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SUMMARY
This note presents a novel method to design a controller for the formation of networked mobile
robots, where the communication between the members of the group is affected by variable
time-delay. The control objective is twofold: to maintain the formation during the motion along a
desired path and guarantee no collisions with obstacles or adjacent robots. Initially, an innovative
dynamical model is formulated for the system; afterwards, the notion of model predictive control is
employed to ensure collision avoidance with guaranteed stability. Simulation results are provided to
demonstrate the applicability and effectiveness of the suggested method.

KEYWORDS: Multi-agent formation; Communication delays; Model predictive controller; collision
and obstacle avoidance.

1. Introduction
Employing several vehicles in a formation to accomplish a task, instead of a single one, increases
the flexibility and reliability of the system, as well as provides redundancy and possibility of
reconfiguration. Therefore, formation of autonomous agents has been extensively used in many real-
world applications such as transportation of heavy loads, search and rescue missions, surveillance
and reconnaissance operations.

Formation control of mobile agents has recently become an active research field in the control
community.1−7 The main strategies to organize formation among the bunch of mobile agents are
the leader–follower approach,1−4 the virtual leader method,5,6 and the behavioral scheme.7 Various
control techniques based on the potential-field idea,8−15 model predictive control,16−18 sliding-mode
scheme19 and adaptive controllers3 were used to implement these strategies in the centralized or
decentralized structure. In the centralized arrangement, all the control actions are generated by a
central controller that is realized on a remote processor or one of the robots in the formation. In
contrast, in the decentralized framework, each agent makes its own decision based on the information
received from its neighbors. The design and implementation of the centralized control system is
simple; also, less communication burden is required in the centralized configuration compared to the
decentralized one.

Recently, by the development of communication technology, autonomous agents are connected
together via communication networks. The presence of a network brings numerous advantages such
as low cost and easy maintenance; but, some imperfections such as communication delays arise.20

Consequently, the issue of delayed communication needs to be considered in the synthesis of formation
controller for networked vehicles.

The compensation of effects of time-delay in the data exchange has been studied in the literature of
multi-agent system.21−28 To the best of the authors’ knowledge, only a few papers have investigated the
challenge of delayed communications in the formation control problem.23−28 In ref. [23], the formation
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control of unmanned aerial vehicles (UAVs) was explored in the presence of time-delay; utilizing the
Lyapunov–Krasovskii theorem, delay-dependent and delay-independent conditions were obtained
assuming full-state information. Moreover, sufficient conditions were derived in the case that the
velocity of the vehicle is not measured. In ref. [24], a decentralized adaptive controller was designed
for the formation of spacecrafts subject to communication delay and model uncertainty. A low-pass
filter was used to extract the velocity information of the agents; afterwards, a Lyapunov function is
used to prove that the proposed control law ensures stability and global convergence to the desired
position and velocity. In ref. [25], the formation problem of autonomous underwater vehicles (AUVs)
with constant communication delay was solved. To simplify the AUV dynamic equation, the inner–
outer loop approach was used to decouple the orientation and translation dynamics; subsequently,
the controller was derived using the Lyapunov–Krosovkii functional. In ref. [26], the formation
control of agents in the presence of the time-varying delay and stochastic switching topology was
considered. Controller was synthesized using the potential function, and then, the stability of the
system was analyzed by the Lyapunov–Krasovskii argument. In ref. [28], a formation controller
based on the virtual structure approach was designed. To overcome the problem of uncertain attitude
measurements and external disturbances, cross sliding-mode controllers were introduced independent
of the communication topology.

On the other hand, collision and obstacle avoidance in the formation control of mobile vehicles is
an important concern. In general, the controllers are derived based on potential function idea to assure
collision and obstacle avoidance. Collision avoidance issue in the formation control of mobile agents
with single-integrator dynamic equation was investigated in ref. [8], wherein the employed potential
function takes its minimum value when the desired formation is achieved and tends to infinity when
a collision is about to occur. A non-linear controller was developed using the proposed potential
function and the stability of the system was proved. This approach was applied for the mobile robots
in refs. [9, 10] and under-actuated ships in refs. [11, 12]. Swarm formation with obstacle avoidance
was studied in ref. [13], where elliptical surfaces generated from normal and sigmoid potential
functions with limiting functions were utilized to provide tighter swarm formation. In addition, the
potential function method to design controller for formation with guaranteed obstacle avoidance were
employed in refs. [14, 15]. Since the controllers derived based on the potential functions need the
instantaneous information of the neighbor agents, these types of approaches cannot be employed in
the presence of communication delays.

