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Effects of spanwise-periodic surface heating on
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The effects of streamwise-elongated, spanwise-periodic surface heating on a supersonic
boundary-layer instability are investigated under the assumption of high Reynolds number.
Our focus is on the lower-branch viscous instability and so the spanwise spacing of
the elements is chosen to be of O(Re−3/8L), the wavelength of the latter, where Re is
the Reynolds number based on L, the distance from the leading edge to the centre of
the elements. The streamwise length is assumed to be much longer in order to simplify
the mathematical description. Starting with classical triple-deck theory, the equations
governing the heating-induced streaky flow are derived by appropriate rescaling. When
Chapman’s viscosity law is adopted, a similarity solution is found. The stability of
the streaky flow, which is of a bi-global nature, is shown to be governed by a novel
triple-deck structure characterised by fully compressible dynamics in the lower deck.
Through asymptotic analysis, the bi-global stability is reduced to a one-dimensional
eigenvalue problem, which involves only the spanwise-dependent wall temperature and
wall shear. The instability modes may be viewed as a continuation of oncoming first Mack
modes, but might also be considered as a new kind since they exhibit two distinctive
features: strong temperature perturbation near the wall and spontaneous radiation of an
acoustic wave to the far field, neither of which is shared by first Mack modes. Numerical
calculations, performed for two simple patterns of spanwise-periodic heating elements,
demonstrate their stabilising/destabiling effects on modes with different frequencies and
spanwise wavelengths.

Key words: boundary layer stability, supersonic flow, transition to turbulence

1. Introduction

Surface heating/cooling, as a flow control technique, has received much attention owing
to its proved and perceived applications. In a supersonic boundary layer, spatially
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uniform heating/cooling was found to destabilise/stabilise the first Mack modes but
stabilise/destabilise the second modes (Mack 1975; Lysenko & Maslov 1984). Local
heating/cooling has been considered to be more efficient if it is imposed at appropriate
positions. The possibility of stabilising flow via a local heating strip centred near, or at
upstream of, the lower branch of the neutral curve has been demonstrated experimentally
by Dovgal, Levchenko & Timopeev (1990) and numerically by Kral et al. (1994). The
findings were broadly confirmed by the linear stability analysis of the heating-modified
base flow (Masad & Nayfeh 1992; Masad 1995). Hypersonic boundary-layer stability on a
cone with localised surface heating/cooling has been studied by Fedorov et al. (2015).

While steady heating/cooling influences transition by modifying the base-flow profile,
time-periodic and streamwise localised surface heating/cooling has been employed to
excite instability modes in a controlled manner (Corke & Mangano 1989). In particular,
it may generate a mode with an appropriate amplitude and phase so as to cancel an
oncoming wave whereby delaying transition. For incompressible boundary layers, this
was demonstrated by the experiments of Liepmann, Brown & Nosenchuck (1982) and
Liepmann & Nosenchuck (1982). Direct numerical simulations of transition control
through excitation and cancellation of instability modes by time-periodic heating were
performed by Kral & Fasel (1991). A theoretical description was developed recently by
Brennan, Gajjar & Hewitt (2021) based on triple-deck formalism.

Classical triple-deck theory (Neiland 1969; Stewartson & Williams 1969) has been
extended to the boundary layer subject to local temperature disturbances. In the case
of a two-dimensional O(1) temperature variation occurring on the triple-deck scale, the
problem was formulated by Méndez, Treviño & Liñán (1992) for a wall temperature
jump, and the boundary layer was found to separate when the jump exceeds a critical
value. Treviño & Liñán (1996) analysed how surface temperature disturbances of moderate
intensity modify the growth rate of the instability using a perturbation approach. This
perspective of local stability is however inappropriate because the length scales of
the instability and the heating-induced mean-flow alteration are comparable. Instead
the impact on instability should be accounted for by a local scattering approach (Wu
& Hogg 2006; Wu & Dong 2016). Lipatov (2006) developed asymptotic theories for
three-dimensional surface heating elements with different length scales. The effect of
heating is shown to be equivalent to that of a local roughness element. For heating on the
triple-deck scale, Koroteev & Lipatov (2009, 2012) obtained linear solutions analytically
and nonlinear solutions numerically. The asymptotic theory has also been extended by
Aljohani & Gajjar (2017a,b, 2018) to investigate the impact of two- and three-dimensional
heated roughness elements on subsonic and transonic boundary layers.

