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1. Introduction

The local Euler obstruction is an invariant defined by MacPherson in [22] as one
of the main ingredients in his proof of the Deligne-Grothendieck conjecture on
the existence of Chern classes for singular varieties. The local Euler obstruction at
0 ∈ X, where X is a sufficiently small representative of the equidimensional analytic
germ (X, 0), is denoted by EuX(0). After MacPhersons pioneer work, the Euler
obstruction has been studied by many authors. Let us mention briefly some of the
most important results on this subject. If V = {Vi}t

i=1 is a Whitney stratification of
X, then Brylinski, Dubson and Kashiwara [6] proved a famous formula that relates
the EuVi

’s to the Euler characteristic of the normal links of the strata. In [19], Lê
and Teissier showed that EuX(0) is equal to an alternated sum of multiplicities of
generic polar varieties of X at 0. In [3], Brasselet, Lê and Seade proved a Lefschetz
type formula for EuX(0), i.e. they relate EuX(0) to the topology of the Milnor fibre
on X of a generic linear function. There are also integral formulas for EuX(0) in
[11,21].
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In [4], Brasselet, Massey, Parameswaran and Seade defined a new invariant, intro-
ducing information for a function f defined on the variety X, called the Euler
obstruction of the function and denoted by Euf,X(0). They prove a Lefschetz type
formula for this invariant. The Euler obstruction of a function can be seen as a gen-
eralization of the Milnor number ([4,15,29]). For instance, in [29], Seade, Tibăr
and Verjovsky showed that Euf,X(0) is equal up to sign to the number of critical
points of a Morsefication of f lying on the regular part of X.

In [12], in order to study topological properties of functions defined on analytic
complex varieties, we defined an invariant called the Brasselet number, denoted by
Bf,X(0), and we proved that it satisfies a relative version of the multiplicity formula
of Lê and Teissier. We also proved a relative version of the Brylinski-Dubson-
Kashiwara formula which involves this invariant and moreover, we established an
integral formula for Bf,X(0), which is a relative version of the integral formula
for EuX(0) proved in [11]. When f has isolated singularity, we have Bf,X(0) =
EuX(0) − Euf,X(0) and in the general case, Bf,X(0) = EuX(0) − Df,X(0), where
Df,X(0) is the defect defined and studied in § 6 of [4] (see remark 2.18 below). The
defect is related to the Lê numbers (proposition 6.1 in [4]) when X is smooth and
to the Lê-Vogel numbers (theorem 6.2 in [4]) in the general case. Therefore, in view
of these relations and the result of Seade, Tibăr and Verjovsky mentioned above,
the defect Df,X(0) appears to be a good singular version of the Milnor number,
whereas the Brasselet number appears to be a good relative version of the Euler
obstruction.

In a manner similar to the local case, in [28], working with an affine equidi-
mensional singular variety X ⊂ C

N , Seade, Tibăr and Verjovsky defined the global
Euler obstruction, denoted by Eu(X). When X is smooth the global Euler obstruc-
tion of X coincides with the Euler characteristic of X. They prove a global version
of the Lê-Teissier polar multiplicities formula. Later, this formula was generalized
in [27] to an index formula for MacPherson cycles.

As the Euler obstruction of a function and the Brasselet number are useful to
study the singularities of f in the local case, we introduce in this work the global
Brasselet numbers and the Brasselet numbers at infinity, in order to investigate
the topological behaviour of the singularities, globally and at infinity, of a given
polynomial function f defined on an algebraic variety X ⊂ C

N . The main references
we use in this paper about the study of singularities at infinity are [7,8,37].

In § 2 we give prerequisities on the topology of complex algebraic sets: strati-
fied Morse functions, the complex link and the normal Morse datum, constructible
functions, the local Euler obstruction and the Brasselet number, the global Euler
obstruction. In § 3 we recall the notions of t-regularity at infinity and ρ-regularity
at infinity, some basic results and we adapt them to the stratified setting.

In § 4 we define the global Brasselet numbers and the Brasselet numbers at infin-
ity. We compare the global Brasselets number of f with the global Euler obstruction
of the fibres of f . The relation presented in corollary 4.9 can be seen as a global
relative version of the local index formula of Brylinsky, Dubson and Kashiwara [6].

In § 5 we prove several formulas that relate the number of critical points of a
Morsefication of a polynomial function f on an algebraic set X, to the global
Brasselet numbers and the Brasselet numbers at infinity of f . The main result in
this section is theorem 5.2. From this result, we obtain many interesting corollaires.
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Corollary 5.7, for instance, is a Brylinski–Dubson–Kashiwara type formula for the
total Brasselet number at infinity. We also prove a relative version of the polar
multiplicity formula of Seade, Tibăr and Verjovsky (corollary 5.15).

Theorem 5.2 is proved via integration with respect to the Euler characteristic.
This result is interesting for two main reasons. Firstly it provides a stratified version
of results about the topology of fibres of polynomial functions obtained in the 80s
and 90s (see for instance [41] for a detailed account of this topics). Moreover, using
the machinery of constructible functions, it enables us to improve the results of
Seade, Tibăr and Verjovsky [28] in different directions: the polynomial function f
can have singularities at infinity and it is not supposed to admit only stratified
Morse critical points. We also obtain equalities for all fibres of f , not only for the
generic ones.

2. Prerequisites on the topology of complex algebraic sets

In this section, we work with a reduced complex algebraic set X ⊂ C
n of dimension

d. We assume that X is equipped with a finite Whitney stratification V whose
strata are connected. We denote by Xreg the regular part of X, i.e. the union of all
the strata of dimension d.

2.1. Stratified Morse functions

The main reference for this subject is [14].

Definition 2.1 ([14], p. 44). Let x be a point in X and let Vb be the stratum that
contains it. A degenerate tangent plane of the stratification V is an element T (of
an appropriate Grassmannian) such that T = limxi→x Txi

Va, where Va is a stratum
that contains Vb in its frontier and where the xi’s belong to Va.

Definition 2.2 ([14], p. 44). A degenerate covector of V at a point x ∈ X is a
covector which vanishes on a degenerate tangent plane of V at x, i.e., an element
η of T ∗

x C
n such that there exists a degenerate tangent plane T of the stratification

at x with η(T ) = 0.

Let f : X → C be an analytic function. We assume that f is the restriction to X
of an analytic function F : C

n → C, i.e. f = F|X . A point x in X is a critical point
of f if it is a critical point of F|V (x), where V (x) is the stratum containing x.

Definition 2.3 ([14], p. 52). Let x be a critical point of f . We say that f is general
at x with respect to the stratification V if DF (q) is not a degenerate covector of V
at x.

We say that f is general with respect to V if it is general at all critical points
with respect to V.

Definition 2.4 ([14], p. 52). Let x be a critical point of f . We say that x is a
stratified Morse critical point of f if f is general at x and the function f|V (x) :
V (x) → C has a non-degenerate critical point at x when dimV (x) > 0.

We say that that f is a stratified Morse function if it admits only stratified Morse
critical points.
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2.2. The complex link and the normal Morse datum

The complex link is an important object in the study of the topology of complex
analytic sets. It is analogous to the Milnor fibre and was studied first in [17]. It
plays a crucial role in complex stratified Morse theory (see [14]) and appears in
general bouquet theorems for the Milnor fibre of a function with isolated singularity
(see [18,30,35]).

Let V be a stratum of the stratification V of X and let x be a point in V . Let
g : (Cn, x) → (C, 0) be an analytic complex function-germ such that the differential
form Dg(x) is not a degenerate covector of V at x. Let NC

x,V be a normal slice to
V at x, i.e. NC

x,V is a closed complex submanifold of C
n which is transversal to V

at x and NC

x,V ∩ V = {x}.

Definition 2.5 ([14], p. 161). The complex link LX
V of V is defined by

LX
V = X ∩ NC

x,V ∩ Bε(x) ∩ {g = δ},
where 0 < |δ| � ε � 1. Here Bε(x) is the closed ball of radius ε centred at x.

The normal Morse datum NMD(V ) of V is the pair of spaces

NMD(V ) =
(
X ∩ NC

x,V ∩ Bε(x),X ∩ NC

x,V ∩ Bε(x) ∩ {g = δ}) .

The fact that these two notions are well-defined, i.e. independent of all the choices
made to define them, is explained in [14].

2.3. Constructible functions

We start with a presentation of Viro’s method of integration with respect to
the Euler characteristic with compact support [42]. We work in a semi-algebraic
setting.

Definition 2.6. Let Y ⊂ R
n be a semi-algebraic set. A constructible function α :

Y → Z is a Z-valued function that can be written as a finite sum:

α =
∑
i∈I

mi1Yi
,

where Yi is a semi-algebraic subset of Y and 1Yi
is the characteristic function on Yi.

The sum and the product of two constructible functions on Y are again con-
structible. The set of constructible functions on Y is thus a commutative ring,
denoted by F (Y ).

Definition 2.7. If α ∈ F (Y ) and W ⊂ Y is a semi-algebraic set then the Euler
characteristic χ(W,α) is defined by

χ(W,α) =
∑
i∈I

miχc(W ∩ Yi),

where α =
∑

i∈I mi1Yi
and χc is the Euler characteristic of Borel-Moore homology.
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The Euler characteristic χ(W,α) is also called the Euler integral of α and denoted
by

∫
W

αdχc. Here we follow the terminology and notations used in [4,12,27].