In this study, formation control problem for a group of networked unicycle-like mobile robots with
guaranteed collision and obstacle avoidance is tackled where the data transmission between agents is
subject to variable time-delay. A simple kinematic model of the robots is considered to specifically
focus on the controller design issue in the presence of delayed communication between the agents. The
main novelty of the proposed method is to reformulate the closed-loop system as a linear time-delay
differential equation with tunable parameters, which are determined online by the control algorithm.
The concept of model predictive control is utilized to include collision and obstacle avoidance criteria
as constraints and handle the data arrival latency. Stability of the movement is assured in the proposed
method.

The rest of the paper is organized as follows: In Section 2, the formation control problem is
described in detail. Section 3 presents the main results where the control algorithm is explained. In
Section 4, simulation results are shown to verify the applicability and efficiency of the suggested
approach. Finally, Section 5 concludes the paper.

2. Problem Formulation and Preliminaries
Consider unicycle-like mobile robot actuated by two driving rear wheels mounted on the same axis
as shown in Fig. 1. The kinematics of the ith mobile robot is described as follows:29

ṙxi
= vi cos (θi)

ṙyi
= vi sin (θi)

θ̇i = ωi

(1)

where rxi
and ryi

are the Cartesian positions of the center of wheels axis, vi and ωi are the linear and
angular velocity, and θi is the orientation of the ith robot. The agent kinematic equation in Eq. (1) is

https://doi.org/10.1017/S0263574716000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000102


Formation control of networked mobile robots with guaranteed obstacle and collision avoidance 1367

Fig. 1. Schematic of the ith mobile robot in the Cartesian frame.

linearized at qi= [xi, yi]T as the following:

xi = rxi
+ d cos (θi)

yi = ryi
+ d sin (θi)

(2)

where d is depicted in Fig. 1. By defining

[
vi

ωi

]
=
[

cos (θi) sin (θi)

− 1
d sin (θi) 1

d cos (θi)

][
uxi

uyi

]
, (3)

the following simplified kinematic equation is obtained for the ith mobile robot:[
ẋi

ẏi

]
︸ ︷︷ ︸

q̇i

=
[

uxi

uyi

]
︸ ︷︷ ︸

ui

, (4)

which is in the form of a single integrator.
N mobile robots modeled as in Eq. (4) send their position information to the leader and receive

the control actions from it through a shared packet-delaying network. The exact map of the motion
environment is not known previously for the robots; so, the obstacles may be encountered in the
planned route. The path planner can correct the desired motion trajectory online as described in ref.
[30] to round safely the detected obstacle; however, avoidance from the obstacle or other adjacent
robots is not assured yet. The controller will assure obstacle and collision avoidance during movement.

The collision avoidance condition between agents i and j is described as the following constraint:

‖qi − qj‖ ≥ Rc1 ∀i �= j, (5)

where Rc1 is the collision radius and the ‖‖ stands for Euclidean norm. Similarly, the obstacle
avoidance criterion is formulated as follows:

‖qi − qok
‖ ≥ Rc2 ∀i, (6)

where qok
is the position of the kth obstacle that can be detected in the meantime of the motion and

Rc2 is the collision radius.
Figure 2 depicts the configuration of communication between robots and the controller. The

value of variable transmission delay between the agents and the controller (shown by τac(t)) can be
calculated using the time-stamp of the data packets and is consequently known for the controller at
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Fig. 2. Configuration of formation control system over a network with buffer used for compensation of varying
actuation delay.

time t . However, at the time of computation of control signal in the controller, the control algorithm
does not have any information about the future transmission delay in the controller-agent channel
(shown by τca(t)). Similar to ref. [31], the variable delay induced by the communication link between
the controller and the robots is set to be fixed. To this end, the control data received by the agents were
saved in the buffer which is located in the actuator side, until the delay value becomes equal to the
upper bound of the varying delay, τ̄ca . Briefly, by the mentioned policy, the varying delay that occurs
in the data exchange between the controller and the robots is set to a known constant value τ̄ca for all
t . Since the designed controller will be static, these two values can be combined as τ = τac + τ̄ca . It
is worth noting that the overall delay, τ is variable yet.

In brief, the problem of interest is to design a controller that moves each robot in its desired path
despite communication delay, additionally ensures the collision and obstacle avoidance.