The present paper is concerned with spanwise-periodic streamwise-elongated surface
heating and its effects on supersonic boundary-layer instability. Such a problem has not
been investigated before although its counterpart for roughness arrays of this form in an
incompressible boundary layer has been studied by Kátai & Wu (2020), where a stabilising
effect was identified for weakly three-dimensional lower-frequency instability modes. As
will be shown, such a form of surface heating in supersonic boundary layers causes
significantly different instability characteristics.

The rest of the paper is organized as follows. In § 2 the problem is formulated. We
first derive the simplified mathematical system governing the three-dimensional streaky
flow induced by surface heating. Under the assumption of Chapman’s viscosity law, the
similarity solution is then obtained and presented. In § 3 the stability of the streaky flow
is considered, and we show that the instability is governed by a new triple-deck structure
with the dynamics in the lower deck being fully compressible. The bi-global eigenvalue
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Figure 1. Schematics of a streaky flow induced by an array of spanwise-periodic surface heating elements.
The contours show the surface temperature distribution, where x∗ and z∗ represent the streamwise and spanwise
coordinates, λ∗z and d∗ denote the spanwise wavelength and streamwise extent of the heating elements, and U∞
the free-stream velocity.

problem is reduced to a one-dimensional one in the spanwise direction, and the instability
is shown to be controlled by the spanwise-dependent wall shear and temperature. The
reduced eigenvalue problem is solved, and numerical results are presented in § 4 to
highlight the main instability characteristics. A summary and conclusions are given in
§ 5.

2. Problem formulation

2.1. Heating elements on the triple-deck scale
We consider a supersonic boundary layer flow past a semi-infinite flat plate, on which an
array of streamwise-elongated and spanwise-periodic heating elements is deployed, as is
shown figure 1. The elements are centred at a distance L from the leading edge. First we
introduce the dimensionless variables

(x, y, z) = (x∗, y∗, z∗)/L, (u, v, w) = (u∗, v∗, w∗)/U∞,

p = ( p∗ − p∞)/(ρ∞U2
∞), ρ = ρ∗/ρ∞, T = T∗/T∞, μ = μ∗/μ∞,

}
(2.1)

where (x, y, z) are Cartesian coordinates with the origin located at the centre of the
elements, (u, v, w) are the corresponding velocities, p, ρ, T and μ denote the pressure,
density, temperature and dynamic viscosity coefficient, respectively. We use an asterisk
to indicate dimensional quantities and ∞ the quantities in the free stream. The Reynolds
number Re and Mach number M∞ are defined as

Re = ρ∞U∞L/μ∞, M∞ = U∞/a∞, (2.2a,b)

with a∞ being the speed of sound in the free stream. It is assumed that Re � 1 in order
to present the asymptotic descriptions of the heating-induced streaky flow and its viscous
instability. The focus will be on 1 < M∞ < 4.5, in which the first mode plays a dominant
role in transition.