Definition 2.8. Let f : Y → Z be a continuous semi-algebraic map and let α :
Y → Z be a constructible function. The pushforward f∗α of α along f is the function
f∗α : Z → Z defined by:

f∗α(z) = χ(f−1(z), α).

Proposition 2.9. The pushforward of a constructible function is a constructible
function.

Theorem 2.10 (Fubini’s theorem, [42], p. 128). Let f : Y → Z be a continuous
semi-algebraic map and let α be a constructible function on Y . Then we have:

χ(Z, f∗α) = χ(Y, α).

Let us go back to the complex situation. Here we write V = {V1, . . . , Vt} for the
Whitney stratification of X.

Definition 2.11. A constructible function with respect to the stratification V of X
is a function α : X → Z which is constant on each stratum V of the stratification.

This means that there exist integers ni, i ∈ {1, . . . , t}, such that α =
∑t

i=1 ni · 1Vi
.

In most of the cases that we will consider, we can use the topological Euler charac-
teristic χ instead of χc. First since each Vi is an even-dimensional submanifold, by
Poincaré duality χc(Vi) is equal to χ(Vi) and so χ(X,α) =

∑t
i=1 niχ(Vi). Now let

B ⊂ C
n be a euclidian closed ball that intersects X transversally (in the stratified

sense). We will give four equalities for χ(X ∩ B,α). By additivity of χc, we have

χ(X ∩ B,α) = χ(X ∩ B̊, α) + χ(X ∩ ∂B, α).

But X ∩ ∂B is Whitney stratified by odd-dimensional strata and so χ(X ∩ ∂B) = 0
(see lemma 5.0.3 in [26] or proposition 1.6 in [24]). Therefore, we have

χ(X ∩ B,α) = χ(X ∩ B̊, α) =
t∑

i=1

niχc(Vi ∩ B̊),

and by Poincaré duality,

χ(X ∩ B,α) =
t∑

i=1

niχ(Vi ∩ B̊).

But each Vi ∩ B is a manifold with boundary, so χ(Vi ∩ B̊) = χ(Vi ∩ B) and

χ(X ∩ B,α) =
t∑

i=1

niχ(Vi ∩ B).
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Similarly, if E = C
n \ B̊ then

χ(X ∩ E,α) =
t∑

i=1

niχc(Vi ∩ E) =
t∑

i=1

niχc(Vi ∩ E̊)

=
t∑

i=1

niχ(Vi ∩ E̊) =
t∑

i=1

niχ(Vi ∩ E).

If the radius of B is sufficiently big, then X ∩ ∂B is homeomorphic to the link
at infinity of X, denoted by Lk∞(X), and X ∩ B is a retract by deformation of
X which implies that χ(X) = χ(X ∩ B). Since X ∩ B is compact, χ(X ∩ B) = χc

(X ∩ B) and so, by additivity, χc(X) = χ(X) + χc(X ∩ E̊). But X ∩ E̊ is homeo-
morphic to the product of Lk∞(X) and an open interval in R. Since χc(Lk∞(X)) =
0, by multiplicativity of χc we obtain that χc(X ∩ E̊) = 0 and finally that χ(X) =
χc(X).

Definition 2.12 ([27], definition 2.2). Let α : X → Z be a constructible function
with respect to the stratification V. Its normal Morse index η(V, α) along V is
defined by

η(V, α) = χ(NMD(V ), α) = χ(X ∩ NC

x,V ∩ Bε(x), α) − χ(LX
V , α),

where x is a point in V .

If Z ⊂ X is a closed union of strata, then η(V,1Z) = 1 − χ(LV ∩ Z).

2.4. The local Euler obstruction and the Brasselet number

Here we assume that X is equidimensional. The Euler obstruction at x ∈ X,
denoted by EuX(x), was defined by MacPherson, using 1-forms and the Nash
blow-up (see [22] for the original definition). An equivalent definition of the Euler
obstruction was given by Brasselet and Schwartz in the context of vector fields [2].
Roughly speaking, EuX(x) is the obstruction for extending a continuous stratified
radial vector field around x in X to a non-zero section of the Nash bundle over the
Nash blow-up of X.

The Euler obstruction is a constructible function and there are two distinguished
bases for the free abelian group of constructible functions: the characteristic func-
tions 1V and the Euler obstruction EuV of the closure V of all strata V . Moreover,
the key role of the Euler obstruction comes from the following identities (see [27]
p. 34 or [26] p. 292 and p. 323–324):

η(V ′,EuV ) = 1 if V ′ = V,

and:

η(V ′,EuV ) = 0 if V ′ �= V.

In [3], Brasselet, Lê and Seade study the Euler obstruction using hyperplane
sections, following ideas of Dubson and Kato. Let us assume that 0 belongs to X.
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Theorem 2.13 ([3], theorem 3.1). For each generic linear form l, there is ε0 such
that for any ε with 0 < ε < ε0 , the Euler obstruction of (X, 0) is equal to:

EuX(0) = χ
(
X ∩ Bε(0) ∩ l−1(δ),EuX

)
,

where 0 < |δ| � ε � 1.

Let f : X → C be a holomorphic function. We assume that f has an isolated
singularity (or an isolated critical point) at 0, i.e. that f has no critical point in a
punctured neighbourhood of 0 in X.

In [4] Brasselet, Massey, Parameswaran and Seade introduced an invariant which
measures, in a way, how far the equality given in theorem 2.13 is from being true if
we replace the generic linear form l with some other function on X with at most an
isolated stratified critical point at 0. This number is called the Euler obstruction of
a function and denoted by Euf,X(0). The following result is the Brasselet, Massey,
Parameswaran and Seade formula [4] that compares, in the same point, the local
Euler obstruction with the Euler obstruction of a function.

Theorem 2.14 ([4], theorem 3.1). Let f : X → C be a function with an isolated
singularity at 0. For 0 < |δ| � ε � 1 we have:

EuX(0) − Euf,X(0) = χ
(
X ∩ Bε(0) ∩ f−1(δ),EuX

)
,

where 0 < |δ| � ε � 1.

In [29], J. Seade, Tibăr and Verjovsky show that the Euler obstruction of f is
closely related to the number of Morse points of a Morsefication of f , as it is stated
in the next proposition.

Proposition 2.15 ([29], proposition 2.3). Let f : X → C be an analytic function
with isolated singularity at the origin. Then:

Euf,X(0) = (−1)dnreg,

where nreg is the number of Morse points on Xreg in a stratified Morsefication of f
lying in a small neighbourhood of 0.

Definition 2.16 ([23], p. 971). A good stratification of X relative to f is a
stratification V of X which is adapted to Xf , (i.e. Xf is a union of strata),
where Xf = X ∩ f−1(0), such that {Vi ∈ V;Vi �⊂ Xf} is a Whitney stratification
of X \ Xf and such that for any pair of strata (Va, Vb) such that Va �⊂ Xf and
Vb ⊂ Xf , the (af )-Thom condition is satisfied.

Let us now recall the definition of the Brasselet number, defined in [12].

Definition 2.17 ([12], definition 3.18). Let V be a good stratification of X relative
to f . We define Bf,X(0) by:

Bf,X(0) = χ
(
X ∩ Bε(0) ∩ f−1(δ),EuX

)
,

where 0 < |δ| � ε � 1.
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Remark 2.18. Note that if f has a stratified isolated singularity at the origin
then, by theorem 2.14, we have that Bf,X(0) = EuX(0) − Euf,X(0). Moreover in
the general case, Bf,X(0) = EuX(0) − Df,X(0), where Df,X(0) is the defect defined
in § 6 of [4]. Indeed this defect is defined by

Df,X(0) = EuX(0) −
∑

i

χ
(
Vi ∩ Bε(0) ∩ f−1(δ)

)
EuX(Vi),

where {Vi} is a Whitney stratification of X. But
∑

i χ(Vi ∩ Bε(0) ∩ f−1(δ))EuX(Vi)
is exactly χ(X ∩ Bε(0) ∩ f−1(δ),EuX), since by additivity of the Euler charac-
teristic, the Euler integral of a constructible function does not depend on the
stratification used for its computation.

2.5. Global Euler obstruction

Here we assume that X ⊂ C
n is a reduced equidimensional algebraic set of dimen-

sion d, equipped with a finite Whitney stratification V = {V1, . . . , Vt}. In [28],
Seade, Tibăr and Verjovsky introduced a global analogous of the Euler obstruc-
tion called the global Euler obstruction and denoted by Eu(X). Let X̃

ν→ X denote
the Nash modification of X, and let us consider a stratified real vector field v on
a subset V ⊂ X: this means that the vector field is continuous and tangent to the
strata. The restriction of v to V has a well-defined canonical lifting ṽ to ν−1(V ) as
a section of the real bundle underlying the Nash bundle T̃ → X̃.

Definition 2.19 ([28], definition 2.1). We say that the stratified vector field v on
X is radial-at-infinity if it is defined on the restriction to X of the complement of a
sufficiently large ball BM centred at the origin of C

N , and it is transversal to SR,
pointing outwards, for any R > M . In particular, v is without zeros on X \ BM .

