughly described and analysed in detail by Lallemand &
Luo (2000) as an extension of the classic D2Q9 SRT-LBGK, has been adapted by Du
et al. (2006) to incorporate the iLBM model of Guo et al. (2000).

The nine-moment vector space for the MRT-iLBM is defined as

f̂ = (p, e, e2, ux, qx, uy, qy, τxx, τxy)
T, (2.13)

where p, ux and uy are the conserved pressure and velocity component moments, e
and e2 are the energy and square of the energy, qx and qy are energy fluxes and τxx

and τxy are the diagonal and off-diagonal components of the shear stress tensor. The
transformation matrix is explicitly given by

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


. (2.14)

Relaxation times for conserved moments can be chosen arbitrarily: e.g. s0= s3= s5=

1.0. Viscous/shear moments are relaxed according to the desired Reynolds number as
in SRT-LBGK using s7 = s8 = 1/τ , with τ related to kinematic viscosity ν by (2.11).
The rest of the modes are relaxed faster following s4 = s6 = 1.2, s1 = s4 − 0.1 and
s2 = s1 − 0.1. The only restriction is that they are chosen in the interval (0, 2) for
stability, so that values slightly above 1.0 are usually chosen.

2.4. Boundary conditions
The classic bounce-back scheme for solid-wall boundary conditions has only first-order
accuracy in space (Cornubert, d’Humières & Levermore 1991). Second-order accuracy
can be recovered by shifting the walls into the fluid domain by half a lattice spacing
(Ziegler 1993), but this and other boundary schemes devised to reconcile boundary
accuracy with method accuracy cannot be extended to arbitrary boundary geometries.

Based on the idea of extending the bounce-back to the non-equilibrium part of
the distribution function (Zou & He 1997), Guo, Zheng & Shi (2002b) devised a
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non-equilibrium extrapolation method for velocity and pressure boundary conditions
in their iLBM (Guo et al. 2000).

Point B in figure 2(b) is a boundary node, F is the node inside the fluid domain in
the direction normal to the boundary and E is an exterior node. The non-equilibrium
part of the distribution function at fluid node F is straightforwardly obtained as

f neq
i (F, t)= fi(F, t)− f eq

i (F, t). (2.15)

The same decomposition applies to boundary node B. Since boundary node B is at a
distance 1x of order O(ε), the non-equilibrium part of the distribution function at the
boundary can be approximated to second-order accuracy by a first-order extrapolation
from the fluid node

f neq
i (B, t)= fi(F, t)− f eq

i (F, t)+O(ε2). (2.16)

The equilibrium part of the distribution function on boundaries where velocity is
known, but not pressure, is approximated to order O(εM2) by

f eq
i (B, t)= αip(F, t)+ s0(u(0, t)), (2.17)

and the distribution function at the boundary node is given, to second-order accuracy,
by

fi(B, t)= f eq
i (B, t)+ [ fi(F, t)− f eq

i (F, t)]. (2.18)

This second-order non-equilibrium extrapolation method can be carried to general
curved boundaries not strictly passing through lattice nodes (Guo, Zheng & Shi
2002a), although this is not a requirement for our triangular cavity as the side walls
naturally traverse the lattice through boundary nodes.

In our computations, the lid size has been taken as Llid= 1, such that if the domain
is discretised with N lattice points in the x-direction, (N− 1)/2+ 1 points are required
in the y-direction, and the lattice spacing is 1x=1y=1/(N−1). The requirement that
particles advance one lattice spacing every time step is fulfilled by setting 1t =1x
and c=1x/1t=1. We have set the lid velocity to Ulid=0.1c in LBM units. To be fair
and keep consistent accuracy for compressibility and space discretisation, we should
have set it such that εM2

∼ ε2. Since ε∼ 1/(N− 1) and M∼Ulid/cs=
√

3Ulid/c, then
Ulid∼ 1/

√
3(N − 1). This would in principle require Ulid∼ 0.025c for N∼ 601, but we

have found our slightly higher choice for Ulid = 0.1c accurate enough. In advective
time units, the time step is therefore 1t= 0.1/(N − 1) (L/U).

2.5. Code validation
The code has been validated against published results for LDSC flow at Re = 1000.
A choice of relevant published results is listed in table 1. The location of primary
and secondary vortex cores is accurate to within 0.3 % of the characteristic length set
by the lid. Streamfunction and vorticity at the primary vortex core are slightly less
accurate and each deviate by around 0.7 % with the highest resolution tested. While
the errors follow a clearly diminishing trend as resolution is increased, residual errors
might however persist even at very high resolutions due to corner singularity effects
and to the intrinsic compressibility of the LBM, although these remaining inaccuracies
are deemed of minor concern for the purposes of the present study. All in all, it can
be safely ascertained that the LBM code is properly resolving the benchmark LDSC
flow.
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Ref/Meth/Res Prop. Primary Bottom left Bottom right

Ghia et al. (1982) ψvc −0.117929 2.31129× 10−4 1.75102× 10−3

2nd-order FD ωvc −2.04968 0.36175 1.15465
2572 xvc 0.5313 0.0859 0.8594

yvc 0.5625 0.0781 0.1094

Botella & Peyret (1998) ψvc −0.1189366 2.334528× 10−4 1.729717× 10−3

Spectral ωvc −2.067753 0.3522861 1.109789
1602 xvc 0.5308 0.0833 0.8640

yvc 0.5652 0.0781 0.1118

Marchi et al. (2009) ψvc −0.118936708 — —
2nd-order FVM ωvc — — —
10242 xvc 0.53125 — —

yvc 0.5652 — —

Erturk & Gokcol (2006) ψvc −0.118938 2.3345× 10−4 1.7297× 10−3

4th-order FD ωvc −2.067760 0.354271 1.118222
6012 xvc 0.5300 0.0833 0.8633

yvc 0.5650 0.0783 0.1117

Bruneau & Saad (2006) ψvc −0.11892 — 1.7292× 10−3

2nd-order FD ωvc −2.0674 — 1.1120
10242 xvc 0.53125 — 0.86426

yvc 0.56543 — 0.11230

Hou et al. (1995) ψvc −0.1178 2.22× 10−4 1.69× 10−3

LBM ωvc −2.076
5132 xvc 0.5333 0.0902 0.8667

yvc 0.5647 0.0784 0.1137

Present work ψvc −0.11664 2.2333× 10−4 1.6520× 10−3

LBM ωvc −2.02059 0.32902 1.0572
3012 xvc 0.53180 0.08199 0.86436

yvc 0.56567 0.07815 0.11236

Present work ψvc −0.11773 2.2882× 10−4 1.6882× 10−3

LBM ωvc −2.04311 0.33988 1.0813
6012 xvc 0.53141 0.08262 0.86427

yvc 0.56539 0.07815 0.11211

Present work ψvc −0.11815 2.3065× 10−4 1.7021× 10−3

LBM ωvc −2.05210 0.34368 1.0902
10012 xvc 0.53125 0.08284 0.86419

yvc 0.56534 0.07814 0.11204

TABLE 1. Literature review of location of primary and secondary vortices and
characteristic properties for LDSC flow at Re = 1000. Vortex cores (vc) are defined as
relative extrema of streamfunction ψ .

As a further validation, to verify the adequate treatment of boundary conditions on
the inclined walls of a triangular enclosure, a few LDTC flow cases have been run and
compared to the only available results in the literature on this geometry, reported by
Sidik & Munir (2012) and listed in table 2. The resolution has been set to 601× 301
in the horizontal and vertical coordinates, respectively. Sidik & Munir (2012) only
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Sidik & Munir (2012)

Re 100 400 700 1000 3000 5000 7000 10 000
xvc 0.5450 0.6100 0.5950 0.5875 0.7400 0.7350 0.7595† 0.7971†

yvc 0.3800 0.3750 0.3508 0.3508 0.4100 0.4050 0.4138† 0.4276†

Present work

Re 100 400 700 1000 3000 5000 7000 10 000
xvc 0.54642 0.61192 0.59487 0.59112 0.74152 0.79674 0.82977 0.85956
yvc 0.38319 0.37600 0.36312 0.36076 0.41084 0.42931 0.44056 0.45078
ψvc −0.05040 −0.05168 −0.05343 −0.05285 −0.03730 −0.03036 −0.02591 −0.02173
ωvc −6.2640 −6.8149 −6.4120 −6.2836 −11.1210 −14.5580 −17.6941 −21.8008
xvc 0.73687 0.76118 0.80543
yvc 0.40801 0.41607 0.43146
ψvc −0.04030 −0.03722 −0.03085
ωvc −11.4092 −12.7610 −15.9031

TABLE 2. Primary vortex location and intensity for LDTC flow as compared to published
results of Sidik & Munir (2012). The numbers marked with † have been measured directly
from the figures to correct for evident confusion in choosing the primary vortex.

reported the rightmost vortex location, and yet only with dubious accuracy. However,
the agreement is fairly reasonable up to Re = 3000. As we will show later on, two
stable steady solutions coexist at Re= 5000 and Re= 7000, and the agreement is good
if the right branch is selected for comparison. A run at Re = 10 000 was conducted
with the lid in reverse motion, such that the vortex being measured is not the primary
one. Comparisons with direct measurements (on the figures, marked with †) of primary
vortex location provide a fairly good agreement.