We begin with a standard triple-deck structure whose streamwise and spanwise length
scales are of O(Re−3/8L). The asymptotic description of the flow induced by such a form
of heating was presented by Lipatov (2006). It is convenient to use the rescaled coordinates

{X, Z} = ε−3{x, z}, {y1, y2, y3} = {ε−3y, ε−4y, ε−5y}, ε = Re−1/8, (2.3a,b)

where y1, y2 and y3 are the local coordinates in the upper, main and lower decks,
respectively. We assume that the wall temperature is varied by O(1) through heating.
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The induced velocity field near the surface is of O(ε). Specifically, in the lower deck
where y3 = O(1), the dependent variables have the expansions (Lipatov 2006)

{u, w} = ε{u3, w3} + O(ε2), v = ε3v3 + O(ε4), (2.4a,b)

p = ε2p3 + O(ε3), {ρ, T, μ} = {ρ3, T3, μ3} + O(ε). (2.5a,b)

Substitution into the Navier–Stokes (NS) equations leads to the governing equations of the
lower deck,

∂ (ρ3u3)

∂X
+ ∂ (ρ3v3)

∂y3
+ ∂ (ρ3w3)

∂Z
= 0, (2.6)

ρ3

(
u3

∂u3

∂X
+ v3

∂u3

∂y3
+ w3

∂u3

∂Z

)
= −∂p3

∂X
+ ∂

∂y3

(
μ3

∂u3

∂y3

)
, (2.7)

ρ3

(
u3

∂w3

∂X
+ v3

∂w3

∂y3
+ w3

∂w3

∂Z

)
= −∂p3

∂Z
+ ∂

∂y3

(
μ3

∂w3

∂y3

)
, (2.8)

ρ3

(
u3

∂T3

∂X
+ v3

∂T3

∂y3
+ w3

∂T3

∂Z

)
= ∂

∂y3

(
μ3

∂T3

∂y3

)
, (2.9)

with the y-momentum equation giving ∂p3/∂y3 = 0 and the state equation ρ3T3 = 1,
where we assume that the specific heat capacities are constant and the Prandtl number
Pr is unity. The matching and boundary conditions of the above system are

u3 → λBy3, w3 → 0, T3 → TB(0) as X → −∞; (2.10a,b)

u3 = v3 = w3 = 0, T3 = Tw(X, Z) at y3 = 0; (2.11a,b)

u3 → λB(A(X, Z) + y3), w3 → D(X, Z)

λBy3ρB(0)
, T3 → TB(0) as y3 → ∞, (2.12a–c)

among which (2.10a,b) represents the matching with the unperturbed state upstream (and
serves as the leading-order initial condition when elongated heating arrays are considered
later). In (2.10a,b)–(2.12a–c), λB = 0.3321T−1

B (0) is the wall shear of the compressible
Blasius flow, TB( y2) and ρB( y2) are the corresponding temperature and density profiles, of
which TB( y2) is related to the velocity profile uB( y2) via TB = 1 + (γ − 1)M2∞(1 − u2

B)/2
under the assumption that the unperturbed wall temperature takes the adiabatic value with
γ denoting the ratio of the specific heat capacities. These unperturbed flow quantities are
evaluated at x = 0, the ‘centre’ of the heating elements (and at y2 = 0 if the argument is
set to zero). The function Tw(X, Z) represents the wall temperature imposed by the heating
elements. The unknown functions D(X, Z) and A(X, Z) are introduced with D satisfying
∂D/∂X = −∂P/∂Z and A being the displacement function.

In the main deck, where y2 = O(1), we express the dependent variables as

u = uB + εu2 + O(ε2), {v, w} = ε2{v2, w2} + O(ε3), (2.13a,b)

p = ε2p2 + O(ε3), {ρ, T} = {ρB, TB} + ε{ρ2, T2} + O(ε2). (2.14a,b)

Substitution of the above expansions into the NS equations leads to the equations
governing the main-deck disturbance, and their leading-order solution can be found as

u2 = A(X, Z)
duB

dy2
, v2 = −∂A(X, Z)

∂X
uB, w2 = D(X, Z)

uBρB
, (2.15a–c)

p2 = P(X, Z), T2 = A(X, Z)
dTB

dy2
, (2.16a,b)
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where the function P(X, Z) is introduced to denote the pressure in the lower deck, i.e.
p3 = P(X, Z), which is independent of the transverse coordinate. The main deck plays a
passive role of conveying the displacement effect produced in the lower deck to the upper
deck.

