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We investigate the stability of radial viscous fingering (VF) in miscible fluids.
We show that the instability is determined by an interplay between advection and
diffusion during the initial stages of flow. Using linear stability analysis and nonlinear
simulations, we demonstrate that this competition is a function of the radius r0 of
the circular region initially occupied by the less-viscous fluid in the porous medium.
For each r0, we further determine the stability in terms of Péclet number (Pe) and
log-mobility ratio (M). The Pe–M parameter space is divided into stable and unstable
zones: the boundary between the two zones is well approximated by Mc=α(r0)Pe−0.55

c .
In the unstable zone, the instability is reduced with an increase in r0. Thus, a natural
control measure for miscible radial VF in terms of r0 is established. Finally, the results
are validated by performing experiments that provide good qualitative agreement with
our numerical study. Implications for observations in oil recovery and other fingering
instabilities are discussed.
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1. Introduction
Hydrodynamic instabilities are ubiquitous to transport in porous media. Viscous

fingering (VF) is one of these instabilities, which is observable while displacing a
less-mobile fluid by another more-mobile fluid through porous media, and it plays
critical roles in enhanced oil recovery through miscible flooding/solvent drive (Lake
1989), chromatography separation (Guiochon et al. 2008), pattern formation (Li et al.
2009), medicines (Bhaskar et al. 1992), CO2 sequestration (Moortgat 2016; Amooie,
Soltanian & Moortgat 2017; Li et al. 2019), diffusion-limited aggregation (Witten &
Sander 1981), mixing (Jha, Cueto-Felgueroso & Juanes 2011) and bacterial colonies
(Callan-Jones, Joanny & Prost 2008).

While advection is necessary for VF, diffusion stabilises this instability in miscible
systems. For a given pressure gradient, the advection velocity is uniform in a
rectilinear flow, whereas in a radial flow the velocity is inversely proportional to
the radial distance from the point of fluid injection. The effects of diffusion on
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stabilisation of miscible fingering instabilities both in the linear and nonlinear regimes
have been well understood mainly in the context of rectilinear displacement flows
(Homsy 1987; Pramanik & Mishra 2015). In radial VF, the effects of diffusion at the
initial stages of the displacement have been studied by Tan & Homsy (1987), who
concluded that the dispersion is strong enough to completely suppress the instability
when the Péclet number ∼O(1); otherwise, the displacement is always unstable. On
the other hand, Chui, de Anna & Juanes (2015) observed shut down of the overall
flow instability emerging from the dominance of diffusion over advection at the later
stages of the flow. More recently, the diffusion-driven transition between the two
regimes of VF has been captured (Videbæk & Nagel 2019). Thus, there are many
facets of the competition between advection and diffusion in radial flows. In contrast
to this, Bischofberger, Ramachandran & Nagel (2014) claimed that the viscosity ratio
sets the velocity of the interface and three regimes of instability are obtained, for
which the effects of diffusion are irrelevant. In this article, we show that the diffusion
can never be neglected when dealing with miscible fluids. Initial stable displacement
is the characteristic of dominant diffusion, which is equilibrated by advection at
a later stage that is identified as the transition to an unstable state dominated by
advection.

Further, we ask: can we control the competition between advection and diffusion to
suppress the miscible radial VF? Diffusion, being an inherent property that depends
on the displacing and displaced fluids, is difficult to tune; however, the advection
can be suitably modified. Many studies focused on controlling VF (Dias et al. 2012;
Zheng, Kim & Stone 2015; Yuan et al. 2019) utilised time-dependent strategies to
control advection. However, we achieve the same by merely modifying the initial
configuration of radial displacement flow. We consider different initial finite volumes
of the displacing fluid in the porous medium, which is represented by an initial radial
distance (r0) of the interface from the centre of the porous medium. The effects
of competition between advection and diffusion on the controllability of VF are
parametrised in terms of r0 and are explained through linear stability analysis (LSA)
and compared with the corresponding nonlinear simulations (NLSs), supported by the
result of a diligently designed experiment.