Lattice Boltzmann models and resolution have been assessed by converging a
steady (Re= 7000), a periodic (Re= 8500) and a quasi-periodic (Re= 9000) solution
employing classic SRT, iLBM and MRT-iLBM models with resolutions N= 601, 1201
and 2401. Cavity centre velocity components and lid centre wall shear stress errors
are within 1 % of characteristic values in the cavity. Flow-field visualisations are
indistinguishable to the naked eye. Oscillation frequency of time-dependent solutions
is however a little off for the lowest resolution and classic model, although the
discrepancy does not seem to have an important effect on the dynamics or the
location and nature of the bifurcations. Modulational frequency for the quasi-periodic
solution is also accurate to around 1 % already for N = 601 and irrespective of
the LBM model used. We have observed a slight advantage for the MRT-iLBM
model at the lowest resolution as compared to the other two. In accordance with the
convergence analysis, the study has been mostly done with the classic LBM model
(due to its higher computational efficiency and faster running time) and a resolution
N = 601, although the other two models and higher resolutions have been employed
occasionally to verify the validity of the results, which we deem sufficiently accurate
(at least qualitatively) up to Re' 14 000.

2.6. Corner singularities versus regularisation
As already mentioned in § 1, cavity flows are singular at the corners. Numerical
simulations might be prone to inaccuracies if the issue is not properly addressed,
particularly when using high-order space discretisations. Unfortunately, to the authors’
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knowledge there exists no straightforward method to deal with corner singularities
in the LBM, other than opting for regularisation of the velocity boundary condition.
Nonetheless, the method being only second order in space, corner singularities
are not expected to have a pivotal impact on bulk flow dynamics. As a matter
of fact, some of the literature results presented in table 1 for LDSC flow simply
ignored corner singularities with little to no impact whatsoever as to the location and
intensity of primary and secondary vortices. It must be borne in mind that ignoring
corner singularities does not imply that the corners are truly singular, but that the
regularisation is left instead to the practical implementation of the numerical method,
which acts implicitly at the fine scale of the grid size (Gonzalez et al. 2011). We have
however run a few regularised cases in order to assess the inaccuracies introduced
by ignoring corner singularities. In particular, we have strongly regularised the lid
tangential velocity following

u(xl; t)= ([1− (2x− 1)p]2, 0), (2.19)

with p= 18, 32 and 64, which attain 99 % of the lid nominal velocity within 12.8 %,
7.7 % and 4.0 % of the lid extent away from the corners, respectively. For N = 601,
the sharp rise from zero at the corner to the 99 % target is resolved with 78, 47 and
25 grid points, respectively. Runs with the SRT model at the same Reynolds numbers
used for the grid convergence analysis produced the expected type of solutions in all
cases: steady at Re = 7000, periodic at Re = 8500 and quasi-periodic at Re = 9000.
All monitored variables show a gradual approach towards the singular case as the
regularisation parameter p is increased. A few additional computations with the highly
regularised case (p= 64) around the Hopf bifurcation confirmed both its existence and
nature, albeit slightly shifted in the Reynolds parameter.

The combined numerical and experimental work of Gonzalez et al. (2011) on the
isosceles rectangular triangle with the moving wall adjacent to the right-angled corner
provides yet another shot at validating our LBM code. In their analysis, they report
accurate results for two steady two-dimensional cases: the wall moving away from the
rectangular corner at Re= 560 and towards it at Re= 780. Their results were obtained
using the lid velocity regularisation of (2.19) with p= 18 for several resolutions. We
have run the same two cases with the same regularisation but with somewhat higher
resolution and compared against their highest-resolution runs. Table 3 reports the
minima and maxima of the two components of the velocity field (u, v) and their
location within the domain. The configuration is such that the origin (x, y)= (0, 0) is
at the acute corner where the left vertical leg meets the hypotenuse, the rectangular
corner is at the top left at (x, y) = (0, 1) and the moving top leg (the lid) meets
the hypotenuse at (x, y)= (1, 1). Our results at Re= 560 for N = 601 and N = 1001
grid points along the equal-sized legs show adequate convergence with maximum
deviations slightly above 10−3 – usually below – and reaching as low as 10−4 in
some cases. At Re = 780, with the wall moving in the opposite direction, mesh
convergence is excellent with deviations of the order of 10−4 and sometimes down
to 10−5. Agreement with results reported by Gonzalez et al. (2011) is remarkable, as
our values fall systematically within the uncertainty range set by their computations
of the same steady states via time-stepping and with a Newton–Raphson solver.

3. Results
A stable steady state, characterised by a domain-filling clockwise vortex, governs

the dynamics of the LDTC flow at sufficiently low Re. This simple flow topology
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Wall motion away from rectangular corner (Re= 560)
L umin xumin yumin vmax xvmax yvmax vmin xvmin yvmin

Present work

180 901TS
−0.44687 0.67600 0.77591 0.19224 0.37960 0.81968 −0.38992 0.79850 0.85671

501 501TS
−0.44845 0.67487 0.77516 0.19368 0.37860 0.81946 −0.39144 0.79844 0.85664

Gonzalez et al. (2011)

36 103TS
−0.44513 0.67157 0.77446 0.19152 0.37638 0.81957 −0.38868 0.79731 0.85610

36 315NR
−0.45072 0.67164 0.77239 0.19584 0.37687 0.82089 −0.39425 0.79478 0.85448

Wall motion towards rectangular corner (Re= 780)

L umax xumax yumax vmax xvmax yvmax vmin xvmin yvmin

Present work

180 901TS 0.40305 0.27018 0.54612 0.36127 0.51672 0.71274 −0.65649 0.03498 0.85897
501 501TS 0.40324 0.27021 0.54626 0.36133 0.51685 0.71287 −0.65680 0.03494 0.85901

Gonzalez et al. (2011)

36 103TS 0.39774 0.27158 0.54716 0.35478 0.51565 0.71162 −0.64676 0.03464 0.86000
36 315NR 0.40328 0.27239 0.54478 0.36122 0.51866 0.71269 −0.65726 0.03358 0.86194

TABLE 3. Extrema of the two velocity components (u, v) and their location (x, y) for
the rectangular triangle with the moving wall adjacent to the rectangular corner. Results
are compared against those of Gonzalez et al. (2011), using the same exact regularisation
with p = 18 in (2.19). Here L = N(N + 1)/2 is the total count of grid points, with N
the number of grid points along the two equal legs for equispaced meshes (all but the
time-stepping results of Gonzalez et al. (2011)). Counts L= 180 901, 501 501, 36 315 result
from N=601,1001,269, respectively. The superscripts TS and NR refer to time-stepping and
Newton–Raphson, respectively, as the method for obtaining the solutions.

evolves into more complex vortex arrangements as Re is increased. As a matter of
fact, the steady base state coexists with another stable steady state within a fairly
wide range of flow regimes. While the base state remains steady and stable up to
rather large Re, this other secondary steady solution undergoes a series of transitions
that result in temporally chaotic dynamics. We provide in this section an inventory
and characterisation of the different states that arise across a wide Re range in the
transitional regime.

3.1. Steady states
Figure 3 shows the evolution of the steady base state as Re is increased. The morphing
of the streamlines indicates that the evolution is anything but uneventful. At very
low values of the Reynolds number the solution structure is dominated by a single
clockwise vortex, although an incipient secondary vortex of opposite sign begins to
emerge already at Re = 100 at the bottom of the cavity. The secondary vortex, of
much lower intensity, grows as the primary vortex is pushed towards the right-hand
side. The boundary layer deceleration on the upstream wall, observed by Gonzalez
et al. (2011) at Re= 500 when the lid moves away from the sharp corner towards the
right-angled corner, is clearly visible at Re= 1000 despite the disparity of triangular
configurations under consideration. The same phenomenon has been reported by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

51
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.512


492 B. An, J. M. Bergada and F. Mellibovsky

State A

¥ ø

State B
Re = 100

Re = 1000

Re = 2000

Re = 5000

Re = 7500

Re = 8500

Periodic (see figure 6)

Re = 9000

Quasiperiodic (see figure 10)

Re =11 000

Chaotic (see figure 12)

0-10-20 10 20

FIGURE 3. (Colour online) Evolution of the steady states (left: A; right: B) as Re is
increased from 100 to 7900. Vortical structures are evidenced by the streamline patterns.
Vorticity ranges in ω ∈ [−25, 25], blue (dark) for negative, yellow (bright) for positive,
levels as indicated by the colour bar at the top right of the figure (the colour bar is shared
by all colour maps in the paper and is therefore not reproduced alongside every and each
one of them). Streamfunction isocontours are equispaced in intervals of 1ψ = 10, solid
for negative, dashed for positive and thicker solid lines indicate level 0.

Erturk & Gokcol (2007) at similar Re, for both the equilateral triangular configuration
and the isosceles right-angled geometry with the lid moving towards the right-angle.
At Re = 2000, a third smaller vortex has arisen, again at the bottom, that rotates in
the same sense as the primary vortex. As this tertiary vortex grows in the bottom
of the cavity with a bias towards the right-hand wall, the secondary vortex moves to
the left-hand wall while overtaking in size (but not in intensity) the primary vortex
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and squeezing it against the lid. As a consequence, the primary vortex gets elongated
along the top lid and its centre is pushed towards the right-hand wall. The shape of
the top vortex is reminiscent of the flow topology found by Erturk & Gokcol (2007)
at equiparable Reynolds numbers for the isosceles right-angled geometry, but this
time with the lid moving away from the right-angle. In this respect, our particular
geometry seems to share features with the right-angled isosceles triangular cavity
where the moving lid is adjacent to the right-angle, when the lid moves in both
one direction and the other. A lid sliding away from a sharp angle at low Re seems
to induce a deceleration or even separation of the boundary layer on the upstream
slanted stationary wall. Meanwhile, a lid moving towards a sharp angle tends to
push and squeeze the primary (or top) vortex against the lid and elongate it with a
downstream bias as Re is increased.