3. Formation Controller Design
The proposed control action applied to the ith robot consists of two parts as follows:

ui = uci
+ uai

(7)

uci
is computed by the central controller and sent through the network to theith robot with delay. ua i

is the auxiliary input calculated in the ith robot based on its own information. Auxiliary controller
tries to keep the stability of agent motion in the failure of communication link between the robot and
the main controller. The central controller is implemented on the leader robot.

The following structures are introduced for uc i
and ua i

:

uci
= αiei (t − τ ) +

N∑
j=1
j �=i

kij (ei (t − τ ) − ej (t − τ ))

uai
= λiei (t) + q̇id (t)

, (8)

where ei = qi − qid and τ is the total delay between the controller and the ith agent. Constants λi , kij

and αi are design parameters. qid represents the desired trajectory of the ith robot and is determined
by a path planner based on the latest acquired map of the environment. It is assumed that the path
planner can correct online the desired path when the robot sensors detect any obstacle in the current
reference trajectory as in ref. [30].

Combining Eqs. (4) and (8) results in the following closed-loop system:

q̇i = αiei (t − τ ) +
N∑

j=1
j �=i

kij (ei (t − τ ) − ej (t − τ )) + λiei (t) + q̇id (t) (9)
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So, the dynamic equation of the tracking error for the ith agent will be as follows:

ėi =
N∑

j=1
j �=i

kij (ei (t − τ ) − ej (t − τ )) + αiei (t − τ ) + λi ei (t) (10)

Note that when the connection between the central controller and the ith agent fails, i.e., uci
≡ 0,

the system equation and corresponding error dynamics are as the following:

q̇i = λiei (t) + q̇id (t) i

ėi (t) = λiei (t) (11)

So, assigning appropriate value for λi renders the th agent asymptotically stable.
Regarding Eq. (10), the coefficients kij and αi must be determined such that the tracking error

tends to zero and at the same time, collision and obstacle avoidance is ensured. The framework of
model predictive control is utilized to compute these parameters.

To formulate the finite-horizon optimal control problem of the predictive controller, the augmented
state vector E is defined as the following:

E =

⎡
⎢⎣ e1

...
eN

⎤
⎥⎦ (12)

which involves all the error vectors of the agents. The corresponding error dynamics is obtained for
the augmented closed-loop system as follows:

Ė (t) = K E (t − τ ) + � E (t) , (13)

where the matrices K and � are defined in the following:

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 +
N∑

j=2
k1j −k12 · · · −k1N

−k21 α2 +
N∑

j=1,j �=2
k2j · · · −k2N

...
...

. . .
...

−kN1 −kN2 . . . αN +
N−1∑
j=1

kNj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� =

⎡
⎢⎣λ1 0 0

0
. . . 0

0 0 λN

⎤
⎥⎦

. (14)

As stated before, the matrix � is design parameter and is selected such that the following inequality
is satisfied:

1

2 ‖�‖
(
e−2‖�‖(δ−τ ) + e2‖�‖δ) < 1 (15)

where δ is the sampling interval. The reference path, qid , is updated by the path planner during
movement to round detected obstacles; however, collision avoidance to the obstacle and neighboring
robots is not guaranteed yet. The control procedure is developed such that obstacle and collision
avoidance is assured.

The collision avoidance constraint in Eq. (5) can be rewritten in terms of error variables as follows:

‖ei (t) − ej (t) + qij d‖ ≥ Rc1 , (16)
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where qijd = qid − qjd . Inequality of Eq. (16) is restated with respect to the vector E:

‖aijE (t) + qijd‖ ≥ Rc1 , (17)

where aij is a column vector such that

aijE (t) = ei (t) − ej (t) (18)

Similarly, the obstacle avoidance constraint in Eq. (6) is reformulated as follows:

‖aiE (t) − (qok
− qi d

)‖ ≥ Rc2 (19)

wherein ai is a column vector such that:

aiE (t) = ei (t) (20)

Regarding the above-mentioned notations, the finite-horizon optimal control problem at time t is
formulated as follows:

min
K

∫ t+Tp

t

E(s)TQ E (s) ds + μ‖Et+Tp
‖2

l2

s.t.

(21)

Ė (t) = K E (t − τ ) + � E (t) , Et = Ēt (22)

‖aiE (s) − (qok
− qid

)‖ ≥ Rc2, i = 1, 2, ...., N (23)

‖aijE (s) + qijd‖ ≥ Rc1, i �= j (24)

‖Et+Tp
‖l2 ≤ γ (25)

where E (s) is the predicted trajectory starting from real value Ēt = Ē(t − η) for η ∈ [0, τ ], Q

is the weight matrix, Tp denotes prediction horizon, ‖‖l2 stand for the l2 norm of the function,
Et+Tp

= E(t + Tp − η) for η ∈ [0, τ ], and μ and γ are determined later to ensure the stability of
the system.