2. Mathematical model
The fluids considered are Newtonian, miscible, non-reactive with µl, µm as

viscosity of the less- and the more-viscous fluid, respectively. The non-dimensional
governing equations for the flow in a two-dimensional (2-D) homogeneous porous
medium are constituted by the Darcy’s law and the transport equation for the solute
concentration c,

∇ · u= 0, (2.1)

u=−
1
µ(c)
∇p, µ(c)= e(1−c)M, (2.2)

∂tc+ u · ∇c=
1
Pe
∇

2c, (2.3)

where p is the hydrodynamic pressure and u = (u, v) is the Darcy velocity vector.
We use tf , the total time of fluid injection, as the characteristic time, and

√
Qtf as

characteristic length, where Q is the gap-averaged flow rate. Consequently, we obtain
two non-dimensional parameters: the Péclet number, Pe= Q/D, and the log-mobility
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FIGURE 1. (a) Schematic of the computational domain Ω = [−L/2, L/2] × [−L/2, L/2],
with L= 3 used for LSA and NLS. The centre of the domain is chosen as the origin of
the cartesian coordinate system and the source of the less-viscous fluid initially occupying
a circle of radius r0. Here M > 0. (b) Temporal evolution of ln(E(t)) for r0 = 0.1 to 0.3
with an increment 0.05. The onset time of instability is marked by@. The initial diffusion
is prevalent for a longer time for a larger r0 and, hence, the onset is delayed.

ratio, M= ln(µm/µl), where the molecular diffusion coefficient D of c in the solvent
fluid is assumed to be a constant.

We consider a 2-D square domain Ω in the cartesian coordinates with the origin
as the source of the less-viscous fluid (see figure 1a for computational domain). The
initial condition associated with above equations is u(x, t= 0)= x/(2π|x|2) and

c(x, t= 0)=

{
1, 0 6 |x|2 6 r2

0

0, otherwise,
(2.4)

where x= (x, y), and r0 is the non-dimensional radius of the initial circle occupied by
less-viscous fluid.

3. Linear stability analysis

We perform LSA to identify the effects of diffusion at the initial stages of
the displacement and the onset of VF. Assume the base state velocity is ub(x) =
x/(2π|x|2), and the base state concentration cb is the solution of (2.3) for the initial
condition (2.4). An analytical solution for this initial boundary value problem is not
attainable. Following the analysis of Tan & Homsy (1987) and Riaz, Pankiewitz &
Meiburg (2004), we search the base state concentration in terms of similarity variables,
which is a powerful, well-established technique to solve partial differential equations
(PDEs). However, similarity solutions to PDEs are almost always independent of any
specific initial condition (Ball & Huppert 2019). Owing to this and the fact that the
novelty of our work in this article is to find stability in miscible VF in terms of the
initial condition of the displacement flow, a base state solution in terms of similarity
variables is inappropriate. We use the method of lines to numerically compute
cb. Spatial derivatives are discretised using sixth-order compact finite differences
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FIGURE 2. Natural logarithm of energy amplification as a function of time for (a) M= 1,
Pe= 5000, and (b) M = 3, Pe= 1000.

(Lele 1992) and the resulting initial value problem is solved using a third-order
Runge–Kutta method. The velocity field is solved in the form of a stream function
ψ(x, y), defined as u= ∂yψ , v =−∂xψ .

We introduce an infinitesimal perturbation (ψ ′, c′) such that ψ = ψb + ψ ′,
c = cb + c′ (|ψ ′|, |c′| � 1), where ψb is the stream-function corresponding to ub.
The corresponding linearised equations are solved for ψ ′, c′ using the hybrid compact
finite differences and the pseudo-spectral method. No flux boundary condition for
c′ and ψ ′ = 0 are used at the outflow boundary. The present LSA works as an
alternative approach to study time-dependent linear system arising in miscible VF.
Our interest does not lie in the wavelength selection like many other LSAs (Hota,
Pramanik & Mishra 2015a), but in capturing initial diffusion and its effect on the
onset of instability. However, it must be noted that our LSA is also applicable for
wavelength selection (Hota, Pramanik & Mishra 2015b).

Recall that both cb and c′ evolve temporally. Therefore, the growth of c′, ψ ′ are
relative to those of cb, ψb, and we quantify them at each instant of time. We define
the energy ratio