From Re & 4908 the three-vortex arrangement base state, henceforth referred to as
state A, coexists with another stable solution of conspicuously different flow topology.
While the strong vortex on the top right-hand corner persists in this second state,
designated hereafter as state B, its size is larger and its tail, which on the base state
extended along the lid, has evolved into a new vortex of equal sign (clockwise) that
pushes the middle vortex, of opposite sign (anticlockwise), down, forming a strong
vortex pair. As a result, an intense jet develops that crosses the cavity following a
left-hand down-pointing diagonal through its centre, hits the left wall midway and
splits in two. The jet is clearly visible from the high-shear traces it leaves on the
vorticity fields and the opposite-sign boundary layers that develop on the left-hand
wall at either side from the stagnation point at the impingement location, where the
jet splits. Besides the main vortical structure just described, three smaller vortices
start nucleating: at the bottom of the cavity, close to the top corner on the left-hand
wall and halfway through the right-hand wall. It is this complex steady-vortex pattern,
illustrated at Re= 5000, that undergoes the first bifurcation of time-dependent nature.
The jet becomes oscillatory and the stagnation point on the right-hand wall starts
moving periodically. From this point on, state B initiates a series of transitions into
ever increasingly complex time dependence that eventually leads to chaotic motion. In
the meantime, the original base state A persists fairly unaltered as a stable solution
for flow regimes in excess of Re & 13 400. Beyond this point, it also acquires time-
dependency.

The secondary vortex on the left-hand wall that develops early on after the inception
of state B seems again to be the result of a lid sliding away from a sharp corner, as it
bears strong resemblance to the separation bubble reported by Erturk & Gokcol (2007)
for the isosceles triangular cavity with the lid moving towards the rectangular corner.

The coexistence of two distinct solution branches is clear from figure 4, where both
components of velocity at the centre of the cavity (uc, vc) have been plotted against Re
to illustrate the bifurcation diagram for LDTC flow. Steady solutions on the primary
(base, A) and secondary (B) branches are marked with crosses. While A-type solutions
have nearly quiescent flow at the cavity centre, B-type states feature negative values of
both velocity components due to the presence of the diagonal jet. Bistability occurs
for the whole range of existence of B-type steady states and no evident branching
connecting both types of solutions can be inferred from the bifurcation diagram.

Both types of solutions have been previously reported in the literature, although
their dissimilar flow topology has gone widely unnoticed. Sidik & Munir (2012)
found, in our same triangular geometry, type-A states up to Re 6 3000 and type-B
solutions from Re> 5000 on, but the wide Re steps they took failed to raise awareness
of their distinct nature. In a similar but related geometry – a trapezoidal cavity with
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Re

√c

uc

(a)

(b) A

B

C

A

B
C

0 2500 5000 7500 10 000 12 500

0

-0.2

-0.4

0

-0.2

0.2

-0.4

FIGURE 4. (Colour online) Bifurcation diagram of the LDTC flow. Horizontal (uc, top)
and vertical (vc, bottom) velocity components at the cavity centre as a function of
Re. The various symbols represent steady solutions (crosses), periodic orbits (circles),
quasi-periodic solutions (squares) and chaotic flow (triangles). The outermost error bars
span from minimum to maximum, while the inner grey indicate root-mean-square values.
Periodic and quasi-periodic solutions include an additional error bar (green) indicating the
Fourier spectrum main peak amplitude. The blue error bars for quasi-periodic solutions
convey the energy contained in the primary and secondary spectral peaks combined. All
solutions are stable except for steady-state C (the isolated grey cross), which has a
one-dimensional unstable manifold.

height-to-length aspect ratio Γ =
√

3/3 ' 0.577 and corner angles of 60◦ – Zhang
et al. (2010) found steady solutions up to Re 6 7500 that closely resemble our
primary branch A-states. The periodic solution they found at Re = 8150, however,
shares common features with our secondary branch B-state. Both the large and
small vortex arrangements (exception made of the small vortex at the bottom of our
triangular cavity), as well as the diagonal jet across the cavity centre are remarkably
evocative of our B-type solution. An analogous explanation in terms of coexistence of
solutions might be behind the disagreement found in the literature regarding equilateral
triangular cavities. The solution found by Kohno & Bathe (2006) at Re= 5000 would
thus be related to state B, while that reported by Pasquim & Mariani (2008) for
Re > 3000 seemingly shares features with state A.

3.2. Periodic states
At Re = 8500 the A-type state is no longer stable, but has become unsteady
periodic. Figure 5(a) illustrates the phase map trajectory of the periodic orbit through
projections on the (uc, CF) and (vc, CF) planes. The amplitude of the oscillation
is relatively small in terms of CF (of the order of 1 %) but quite remarkable when
it comes to (uc, vc). The reason for this is that the unsteadiness is related to a
sweeping motion of the jet, which has a noticeable impact on velocities at the centre
of the cavity. The time dependence of the periodic solution is illustrated through
four snapshots evenly distributed along a full period in figure 6 (see supplementary
movie 1 available at https://doi.org/10.1017/jfm.2019.512). The vortex on the top-right
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FIGURE 5. B-type periodic orbit at Re= 8500. (a) Phase map projections on the (uc, CF)
and (vc, CF) planes. The full circle indicates the fixed point of the Poincaré map defined
by uP

c =−0.21 and u̇c > 0. This together with empty circles indicate snapshots at t− tP=

{0, T/4, T/2, 3T/4} in figure 6. (b) Spectrum |ĈF| of the CF(t) signal (inset).

0 T/4 T/2 3T/4

FIGURE 6. (Colour online) (See supplementary movie 1) Flow-field evolution of the
B-type periodic orbit at Re = 8500. Snapshots are taken at four evenly spaced time
instants along a full period, starting from a Poincaré crossing, and marked with circles
in figure 5(a). Colour codes and line styles as for figure 3.

corner of the cavity and the boundary layer on the top lid remain essentially steady,
and so does the root of the diagonal jet until about the centre of the cavity. From
this point on, the jet describes a sweeping motion that results in a periodic migration
of the impingement location on the left-hand wall. The first snapshot (at tP, on the
Poincaré section) roughly corresponds to the lowest jet arrangement, while the third
snapshot (at tP + T/2, half a period later) shows the jet at its highest position. The
counter-rotating vortices that energise the jet grow and shrink alternately, as shown
by the streamfunction isocontours.

The spectrum of the lid driving-force signal CF(t) is represented in figure 5(b)
through the modulus of the Fourier transform |ĈF( f )| of the time series in the inset.
A main peak appears at the fundamental frequency f1= 0.369, which corresponds to a
period T = 2.71. The periodic solution has already evolved nonlinearly away from the
bifurcation point, such that clear harmonic peaks can be observed at integer multiples
of the fundamental frequency. Nonlinearity is however still weak, as pointed out by
the low energy contained in the harmonics as well as by the quasi-sinusoidal shape
of the time signal.
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1.6250

1.6275

uc √c f

t
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T/4T/4
uc

P = -0.00717

T/2 T/2 f1
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CF

(a) (b)Re = 14 000
CF

|ĈF|
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FIGURE 7. A-type periodic orbit at Re=14 000. (a) Phase map projections on the (uc, CF)
and (vc, CF) planes. The full circle indicates the fixed point of the Poincaré map defined
by uP

c =−0.00717 and u̇c > 0. This together with empty circles indicate snapshots at t−
tP = {0, T/4, T/2, 3T/4} in figure 8. (b) Spectrum |ĈF| of the CF(t) signal (inset).

0 T/4 T/2 3T/4

FIGURE 8. (Colour online) (See supplementary movie 2) Flow-field evolution of the
A-type periodic orbit at Re = 14 000. Snapshots are taken at four evenly spaced time
instants along a full period, starting from a Poincaré crossing, and marked with circles
in figure 7(a). Colour codes and line styles as for figure 3.

Periodic solutions are marked with circles in figure 4. The outermost error bars
indicate minimum and maximum values. Root-mean-square values are indicated by
the inner grey error bars. The innermost coloured error bars indicate the fundamental
spectral peak. All three sets of error bars show the increase of oscillation amplitude
with Re of the A-type periodic state.

The flow topology and temporal dynamics of the trapezoidal cavity solution in
Zhang et al. (2010) at Re= 8150 are perfectly compatible with our periodic solution
and both states could probably be related by an appropriate homotopy transformation
from one geometry to the other.

It takes a much higher Re to destabilise the base steady state A. An A-type periodic
solution may however be observed at Re = 14 000. Figure 7 portrays its temporal
dynamics. The oscillation amplitude is considerably weaker in comparison with B-
type periodic orbits and is barely perceptible in all three variables used for the phase
map projections. The flow at the centre of the cavity is nearly quiescent, and the
fundamental frequency, f1 = 1.719, is substantially higher than that for the B-type
periodic state, thus indicating a distinct instability mechanism.