Remark 1. Standard optimization algorithms presented in ref. [32] can be used to compute the
gain matrix K after zero-order-hold discretization of Eqs. (21)–(25). Then, the control action in Eq.
(7) can be calculated simply and applied to the robots.

Remark 2. The terminal constraint in Eq. (25) and terminal cost in Eq. (21) are introduced to
guarantee the stability of the closed-loop time-delay system. Sufficient conditions to determine μ

and γ will be given in what follows.

Inspired by ref. [17] in Lemma 1, the upper bound of γ is derived. It will be proven that in the
region defined by the terminal inequality constraint in Eq. (25), obstacle and collision avoidance
constraints in Eqs. (23)–(24) are satisfied.

Lemma 1. If the parameter γ in Eq. (25) satisfies the inequalities in Eqs. (26) and (27), then the
constraints in Eqs. (23)–(24) hold in the terminal region defined by Eq. (25).

γ ≤ ‖qid (t) − qjd (t)‖ − Rc1

2
(26)

γ ≤ ‖qid (t) − qok
(t)‖ − Rc2 (27)
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Fig. 3. Desired motion path (dashed lines) and static obstacles (filled rectangles).

Proof: see the appendix.

Remark 3. Equations (26) and (27) can be combined as the following:

γ ≤ min

{
min

t

(∥∥qid(t) − qjd (t)
∥∥

2 − Rc1

2

)
, min

t

(∥∥qid (t) − qok
(t)
∥∥

2 − Rc2

)} ∀t ∈ [t, t + Tp

)
(28)

As seen, γ is a time varying parameter that is specified in each optimization step using Eq. (28).
Theorem 1 summarizes the main results of the paper.

Theorem 1. If the optimal control problem in Eqs. (21)–(25) with γ satisfying Eq. (28) and μ

satisfying Eq. (29) is feasible at the initial time t0, all the robots converge to their desired positions
without any collisions.

μ >
λmax (Q) δ(

1 − 1
2‖�‖

(
e−2 ‖�‖ (δ−τ ) + e2 ‖�‖ δ

)) , (29)

where, δ is the sampling interval.
Proof. see the appendix.

4. Simulation Results
Simulation results are presented in this section to demonstrate the effectiveness and applicability of
the proposed scheme. In the simulation scenario, three mobile robots track semicircles in formation
and encounter suddenly some obstacles in their predefined path. The robots are connected via a
network with communication delay equal to τ = 0.05 second. In Fig. 3, the desired path is depicted
by the dashed lines, the obstacles are shown by the filled rectangles and the robots are exposed by
the circles.

The matrix of auxiliary controller, � is set to be −10 I, where I denotes identity matrix. The
control actions are determined by the solution of the optimization problem in Eqs. (21)–(25) with
prediction horizon Tp = 0.1, weight matrix Q = I and collision radius Rc1 = 0.9 and Rc2 = 0.75.
To illustrate the performance of the formation controller clearly, the snapshots of motion trajectories
are shown in Fig. 4. As seen, when one of the robots approaches close to the obstacle, the controller
reduces its velocity to avoid collision with its neighbor robots as long as it is around the obstacle.
Another interesting phenomenon is observed when two robots encounter with the same obstacle
simultaneously; the controller steers the robots from two opposite sides of the obstacle while deviating
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Fig. 4. Snapshots from the trajectories of robots which deviate from their initial desired paths to avoid obstacles
without any collision to each other.

the path of the third robot to satisfy the collision constraint. It is obvious that all of the robots track
their desired paths without any collision to each other or obstacles.

To provide more evidence for the real-world applicability of the suggested method, the
aforementioned simulation scenario was implemented again in the Webots software package, which
is a professional toll to prototype mobile robots. The Webots simulation program can be easily ported
to the existing real robots. Three KheperaTM III robots are employed to move in formation by the
proposed control scheme. As the snapshots of Fig. 5 show, the outcomes of the Webots are in good
agreement with the results of the corresponding simulation of simple models in Matlab R©.