R(t)= EK(c′, u′)/EK(cb, ub), (3.1)

where EK(c, u)=
∫
Ω
[c2
+ u2
] dΩ represents the kinetic energy at time t. The energy

amplification,
E(t)= R(t)/R(t= 0), (3.2)

is the ratio of the energy at time t to its value at t = 0 (Matar & Troian 1999).
The nature of amplification as a function of time decides stability. An increasing or
decreasing E(t) indicates a relative growth or decay of the perturbations, while the
presence of an extremum, if any, is of particular importance. A minimum indicates
transition from a diffusion-dominating regime to an advection-dominated regime,
which eventually implies the triggering of instability, whereas a maximum exhibits
transient growths (Hota et al. 2015a). Figure 1(b) shows the natural logarithm of
energy amplification as a function of time. Evidently, ln(E(t)) is a non-monotonic
function with a minimum occurring for each r0 > 0.1. The minimum captures the
competition between advection and diffusion in the linear regime. Up to the point of
minimum, the disturbances are stabilised by the diffusive base state. The larger r0,
the later the point of minimum is obtained, indicating a delayed onset owing to the
dominance of diffusive forces for a longer time. Similar qualitative results have been
verified for various M and Pe as shown in figure 2. Therefore, our LSA captures
controllability of VF owing to the competition between the two forces.
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FIGURE 3. Density plots of concentration at t= 1 for r0 = 0.1 and various M, Pe.

4. Nonlinear simulations

To support the estimates of LSA that the instability is delayed as r0 increases, we
perform NLS. We solve the coupled nonlinear equations (2.1)–(2.4) using a hybrid
scheme based on compact finite differences and pseudo-spectral methods. This method
has been used extensively to study instabilities in porous media (Chen et al. (2010),
Sharma et al. (2019), and references therein). We perform NLS for five different
values of r0, and for each r0, we consider M ∈ [0, 3] and Pe ∈ [500, 104

]. A range
of fingering dynamics from intense fingering to no instability at all are visible in
the density plots of the concentration in figure 3 for r0 = 0.1 on varying M, Pe.
Similar results are also observed for other r0. Further, we explore the effect of r0
on the fingering dynamics. A comparison of the concentration contours at a given
time for the two radii in figure 4(a) clearly depicts that fingering instability is abated
as r0 increases. Thus, the NLSs support the instability control predicted by LSA
and indicate the existence of stable displacements despite an unfavourable viscosity
contrast (i.e. when a less-viscous fluid displaces a more-viscous fluid) and high Pe.

For each simulation, we compute the interfacial length (Mishra, Martin & De Wit
2008),

I(t)=
∫
Ω

|∇c| dΩ, (4.1)

which measures the temporal variation of the concentration gradient. In figure 4(b), we
plot I(t) normalised with its value at t= 0, for Pe= 5000. For M= 0, we analytically
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FIGURE 4. (a) Temporal evolution of concentration contour c= 0.5 for Pe= 5000, M= 1
with t = 0 (black), 0.5 (blue) and 1 (red). Increasing r0 abates the instability as evident
from the less-distorted contours at the same time for larger r0. (b) Temporal evolution of
normalised I(t). Maiden deviation of the solid line (M= 1) from the dashed line (M= 0)
marks the onset of instability.

calculate I(t)= 2
√

π(t+πr2
0) := I0(t) (say); in the absence of VF, I(t) must coincide

with I0(t). Further, we define δ(t)= |I(t)− I0(t)|/I0(t) and plot δ(t= 1) versus M for
r0 = 0.1, Pe= 3000, 5000 in the inset of figure 5(a). It is observed that δ(t= 1)= 0
for 0 6 M 6 0.75 and 0 6 M 6 0.575, respectively, for Pe = 3000 and 5000. This
indicates I(t) coincides with I0(t) even up to the final time for these parameters. Thus,
for M ∈ [0, 0.75], the displacement is stable despite an unfavourable viscosity contrast
for Pe = 3000, r0 = 0.1. Consequently, we use the value at the final time, δ(t = 1),
to classify the parameter set as stable or unstable. If δ(t= 1) > 0, the corresponding
parameter set (r0, M, Pe) is identified as unstable; otherwise, it is identified as
stable. Here M = 0.75 and 0.575 lie on the boundary of the stable/unstable zone
for Pe = 3000 and 5000, respectively, when r0 = 0.1. Accordingly, for each r0, we
summarise the instability in the Pe–M parameter space in figure 5(a). This indicates
that for a fixed M, there is a critical Péclet number (or, similarly for a fixed Pe,
there is a critical log-mobility ratio) for the occurrence of instability. The existence
of a critical parameter for fingering instability in radial source flow with a point
source (i.e., r0 = 0) has already been identified using LSA (Tan & Homsy 1987) and
experiments (Bischofberger et al. 2014; Videbæk & Nagel 2019). Videbæk & Nagel
(2019) provide critical parameters that determine transition in the fingering patterns
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FIGURE 5. (a) The M–Pe parameter space divided into stable and unstable regions for
each r0. The ordered pair (Pe,M) below a curve corresponding to a given r0 is associated
with a stable displacement for the corresponding r0. Inset: Plot of δ(t = 1) versus M
for r0 = 0.1. (b) Boundary between stable and unstable zones in the normalised Mc–Pec
parameter space.

on account of diffusion. On the other hand, we are concerned with the transition
between stability and instability, which arises due to competition between advection
and diffusion. We would also like to emphasise that the initial condition in our study
is different from that of Videbæk & Nagel (2019).