The ‘sufficiently large’ radius M is furnished by the following well-known result.

Lemma 2.20 ([28], lemma 2.2). There exists M ∈ R such that, for any R � M , the
sphere SR centred at the origin of C

N and of radius R is stratified transversal to
X, i.e. transversal to all strata of the stratification V.

Using this last lemma and inspired by [2,9], Seade, Tibăr and Verjovsky defined
the global Euler obstruction in [28] as follows:

Definition 2.21 ([28], definition 2.3). Let ṽ be the lifting to a section of the Nash
bundle T̃ of a radial-at-infinity stratified vector field v over X \ BR. We call global
Euler obstruction of X, and denote it by Eu(X), the obstruction for extending ṽ

as a nowhere zero section of T̃ within ν−1(X ∩ BR).

To be precise, the obstruction to extend ṽ as a nowhere zero section of T̃ within
ν−1(X ∩ BR) is in fact a relative cohomology class

o(ṽ) ∈ H2d(ν−1(X ∩ BR), ν−1(X ∩ SR)) � H2d
c (X̃).

The global Euler obstruction of X is the evaluation of o(ṽ) on the fundamental
class of the pair (ν−1(X ∩ BR), ν−1(X ∩ SR)). Thus Eu(X) is an integer and does
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not depend on the radius of the sphere defining the link at infinity of X. Since two
radial-at-infinity vector fields are homotopic as stratified vector fields, it does not
depend on the choice of v either.

Remark 2.22. The global Euler obstruction has the following properties (see [28]
p. 396):

1. if X is non-singular, then Eu(X) = χ(X),

2. Eu(X) = χ(X, EuX).

3. Regularity conditions at infinity

A natural question is if the concepts of the Euler obstruction and the Brasselet
number of a function could be extended to the global setting, as Seade, Tibăr and
Verjovsky did for the local Euler obstruction, and what kind of information we
could obtain with these possible new global invariants.

But, before extending the local notions of the Euler obstruction and Brasselet
number of a function, we recall in this section some definitions and results about
the study of singularities at infinity and we adapted some results to the stratified
setting. The main definitions and results first appeared in [31,37] in the case of
functions and were extended for maps in [8]. We refer to these papers and also to
[7] for details.

We consider X ⊂ C
N a reduced algebraic set of dimension d. We use coordinates

(x1, . . . , xN ) for the space C
N and coordinates [x0 : x1 : · · · : xN ] for the projective

space P
N . We consider the algebraic closure X of X in the complex projective space

P
N and we denote by

H∞ =
{
[x0 : x1 : · · · : xN ] | x0 = 0

}
,

the hyperplane at infinity of the embedding C
N ⊂ P

N .
One may endow X with a semi-algebraic Whitney stratification W such that

Xreg is a stratum and the part at infinity X ∩ H∞ is a union of strata.
Since X is projective and since the stratification of X is locally finite, it follows

that W has finitely many strata. We denote by Xsing the set of singular points of
X, i.e. Xsing = X \ Xreg.

In order to recall the definition of the t-regularity, let us recall first the definition
of the conormal spaces.

Definition 3.1 ([8], definition 2.1). We denote by C(X) the conormal modification
of X, defined as:

C(X) = closure
{
(x,H) ∈ Xreg × P̌

N−1 | TxXreg ⊂ H
} ⊂ X × P̌

N−1.

Let π : C(X) → X denote the projection π(x,H) = x.

Definition 3.2 ([8], definition 2.2). Let g : X → C be an analytic function defined
in some neighbourhood of X in C

N . Let X0 denote the subset of Xreg where g is a
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submersion. The relative conormal space of g is defined as follows:

Cg(X) = closure
{

(x,H) ∈ X0 × P̌
N−1 | Txg−1 ((g(x)) ⊂ H

} ⊂ X × P̌
N−1,

together with the projection π : Cg(X) → X, π(x,H) = x.

Let f : X → C be a function such that f = F|X , where F : C
N → C is a

polynomial function.
Let X = graphf be the closure of the graph of f in P

N × C and let X
∞ = X ∩

(H∞ × C). One has the isomorphism graphf � X.
We consider the affine charts Uj × C of P

N × C, where

Uj = {[x0 : · · · : xN ] | xj �= 0}, j = 0, 1, . . . , N.

Identifying the chart U0 with the affine space C
N , we have X ∩ (U0 × C) = X \

X
∞ = graphf , and X

∞ is covered by the charts U1 × C, . . . , UN × C.
If g denotes the projection to the variable x0 in some affine chart Uj × C, then

the relative conormal Cg(X \ X
∞ ∩ Uj × C) ⊂ X × P̌

N is well defined.
With the projection π(y,H) = y, let us then consider the space π−1(X∞), which

is well defined for every chart Uj × C as a subset of Cg(X \ X
∞ ∩ Uj × C).

Definition 3.3 ([8], definition 2.4). We call space of characteristic covectors at
infinity the set C∞ = π−1(X∞). For some p0 ∈ X

∞, we denote C∞
p0

:= π−1(p0).

By lemma 2.8 in [37], these notions are well-defined, i.e. they do not depend on the
chart Uj .

Let τ : P
N × C → C denote the second projection. One defines the relative conor-

mal space Cτ (PN × C) as in definition 3.2 where the function g is replaced by the
mapping τ .

Definition 3.4 ([8], definition 2.5). We say that f is t-regular at p0 ∈ X
∞ if

Cτ (PN × C) ∩ C∞
p0

= ∅.
We say that f−1(t0) is t-regular if f is t-regular at all points p0 ∈ X

∞ ∩ τ−1(t0).

Let us now recall the definition of ρ-regularity. Let K ⊂ C
N be some compact

(eventually empty) set and let ρ : C
N \ K → R�0 be a proper analytic submersion.

Definition 3.5 (ρ-regularity at infinity, [8], definition 5.2). We say that f is ρ-
regular at p0 ∈ X

∞ if there is an open neighbourhood U ⊂ P
N × C of p0 and an open

neighbourhood D ⊂ C of τ(p0) such that, for all t ∈ D, the fibre f−1(t) ∩ Xreg ∩ U
intersects all the levels of the restriction ρ|U∩Xreg and this intersection is transversal.

We say that the fibre f−1(t0) is ρ-regular at infinity if f is ρ-regular at all points
p0 ∈ X

∞ ∩ τ−1(t0). We say that t0 is an asymptotic ρ-non-regular value if f−1(t0)
is not ρ-regular at infinity.

The next proposition relates t-regularity to ρE-regularity, where ρE denotes the
Euclidian norm.
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Proposition 3.6. If f is t-regular at p0 ∈ X
∞, then f is ρE-regular at p0.

Proof. This is just an adaptation to our setting of the proof of proposition 2.11 in
[37]. �

The next corollary has been proved in the more general case of pencils in [38]
and in [32].

Corollary 3.7. The set of asymptotic non-ρE-regular values of f is finite.

Proof. It is enough to prove that there are only finitely many values t0 such that
f−1(t0) is not t-regular. The proof of this fact is as in corollary 2.12 in [37]. We
can equip X with a Whitney stratification such that X

∞ is a union of strata and
such that any pair of strata (V,W ), with V ⊂ X \ X

∞, W ⊂ X
∞ and W ⊂ V \ V ,

satisfies the Thom (ag)-regularity condition for some function g defining X
∞ in X.

If τ−1(t0) is transversal to X
∞ in the stratified sense, then f−1(t0) is t-regular. But

the mapping τ|X∞ : X
∞ → C has a finite number of critical values (in the stratified

sense). �

Proposition 3.8. Let l : X → C be a generic linear projection then for all p0 ∈
X

∞, l is t-regular at p0.

Proof. With Uj defined as before, let us work in the chart Uj × C and with Cg(X \
X

∞ ∩ Uj × C) with π(x,H) = x, as defined above.
Let us suppose that l is not t-regular at p0 = (q0, t0) ∈ X

∞. It means that there
exists a sequence pn = (qn, l(qn)) → p0, with qn ∈ Xreg such that

Tpn
graph(l) ∩ Tpn

g−1(g(pn)) ⊂ Hn,

and Hn → H and a sequence of hyperplanes {Ln} such that C
N × {0} ⊂ Ln and

Ln → H, where (p0,H) ∈ Cτ (PN × C) ∩ C
∞
p0

.
Since in fact each Ln = C

N × {0}, we conclude that H = C
N × {0}. Note also

that,

Tpn
graph(l) ∩ Tpn

g−1(g(pn))

= graph(l : Tqn
Xreg → C) ∩ Tqn

g−1(g(qn)) × C.