Figure 8 (see supplementary movie 2) shows four snapshots equispaced along a
full period. The flow topology preserves the characteristic elongated primary vortex
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FIGURE 9. B-type quasi-periodic solution at Re = 9000. (a) Phase map projections
on the (uc, CF) and (vc, CF) planes. Empty circles indicate crossings of the Poincaré
section defined by uP

c =−0.26 and u̇c > 0. Numbered full circles correspond to the eight
consecutive crossings pictured in figure 10. The solid black line corresponds to one phase
map flight between two consecutive crossings. (b) Spectrum |ĈF|( f ) of the CF(t) signal
(inset).

squeezed against the lid that is characteristic of the A-state. The periodic dynamics
corresponds to a wave-type instability that travels leftwards along the interface
between the primary and secondary vortices. The instability is so sharply confined to
this high-shear region that any one of the snapshots is barely distinguishable from the
steady state at sufficiently high Re. Only when the snapshots are displayed as a series
of frames in a sequence is the time dependence made evident. The wavy dynamics
can be ascribed to a Kelvin–Helmholtz instability of the shear layers at either side
of the jet that develops parallel (and close) to the wall due to the interaction of the
primary and secondary vortices.

3.3. Quasi-periodic states
At Re= 9000, a second frequency, incommensurate with the original one, has arisen
and the B-type solution has evolved into quasi-periodicity. Figure 9(a) depicts phase
map trajectories of the quasi-periodic solution as it winds around an invariant torus
that has clearly developed into the nonlinear regime. Unlike for the periodic orbit at
Re= 8500, phase map trajectories do not close after each flight between consecutive
crossings of the Poincaré section. One such flight has been highlighted (black solid
line) for comparison with figure 5(a). The continuous-time quasi-periodic solution
shows up in the Poincaré map as a discrete-time limit cycle. The spectrum |ĈF|( f )
of CF(t) in figure 9 retains the fundamental frequency peak and harmonics, albeit
slightly shifted to f1= 0.364, of the periodic solution, but incorporates a modulational
frequency peak f2 = 0.21. The interaction of the fundamental and modulational
frequencies results in a collection of additional peaks at all linear combinations of
both frequencies, but the spectrum remains discrete as corresponds to the Fourier
transform of a quasi-periodic signal. The new and old frequencies are close to each
other, such that no slow–fast dynamics separation becomes evident. Furthermore, the
frequencies are incommensurable (their ratio is irrational), which results in phase
map trajectories densely filling the invariant torus, as is evident from figure 9(a).
Accordingly, the discrete limit cycle of the Poincaré map, indicated with circles in
the (uc, CF) plane, is densely packed.
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3210

7654

FIGURE 10. (Colour online) (See supplementary movie 3) Flow-field evolution of the
quasi-periodic solution at Re = 9000. Snapshots correspond to the eight consecutive
Poincaré crossings marked with circles in figure 9(a). Colour codes and line styles as
for figure 3.

The rotation number of the solution is given by the frequency ratio R = f1/f2 =

1.7381. The discrete-time limit cycle must be interpreted as winding anticlockwise.
Eight consecutive crossings have been numbered and marked with full circles. When
the solution evolves from 0 to 1 and then to 2, a complete winding around the limit
cycle (and a little more) has been accomplished. A second complete loop results from
further evolution up to sometime between crossings 3 and 4. The third loop occurs
between crossings 5 and 6. Finally, a fourth winding requires evolving until close to
crossing 7, which is past, yet not far from, crossing 0. All in all, slightly less than
seven flights to four complete turns around the discrete limit cycle, which corresponds
to an approximate rotation number R' 7/4= 1.75, very close to the exact value given
by the frequency ratio.

The time dependence of the quasi-periodic solution along each flight between
consecutive Poincaré crossings is governed by the same instability mechanisms as
those of the periodic solution. The dynamics merely corresponds to the sweeping
motion of the jet as already illustrated by figure 6. The added instability is of a
modulational nature and its effect is that of modifying the amplitude of the oscillation
from cycle to cycle. In order to convey the varying character of the solution, figure 10
(see supplementary movie 3) depicts consecutive crossings of the Poincaré section to
allow comparison of the flow fields at equal phase across cycles. All snapshots are
fairly similar except for slight variations associated with the modulational instability.
The Poincaré sections for Re= 8500 and Re= 9000 have advertently been chosen to
roughly capture the solution at the same phase stage, namely when the jet is at its
lowest. In this sense, the snapshots in figure 10 can be interpreted as how the lowest
jet position of snapshot t− tP= 0 of figure 6 changes from cycle to cycle. Snapshots
0 and 7 are the mutually closest on the discrete-periodic orbit. Snapshots 1, 3 and 6
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FIGURE 11. B-type chaotic solution at Re = 11 000. (a) Phase map projections on the
(uc, CF) and (vc, CF) planes. Empty circles indicate crossings of the Poincaré section
defined by uP

c = −0.36 and u̇c > 0. Numbered black circles indicate crossings shown in
figure 12. (b) Spectrum |ĈF|( f ) of the CF(t) signal (inset).

(a little less so with 5), which correspond to low CF, are characterised by a slightly
downward-bending jet with low impinging point, and a triangular-shaped top-left
vortex. Snapshots 0, 2 and 7, with higher CF, feature more rounded top-left vortices
and an upward-bending distal jet. The phase map region represented by snapshot 4
marks an intermediate stage at which the jet is at its straightest.

Quasi-periodic solutions are marked with squares in figure 4. Error bars represent
oscillation amplitude in the same way as for periodic solutions. A continuity from
periodic to quasi-periodic oscillation amplitude is evidenced, although the increasing
trend is contained and even momentarily reversed possibly due to a displacement
of the jet location. A fourth coloured set of error bars adds to the fundamental
oscillation spectrum peak amplitude, the amplitude of the fundamental modulation
peak, to convey the magnitude of the modulational dynamics, which also increases
with Re.

The allegedly periodic solution that Zhang et al. (2010) report at Re = 10 000 for
the trapezoidal cavity has a recognisable B-type flow topology, and the temporal
dynamics, although poorly represented by nearly quiescent cavity centre probe
readings, is compatible with a phase-locked quasi-periodic solution.

3.4. Chaotic attractor
The LDTC flow exhibits B-type chaotic dynamics at Re = 11 000, as evident from
figure 11. Trajectories seem to wind haphazardly in phase space and pierce the
purposely defined Poincaré section at random locations. The dynamics, however,
remains confined to a fairly small region in phase space and retains a certain structure
that becomes all the more obvious upon examination of the spectrum in figure 11(b).
Protruding from the broadband noise that is characteristic of chaotic dynamics, the
peaks at the oscillatory ( f1) and modulational ( f2) frequencies remain clearly visible.
A third peak at f < f2 might seem to imply the arising of new dynamics, but close
inspection reveals that it corresponds to a mere linear combination ( f1–f2) of the two
main peaks as a consequence of nonlinear resonant interaction of the oscillatory and
modulational dynamics.

At this Re the oscillation of the jet has become violent enough to occasionally
break. When this happens, the jet rolls counter-clockwise into a vortex while the
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4321

FIGURE 12. (Colour online) (See supplementary movie 5) Flow-field evolution of the
chaotic solution at Re = 11 000. Snapshots correspond to four representative Poincaré
crossings marked with numbered black circles in figure 11(a). Colour codes and line styles
as for figure 3.

boundary layers on the left-hand wall gradually dissipate. When finally shed in an
upward whip of the broken jet, the vortex travels, impacts the left-hand wall and
recombines with a vortex that is permanently trapped at the bottom of the cavity
supplying it with renewed energy. The process is followed by the eventual restitution
of the impinging jet. This behaviour is already present at the lower Re = 10 500,
except that the full process occurs in an orderly manner and repeats periodically
(see supplementary movie 4). At Re= 11 000, however, the jet roll-up and liberation
never repeat at the same phase along the cycle, so that the resulting dynamics is
chaotic. Figure 12 (see supplementary movie 5) shows snapshots at four crossings
of the Poincaré section defined by uP

c = −0.36 and u̇c > 0, each one representative
of different dynamics that might occur along the chaotic trajectories. The Poincaré
crossings shown in both snapshots 1 (t = 2.6 s in supplementary movie 5) and 2
(t = 12.4 s) are characterised by a large trapped vortex in the bottom corner that
forces the jet to bend clockwise halfway in its development and impinge on the
wall fairly horizontally. While snapshot 1 corresponds to an almost stagnant phase of
the jet, snapshot 2 is followed instead by a mild oscillation. The Poincaré crossing
shown in snapshot 3 (t= 20.1 s) features a jet that is clearly disrupted and starting to
roll up into an incipient counter-clockwise vortex. Following the crossing, the vortex
grows and is released in an upward whip of the jet. Once free, the vortex travels
towards the wall and pairs up with the trapped vortex at the bottom corner and feeds
it with new vorticity. In this process the impinging location slightly diffuses and the
boundary layers on the left-hand wall start dissipating until the jet forms back and
reestablishes the original flow topology. Snapshot 4 (t= 35.4) depicts a flow topology
very similar to that of snapshots 1 or 2, but in this case the crossing is followed
by a violent oscillation and the occurrence of a jet roll-up episode similar to that of
snapshot 3.

Chaotic solutions are marked with triangles in figure 4. Fluctuation amplitude
rapidly grows with Re, as evidenced by both the extrema and root-mean-square error
bars.

The similarity to the trapezoidal cavity of Zhang et al. (2010) ends with the quasi-
periodic solution. The chaotic solutions they report at Re= 12 500 and 15 000 are very
different from one another, and of a spatial complexity that we have not come across
in our triangular cavity set-up.
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4. Discussion
The B-type states that appear along the route from laminar steady flow to chaotic

are compatible with a Ruelle–Takens-type scenario (Ruelle & Takens 1971; Newhouse
et al. 1978). In this frame, the steady state is expected to destabilise in a Hopf
bifurcation, thereby issuing a branch of periodic states. These would in turn become
modulationally unstable in a Neimark–Sacker bifurcation at which quasi-periodic
solutions would arise. In the absence of symmetries, two incommensurable frequencies,
i.e. quasi-periodic motion on an invariant torus, are generically sufficient to precede
transition to chaotic motion. The origin of the B-type flow topology and its ensuing
three-step route to chaos will be the object of analysis in this section, and the nature
of each one of the bifurcations elucidated.