Another quantification of the competition between advection and diffusion is sought
in terms of I(t). An I(t) identical to I0(t) indicates diffusion is the dominating force.
We define t= ton as onset time of fingering in the nonlinear regime if I(t) > I0(t), for
all t satisfying ton . t< 1. Up to t= ton, diffusion dominates advection and stabilises
the displacement. For a larger r0, the advection becomes weaker, consequently, ton is
more for r0= 0.15, the larger radius shown in figure 4(b). Furthermore, from NLS we
observe that ton increases with r0 and the stable region spans over a larger range of
both M and Pe. It is noteworthy that the boundary between the stable and unstable
regions follow a scaling relation Mc = α(r0)Pe−βc , with 0.52 . β . 0.59. We observe
that for α(r0) = 30(1 + 10r0), the parameter pair (Mc, Pec) lying on the boundary
between the stable and the unstable regions can be well approximated by the relation
Mc=α(r0)Pe−0.55

c (figure 5b). Therefore, using this scaling relation we can approximate
the stability of radial flows in homogeneous porous media.

5. Experiments

Our numerical results are further validated through state-of-the-art experiments. We
used a radial Hele-Shaw cell with a gap width b = 0.5 mm. A hypodermic syringe
needle (1.2 mm diameter and 40 mm length) bent in an L-shape and carefully
embedded into a pipe was used to fill the two fluids in the Hele-Shaw cell. One
may envision it as an annulus of L-shape pipe in straight outer pipe. The outer
pipe is filled with more-viscous fluid while the inner pipe is filled with less-viscous
fluid. This avoids the hassle of (a) changing the pipes for different fluids and (b)
having a hole in each glass plate. A syringe pump (Cole-Parmer-D201253) was used
for injecting the less-viscous fluid. Images were captured with a Sony FDR-AX40
camera. A schematic of the experimental set up is shown in figure 6. Aqueous glycerol
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FIGURE 6. Schematic of the experimental set up, showing the concentric pipes to inject
the two fluids.

Glycerol (Vol. %) Water (Vol. %) Viscosity of solution (mPa s) M

58.33 41.67 11.26 0.504
71.43 28.57 31.14 1.521
77.78 22.22 53.05 2.053

TABLE 1. Aqueous glycerol solution with different percentage by volume for making
more-viscous fluid.

(50 Vol. %) solution with viscosity 6.8 mPa s was used as the less-viscous displacing
fluid. The displaced more-viscous fluid was prepared with different percentage by
volume of glycerol solution as listed in table 1. The viscosity of different aqueous
glycerol solution was measured by a rheometer (Anton-Paar: MCR-702) and found
to be in agreement with the calculated value through the mathematical formulation
given by Cheng (2008) and Volk & Kähler (2018).

To obtain the initial circle of radius r̄0, the less-viscous fluid was injected at a
constant flow rate Q1 µl s−1 for t1 s in the Hele-Shaw cell, which was initially filled
with the more-viscous fluid. The initial volume of the injected less-viscous fluid,
Q1t1 ml, was chosen so that it leads to a stable displacement of the more-viscous
fluid until the invading fluid occupies a circular region of radius r̄0 mm. Recall that
during this stable displacement, the interface between the two fluids experiences
diffusive spreading proportional to a length

√
Dt1, which also contributes in r̄0; we
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t = 0 ms t = 5000 ms t = 10000 ms

25 mm

(a)

(b)

(c)

FIGURE 7. Images from the experiments at different times for r̄0= 18 mm: (a) M= 2.053,
Q∗ = 0.1 ml s−1, (b) M = 2.053, Q∗ = 0.5 ml s−1 and (c) M = 1.521, Q∗ = 0.5 ml s−1.
Pipes used for injecting the two fluids are also visible in the images. The black circle at
the centre is the adhesive used for fixing the pipes to the Hele-Shaw cell.

measure r̄0 =
√

Dt1 +
√

Q1t1/(πb). Here, D= 10−9 m2 s−1 is the molecular diffusion
coefficient of glycerol in water (D’Errico et al. 2004). We fixed t1= 100 s so that the
amount of diffusion is the same for all the experiments and different r̄0 is obtained
by varying Q1 only. For example, r̄0 = 15, 18 and 20 mm were obtained by using
Q1 = 3.3868, 4.9121 and 6.086 µl s−1, respectively.