This implies that limn→+∞ l(un) = 0 for any bounded sequence (un) of vectors such
that un ∈ Tqn

Xreg ∩ Tqn
g−1(g(qn)). As in the previous corollary, we can equip X

with a Whitney stratification such that X ∩ H∞ is a union of strata and such that
any pair of strata (V,W ), with V ⊂ X, W ⊂ X ∩ H∞ and W ⊂ V \ V , satisfies the
Thom (ag)-regularity. Therefore we see that the axis of the pencil defined by l is
not transversal to X ∩ H∞. By lemma 3.1 in [28], this is not possible if l is generic.
So we conclude that l generic is t-regular. �

We assume now that X is equipped with a finite Whitney stratification V =
{Vi}t

i=1 such that V1, . . . , Vt−1 are connected, V1, . . . , Vt are reduced and Vt = Xreg.
For i = {1, . . . , t}, let fi : Vi → C be the restriction to Vi of the polynomial function
F . Note that ft = f .
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Definition 3.9 (stratified t-regularity at infinity). We say that f is stratified
t-regular at p0 ∈ X

∞ if for i = 1, . . . , t, fi is t-regular at p0.
We say that f−1(t0) is stratified t-regular if f is stratified t-regular at all points

p0 ∈ X
∞ ∩ τ−1(t0).

Definition 3.10 (stratified ρ-regularity at infinity). We say that f is stratified
ρ-regular at p0 ∈ X

∞ if for i = 1, . . . , t, fi is ρ-regular at p0.
We say that the fibre f−1(t0) is stratified ρ-regular at infinity if f is stratified

ρ-regular at all points p0 ∈ X
∞ ∩ τ−1(t0). We say that t0 is a stratified asymptotic

ρ-non-regular value if f−1(t0) is not stratified ρ-regular at infinity.

The following statements are easy consequences of the definitions of stratified
t-regularity and stratified ρ-regularity.

Proposition 3.11. Stratified t-regularity implies stratified ρE-regularity.

Corollary 3.12. The set of stratified asymptotic non-ρE-regular values of f is
finite.

Corollary 3.13. Let l : X → C be a generic linear projection, then for all p0 ∈
X

∞, l is stratified t-regular (and therefore stratified ρE-regular) at p0. Moreover,
the set of stratified asymptotic non-ρE-regular values of l is empty.

We note that the results of proposition 3.8 and corollary 3.13 can be deduced from
proposition 3.1 in [27].

4. Global Brasselet numbers and Brylinsky-Dubson-Kashiwara
formulas

Let X ⊂ C
n be a reduced algebraic set of dimension d, equipped with a finite

Whitney stratification V = {Vi}t
i=1. We assume that V1, . . . , Vt−1 are connected,

V1, . . . , Vt are reduced and that Vt = Xreg, where Xreg has dimension d. Let f :
X → C be a complex polynomial, restriction to X of a polynomial function F :
C

n → C, i.e. f = F|X . We assume that f has a finite number of critical points,
which means that for i = 1, . . . , t, F|Vi

has a finite number of critical points. We
denote by {q1, . . . , qs} the set of critical points of f and by {a1, . . . , ar} the set of
stratified asymptotic non-ρE-regular values of f .

For simplicity, we will write BR for the ball BR(0) and SR for ∂BR. The next
lemma has been proved in the more general case of pencils and at the level of
homology in [32,38,39]. We give a proof at the level of Euler characteristics, which
is enough for our purpose.

Lemma 4.1. Let α : X → Z be a constructible function with respect to V. The
function c 
→ χ(f−1(c), α) is constant on C \ ({f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}).

Proof. Let c ∈ C \ ({f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}) and let us choose Rc > 0 such
that f−1(c) ∩ {ρE � Rc} does not contain any critical point of ρE |f−1(c) (here
f−1(c) is equipped with the Whitney stratification �Vi ∩ f−1(c)). This implies
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that f−1(c) ∩ BR is a retract by deformation of f−1(c) and that χ(f−1(c)) =
χ(f−1(c) ∩ BR) for any R � Rc. Since f−1(c) is stratified ρE-regular at infinity,
there is R � Rc and ε > 0 such that the mapping

(ρE , f) : f−1(Dε(c)) ∩ {ρ � R} → R × C,

where Dε(c) is the closed disc of radius ε centred at c in C, is a stratified submersion
and so for c′ ∈ Dε(c), f−1(c′) ∩ BR is also a retract by deformation of f−1(c′). But
since c is a regular value of f ,

χ(f−1(c′) ∩ BR) = χ(f−1(c) ∩ BR),

for c′ in a small neighbourhood of c. Hence the result is proved for the function
c 
→ χ(f−1(c)), i.e. when α = 1X (see the discussion after definition 2.11).

Let V be a stratum of X. By additivity, we have

χc(V̄ ∩ f−1(c)) = χc(V ∩ f−1(c)) + χc(V̄ \ V ∩ f−1(c)),

and by the arguments after definition 2.11, we get that

χ(V̄ ∩ f−1(c)) = χ(V ∩ f−1(c)) + χ(V̄ \ V ∩ f−1(c)).

But since V̄ and V̄ \ V are algebraic subsets of X stratified by strata of V, c is
a regular value and f−1(c) is stratified ρE-regular at infinity for f : V̄ → C and
f : V̄ \ V → C. Therefore the functions

c 
→ χ(V̄ ∩ f−1(c)) and c 
→ χ((V̄ \ V ) ∩ f−1(c)),

are constant on C \ ({f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}) and so is the function
c 
→ χ(V ∩ f−1(c)). Hence for i ∈ {1, . . . , t}, the function c 
→ χ(Vi ∩ f−1(c)) is con-
stant on C \ ({f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}). This implies that c 
→ χ(f−1(c), α)
is also constant on C \ ({f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}) for any constructible
function α. �

Definition 4.2. When X is equidimensional, we define the global Brasselet number
of f at c by

BX
f,c = χ(f−1(c),EuX),

and the global Euler obstruction of f at c by

EuX
f,c = Eu(X) − BX

f,c.

Let a ∈ C and let Ra > 0 be such that f−1(a) ∩ BRa
does not contain any critical

point of ρE |f−1(a). Then there exists δ1 > 0 such that

f : f−1
(
Dδ1(a) \ {a}

)
→ Dδ1(a) \ {a},

is a locally trivial topological fibration (this is just a singular version of the Milnor-
Lê fibration) and so χ(f−1(c) ∩ BRa

) is constant for c ∈ Dδ1(a) \ {a}.
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Since χ(f−1(c)) is constant on C \ ({f(q1), . . . , f(qs)} ∪ {a1, . . . , ar}), there exists
δ2 > 2 such that χ(f−1(c)) is constant for c ∈ Dδ2(a) \ {a}. Since

χ(f−1(c)) = χ(f−1(c) ∩ BRa
) + χ(f−1(c) ∩ {ρE � Ra}) − χ(f−1(c) ∩ SRa

)

= χ(f−1(c) ∩ BRa
) + χ(f−1(c) ∩ {ρE � Ra}),

we see that χ(f−1(c) ∩ {ρE � Ra}) is constant for c in Dδ(a) \ {a}, where δ =
min{δ1, δ2}.

Let R′
a > 0 be such that f−1(a) ∩ BR′

a
does not contain any critical point of

ρE |f−1(a). Then there exists δ′ > 0 such that χ(f−1(c) ∩ {ρE � R′
a}) is constant for

c in Dδ′(a) \ {a}. We can suppose that R′
a > Ra. Since there are no critical points

of ρE |f−1(a) on {Ra � ρE � R′
a}, a is a regular value of f : {Ra � ρE � R′

a} → C

(note that a critical point of f on f−1(a) is also a critical point of ρE |f−1(a)). Hence
there exists ν > 0 such that

f : f−1(Dν(a)) ∩ {Ra � ρE � R′
a} → Dν(a),

is a locally trivial topological fibration. Let ν′ = min{δ, δ′, ν}. For c in Dν′(a) \ {a},
we have

χ(f−1(c) ∩ {ρE � Ra}) = χ(f−1(c) ∩ {ρE � R′
a}) + χ(f−1(c) ∩ {Ra � ρE � R′

a})
= χ(f−1(c) ∩ {ρE � R′

a}) + χ(f−1(a) ∩ {Ra � ρE � R′
a}).

But ρ : f−1(a) ∩ {Ra � ρE � Ra′} → C is a stratified submersion and so

χ(f−1(a) ∩ {Ra � ρE � Ra′}) = χ(f−1(a) ∩ {ρE = Ra}) = 0.

We have proved that

χ(f−1(c) ∩ {ρE � Ra}) = χ(f−1(c) ∩ {ρE � R′
a}),

if c is sufficiently close to a.

Definition 4.3. Let α : X → Z be a constructible function with respect to V. For
any a ∈ C, we set

BX,∞
f,a (α) = lim

c→a
χ(f−1(c) ∩ {ρE � Ra}, α) and λX,∞

f,a = BX,∞
f,a (1X),

where Ra > 0 is such that f−1(a) ∩ {ρE � Ra} does not contain any critical point
of ρE |f−1(a).

Note that BX,∞
f,a (α) is well-defined since, by the previous considerations,

lim
c→a

χ(Vi ∩ f−1(c) ∩ {ρE � Ra}),

is well-defined and so is

lim
c→a

χ(Vi ∩ f−1(c) ∩ {ρE � Ra}).

We note that similar jumps at infinity have been considered in [33].
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Lemma 4.4. Let α : X → Z be a constructible function with respect to V. If c ∈ C

is such that f−1(c) is stratified ρE-regular at infinity then BX,∞
f,c (α) = 0.