4.1. The saddle-node bifurcation
Following the B-type steady states branch backwards in Reynolds number, the
solution would seem to vanish into thin air at ReSN ' 4908. A thorough analysis
of the transient dynamics reveals that the final decay onto the steady state, while it
exists, is exponential and gets slower as ReSN is approached. This is suggestive of a
real negative eigenvalue gradually advancing towards a zero crossing. Moreover, the
last few solutions before the eventual zero crossing are well fitted by a square-root
law following ∼

√
Re− ReSN . Both facts put together are indicative of a saddle-node

bifurcation, whence node (state B) and saddle (henceforth referred to as state C)
steady-state solution branches are issued. We choose not to provide a detailed
description of the saddle-node bifurcation here, as it adds little value to the discussion,
but deem it pivotal instead to produce evidence of the existence of the saddle branch.

As a saddle solution that pairs up with a stable nodal solution, state C possesses
a one-dimensional unstable manifold that drives trajectories towards nodal state B
on one side and pushes dynamics away from itself on the other. It is therefore not
reachable by time evolution but its stable manifold bounds, if only locally, the basin
of attraction of state B, and separates it from the basin of attraction of every other
existing attractor, in this case state A. We have employed the edge-tracking technique
(Skufca, Yorke & Eckhardt 2006) to explore the dynamics on the basin boundary,
which in cases like the one at hand is known to eventually converge onto the saddle
solution. Thus, starting from the A-type and B-type solutions at Re = 6000, we
have followed a refinement process by picking intermediate initial conditions along a
straight line in phase space connecting both states (u, p)α = α(u, p)A + (1− α)(u, p)B.
The refining bisection process on parameter α leads to the determination of
neighbouring initial conditions that evolve together on the basin boundary (critical
threshold, also known as edge) for very long times before eventually parting, one
towards state A, the other towards state B. The refinement can be taken down to
machine precision, at which time a new refinement sequence can be started between
the last bounding trajectories at a later time. This alternate succession of refinement
procedures and adequate time leaps allows for tracking edge trajectories indefinitely.

Figure 13(a) shows the result of three consecutive refinement processes with two
intervening time advances (indicated by r1 and r2). The black lines correspond
to bounding trajectories obtained from each one of the three bisection refinement
processes undertaken, the solid line always finally departing towards state A while
the dashed line eventually leaving for state B. The locations of states A and B are
indicated with grey dashed lines to guide the eye. The trajectory on the basin boundary
clearly converges onto a steady state after some initial rather wild transients and a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

51
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.512


502 B. An, J. M. Bergada and F. Mellibovsky

−0.05

0

0.05

uc

(a) (b)

t

A uc

B
C

r1 r2

t

C

State C

0 50 100 150 200 250

FIGURE 13. (Colour online) Steady state C, resulting from edge tracking at Re =
6000 between bounding solutions A and B. (a) Time evolution of uc for several initial
conditions tightly confining the dynamics to the basin boundary. The A- and B-labelled
horizontal grey dashed lines indicate states A and B, respectively. Solid (dashed) lines
indicate bounding trajectories eventually escaping towards state A (B). The vertical grey
dotted lines indicate two successive edge-tracking refinements (labels r1 and r2). The inset
shows an extreme magnification of the closest approach to steady-state C resulting from
refinement r2. (b) Steady-state C, taken at the point along the basin boundary indicated
with a circle in panel (a).

subsequent gradual oscillatory damping (see the inset) that might be indicative of a
possibly oncoming Hopf bifurcation at larger Re. In any case, after three refinements
and at around t & 150 the steady state can be considered as sufficiently converged.
This steady state, which governs the dynamics on the boundary separating the basins
of attraction of states A and B, is shown in figure 13(b) and indicated with an empty
circle in figure 13(a). Its relative phase-space position with respect to states A and
B is marked with an isolated grey cross labelled C in figure 4, in representation of
the full branch of unsteady solutions that would be extremely costly to track. State
C is similar but not identical to state B. Their resemblance results from their being
connected at the saddle-node bifurcation not so far away at ReSN , but their nonlinear
evolution at larger values of the parameter can be largely independent.

4.2. The Hopf bifurcation
A mere inspection of the transients that lead to steady-state B of § 3.1 (sufficiently
far from the saddle-node bifurcation) reveals that final asymptotic convergence follows
a spiralling trend, as evidenced by the (u′c, v

′

c) phase map projection in the inset
of figure 14(a). Here the primes denote deviation from steady-state values. This is
an indication that the leading eigenmode is a complex-conjugate pair, and that the
steady state reduces to a stable focus when the dynamics is projected on the manifold
spanned by the leading eigenpair, all other eigendirections contracting faster.

The instantaneous flow field can be expressed in terms of the stable steady state
(ū, p̄) plus a perturbation field (u′, p′):

u(x; t)= ū(x)+ u′(x; t), p(x; t)= p̄(x)+ p′(x; t). (4.1a,b)

The equations of motion for the perturbation are obtained by substituting (4.1) in (2.1):

∂tu′ + (u′ · ∇)u′ + (ū · ∇)u′ + (u′ · ∇)ū=−∇p′ +
1

Re
∇

2u′,
∇ · u′ = 0,

}
(4.2)
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FIGURE 14. (Colour online) Asymptotic evolution of the perturbation field around the
stable steady state. (a) Sequences of u′c

P, normalised by u′c
P
(0), corresponding to the

Poincaré map defined by (4.7) for Re∈ [7500, 8035]. Least-squares fits to the exponential
tails are indicated by the grey straight lines. The inset shows, as an example, the
phase map that generates the sequence at Re = 7500. (b) Vorticity (ω′, top panel) and
streamfunction (ψ ′, bottom panel) on a Poincaré section at Re= 8000.

with homogeneous Dirichlet boundary conditions for u′.
For sufficiently small perturbation fields of order O(ε) with ε � 1, i.e. for flow

fields at a vanishing distance from the steady state, the perturbation advection term
(u′ ·∇)u′∼O(ε2) becomes negligible relative to all other terms, which remain of order
O(ε), and the equations linearise:

∂tu′ + (ū · ∇)u′ + (u′ · ∇)ū=−∇p′ +
1

Re
∇

2u′,
∇ · u′ = 0.

}
(4.3)

The search for solutions of the form (u′, p′)(t) = (ũ, p̃)eλt results in a generalised
constrained eigenproblem[

λ 0
0 0

] (
ũ
p̃

)
=

[
−(ū · ∇) �−(� · ∇)ū+

1
Re
∇

2
� −∇�

∇ · � 0

](
ũ
p̃

)
, (4.4)

with eigenmodes (ũi, p̃i) and associated eigenvalues λi. The dynamics of the linearised
problem exactly decouples into the superposition of the evolution of individual
eigenmodes:

(u′, p′)(t)=
∑

i

ai(ũi, p̃i)eλit −−→
t→∞

a1(ũ1, p̃1)eλ1t
+ c.c., (4.5)

where ai is the projection of the initial perturbation field (u′, p′)(0) onto mode
i, and eigenmodes have been sorted by decreasing value of the real part of their
associated eigenvalue. For a stable steady state, all eigenvalues have negative real
part (Re(λi)<Re(λ1)<0), which results in exponential decay along all eigendirections.
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The asymptotic behaviour of the perturbation for long times tends to align with the
leading eigenmode (ũ1, p̃1) (the one associated to the eigenvalue with larger real part,
λ1), as the dynamics contracts faster in all other eigendirections (ũi, p̃i) (of smaller
real part eigenvalues, λi, i> 1).

The fully nonlinear evolution towards a stable steady state will experience nonlinear
transients that hinder a modal analysis. Once the initial transients have been overcome,
however, the dynamics will asymptotically approach the linear regime and the
perturbation will align with the leading eigenmode as in the linear case.

For a focus the leading eigenmode is a complex-conjugate pair (ũ1, p̃1)= (ũr
1, p̃r

1)±

i(ũi
1, p̃i

1) with eigenvalue λ1 = λ
r
1 ± iλi

1, the r and i superscripts denoting real and
imaginary part, respectively. Hence the c.c. indication denoting complex conjugation
in (4.5).

Setting the time origin sufficiently deep into the linear regime, all degrees of
freedom follow an exponential oscillating decay towards the stable steady state, with
shared frequency ( f = λi

1/2π) and damping rate (λr
1). For the perturbation field, this

decay is towards annihilation. In particular, the perturbation velocity components at
the centre of the cavity decay following

u′c(t)= a1ũce(λ
r
1+iλi

1)t + c.c.= eueλr
1t cos(λi

1t+ψu),

v′c(t)= a1ṽce(λ
r
1+iλi

1)t + c.c.= eveλ
r
1t cos(λi

1t+ψv),

}
(4.6)

where c.c. denotes complex conjugation and (eu, ψu) and (ev, ψv), the initial envelope
amplitudes and phases of the u′c and v′c signals, respectively, are univocally determined
by the choice of the time origin through the projection a1 of the initial flow state onto
the leading eigenmode.