To demonstrate the merits of the proposed control scheme, a conventional LMI-based design
method for time-delay systems, which is based on negating the time-derivative of an appropriate
Lyapunov–Krasovskii functional over the closed-loop dynamics of the system,33 is utilized to tune
offline the controller gains in Eq. (8). Although, the robots track their desired paths by this simple
controller, the collision avoidance constraint is violated during motion. Figure 6 depicts relative
distances of the robots during motion. As seen, the relative distance between adjacent robots is less
than desired Rc1 = 0.9.

5. Conclusion
In this study, a novel approach has been developed to control the formation of mobile robots with
guaranteed collision and obstacle avoidance when the information is exchanged between agents with
variable time-delay. A new form for the control signal has been introduced and then, the closed-loop
dynamic equation of the system has been formulated as a delay differential equation with tunable
parameters; subsequently, centralized predictive controller, which includes collision and obstacle
avoidance as constraints, has been employed to determine online the controller gains. Simulation
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Fig. 5. Snapshots from simulation in Webots Software. Three obstacles are shown by balls and cube.

Fig. 6. Relative distance between the robots using the conventional control scheme.

results have been presented to illustrate the efficiency and applicability of the method. Considering
more practical requirements like communication topology between agents defines future research
line.
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Appendix

Proof of Lemma 1:
If ‖Et+Tp

‖l2 ≤ γ , then ‖E(t)‖ ≤ γ which results in

‖ei(t)‖ ≤ γ, ‖ej (t)‖ ≤ γ, i �= j (A.1)

and from Eq. (26), the following holds:

‖qid (t) − qjd (t)‖−2γ ≥ Rc1 (A.2)

Regarding Eq. (A.1), Eq. (A.2) can be rewritten as follows:

‖qid (t) − qjd (t)‖ − ‖ei‖ − ‖ej‖ ≥ Rc1

which implies that

‖ei − ej + qijd‖ ≥ Rc1

This inequality can be written as Eq. (23).
On the other hand, combining Eqs. (27) and (A.1) yields to

‖qid − qok
(t)‖ − ‖ei‖ ≥ Rc2 (A.3)

using the following relation

‖qid − qok
(t)‖ − ‖ei‖ ≤ ‖qid (t) − qok

(t) + ei‖

Equation (A.3) results in Eq. (24).

Proof of Theorem 1:
To prove the stability of the motions, it will be shown that the optimal cost of the problem in Eqs.
(21)–(25) is non-increasing. The non-increasing property of the optimal cost is sufficient to prove the
asymptotic stability of the predictive controller.17 The optimal cost at time ti starting from the initial
condition Eti is denoted by

J ∗ (ti , Eti

) =
∫ ti+Tp

ti

E∗(s)TQ E∗ (s) ds + μ
∥∥E∗

ti+Tp

∥∥2
l2

The cost at time instant ti + σ with σ ∈ (0, ti+1 − ti] is as follows:

J
(
ti + σ, Eti+σ

) =
ti+σ+Tp∫
ti+σ

Ê(s)TQ Ê (s) ds + μ
∥∥Êti+σ+Tp

∥∥2

l2

A feasible solution for the time interval [ti + σ, ti + σ + Tp] is given by the following:

K̂ (s) =
{

K∗ (s) ∀s ∈ [ti + σ, ti + Tp

]
0 ∀s ∈ [ti + Tp, ti + σ + Tp

] (A.5)

Regarding K̂(s) = 0 for s ∈ [ti + Tp, ti + σ + Tp] and using Eq. (13), we have

˙̂E (t) = �Ê (t) (A.6)
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and therefore Ê(s) = e�(s−ti−Tp)E∗(ti + Tp) for s ∈ [ti + Tp, ti + σ + Tp]. Since � is a stable matrix,
we can conclude that

∥∥Ê (s)
∥∥ ≤ ∥∥E∗ (ti + Tp

)∥∥ ∀s ∈ [ti + Tp, ti + σ + Tp

]
and therefore

Ê(s)TQ Ê (s) ≤ λmax (Q)
∥∥Ê (s)

∥∥2 ≤ λmax (Q)
∥∥E∗ (ti + Tp

)∥∥2 ∀s ∈ [ti + Tp, ti + σ + Tp

]
(A.7)

Now, we compute �J̃ as follows:

�J̃ = J
(
ti + σ, Eti+σ

) − J ∗ (ti , Eti

)
=

ti+σ+Tp∫
ti+σ

Ê(s)TQ Ê (s) ds −
ti+Tp∫
ti

E∗(s)TQ E∗ (s) ds + μ
(∥∥Êti+σ+Tp

∥∥2

l2
− ∥∥E∗

ti+Tp

∥∥2
l2

)