Proof. Let us prove first that λX,∞
f,c = 0. Since f−1(c) is stratified ρE-regular at

infinity, there is Rc > 0 and ε > 0 such that the mapping

(ρE , f) : f−1(Dε(c)) ∩ {ρE � Rc} → R × C,

is a stratified submersion. Let c′ ∈ f−1(Dε(c)). Then the mapping

ρE : {ρE � Rc} ∩ f−1(c′) → R,

is a proper stratified submersion and so

χ(f−1(c′) ∩ {ρE � Rc}) = χ(f−1(c′) ∩ {ρE = Rc}) = 0.

If α is constructible with respect to V then it has a presentation of the form α =∑
i mi1Vi

and so

BX,∞
f,c (α) =

∑
i

miλ
Vi,∞
f,c = 0. �

Definition 4.5. Let α : X → Z be a constructible function with respect to V. We
set

BX,∞
f (α) =

∑
c∈C

BX,∞
f,c (α) and λX,∞

f = BX,∞
f (1X).

Definition 4.6. When X is equidimensional, we define the Brasselet numbers at
infinity of f by:

BX,∞
f,c = BX,∞

f,c (EuX),

for c ∈ C, and the total Brasselet number at infinity of f by:

BX,∞
f = BX,∞

f (EuX).

We start comparing the global Brasselet numbers of f and the Euler obstructions
of the fibres of f .

Proposition 4.7. Let a ∈ C, we have

BX
f,a = Eu(f−1(a)) +

∑
j | f(qj)=a

EuX(qj) − Euf−1(a)(qj).
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Proof. By definition,

BX
f,a =

t∑
i=1

χ(Vi ∩ f−1(a))EuX(Vi).

For each i ∈ {1, . . . , t}, let us denote by Γi the set consisting of the qj ’s such that
qj ∈ Vi ∩ f−1(a). The partition

f−1(a) =
(�i | Γi=∅Vi ∩ f−1(a)

) ⋃ (�i | Γi 	=∅Vi ∩ f−1(a) \ Γi

) ⋃ (�i | Γi 	=∅Γi

)
,

gives a Whitney stratification of f−1(a), and

Eu(f−1(a)) =
∑

i | Γi=∅
χ(Vi ∩ f−1(a))Euf−1(a)(Vi ∩ f−1(a))

+
∑

i | Γi 	=∅
χ(Vi ∩ f−1(a) \ Γi)Euf−1(a)(Vi ∩ f−1(a) \ Γi)

+
∑

i | Γi 	=∅

∑
q∈Γi

Euf−1(a)(q).

If Γi is empty then the intersection Vi ∩ f−1(a) is transverse (necessarily dim Vi > 0)
and by [10], proposition IV. 4.1.1

EuX(Vi) = Euf−1(a)(Vi ∩ f−1(a)).

If Γi is not empty and dimVi > 0, then

χ(Vi ∩ f−1(a)) = χ(Vi ∩ f−1(a) \ Γi) + #Γi,

and EuX(Vi) = EuX∩f−1(a)(Vi ∩ f−1(a) \ Γi) because outside Γi, f−1(a) intersects
Vi transversally. If Γi is not empty and dimVi = 0, then

χ(Vi ∩ f−1(a)) = 1 and χ(Vi ∩ f−1(a) \ Γi) = 0.

Therefore we get

BX
f,a =

∑
i | Γi=∅

χ(Vi ∩ f−1(a))Euf−1(a)(Vi ∩ f−1(a))

+
∑

i | Γi 	=∅
χ(Vi ∩ f−1(a) \ Γi)Euf−1(a)(Vi ∩ f−1(a) \ Γi)

+
∑

i | Γi 	=∅

∑
q∈Γi

EuX(q)

= Eu(f−1(a)) +
∑

i | Γi 	=∅

∑
q∈Γi

EuX(q) − Euf−1(a)(q). �
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Note that for a regular value c of f , BX
f,c = Eu(f−1(c)). Furthermore, if X = C

n

then EuX(qj) = 1 and Euf−1(a)(qj) = 1 + (−1)n−2μ′(f, qj), where μ′(f, qj) is the
first Milnor-Teissier number of f at qj , so

BC
n

f,a = χ(f−1(a)) = Eu(f−1(a)) + (−1)n−1
∑

j | f(qj)=a

μ′(f, qj),

which is Equality (3.3) in [40]. So the formula of proposition 4.7 extends this
equality to the case of singular algebraic sets.

Remark 4.8. In the equality of proposition 4.7, we can distinguish between two
kinds of critical points: those lying in V = Xreg and those lying in a lower dimen-
sional stratum. Note that the collection of lower dimensional strata gives a Whitney
stratification of Xsing, the singular locus of X. Hence the critical points of f that lie
on Xsing depend on the stratification of Xsing. However, the formula of proposition
4.7 implies that the sum ∑

j | f(qj)=a

qj∈Xsing

EuX(qj) − Euf−1(a)(qj)

does not depend on the stratification of Xsing.

A direct corollary of the previous proposition is a global relative version of the
local index formula of Brylinski, Dubson and Kashiwara. Its proof relies on the
global version of the index formula established in [40].

Corollary 4.9. Let α : X → Z be a constructible function with respect to V. For
any a ∈ C, we have

χ(f−1(a), α) =
t∑

i=1

BVi

f,aη(Vi, α).

Proof. We keep the notations of the previous proposition and apply Equality (0.2)
of [40] to get

χ(f−1(a)) =
∑

i | Γi=∅
Eu(Vi ∩ f−1(a))

(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)

))
+

∑
i | Γi 	=∅

Eu(Vi ∩ f−1(a) \ Γi)
(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
+

∑
i | Γi 	=∅

∑
q∈Γi

1 − χ
(
Lf−1(a)
{q}

)
=

∑
i | Γi 	=Vi

Eu(Vi ∩ f−1(a))
(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
+

∑
i | Γi 	=∅

∑
q∈Γi

1 − χ
(
Lf−1(a)
{q}

)
,
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because Γi = Vi if and only if Vi is just a 0-dimensional stratum and in this case,
Vi ∩ f−1(a) \ Γi = ∅. By the previous proposition, we obtain the equality

χ(f−1(a)) =
∑

i | Γi 	=Vi

⎡⎣BVi

f,a −
∑

j | f(qj)=a

−EuVi
(qj) + EuVi∩f−1(a)(qj)

⎤⎦
×

(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
+

∑
i | Γi 	=∅

∑
q∈Γi

1 − χ
(
Lf−1(a)
{q}

)
,

that we rewrite

χ(f−1(a)) =
∑

i | Γi 	=Vi

⎡⎣BVi

f,a −
∑

j | f(qj)=a

−EuVi
(qj) + EuVi∩f−1(a)(qj)

⎤⎦
×

(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
+

∑
j | f(qj)=a

1 − χ(Lf−1(a)
{qj} ).

If Γi �= Vi then f−1(a) intersects Vi \ Γi transversally and so

χ
(
Lf−1(a)

Vi∩f−1(a)\Γi

)
= χ(LX

Vi
).

Hence we have

χ(f−1(a)) =
∑

i | Γi 	=Vi

BVi

f,a

(
1 − χ(LX

Vi
)
)

+
∑

j | f(qj)=a

[
1 − χ

(
Lf−1(a)
{qj}

)
+

∑
i |Γi 	=Vi

−EuVi
(qj)

(
1 − χ(LX

Vi
)
)

+ EuVi∩f−1(a)(qj)
(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

)) ]
.

Let us evaluate the second part of this sum and fix q a critical point of f such that
f(q) = a. Two cases are possible.

If q belongs to a stratum Vk with Γk �= Vk then we add the stratum V0 = {q} to
the Whitney stratification of X. By the Brylinski, Dubson and Kashiwara index
formula ([6] or [26], p. 294), we know that

1 =
t∑

i=0

EuVi
(q)

(
1 − χ(LX

Vi
)
)
,

and so

1 =
∑

i | Γi 	=Vi

EuVi
(q)

(
1 − χ(LX

Vi
)
)

+ EuV0(q)
(
1 − χ(LX

V0
)
)
,

because q /∈ Vi if Γi = Vi (i � 1). But EuV0(q) = 1 and χ(LX
V0

) = 1 because a generic
linear form is a stratified submersion at q (see [13], p. 90 for details). The same
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index formula applied to f−1(a) gives

1 =
t∑

i=1

Eu
Vi∩f−1(a)\Γi

(q)
(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
+ 1 − χ(Lf−1(a)

{q} ).

Therefore we get that

χ(Lf−1(a)
{q} ) =

∑
i | Γi 	=Vi

EuVi∩f−1(a)(q)
(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
,

and so the contribution of q in the second summand of the above sum is zero.
If q belongs to a stratum Vk with Γk = Vk then, actually Vk = {q}. By the index

formula and the same arguments, we find that

1 =
∑

i | Γi 	=Vi

EuVi
(q)

(
1 − χ(LX

Vi
)
)

+ 1 − χ
(
LX
{q}

)
,

and

1 =
∑

i | Γi 	=Vi

EuVi∩f−1(a)(q)
(
1 − χ

(
Lf−1(a)

Vi∩f−1(a)\Γi

))
+ 1 − χ

(
Lf−1(a)
{q}

)
.