In order to estimate the critical value of the Reynolds number at which the
Hopf bifurcation takes place (ReH) and the frequency at onset of the periodic orbit
branch issued from the Hopf point, the leading complex-conjugate eigenpair must
be monitored as the parameter, the Reynolds number, is increased towards the
bifurcation point. This can be done by comparing the actual behaviour of (u′c, v

′

c)
with the expected behaviour according to (4.6), using λr

1 and λi
1 as fitting parameters.

A convenient way of doing so consists of defining a Poincaré section and examining
the resulting discrete-time dynamical system. Here we have chosen to define the
section as S = {(u′, p′) : v′c = 0, v̇′c < 0}. The Poincaré map is then defined as

P : S −→ S,
aP
7−→P(aP)= φTP(aP),

}
(4.7)

where a = (u′, p′) defines the state of the continuous-time dynamical system (the
Navier–Stokes equations), φτ (a) is the flow generated by evolving state a for a lapse
τ and aP is a state on S . Repeated application of the map generates a sequence aP(k)
with associated crossing times tP(k), which are in fact obtained as a post-process of
the continuous-time dynamical system evolution by second-order interpolation of S-
intersections. Flight times between consecutive crossings are then obtained as TP(k)=
tP(k)− tP(k− 1).

In the linear regime, equation (4.6) anticipates that S-crossings will result in the
sequence

tP(k)=
1
λi

1

(π

2
−ψv

)
+

2π

λi
1

k= tP(0)+
2π

λi
1

k= tP(0)+ TPk,

u′c
P
(k)= Aue(π/2−ψv)(λr

1/λ
i
1)+(2π/λi

1)λ
r
1k cos

(π

2
+ (ψu −ψv)

)
= u′c

P
(0)µk,

 (4.8)
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with TP(k) = TP
= (2π/λi

1) being the lapse between consecutive crossings and
µ = eTPλr

1 the dominant multiplier (the eigenvalue of the Poincaré map with largest
modulus), real positive here, of the stable fixed point of the Poincaré map, coincident
in this case, by construction, with the steady state of the Navier–Stokes equations.

It is therefore to be expected that as convergence onto the steady state progresses
into the linear regime, the actual sequences will asymptotically approach (4.8). Then,
λi

1 could be estimated from

TP
= lim

k→∞
TP(k)−→ λi

1 =
2π

TP
(4.9)

and λr
1 might be reckoned from a least-squares exponential fit, for k→∞, of the form

log
(

u′c
P
(k)

u′c
P(0)

)
= k logµ−→ λr

1 =
1

TP
logµ. (4.10)

The inset of figure 14(a) indicates with circles, for the sake of illustration, a
collection of consecutive S-intersections as projected on the (u′c, v

′

c) plane for
Re = 7500. The main panel represents, for a range of Re below critical, the
sequence u′c

P
(k)/u′c

P
(0) as obtained from figures like the one in the inset, conveniently

truncated to eliminate most of the initial nonlinear transients. A least-squares fit to
the exponential tails provides the multiplier.

Figure 14(b) depicts streamfunction (ψ ′P, top panel) and vorticity (ω′P, bottom
panel) fields of the perturbation (aP) on a Poincaré crossing well into the linear
regime at Re = 8000. This flow field can be identified with the eigenmode (ãP)
corresponding to the (positive real) dominant eigenvalue µ of the map. It is, at the
same time, the imprint on S of the dynamics generated by the complex-conjugate
eigenpair (ã1, ã∗1) of the continuous-time dynamical system. It is clear from the figure
that the incipient instability concentrates in the high-shear regions of the (still stable)
steady state. In particular, upcoming unsteadiness seems to originate at the strong jet
that crosses the cavity through its centre and within the boundary layers that develop
on the left-hand wall at either side of the stagnation point.

Figure 15(a) shows the evolution of the real (λr
1, bottom panel) and imaginary (λi

1,
top panel) parts of the leading eigenvalue. The latter is inferred at each Re from (4.9)
by estimating the asymptotic saturation of TP(k) as the steady state is approached,
while the former results directly from (4.10).

As the critical point is approached, the dynamics around the steady state becomes
extremely slow. In cases beyond Re> 8000, reaching the steady state was impractical,
so that an approximation was obtained by averaging instead. This poses no problem as
long as the estimation is done from averaging sufficiently long time series, preferably
including a natural number of Poincaré crossings, already in the linear regime. The
fact that the tails remain exponential are a good sign that the eigenvalue can be
estimated accurately.

A quadratic fit to the last few points (Re > 7900) of λr
1(Re) provides a means

of estimating the critical ReH ' 8039.3. A second fit for λi
1(Re) to the same points

forecasts a frequency f = λi
1/2π= 0.377 for the branch of periodic orbits at onset.

For Re > 8040, the steady state has become unstable and nonlinear evolution
produces a branch of periodic orbits. The oscillation frequency at Re = 8040 is
f = 0.378, in good agreement with the critical value for λi

1. The amplitude of the
oscillation, however, does not seem to follow the square-root dependency that would
be expected from a supercritical Hopf bifurcation. Figure 15(b) shows how the
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FIGURE 15. Hopf bifurcation. (a) Dependence of the real (λr
1, bottom panel) and

imaginary (λi
1, top panel) parts of the leading eigenvalue. Quadratic fits of the points

at Re > 7900 are drawn with grey dash-dotted lines. (b) Force coefficient oscillation
amplitude ACF versus Re of the bifurcated periodic orbit branch. The grey line corresponds
to a square-root fit of the five points closest to the saddle node.

force-coefficient amplitude of the periodic orbits, measured as ACF = CFmax − CFmin ,
varies with Re. Not only does the amplitude fail to vanish at the bifurcation point,
but it remains finite for Re < ReH disclosing a region of coexistence of the steady
and periodic states. The approach to the periodic orbits is extremely slow in this
regime, such that the amplitude has not been measured from converged solutions but
extrapolated from a power fit of the form

ACF(k)= ACF +
(
ACF − ACF(0)

)
|µ|k, (4.11)

where ACF is the asymptotic value of the orbit amplitude and µ the multiplier (µ< 1
for stable periodic orbits), to the sequence

ACF(k)=max
t

CF(t)−min
t

CF(t), with t ∈ [ tP(k− 1), tP(k) ), (4.12)

once the dynamics has reached the linear regime of convergence onto the periodic
orbit.

Quasi-static reduction of Re along the periodic orbit branch abruptly falls onto the
steady-state branch somewhere in the range ReFC ∈ [8030, 8031), which bounds the
hysteresis region to Re ∈ [ReFC, ReH]. The disappearance of the periodic orbit branch
can be explained by the presence of a fold-of-cycles bifurcation, as a square-root
fit ACF = AFC

CF
+
√

Re− ReFC to the five lowest Re periodic orbits seems to confirm.
The bifurcation occurs at a critical ReFC = 8031.0 with AFC

CF
6= 0. In a fold-of-cycles,

the stable (nodal) branch of orbits collides with an unstable (saddle) branch and the
orbits disappear. It is this unstable branch, not reachable by mere time evolution, that
presumably connects with the steady state at ReH . The Hopf bifurcation is therefore
subcritical.

An analogous study of the A-state transition from steady to periodic seems to
indicate that a supercritical Hopf bifurcation occurs at Re' 13 450, although a more
thorough analysis would be required to pinpoint the exact location of the bifurcation
and confirm its supercritical nature.
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FIGURE 16. The Neimark–Sacker bifurcation. (a) Phase map projections on the (vc,CF)
plane of the Poincaré maps defined by uc = uP

c = −0.21, u̇c > 0. Periodic orbits are
represented by triangles while circles denote quasi-periodic solutions. (b) Evolution across
the bifurcation of the primary ( f1, |ĈF( f1)|, circles) and modulational ( f2, |ĈF( f2)|, squares)
peaks in the spectrum of CF(t), relative to their values at the bifurcation point. The grey
dash-dotted line and circle correspond to a square-root fit of the modulational amplitude
data |ĈF( f2)| = k

√
|Re− ReNS| and to the location of the bifurcation, respectively.

4.3. The Neimark–Sacker bifurcation
The periodic solutions branch issued from the subcritical Hopf is replaced by quasi-
periodic solutions at higher Re, as observed in § 3.3. The shared power spectral density
peak at f1 indicates, however, that the latter states might have evolved from the former
at a Neimark–Sacker bifurcation. As a matter of fact, periodic states can be observed
up to Re . 8560 and quasi-periodic states from Re & 8570 on. Figure 16(a) shows
phase map projections on the (vc, CF) plane of stable solutions of the map defined
with the Poincaré section S = {(u, p) : uc = uP

c =−0.21, u̇′c > 0}. Periodic solutions of
the Navier–Stokes equations appear as fixed points of the Poincaré map, while quasi-
periodic solutions show as discrete periodic orbits. Thus, phase map trajectories are
attracted by fixed points (triangles) up to Re6 8564, and by periodic orbits (collection
of circles) from Re> 8565 on. The scenario is suggestive of a direct relation between
both solution branches, as the evolution of the periodic orbit centre follows smoothly
from the evolution of the preexisting fixed points location. Also the amplitude of the
discrete periodic orbits seems to grow from the zero amplitude of the discrete fixed
points as Re is increased beyond their onset value, which points to a supercritical
nature of the intervening bifurcation.