As soon as the required dimensional radius r̄0 was reached, the flow rate was
increased to Q∗ and the less-viscous fluid was continuously injected at this flow up
to a final time fixed for all the experiments. We repeated a series of experiments
with Q∗ ∈ [0.05, 0.5] ml s−1, M ∈ [0, 2.053], and capture suppression of the fingering
instability for different values of Q∗ and M qualitatively similar to NLS. No instability
was observed for many Q∗ suggesting that there always exists a stable zone for each
r̄0 as predicted by NLS for a range of Pe and shown in figure 5. The experimental
images at various time for r̄0= 18 mm and different M and Q∗ are shown in figure 7.
The effect of Pe or Q∗ on the fingering dynamics is evident. For Q∗ = 0.1 ml s−1,
the interface is slightly distorted near the final time, while Q∗ = 0.5 ml s−1 shows
VF instability. In addition, increasing M results in longer fingers and early onset
as evident by comparing figures 7(a) and 7(b). The less-viscous fluid is dyed with
Brilliant blue (BLENDS Ltd) food coloring dye to provide the visible contrast
or optical observation to distinguish the two fluids. The amount of dye used is
0.01 g ml−1 in the solution and has a negligible effect on viscosity.

The controlling effect of the initial radius r0 for Q∗= 0.4 ml s−1 and M= 1.521 is
depicted in figure 8. We only show one quarter of the experimental images processed
in MATLAB for better clarity. In addition, the validity of the control measure is
justified on comparing with the experimental images for the point source (r0 = 0)
in figure 8(a). For visualisation purposes, we show the contours (plotted using the
in-built command imcontour in MATLAB) of one quarter of the experimental images
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t = 0 ms

25 mm

t = 4800 ms t = 8000 ms t = 9600 ms

Shielding Tip
splitting

(a)

(b)

(c)

(d)

FIGURE 8. Experimental images at t= 0, 4800, 8000 and 9600 ms for r̄0 = (a) 0 (point
source), (b) 15, (c) 18 and (d) 20 mm. Tip splitting and shielding are observable for
r̄0 = 0 and are significantly absent for r̄0 6= 0. An abated instability with an increase in
r̄0 is evident. A delay in instability is clearly visible on comparison of the snapshots for
different r̄0. Here Q∗ = 0.4 ml s−1 and M = 1.521.

in figure 9(a). A delayed onset and reduced fingering corresponding to r̄0 = 20 mm
compared with r̄0 = 15 mm for Q∗ = 0.4 ml s−1, and M = 1.521 are evident. This
supports the fact that the larger the r̄0, the weaker the advection and, hence, the initial
competition between advection and diffusion determines the instability.

We use ImageJ (Schneider, Rasband & Eliceiri 2012) to quantify the experimental
results. To avoid the noise induced by the presence of the injection pipes in the
images, we utilise half of the experimental domain in our analysis. For the validity
of the control measure, the experiments should capture the initial radial displacement
in the form of a circular displacing front. Circularity is used as a measure of the
extent up to which the displacement front is circular (Escala et al. 2019). We define
the circularity as

C(t)= 2πA(t)/P2(t), (5.1)

where A(t) and P(t) correspond to the area and the perimeter of the region occupied
by the less-viscous fluid, respectively, so that C(t)= 1 for a semi-circle. For P(t), we
consider only the length of the curved surface since the diameter does not contribute
to C(t). Subject to experimental errors, C(t) close to 1 but constant over a range
of time implies a circular displacing front. The maiden deviation of the circularity
from the constant value indicates distortions at the front and it marks the triggering
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t increasing

t increasing

t

0.4

0.7

1.0

C(
t)/

C(
0)

r0 = 15 mm r0 = 20 mm

0 2000 4000 6000 8000 10000

r0 = 20 mm, M = 0

r0 = 20 mm, M = 1.5

r0 = 15 mm, M = 0

r0 = 15 mm, M = 1.5

(a)

(b)

FIGURE 9. (a) Contours at t = 0, 4000, 6000, 8000 and 9600 ms of the experimental
images (shown in figures 8b and 8d for r̄0 = 15 mm and r̄0 = 20 mm, respectively),
showing the controlling effect of finiteness in terms of reduced and delayed instability. (b)
Circularity as a function of time showing a delayed occurrence of distortions for larger r̄0.