Hence the contribution of q in the above second summand is 1 − χ(LX
{q}), which we

can write BVk

f,a(1 − χ(LX
Vk

)). Finally, we have proved that

χ(f−1(a)) =
t∑

i=1

BVi

f,a

(
1 − χ(LX

Vi
)
)
.

Hence the result is true for any constructible function of the form 1Vj
. If α is a

constructible function with respect to V, then it has a presentation of the form α =∑
j mj1Vj

. We conclude with the equalities χ(f−1(a), α) =
∑

j mjχ(f−1(a),1Vj
)

and η(Vi, α) =
∑

j mjη(Vi,1Vj
), for i = 1, . . . , t. �

5. Global Brasselet numbers and critical points

In this section, we prove several formulas that relate the number of critical points
of a Morsefication of a polynomial function f on an algebraic set X, to the global
Brasselet numbers and the Brasselet numbers at infinity of f . We note that when
X = C

n, similar formulas have already appeared in the literature ([1,5,16,25,31,
34,36,37]). Most of these formulas are presented in the monograph [41].

The setting is the same as in the previous section: X ⊂ C
n is a reduced algebraic

set of dimension d, equipped with a finite Whitney stratification V = {Vi}t
i=1 such

that V1, . . . , Vt−1 are connected, V1, . . . , Vt are reduced and Vt = Xreg ; f : X → C

is a complex polynomial, restriction to X of a polynomial function F : C
n → C.

We assume that f has a finite number of critical points, which means that for
i = 1, . . . , t, F|Vi

has a finite number of critical points. We denote by {q1, . . . , qs}
the set of critical points of f and by {a1, . . . , ar} the set of stratified asymptotic
non-ρE-regular values of f .
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Definition 5.1. We say that f̃ : X → C is a Morsefication of f if f̃ is a small
deformation of f which is a local (stratified) Morsefication at all isolated critical
points of f .

Let f̃ be a Morsefication of f . We can take f̃ of the form f + tl where t is a
sufficiently small complex number and l is the restriction to X of a generic linear
form. This is explained in [18], theorem 2.2, in the local case. The argument holds
in our situation since it does not depend on the value taken by f at the considered
critical point and there are a finite number of critical points. Note that f̃ has two
kinds of critical points: those appearing in a small neighbourhood of a critical point
of f and those appearing at infinity, i.e. outside a ball of sufficiently big radius. We
will only consider the first ones.

Let ni, i = 1, . . . , t, be the number of critical points of f̃ appearing in a small
neighbourhood of a critical point of f on the stratum Vi. Note that

ni � μT (f|Vi
) =

∑
j | qj∈Vi

μ(f|Vi
, qj),

where μ(f|Vi
, qj) is the Milnor number of f|Vi

at qj , since we do not assume that f
is general with respect to V.

The following theorem relates the number of stratified critical points of f̃ appear-
ing on the stratum Vi to the topology of X and a generic fibre of f . It can be proved
using results on general pencils, namely corollaries 9.2.3 and 9.2.6 in [41]. We give
a different proof, enough for our purpose, based on the method of integration with
respect to the Euler characteristic.

Theorem 5.2. Let c ∈ C be a regular value of f , which is not a stratified asymptotic
non-ρE-regular value. We have

χ(X) − χ(f−1(c)) =
t∑

i=1

(−1)dini

(
1 − χ(LX

Vi
)
)
− λX,∞

f .

Moreover, if f is general with respect to V, then we have

χ(X) − χ(f−1(c)) =
t∑

i=1

(−1)diμT (f|Vi
)
(
1 − χ(LX

Vi
)
)
− λX,∞

f .

Proof. For x ∈ X, let ϕ(x) = χ(f−1(x̃) ∩ Bε(x)) = χc(f−1(x̃) ∩ Bε(x)), where x̃ is
a regular value of f close to f(x) and 0 � |x̃ − f(x)| � ε � 1. Note that ϕ(x) = 1 if
x is not a critical point of f and so ϕ is a constructible function. By Fubini theorem,
we have

χ(X,ϕ) = χ(C, f∗ϕ),

that we can rewrite∫
X

ϕ(x) dχc(x) =
∫

C

[∫
f−1(y)

ϕ(x) dχc(x)

]
dy.
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Let us compute the integral
∫

f−1(y)
ϕ(x)dχc(x) for y in C. Let ỹ be a regular value

of f , which is not a stratified asymptotic non-ρE-regular value. Let Ry 
 1 be
such that f−1(y) ∩ BRy

is a retract by deformation of f−1(y) and let us denote by
z1, . . . , zl the critical points of f in f−1(y). On the one hand, we have

χ(f−1(ỹ) ∩ BRy
) = χ

(
f−1(ỹ) ∩ BRy

\ (∪l
i=1B̊ε(zi))

)
+

l∑
i=1

χ(f−1(ỹ) ∩ Bε(zi))

= χc

(
f−1(y) ∩ BRy

\ (∪l
i=1Bε(zi))

)
+

l∑
i=1

ϕ(zi)

= χc

(
f−1(y) ∩ BRy

\ {z1, . . . , zl}
)

+
l∑

i=1

ϕ(zi)

=
∫

f−1(y)∩BRy

ϕ(x) dχc(x).

On the other hand, we have∫
f−1(y)∩BRy

ϕ(x) dχc(x) =
∫

f−1(y)

ϕ(x) dχc(x) −
∫

f−1(y)∩{ρE>Ry}
ϕ(x) dχc(x)

=
∫

f−1(y)

ϕ(x)dχc(x) − χc(f−1(y) ∩ {ρE > Ry}).

But the function f−1(y) ∩ {ρE > Ry} →]Ry,+∞[, x 
→ ρE(x) is a proper stratified
submersion, so

χc(f−1(y) ∩ {ρE > Ry}) = χc(f−1(y) ∩ SR) × χc(]Ry,+∞[),

where R ∈]Ry,+∞[. Since χc(f−1(y) ∩ SR) = 0, we find that∫
f−1(y)

ϕ(x)dχc(x) = χ(f−1(ỹ) ∩ BRy
)

= χc(f−1(ỹ) ∩ BRỹ
)) − χc(f−1(ỹ) ∩ {Ry < ρE � Rỹ})

= χ(f−1(ỹ) ∩ BRỹ
)) − χ(f−1(ỹ) ∩ {Ry � ρE � Rỹ})

= χ(f−1(ỹ)) − λX,∞
f,y ,

because χ(f−1(ỹ) ∩ {Ry � ρE � Rỹ}) = χ(f−1(ỹ) ∩ {Ry � ρE}). Therefore, we get∫
X

ϕ(x) dχc(x) = χ(X) −
s∑

j=1

1 − ϕ(qj) =
∫

C

χ(f−1(ỹ)) dy −
∫

C

λX,∞
f,y dy

= χ(f−1(c)) −
r∑

j=1

λX,∞
f,aj

= χ(f−1(c)) − λX,∞
f ,
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and so,

χ(X) − χ(f−1(c)) =
s∑

j=1

1 − χ(f−1(q̃j) ∩ Bε(qj)) − λX,∞
f .

By theorem 3.2 in [23] applied to the sheaf Z
•
X , we know that

1 − χ(f−1(q̃j) ∩ Bε(qj)) =
t∑

i=1

(−1)dinij(1 − χ(LX
Vi

)), (*)

where nij is the number of critical points of a Morsefication of f that lie on Vi in
a small neighbourhood of qj . Summing over all the critical points of f , we obtain
the result. �

Corollary 5.3. Let α : X → Z be a constructible function with respect to V and
let c ∈ C be a regular value of f , which is not a stratified asymptotic non-ρE-regular
value. We have

χ(X,α) − χ(f−1(c), α) =
t∑

i=1

(−1)diniη(Vi, α) − BX,∞
f (α).

Moreover, if f is general with respect to V, then we have

χ(X,α) − χ(f−1(c), α) =
t∑

i=1

(−1)diμT (f|Vi
)η(Vi, α) − BX,∞

f (α).

Proof. By the previous theorem, the result is true for α = 1Vi
. Since both sides of

the equality are linear in α, we see that the result is valid for any constructible
function α. �

If X is equidimensional then by [29], proposition 2.3, the term (−1)dinij that
appears in Equality (*) is equal to Euf,Vi

(qj). Hence the above corollary can be
refined.

Corollary 5.4. Assume that X is equidimensional. Let α : X → Z be a con-
structible function with respect to V and let c ∈ C be a regular value of f , which is
not a stratified asymptotic non-ρE-regular value. We have

χ(X,α) − χ(f−1(c), α) =
t∑

i=1

(−1)diniη(Vi, α) − BX,∞
f (α)

=
t∑

i=1

⎛⎝ q∑
j=1

Euf,Vi
(qj)

⎞⎠ η(Vi, α) − BX,∞
f (α).

Moreover, if f is general with respect to V, then we have

χ(X,α) − χ(f−1(c), α) =
t∑

i=1

(−1)diμT (f|Vi
)η(Vi, α) − BX,∞

f (α).

https://doi.org/10.1017/prm.2019.30 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.30


Global Euler obstruction, global Brasselet numbers and critical points 2525

An interesting application occurs when α = EuX .