To establish the connection between both solution branches, the main spectral
frequency peaks ( f1 all along, f2 for the quasi-periodic solutions) have been
monitored alongside the amplitude of the solutions as measured by the spectral energy
contained in the aforementioned spectral peaks (|ĈF( f1)| and |ĈF( f2)|, respectively).
These provide a means of quantifying the solution oscillation amplitude (for both
periodic and quasi-periodic solutions) and the amplitude of the modulation of this
oscillation (only for quasi-periodic). As shown in figure 16(b) (bottom panel), the
oscillation frequency f1 evolves continuously from the branch of periodic solutions
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to that of quasi-periodic orbits, which incorporates a modulational frequency f2
that is incommensurate with f1. This places us in the scenario of a supercritical
Neimark–Sacker bifurcation. Figure 16(b) (top panel) shows the evolution of the
modulational amplitude |ĈF( f2)| (squares). Supercriticality has been tested by
attempting a square-root fit |ĈF( f2)| = k

√
|Re− ReNS|, with k and ReNS as fitting

parameters (grey dash-dotted line). The quality of the fit is remarkable, and provides a
fair estimate of ReNS' 8564.8 at onset with zero modulational amplitude. A quadratic
interpolation to the modulational frequency yields f SN

2 ' 0.2106. Further quadratic
interpolation to the last three data points before the bifurcation, corresponding to
periodic solutions, results in f SN

1 ' 0.3673 and |ĈF( f1)| ' 5.58 × 10−5. The main
oscillation amplitude remains fairly stable across the Neimark–Sacker point, while
the oscillation frequency stops a decreasing trend and starts growing. Meanwhile, the
modulational frequency tends to decrease from its value at the bifurcation as Re is
increased. The frequency ratio at the bifurcation is RSN = f SN

1 /f SN
2 ' 1.7441, not far

from that of the quasi-periodic solution of § 3.3.
In order to provide further evidence of the occurrence of a Neimark–Sacker

bifurcation and of its subcriticality, the modal decay of perturbations in the
linear regime towards the stable periodic solutions has been analysed in a way
analogous to that undertaken to elucidate the nature of the Hopf bifurcation in § 4.2.
A Neimark–Sacker bifurcation is that of a fixed point of a map (or discrete-time
dynamical system) whereby a complex-conjugate pair of eigenvalues crosses the unit
circle in the complex plane. The map here is a Poincaré map, and the fixed point is
the branch of periodic solutions.

Let (ū, p̄)P be a stable fixed point of the map (the intersection of the periodic
orbit with the Poincaré section S) and (u, p)P(k) the sequence generated by successive
application of the map starting from some initial state within the basin of attraction
of the fixed point and sufficiently close to it to be considered within the linear regime.
The perturbation field will evolve as

(u′, p′)P(k)≡ (u, p)P(k)− (ū, p̄)P =
∑

i

bi(ũi, p̃i)
Pµk

i −−→t→∞
b1(ũ1, p̃1)

Pµk
+ c.c., (4.13)

where bi is the projection of the initial perturbation on eigenmode (ũi, p̃i)
P of

eigenvalue µi. For convenience, the eigenmodes are sorted by decreasing modulus
1 < |µ1| < |µi|. Note that stability of the fixed point implies that all eigenmodes lie
within the unit circle in the complex plane. For large k, the evolution will align with
the dominant (largest modulus) eigenmode µ1.

Individual perturbation degrees of freedom will therefore asymptotically decay as

y(k)= b1ỹµk
1 + c.c.= eyrk cos (kθ +ψy), (4.14)

with r and θ the modulus and argument of the eigenvalue µ1= reiθ , and ey and ψy the
initial envelope amplitude and phase of the y(k) sequence. In particular, figure 17(a)
depicts, for several values of Re approaching the Neimark–Sacker bifurcation from
the stable fixed points branch, the decay of the perturbation force coefficient C′PF
and cavity centre vertical velocity v′Pc . The discrete-time origin (k = 0) has been
set well into the linear regime. For ease of visualisation, both quantities have been
normalised by their envelope value (eC′FP and ev′cP) at k = 0, obtained from fitting
(4.14) to the numerical data. The left-hand panels clearly show how the decay of
C′PF gets progressively less damped as Re is increased towards the bifurcation point
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FIGURE 17. Modal decay of perturbations in the vicinity of the Neimark–Sacker
bifurcation of the Poincaré map defined by uc = uP

c = −0.21, u̇c > 0. (a) Discrete-time
evolution of C′PF (left) and phase map projections on the (v′c,C

′

F) plane (right) of the linear
decay of a perturbation onto the fixed point for several Re<ReNS. Here C′PF and v′Pc have
been normalised by envelope amplitude at k= 0. (b) Evolution of the modulus (r, bottom)
and argument (θ , top) of the dominant eigenvalue µ1 = reiθ of the stable fixed point as
the bifurcation is approached. Values of r and θ are estimated from fits to the numerical
data. Grey circles indicate the Neimark–Sacker bifurcation as estimated from quadratic fits
to the rightmost few points.

(top to bottom). It is also apparent how the decay progresses along seven distinct lines,
indicating that the map nearly closes (apart from the obvious contraction onto the
fixed point) every seven map iterations. The right-hand panels correspond to (v′c,C′F)
phase map projections and both the decay and the discrete quasi-period of seven are
clearly evidenced. The labels at Re = 8560 indicate the visit sequence of the seven
paths, numbered from 0 to 6. The phase at every map iteration does not change by
1φ ∼ 2π/7 (or −12π/7), as one would tend to think, but rather by 1φ ∼ 8π/7 (or
−6π/7). The rotation number is therefore in the vicinity of R= 2π/1φ∼ 7/4= 1.75
(or −7/3=−2.3). The frequency ratio of the quasi-periodic solution that results from
the Neimark–Sacker bifurcation, as well as its winding sign on the invariant torus,
suggests that the map iteration must be considered as winding in the anticlockwise
direction and that the positive values of 1φ and R are the ones to be confronted
with continuous-time data. The sign change in the apparent spiral paths (not to be
mistaken for the actual winding of the map trajectories) from clockwise at Re= 8555
to anticlockwise at Re = 8560 is the result of traversing a rational rotation number
R = 1.75 at Re = 8557.5, hence the apparent locking, the straight phase map paths
and the perfectly exponential discrete-time decay of each of the individual lines.

Fitting (4.14) to the C′PF data at several values of Re approaching the Neimark–
Sacker bifurcation from the stable fixed points side provides an accurate estimation of
the modulus r and argument θ of the dominant eigenvalue of the Poincaré map. Their
Re dependence is shown in figure 17(b). The intersection with the (r = 1)-line of a
quadratic fit to the modulus of the last few points before the bifurcation (bottom panel,
dash-dotted grey line) yields an estimate of ReNS ' 8565.0 for the critical point, in
good agreement with the value inferred from the modulational amplitude of the quasi-
periodic solution resulting from the bifurcation. A second quadratic fit, this time to the
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FIGURE 18. Nonlinear evolution of the two-torus. Phase map projections on the (uc, CF),
(vc, CF) and (vc, uc) planes of quasi-periodic solutions winding on the two-torus at Re=
8600, 9000, 9500, 10 000 and 10 500 (from black toward increasingly lighter shades of
grey).

argument of the same last few points that precede the Neimark–Sacker bifurcation (top
panel, dash-dotted grey line), results in θNS' 3.6023. The corresponding rotation ratio
is RNS' 1.7442, again in very close agreement with that obtained from estimating the
oscillation and modulational frequencies at the bifurcation point.

4.4. Nonlinear evolution of the two-torus
Figure 18 depicts phase map projections of quasi-periodic (and occasionally
phase-locked) solutions winding on the two-torus created at the Neimark–Sacker
bifurcation. The hole in the torus is clearly perceptible in the (uc, CF) projection of
the solution at Re = 8600 (black), where nonlinearity is still mild and trajectories
retain the most salient features of the underlying periodic orbit that has become
unstable in the Neimark–Sacker bifurcation. As Re is increased (increasingly lighter
shades of grey), the torus evolves nonlinearly, the lid shear force decreases and the
dynamics associated with the modulation gains prominence as the imprint on the
solution behaviour becomes comparable to that of the oscillation dynamics. Despite
the deep transformation of the solution (as evident from phase map projections) from
its origin at Re= 8600 to Re= 10 500, at the verge of becoming chaotic, the evolution
is gradual and uneventful, with the sole exception of a collection of frequency-locking
episodes.

We have detected several such episodes, characterised by the locking of trajectories
onto periodic solutions winding on the torus, as the Re path in parameter space crosses
a series of Arnold tongues. When entering these regions, a fold of cycles occurs on the
torus. The periodic solutions observed correspond to the nodal orbit, which pairs up
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with a saddle orbit that is not detectable through mere time evolution. Both periodic
orbits collide and are destroyed in a second fold of cycles upon leaving the Arnold
tongue. Phase-locking with frequency ratios 5:3, 21:13, 50:31 or 97:60 has been found
at Re= 10 200, 10 500 (lightest grey in figure 18; see supplementary movie 4 for time
evolution of vorticity field), 10 540 and 10 590, respectively. In particular, the phase-
locked orbit in the tongue at Re ' 10 540 undergoes a period-doubling cascade that
triggers chaotic dynamics.