of the instability. Here M = 0 works as the ideal radial source flow as no instability
is observed as a result of equal viscosity of the two fluids. Hence, C(t) for M = 0
is used as the reference constant value for each r̄0. We found that C(t) for M 6= 0
deviates from the constant value after some initial time for each r̄0 and the time of
deviation is larger for larger r̄0 (see figure 9b for Q∗ = 0.4 ml s−1). In other words,
the instability is triggered later for a larger r̄0. This confirms the qualitative agreement
of the experiments with LSA and NLS. The proposed control measure can be used to
control VF in a wide variety of radial source flows with miscible fluids.

6. Discussion and conclusion
Depending upon the application, controlling fingering instabilities is of paramount

importance, for instance, instability can increase mixing while it is detrimental to
oil recovery or separation processes. VF in immiscible systems are controllable
by modifying the geometry (Bongrand & Tsai 2018; Pihler-Puzović et al. 2018),
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using time-dependent strategies (Dias et al. 2012; Zheng et al. 2015), which may
be directly inapplicable in miscible VF (Huang & Chen 2015). In this article, we
have investigated a stability mechanism in miscible VF by utilising the competition
between the advective and diffusive forces.

Our theory takes care of the fact that the diffusive relaxation of the circular edge
of the less-viscous inner fluid remains the same for all r0 considered. This has
been implemented by choosing the initial condition (2.4), which clearly indicates
that there is no initial diffusive relaxation present in the model. The dominance of
diffusion over weaker advection for larger r0 is responsible for stability. On the other
hand, in experiments, we inject the less-viscous fluid for 100 s at different flow rate
Q1 µl s−1 to achieve different r̄0. In this way, the diffusive relaxation of the edges of
the circular region happens the same for all different initial conditions. This ensures
that diffusion-dominating advection due to the weakening of the latter for larger r̄0

causes stability. To understand the stability by analyzing the competition between
advection and diffusion, we have used energy amplification in LSA, interfacial length
in NLSs and circularity in the experiments.

Using LSA and NLS, we have obtained a criterion to control radial miscible VF
and have shown that the radius of the initial circular region containing the displacing
fluid is a control parameter. No modification in the geometry or a continuous variation
in the flow rate is required unlike in many other earlier studies of immiscible VF
(Dias et al. 2012; Zheng et al. 2015). Our theoretical results have been compared with
experiments that are in qualitative agreement with the numerical results.

Time-dependent strategies, such as changing the flow rate in a rectilinear configura-
tion (Yuan et al. 2019) or varying the gap width of the Hele-Shaw cell in a radial
configuration (Chen et al. 2010), have been attempted numerically in the context of
miscible VF. Nevertheless, these studies lack sufficient evidence for the complete
suppression of instability and have not validated experimentally. In contrast, we have
successfully generated a stable radial experiment in accordance with our stability
analysis and numerical simulations.

LSA predicts a delayed onset of instability with increasing r0, whereas NLSs
predict a critical log-mobility ratio Mc up to which there is no instability, dividing
the M–Pe plane into stable and unstable zones for each r0. The log-mobility ratio
and Péclet number on the boundary of the stable and unstable zones scale as
Mc = 30(1 + 10r0)Pe−0.55

c . The stable zone increases with increasing r0. Taking
r0 → 0 we approximate the critical Pe for a point source radial flow, which, for a
mobility ratio of 3, is ≈65.8, that is of the same order as estimated from linear
stability by Tan & Homsy (1987). For fixed values of Pe and M, it is concluded that
a stable displacement for a given r0 ensures a stable displacement for all larger r0

despite a favourable viscosity gradient. On the other hand, an unstable displacement
for a given r0 indicates a stronger and early instability for all smaller r0 keeping M
and Pe fixed. This corresponds to weakening of advection with an increase in the
distance from the source. Experiments performed demonstrate the validity and the
applicability of the proposed control strategy.

In addition to helping to understand the intrinsic properties of fundamental
hydrodynamic instabilities (Paterson 1981; Tan & Homsy 1987; Bischofberger et al.
2014) and pattern formation (Witten & Sander 1981; Li et al. 2009), our results
suggest that the controllability of miscible VF in a radial configuration could be
important in predicting the effectiveness of enhanced oil recovery by polymer flooding
(Lake 1989) and in various other similar configurations.
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