≤
ti+σ+Tp∫
ti+Tp

Ê(s)TQ Ê (s) ds −
ti+σ∫
ti

E∗(s)TQ E∗ (s) ds

+ μ

⎛
⎜⎝

ti+σ+Tp∫
ti+σ+Tp−τ

‖e�(s−ti−Tp)E∗(ti + Tp)‖
2

ds − ‖E∗(ti + Tp)‖2

⎞
⎟⎠

Using Eq. (A.7), we have

�J̃ ≤ λmax (Q) σ
∥∥E∗ (ti + Tp

)∥∥2 −
ti+σ∫
ti

E∗(s)TQE∗ (s) ds

+ μ

⎛
⎜⎝

ti+σ+Tp∫
ti+σ+Tp−τ

∥∥∥e�(s−ti−Tp)
∥∥∥2

ds
∥∥E∗ (ti + Tp

)∥∥2 − ∥∥E∗ (ti + Tp

)∥∥2

⎞
⎟⎠

≤ −
ti+σ∫
ti

E∗(s)TQE∗ (s) ds

+

⎛
⎜⎝λmax (Q) σ + μ

⎛
⎜⎝

ti+σ+Tp∫
ti+σ+Tp−τ

∥∥∥e�(s−ti−Tp)
∥∥∥2

ds − 1

⎞
⎟⎠
⎞
⎟⎠∥∥E∗ (ti + Tp

)∥∥2

(A.8)

Using the upper-bound computed for the norm of exponential function of a matrix in ref. [34],
yields to

ti+σ+Tp∫
ti+σ+Tp−τ

∥∥∥e�(s−ti−Tp)
∥∥∥2

ds ≤
ti+Tp∫

ti+σ+Tp−τ

(
e‖�‖(Tp+ti−s)

)2
ds +

ti+σ+Tp∫
ti+Tp

(
e‖�‖(s−ti−Tp)

)2
ds ∀σ < τ

ti+σ+Tp∫
ti+σ+Tp−τ

∥∥∥e�(s−ti−Tp)
∥∥∥2

ds ≤
ti+σ+Tp∫

ti+σ+Tp−τ

(
e‖�‖(s−ti−Tp)

)2
ds ∀σ ≥ τ
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and finally, we can obtain

ti+σ+Tp∫
ti+σ+Tp−τ

∥∥∥e�(s−ti−Tp)
∥∥∥2

ds ≤ 1

2 ‖�‖
(
e−2‖�‖(σ−τ ) + e2‖�‖(σ )) ∀σ ∈ (0, δ]

Using Eq. (A.8) and the above result, we have

�J̃ ≤ −
ti+σ∫
ti

E∗(s)TQE∗ (s) ds

+
(

λmax (Q) σ + μ

(
1

2 ‖�‖
(
e−2‖�‖(σ−τ ) + e2‖�‖(σ ))− 1

))∥∥E∗ (ti + Tp

)∥∥2

Regarding inequality in Eq. (15), for every σ ∈ (0, δ], choosing μ > λmax(Q)σ
(1− 1

2‖�‖ (e−2‖�‖(σ−τ )+e2‖�‖(σ )))
,

the term λmax(Q)σ + μ( 1
2‖�‖ (e−2‖�‖(σ−τ ) + e2‖�‖(σ )) − 1) will be negative which results in �J̃ ≤ 0.

Not that for the ease of computations, μ is chosen such that to obey the following inequality:μ >
λmax(Q)δ

(1− 1
2‖�‖ (e−2‖�‖(δ−τ )+e2‖�‖δ))

Therefore,

J
(
ti + σ, Eti+σ

) ≤ J ∗ (ti , Eti

)
(A.9)

On the other hand, the optimality of E∗(s) results in

J ∗ (ti + σ, Eti+σ

) ≤ J
(
ti+σ , Eti+σ

)
(A.10)

From Eqs. (A.9) and (A.10), it is concluded that the optimal cost is non-increasing, i.e.:

J ∗ (ti + σ, Eti+σ

) ≤ J ∗ (ti , Eti

)
By straightforward reasoning as in ref. [17], one can conclude that

lim
t→∞ E (t) = 0

This implies that there exist a time instant t1 such that

‖Et‖l2
≤ γ ∀t ≥ t1

Therefore, regarding Lemma 1, the constraints in Eqs. (23)–(25) are satisfied.
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