In the upper deck, where y1 = O(1), the displacement-induced pressure can be
expanded as p = ε2p1 + O(ε3), where p1 is governed by

(
M2

∞ − 1
) ∂2p1

∂X2 − ∂2p1

∂y2
1

− ∂2p1

∂Z2 = 0, (2.17)

and subjected to the matching and boundary conditions

∂p1

∂y1

∣∣∣∣
y1=0

= ∂2A
∂X2 , p1|y1=0 = P(X, Z), p1|y1→∞ → 0. (2.18a–c)

The solution to the boundary-value problem (2.17)–(2.18a–c) leads to the so-called
pressure-displacement relation.

2.2. Streaky flow induced by streamwise-elongated heating elements
Surface heating with both streamwise and spanwise lengths on the triple-deck scale is of
interest, but its impact on stability must be accounted for by an extension of the local
scattering approach (Wu & Dong 2016), which is computationally expensive. We now
consider elongated heating elements whose spanwise length scale remains unchanged but
the streamwise length scale d∗ is stretched to O(ε3ε−1

x )L, where εx � 1 is the aspect ratio,
i.e. the ratio of the spanwise spacing and streamwise extent of the heating elements. This is
a departing point from the previous work (Koroteev & Lipatov 2009, 2012). The order of
magnitude of ρ3, T3 and μ3 remains O(1). A simplified structure arises after appropriate
balances. We first introduce the rescaled independent and dependent variables,

{X̄, ȳ3, Ā} = {εxX, εyy3, εaA}, (2.19)

{ū3, v̄3, w̄3, p̄3} = {εuu3, εvv3, εww3, εpp3}, (2.20)

where rescaling factors εy, εu, εv , εw, εp and εa are to be found. In the lower deck, all three
terms in the continuity equation (2.6) balance, and the inertial and viscous terms balance in
momentum equations (2.7) and (2.8). The terms in the matching condition (2.12a) balance.
Meanwhile, the matching condition (2.18a) holds. These balances lead to six relations,

εx

εu
= εy

εv

= 1
εw

,
εx

εu
= ε2

y , εu = εy = εa,
1
εp

= ε2
x

εa
, (2.21a–d)

from which the six rescaling factors are expressed in terms of εx,

{εy, εu, εv, εw, εp, εa} = {ε1/3
x , ε1/3

x , ε−1/3
x , ε−2/3

x , ε−5/3
x , ε1/3

x }. (2.22)
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Substitution of (2.19)–(2.20) with (2.22) into (2.6)–(2.9) leads to the equations governing
the lower-deck flow,

∂ (ρ3ū3)

∂X̄
+ ∂ (ρ3v̄3)

∂ ȳ3
+ ∂ (ρ3w̄3)

∂Z
= 0, (2.23)

ρ3

(
ū3

∂ ū3

∂X̄
+ v̄3

∂ ū3

∂ ȳ3
+ w̄3

∂ ū3

∂Z

)
= ∂

∂ ȳ3

(
μ3

∂ ū3

∂ ȳ3

)
, (2.24)

ρ3

(
ū3

∂w̄3

∂X̄
+ v̄3

∂w̄3

∂ ȳ3
+ w̄3

∂w̄3

∂Z

)
= ∂

∂ ȳ3

(
μ3

∂w̄3

∂ ȳ3

)
, (2.25)

ρ3

(
ū3

∂T3

∂X̄
+ v̄3

∂T3

∂ ȳ3
+ w̄3

∂T3

∂Z

)
= ∂

∂ ȳ3

(
μ3

∂T3

∂ ȳ3

)
, (2.26)

∂ p̄3

∂ ȳ3
= 0, ρ3T3 = 1, (2.27a,b)

and the boundary and matching conditions (2.10a,b)–(2.12a–c) take on the rescaled form

ū3 → λBȳ3, w̄3 → 0, T3 → TB(0) as X̄ → −∞; (2.28a–c)