4.5. The onset of chaotic dynamics
The onset of chaotic motion appears to follow the breakdown of the two-torus created
in the Neimark–Sacker bifurcation much in the way advanced by Ruelle & Takens
(1971) and later extended by Newhouse et al. (1978). The Afraimovich–Shilnikov
theorem postulates three different ways whereby this may occur (Afraimovich &
Shilnikov 1983), namely (1) breakdown following some ordinary bifurcation of
phase-locked limit cycles; (2) sudden transition in the presence of a homoclinic (or
heteroclinic) structure; and (3) soft transition due to a gradual loss of smoothness. All
three alternative paths have since been confirmed as naturally occurring in autonomous
physical systems (Anischenko, Safonova & Chua 1993). While the latter path entails
direct transition, the former two scenarios involve torus breakdown prior to the advent
of chaos, either by the appearance of a period-doubled limit cycle that no longer lies
on the invariant torus (first case) or by manifold tangles (second case).

Figure 19 shows phase map projections on the (vc, CF) plane of the Poincaré map
defined by S = {(u, p) : uc = uP

c = −0.36, u̇′c > 0}. The phase portrait at Re = 10 520
(figure 19a) is clearly indicative of quasi-periodic motion on the two-torus, as the
crossings fill the discrete-time limit cycle densely. Its CF spectrum is that of a quasi-
periodic signal, with clear peaks at the two incommensurate frequencies and a bunch
of secondary peaks due to nonlinear effects. At Re= 10 530, the system has crossed
into a phase-locked region with a 51:30 resonance, meaning that a phase-locked limit
cycle of frequency fl= f1/51= f2/30 is now winding on the invariant torus (figure 19b).
This periodic orbit, visible as a discrete number of crossings on the Poincaré section
and with a spectrum made of peaks at all integer multiples of fl, corresponds to the
stable solution. Pairing up with it, a saddle limit cycle, also winding on the torus,
exists. Its unstable manifold, which drives the flow towards the stable limit cycle,
fulfils the closure of the invariant set. The torus is still intact. The invariant torus
breaks down some place between Re= 10 530 and Re= 10 540, precisely at the period-
doubling bifurcation that produces the period-doubled limit cycle we observe at Re=
10 540 (figure 19c). The Poincaré map now clearly depicts a period-two discrete limit
cycle that, unlike the discrete cycle at Re= 10 530, winds twice before closing. The
spectrum is conspicuously similar, except for the fact that new peaks have appeared
between every two consecutive peaks of the original cycle, the basic frequency having
been halved to fl2 = f1/102= f2/60. A bifurcation cascade, whose detailed analysis is
beyond the scope of this study, follows, such that at Re = 10 550 the solution is no
longer periodic but chaotic (figure 19d). The crossings on the Poincaré section do not
fall on precisely located points or along well-defined lines, but now fill a narrow band
around the phase-space region where the initial period-doubled cycle appeared. The
invariant set has now turned into a strange attractor. The principal peaks and their
nonlinearly generated secondary counterparts are still discernible in the spectrum, but
they are now accompanied by broadband noise that is well above machine precision
and can by no means be ascribed to numerical truncation error.
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|ĈF|

|ĈF|

FIGURE 19. Onset of chaotic motion. Phase map projections on the (vc, CF) of the
Poincaré map defined by uP

c =−0.36 (left) and spectrum |ĈF| (right) at (a) Re= 10 520,
(b) Re= 10 530, (c) Re= 10 540 and (d) Re= 10 550.

As it happens, the chaotic transition is reversed as Re is increased and a new
phase-locked limit cycle corresponding to a different Arnold tongue is obtained
at Re = 10 590. Increasing Re further, the region is left behind following a new
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FIGURE 20. Evolution of the chaotic set. (a) Phase map projections on the (vc, CF) of
the Poincaré map defined by uP

c = −0.36 and (b) spectrum |ĈF| (right) at Re = 10 600
(black), Re= 10 800 (dark grey) and Re= 11 000.

period-doubling cascade similar to the one already described. At Re= 10 600 the flow
is again chaotic and no evidence of reverting to quasi-periodicity has been found all
the way up to Re= 13 000, although this is difficult to ascertain without undertaking
a thorough analysis of the evolution of the strange attractor. The evolution from
the well-structured mildly chaotic attractor at Re = 10 600 towards the seemingly
unstructured wild attractor at Re = 11 000 and beyond is gradual, as shown in
figure 20. The vestiges of the original torus are progressively lost in an apparently
featureless cloud of Poincaré crossings (figure 20a) and the broadband noise in the
spectrum steadily grows in energy (figure 20b), gradually burying the characteristic
frequency peaks.

4.6. Bursting events away from the chaotic set
As the chaotic dynamics of the strange attractor becomes progressively wild, bursting
episodes start occurring for Re & 12 000 (see supplementary movie 6) that take
phase-space trajectories into a previously unexplored region where some kind of
unstable state seems to dwell. These visits become recurrent and protracted as Re
approaches 13 000. The left-hand panel of figure 21 compares the dynamics at
Re= 13 000 (black) and Re= 11 000 (light grey) by displaying part of the respective
uc time series. Mean value and fluctuations share similar characteristics part of the
time, but regular excursions towards lower |uc| values that were absent at Re= 11 000
occur frequently at Re = 13 000. One such excursion is indicated in the time series
(dark grey) and zoomed in in the inset. The dynamics in this region seems to be
governed by a periodic orbit that captures phase map trajectories along its stable
manifold for a while before the solution escapes back following its unstable manifold.
The pseudo-periodic nature of the signal is evident in the inset within the inset,
which corresponds to a further zoom to the smoothest stage of the excursion. Phase
map projection on the (uc, vc) plane (right-hand panel of figure 21) shows how the
chaotic set remains pretty much in the same location where it was at Re = 11 000
(shown in light grey). However, phase map trajectories clearly incorporate frequent
visits to phase-space regions not previously explored, following bursting events (one
such event is highlighted in dark grey) that take the dynamics away from the location
of the original chaotic set and then back. Especially significant is the occasional
wandering at the top-right corner of the phase map, magnified in the inset, where
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FIGURE 21. Chaotic flow dynamics at Re= 13 000 (black), as compared to Re= 11 000
(light grey). The left-hand panel contains uc time series, while the right-hand panel
displays phase map projections on the (uc, vc) plane. A prototypical excursion (dark grey)
is highlighted in both panels and the dashed boxes are zoomed in in the respective insets.
A further zoom, shown in the second set of insets, reveals the pseudo-periodic nature of
the signal in the region of phase space visited during burst events.

trajectories seem to shadow the unstable manifold of some sort of mildly unstable
state, possibly the continuation to this higher Re of the state C presented in § 4.1,
which would have undergone a Hopf bifurcation at some point earlier in Reynolds
number. For a while, the flow in the centre of the cavity stays nearly quiescent, an
indication that the diagonal jet that is characteristic of B-type states is momentarily
dismantled. The most quiet stage of the approach is shown in the second inset, where
two full pseudo-periods have been indicated (black) to convey the dynamic properties
of the underlying state that trajectories appear to orbit for a while. We conjecture
that the aforementioned state-C saddle solution might be responsible for piercing the
chaotic attractor at a slightly higher Re in a boundary crisis. We shall not explore
the issue further, as the resolution and the computational resources required to fully
clarify the situation are well beyond the scope of this study, but leave it for future
investigation.

5. Conclusions

Evolving in time the equations of fluid motion with a lattice Boltzmann approach,
we have unfolded the bifurcation sequence that leads to chaotic dynamics of the
incompressible two-dimensional flow within a right-angled isosceles triangular
enclosure driven by the tangential motion of its hypotenuse. The steady solutions
branch that originates at zero Reynolds number (Stokes flow limit) remains stable for
a wide range of flow regimes. This base state (state A) acts as a global attractor up
to Re' 4908, at which point a second branch of steady solutions (state B) emerges in
a saddle-node bifurcation, pairing up with a branch of saddle solutions (state C). The
nodal stable solution, characterised by an intense jet diagonally crossing the cavity,
becomes unstable in a slightly subcritical Hopf bifurcation at Re ' 8040, whereby
a branch of periodic solutions is issued. Time dependence comes in the form of a
periodic oscillation of the jet, and due to the subcritical character of the bifurcation,
the solutions are unstable at onset. They become stable, and therefore accessible
through time evolution, in a fold of cycles, thus leaving a small range of coexistence
of steady and oscillating jet solutions. A second incommensurate frequency arises
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in a supercritical Neimark–Sacker bifurcation at Re ' 8565, rendering the dynamics
quasi-periodic. The jet remains oscillatory, but the oscillation amplitude incorporates
a modulation. As Re is further increased, the quasi-periodic solution traverses a
series of Arnold tongues. The frequency-locking episode that occurs in the vicinity
of Re ' 10 530 is different from all preceding episodes in that the phase-locked
periodic orbit undergoes a period-doubling cascade that results in the emergence of
a strange attractor at Re ' 10 550. This transition path to chaotic dynamics, one of
the three possible torus-breakdown scenarios advanced by Afraimovich & Shilnikov
(1983), is however shortly reversed at slightly higher Re before a second transition
of the same nature leaves the flow chaotic from Re & 10 600 on. The dynamics
progressively becomes ever more involved and the broadband noise in the spectrum
steadily increases, gradually masking the underlying characteristic frequency peaks.

The saddle solution that pairs up with the stable node that undergoes the
aforementioned bifurcation cascade does not seem to be related or connected to
the base state branch (be it the steady base flow or any of the subsequent bifurcated
descendants that take over for Re & 13 450), as this latter has been continued and
shown to remain an attractor until at least Re< 28 000 (note that the computations are
probably not sufficiently well resolved at these high Re). It is nonetheless possible
that the saddle state may be playing a crucial role in governing the chaotic attractor
dynamics and eventually puncturing and morphing it into a chaotic repeller or saddle.
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