Corollary 5.5. Assume that X is equidimensional. Let c ∈ C be a regular value
of f , which is not a stratified asymptotic non-ρE-regular value. We have

EuX
f,c = Eu(X) − BX

f,c = (−1)dnt − BX,∞
f =

s∑
j=1

Euf,X(qj) − BX,∞
f .

Moreover, if f is general with respect to V, then we have

EuX
f,c = Eu(X) − BX

f,c =
∑

j | qj∈Xreg

(−1)dμ(f|Xreg , qj) − BX,∞
f .

Proof. By definition, χ(X ∩ f−1(c),EuX) = BX
f,c and BX,∞

f (EuX) = BX,∞
f . By

remark 2.22, χ(X,EuX) = Eu(X). But if Vi �= Vt, then η(Vi,EuX) = 0 and
η(Vt,EuX) = 1. �

Remark 5.6. We note that only the Morse critical points lying in Xreg appear
in the first formula of corollary 5.5. However some of them may emerge in a small
neighbourhood of a critical point of f lying in a lower dimensional stratum, because
f is not supposed to be general. This is a difference with Equality (2), page 401
in [28], where only the critical points of a generic linear form lying in Xreg con-
tribute to the equality. Nevertheless, as in remark 4.8, we can conclude that the
sum

∑
j | qj∈Xsing

Euf,X(qj) does not depend on the stratification of the singular
locus of X.

Another corollary is a Brylinski-Dubson-Kashiwara type formula for the global
Brasselet number at infinity.

Corollary 5.7. Assume that X is equidimensional and let α : X → Z be a
constructible function with respect to V. We have

BX,∞
f (α) =

t∑
i=1

BVi,∞
f η(Vi, α).

Proof. Applying corollaries 5.4 and 5.5 to each set Vi, we obtain that

χ(X,α) − χ(f−1(c), α) + BX,∞
f (α)

=
t∑

i=1

[
Eu(Vi) − BVi

f,c − BVi,∞
f

]
η(Vi, α).

But we know that χ(X,α) =
∑t

i=1 Eu(Vi)η(Vi, α) (see [11], corollary 5.4) and that
χ(f−1(c), α) =

∑t
i=1 BVi

f,cη(Vi, α). �

Let us study what happens if we replace the generic regular value c with any
value a. First, we do not assume that X is equidimensional. For i = 1, . . . , t, let na

i

be the number of critical points of f̃ on Vi appearing in a small neighbourhood of
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a critical point of f , but that do not lie in a small neighbourhood of a critical point
q of f such that f(q) = a. Similarly, we set

μT
a (f|Vi

) =
∑

j | f(qj) 	=a

μ(f|Vj
, qj).

Proposition 5.8. Let α : X → Z be a constructible function with respect to V and
let a ∈ C. We have

χ(X,α) − χ(f−1(a), α) =
t∑

i=1

(−1)dina
i η(Vi, α) − BX,∞

f (α) + BX,∞
f,a (α).

Moreover if f is general with respect to V then we have

χ(X,α) − χ(f−1(a), α) =
t∑

i=1

(−1)diμT
a (f|Vi

)η(Vi, α) − BX,∞
f (α) + BX,∞

f,a (α).

Proof. Let c be a generic value (i.e., regular and not stratified asymptotic non-
ρE-regular value) of f close to a. Let Ra 
 1 be such that f−1(a) ∩ BRa

is a
deformation retract of f−1(a). We have

χ(f−1(c) ∩ BRa
) = χ(f−1(c) ∩ BRa

\ (∪j | f(qj)=aB̊ε(qj))

+
∑

j | f(qj)=a

χ(f−1(c) ∩ Bε(qj))

= χc(f−1(a) ∩ BRa
\ (∪j | f(qj)=aB̊ε(qj))

+
∑

j | f(qj)=a

χ(f−1(c) ∩ Bε(qj))

= χc(f−1(a) ∩ BRa
\ (∪j | f(qj)=aBε(qj))

+
∑

j | f(qj)=a

χ(f−1(c) ∩ Bε(qj))

= χc(f−1(a) ∩ BRa
) −

∑
j | f(qj)=a

1 − χ(f−1(c) ∩ Bε(qj))

= χ(f−1(a) ∩ BRa
) −

∑
j | f(qj)=a

1 − χ(f−1(c) ∩ Bε(qj))

= χ(f−1(a)) −
∑

j | f(qj)=a

1 − χ(f−1(c) ∩ Bε(qj)).

But

χ(f−1(c)) = χ(f−1(c) ∩ BRa
) + χ(f−1(c) ∩ {Ra � ρE � Rc})

= χ(f−1(a)) −
∑

j | f(qj)=a

1 − χ(f−1(c) ∩ Bε(qj)) + λX,∞
f,a .
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Combining this with the equality proved in theorem 5.2, we get

χ(X) − χ(f−1(a)) =
∑

j | f(qj) 	=a

1 − χ(f−1(c) ∩ Bε(qj)) − λX,∞
f + λX,∞

f,a .

Using Massey’s results ([23], theorem 3.2), we obtain the result for α = 1X . The
general case easily follows because of the linearity in α of both sides of the equality.

�

If X is equidimensional, we can refine the above proposition.

Corollary 5.9. Assume that X is equidimensional. Let α : X → Z be a con-
structible function with respect to V and let a ∈ C. We have

χ(X,α) − χ(f−1(a), α)

=
t∑

i=1

(−1)dina
i η(Vi, α) − BX,∞

f (α) + BX,∞
f,a (α)

=
t∑

i=1

⎛⎝ ∑
j | f(qj) 	=a

Euf,Vi
(qj)

⎞⎠ η(Vi, α) − BX,∞
f (α) + BX,∞

f,a (α).

Moreover, if f is general with respect to V then we have

χ(X,α) − χ(f−1(a), α) =
t∑

i=1

(−1)diμT
a (f|Vi

)η(Vi, α) − BX,∞
f (α) + BX,∞

f,a (α).

As above, we can specify these equalities to the case α = EuX .

Corollary 5.10. Assume that X is equidimensional. Let a ∈ C. We have

EuX
f,a = Eu(X) − BX

f,a = (−1)dna
t − BX,∞

f + BX,∞
f,a

=
∑

j | f(qj) 	=a

Euf,X(qj) − BX,∞
f + BX,∞

f,a .

Moreover if f is general with respect to V, then we have

EuX
f,a = Eu(X) − BX

f,a =
∑

j | qj∈Xreg
f(qj)�=a

(−1)dμ(f|Xreg , qj) − BX,∞
f + BX,∞

f,a .

Remark 5.11. As in remark 5.6, we see that the critical points of f lying in a lower
dimensional stratum can have a contribution in the first equalities of corollary 5.10,
when f is not general. However the sum

∑
j |f(qj)�=a

qj∈Xsing

Euf,X(qj) does not depend on

the stratification of the singular locus of X.

We can also give a version of the Brylinski-Dubson-Kashiwara formula for the
Brasselet numbers at infinity BX,∞

f,a .
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Corollary 5.12. Assume that X is equidimensional. Let α : X → Z be a con-
structible function with respect to V and let a ∈ C. We have

BX,∞
f,a (α) =

t∑
i=1

BVi,∞
f,a η(Vi, α).

Proof. Apply the previous two corollaries and proceed as in the proof of
corollary 5.7. �

An easy corollary is a relation between EuX
f,a (resp. BX

f,a) and EuX
f,c (resp. BX

f,c)
where c is generic.

Corollary 5.13. Assume that X is equidimensional. Let c ∈ C be a regular value
of f , which is not a stratified asymptotic non-ρE-regular value, and let a ∈ C. We
have

EuX
f,c − EuX

f,a = BX
f,a − BX

f,c = (−1)d(nt − na
t ) − BX,∞

f,a

=
∑

j | f(qj)=a

Euf,X(qj) − BX,∞
f,a .

Moreover, if f is general with respect to V, then we have

EuX
f,c − EuX

f,a = BX
f,a − BX

f,c =
∑

j | qj∈Xreg
f(qj)=a

(−1)dμ(f|Xreg , qj) − BX,∞
f,a .

When f has no stratified asymptotic non-ρE-regular values then in all the above
equalities, the terms λX,∞

f , λX,∞
f,a , BX,∞

f (α), BX,∞
f,a (α), BX,∞

f and BX,∞
f,a vanish.

From now on, we assume that X is equidimensional. If f = l is the restriction to X
of a generic linear function L : C

N → C, then l has no stratified asymptotic non-ρE-
regular values and moreover l is a stratified Morse function (see [28], lemma 3.1).

Keeping the notations introduced in [28], we denote by α
(d)
X the number of

(Morse) critical points of l on Xreg and by α
(d)
X,a those not occurring on l−1(a).