ū3 = v̄3 = w̄3 = 0, T3 = Tw(X̄, Z) on ȳ3 = 0; (2.29a,b)

ū3 → λB(ȳ3 + Ā), w̄3 → 0, T3 → TB(0) as ȳ3 → ∞. (2.30a–c)

In the upper deck, the pressure is rescaled as p̄1 = ε
−5/3
x p1. Since the streamwise

derivative of the pressure is relatively small, the governing equation (2.17) reduces to

∂2p̄1

∂y2
1

+ ∂2p̄1

∂Z2 = 0, (2.31)

with the matching conditions (2.18a–c) remaining unchanged.

2.3. Solutions of the lower deck
We first consider the boundary-value problem for w̄3 consisting of the z-momentum
equation (2.25) together with the vanishing initial and boundary conditions of w̄3
in (2.28a–c)–(2.30a–c). Based on this system, an analogy (or equivalence) may be
drawn between w̄3 and a passive scalar that is advected and undergoes diffusion. The
homogeneous upstream and boundary conditions imply that no scalar is introduced
to the flow field, and it follows that w̄3 ≡ 0. Alternatively and more mathematically,
according to the weak maximum principle of parabolic partial differential equations
(Renardy & Rogers 2006), the spanwise velocity w̄3 is identically zero. Therefore, the
elongated-element induced streaky flow can, despite its three-dimensional nature, be
calculated in a quasi-two-dimensional manner. This is a simple but useful result as it allows
for simplification of the computations. However, a numerical approach still has to be taken
for a general viscosity law.

When Chapman’s viscosity law is adopted, for which μ3 = CT3 with C = 1 for
the non-dimensionalisation adopted, and after employing the Dorodnitsyn–Howarth
transformation and the associated substitution of the transverse velocity (cf. Aljohani &
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Gajjar 2017b),

Ȳ3(X̄, ȳ3, Z) =
∫ ȳ3

0
ρ3(X̄, y, Z) dy, ρ3v̄3 = V̄3(X̄, Ȳ3, Z) − ū3

∂Ȳ3

∂X̄

∣∣∣∣
ȳ3

, (2.32a,b)

the fully nonlinear equations (2.23)–(2.26) simplify to

∂ ū3

∂X̄
+ ∂V̄3

∂Ȳ3
= 0, ū3

∂ ū3

∂X̄
+ V̄3

∂ ū3

∂Ȳ3
= ∂2ū3

∂Ȳ2
3

, ū3
∂T3

∂X̄
+ V̄3

∂T3

∂Ȳ3
= ∂2T3

∂Ȳ2
3

, (2.33a–c)

which are the same as in the incompressible case. A seemingly trivial solution to (2.33a,b)
satisfying both the matching and boundary conditions (2.28a–c)–(2.30a–c) is found as

ū3 = λB

ρB(0)
Ȳ3, V̄3 = 0, Ā = 1

ρB(0)

∫ ∞

0
[ρ3 − ρB(0)] dy. (2.34a–c)

Therefore, the temperature equation (2.33c) simplifies to a linear diffusion equation and
can be solved by a marching method first. With the temperature field known, the velocity
field can be obtained using (2.34a–c). Indeed (2.34a–c) is the appropriate solution with
the similarity variable Ȳ3 containing both the streamwise and wall-normal coordinates
through (2.32a). It is rather remarkable that the solution to the fully nonlinear equations
(2.23)–(2.26) for the induced three-dimensional flow can be constructed in such a simple
procedure; this observation has not been made before to the best of our knowledge.