By corollary 5.10, if c is a regular value of l then EuX
l,c = (−1)dα

(d)
X and if a is

a critical value of l, then EuX
l,a = (−1)dα

(d)
X,a. By the relation between BX

l,a and
Eu(l−1(a)) proved in proposition 4.7, we obtain

Eu(X) − Eu(l−1(a)) = (−1)dα
(d)
X,a +

∑
j | l(qj)=a

EuX(qj) − Eul−1(a)(qj),

where the qj ’s are the critical points of l. For a regular value c of l, this gives

Eu(X) − Eu(l−1(c)) = (−1)dα
(d)
X ,

and so we have extended Equality (2), page 401 in [28]. Based on this equality,
Seade, Tibăr and Verjovsky could express the global Euler obstruction as an alter-
nating sum of global polar invariants. In the sequel, we will establish a relative
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version of this result for the global Brasselet number and the Brasselet numbers at
infinity.

So we consider a polynomial function f : X → C, restriction to X of a polynomial
function F : C

N → C. We assume that f has a finite number of critical points, which
means that for i = 1, . . . , t, F|Vi

has a finite number of critical points. We denote
by {q1, . . . , qs} the set of critical points of f . For a ∈ C, we put Xa = f−1(a). The
algebraic set Xa is equidimensional and if q1, . . . , qu, u � s, are the critical points
of f on f−1(a), then

Va =
(�t

i=1Vi ∩ f−1(a) \ {q1, . . . , qu}
) ∪ (�u

j=1{qj}
)
,

is a Whitney stratification of Xa.
Let L : C

N → C be a linear function and l : X → C be its restriction to X. We
denote by ΓX

f,l the relative polar variety of f and l. It is defined as follows:

ΓX
f,l = {x ∈ Xreg | rank[df(x), dl(x)] < 2}.

It is well-known that for L generic, ΓX
f,l is a reduced algebraic curve. Moreover, if

L is generic, we can assume the following fact:

l|Xa
: Xa → C is ρ-regular at infinity and Morse stratified.

Let IX(ΓX
f,l,Xa) be the global intersection multiplicity of ΓX

f,l and Xa, namely

IX(ΓX
f,l,Xa) =

∑
p∈ΓX

f,l∩f−1(a)

Ip(ΓX
f,l,Xa),

where Ip(ΓX
f,l,Xa) is the local intersection multiplicity of ΓX

f,l and Xa at p. If
dim(X) = 1 then ΓX

f,l = X and in this case Ip(ΓX
f,l,Xa) is the degree of l : (X, p) →

(C, a), that is the cardinality of l−1(c) ∩ X ∩ Bε(p) for 0 < |c − a| � ε � 1.

Proposition 5.14. We have

BX
f,a − BX∩H

f,a = (−1)d−1IX(ΓX
f,l,Xa) +

u∑
j=1

Euf,X(qj),

where H is a generic hyperplane given by H = L−1(g) for a regular value g of l|Xa

and l|X .

Proof. Let us treat first the case dim(X) > 1. Applying Equality (2) of [28] that
we have mentioned above to Xa and Xa ∩ L−1(g), we get

Eu(Xa) − Eu(Xa ∩ H) = (−1)d−1α
(d−1)
Xa

,

where α
(d−1)
Xa

is the number of critical points of l|Xa
on Xreg ∩ (f−1(a) \

{q1, . . . , qu}). Since g is a regular value of l|Xa
then

Eu(Xa ∩ H) =
t∑

i=1

χ(Vi ∩ f−1(a) ∩ H)EuXa∩H(Vi ∩ H ∩ f−1(a)).
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The hyperplane H intersects X transversally. Furthermore, because the intersec-
tions Vi ∩ f−1(a) ∩ H are transverse, we know that

EuXa∩H(Vi ∩ H ∩ f−1(a)) = EuX∩H(Vi ∩ H),

which implies that Eu(Xa ∩ H) = BX∩H
f,a . Applying proposition 4.7, we obtain

BX
f,a − BX∩H

f,a = (−1)d−1α
(d−1)
Xa

+
u∑

j=1

EuX(qj) − EuXa
(qj).

But IX(ΓX
f,l,Xa) is equal to

α
(d−1)
Xa

+
u∑

j=1

Iqj
(ΓX

f,l,Xa).

By corollary 5.2 in [12], we have

(−1)d−1Iqj
(ΓX

f,l,Xa) = Bf,X(qj) − Bf,X∩Hj
(qj),

where Hj = L−1(L(qj)). Corollary 6.6 in [12] implies that

(−1)d−1Iqj
(ΓX

f,l,Xa) = Bf,X(qj) − EuXa
(qj) = EuX(qj) − Euf,X(qj) − EuXa

(qj),

and so

EuX(qj) − EuXa
(qj) = (−1)d−1Iqj

(ΓX
f,l,Xa) + Euf,X(qj).

If dim(X) = 1 then BX∩H
f,a = 0 and

BX
f,a =

∑
p∈f−1(a)

EuX(p) = #f−1(a) \ {q1, . . . , qu} +
u∑

j=1

EuX(qj).

Applying theorem 3.1 in [4], it is easy to see that

EuX(qj) = Euf,X(qj) + Iqj
(ΓX

f,l,Xa).

Since Ip(ΓX
f,l,Xa) = 1 if p is a regular point of f , we obtain the result. �

By a standard connectivity argument, IX(ΓX
f,l,Xa) does not depend on the choice

of the generic linear function L. Following Tibăr’s notation [36], we denote it by
γ

(d−1)
X,a . Similarly for i = 2, . . . , d, we define

γ
(d−i)
X,a = IX∩Hi−1(ΓX∩Hi−1

f,l ,Xa ∩ Hi−1),

where Hi−1 is a generic linear space of codimension i − 1. The following statement
is a relative version of the Seade-Tibăr-Verjovsky polar formula for the global Euler
obstruction.
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Corollary 5.15. We have

BX
f,a =

d∑
i=1

(−1)d−iγ
(d−i)
X,a +

u∑
j=1

Euf,X(qj).

Proof. We apply the previous result to X ∩ Hi−1. Note that for i � 2, we can choose
Hi−1 generic enough so that Hi−1 intersects Xa transversally, which implies that
f−1(a) intersects Hi−1 ∩ X transversally. �

If a = c is a generic value of f , then the above corollary becomes

BX
f,c =

d∑
i=1

(−1)d−iγ
(d−i)
X,c .

If we apply this to f = l, the restriction to X of a generic linear function L : C
n → C,

then for i = 1, . . . , d, γd−i
X,c is exactly equal to the number α

(d−i)
X defined in [28],

which is the number of critical points of a generic linear function on Xreg ∩ Hi−1.
Combining this fact with the equality

BX
f,c = Eu(X) − EuX

f,c = Eu(X) − (−1)dα
(d)
X ,

we obtain

Eu(X) =
d∑

i=0

(−1)d−iα
(d−i)
X =

d∑
i=0

(−1)iα
(i)
X ,

that is, the main result of [28].
Another corollary is a characterization of the Brasselet numbers at infinity in

terms of critical points of generic linear forms.

Corollary 5.16. Let a ∈ C be a stratified asymptotic non-ρE-regular value of f
and let c ∈ C be a generic regular value of f . We have

BX,∞
f,a =

d∑
i=1

(−1)d−i
(
γ

(d−i)
X,c − γ

(d−i)
X,a

)
.

Proof. Use the previous corollary and the equality

BX,∞
f,a = BX

f,c − BX
f,a +

u∑
j=1

Euf,X(qj). �

If α : X → Z is a constructible function relative to V, then the previous equal-
ity, combined with the Brylinski-Dubson-Kashiwara formula for BX,∞

f,a proved in
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corollary 5.12, gives

BX,∞
f,a (α) =

t∑
j=1

⎛⎝ dj∑
i=1

(−1)dj−i(γ(dj−i)

Vj ,c
− γ

(dj−i)

Vj ,a
)

⎞⎠ η(Vj , α).

In particular for α = 1X , we get

λX,∞
f,a =

t∑
j=1

⎛⎝ dj∑
i=1

(−1)dj−i(γ(dj−i)

Vj ,c
− γ

(dj−i)

Vj ,a
)

⎞⎠ (1 − χ(LX
Vj

)).

We end this section with an application. We assume that dim(X) � 2 and that
f is general with respect to V. We also suppose that there exists l : X → C, restric-
tion to X of a linear form L : C

N → C, such that l has no stratified asymptotic
non-ρE-regular values and is general with respect to V and such that the map-
ping (f, l)|Xreg : Xreg → C

2 is a submersion. In this situation, corollary 5.5 gives
EuX

f,c = −BX,∞
f because f has no critical points on Xreg. Similarly EuX∩H

f,c =
−BX∩H,∞

f , where H = L−1(g) for a regular value g of l : X → C. But, by
proposition 5.14 applied to f and l, we find

BX
f,c − BX∩H

f,c = 0 = Eu(X) − EuX
f,c − Eu(X ∩ H) + EuX∩H

f,c .

But Eu(X) = Eu(X ∩ H) because l has no critical points on Xreg. Finally, we obtain
that BX,∞

f = BX∩H,∞
f . This extends the fact that for X = C

2, λC
2,∞

f = λH,∞
f .

Indeed in this situation, λC
2,∞

f = 0 because the mapping (f, l) : C
2 → C

2 is a
submersion (see for instance [20]) and λH,∞

f = 0 because f|H is proper.
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38 M. Tibăr. Singularities and topology of meromorphic functions, trends in singularities,
pp. 223–246 (Basel: Trends Math., Birkhäuser, 2002).
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