The lower-deck solutions u3 and T3, and main-deck solutions u2 and T2, are only
valid in their respective regions. A composite solution that is valid in both decks can be
constructed by using the additive composition (Van Dyke 1975). On noting the scalings in
(2.4a,b)–(2.5a,b), (2.13a,b)–(2.14a,b) and (2.19)–(2.20) with (2.22) the composite solution
for the streamwise velocity and the temperature can be expressed as

uc = εε−1/3
x ū3(X̄, ȳ3, Z)︸ ︷︷ ︸
lower-decksolution

+ uB( y2) + εε−1/3
x Ā(X̄, Z)u′

B( y2)︸ ︷︷ ︸
main-decksolution

− εε−1/3
x λB(ȳ3 + Ā(X̄, Z))︸ ︷︷ ︸

common part

,

(2.35)

Tc = T3(X̄, ȳ3, Z)︸ ︷︷ ︸
lower-deck solution

+ TB( y2)︸ ︷︷ ︸
main-decksolution

− TB(0)︸ ︷︷ ︸
common part

. (2.36)

Numerical calculations of uc and Tc are performed for the three-dimensional flow
induced by a surface temperature distribution of the variable separation form,

Tw(X̄, Z) = TB(0) + hf (X̄)S(Z), (2.37)

where h measures the heating level, f (X̄) is taken to be Gaussian distribution and S(Z) has
a Fourier series representation,

f (X̄) = exp(−(X̄/d)2), S(Z) =
+∞∑
n=0

sn cos(nβZ), (2.38a,b)

where d is the rescaled length measuring the streamwise extent, and β the spanwise
wavenumber, of the heating elements. For simplicity, in our calculations we take s1 = 1
and sn = 0 for all n /= 1, i.e.

S(Z) = cos(βZ). (2.39)

Other parameter values are: M∞ = 3, γ = 1.4 (in air), d = 0.5, β = 2π and h = 1, which
corresponds to heating with the maximum surface temperature variation being the same
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Figure 2. (a,c,e,g) Contours of the composite temperature Tc (dotted lines) and its deviation from the Blasius
flow, Tc − TB (solid and dashed lines); (b,d, f,h) contours of the composite streamwise velocity uc (dotted lines)
and its deviation from the Blasius flow, uc − uB (solid and dashed lines). Results are shown for (a,b) X̄ = −0.5;
(c,d) X̄ = 0; (e, f ) X̄ = 0.5; (g,h) X̄ = 1. Parameters: ε = 0.2, εx = 0.06.

as the free-stream temperature, or 36 % of the unperturbed adiabatic surface temperature
since TB(0) = 2.8. We take ε = 0.2 (which corresponds to a typical Reynolds number
Re ≈ 5 × 105) and εx = 0.06 as in Kátai & Wu (2020), where these values are pertinent to
the experiment of Downs & Fransson (2014). Figure 2 shows in the y2–Z plane the contours
of the composite streamwise velocity and temperature, uc and Tc, and their deviation
from the Blasius flow, uc − uB and Tc − TB, at four different streamwise locations.
The form of streaks can be observed in both the velocity and temperature deviations.
High-temperature low-speed streaks arise at the centreline of the heating (Z = 0), along
with low-temperature high-speed streaks at Z = ±0.5. While the temperature field Tc

exhibits obvious three dimensionality, the velocity uc as shown in the figure varies weakly
in the spanwise direction. This is due to the fact that in the main layer the heating-induced
spanwise-varying velocity is much smaller than, and, hence, masked by, the Blasius flow.
The former is comparable with the latter only in the region closer to the wall. A zoomed
view of this part of the flow is displayed in figure 3, and a significant spanwise variation is
observed for −0.5 ≤ X̄ ≤ 0.5, and indeed uc ≈ εε

−1/3
x λu(X̄, Z)ȳ3 as expected, where λu

represents the rescaled wall shear of the streaky flow.
As the flow depends on both the transverse and spanwise coordinates, the instability is in

general of a bi-global type (Theofilis 2011). However, our concern is with the lower-branch
viscous instability, which will later be shown to be controlled by the wall shear λu and wall
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Figure 3. A zoomed near-wall view of the flow shown in figure 2. Results are shown for (a,b) X̄ = −0.5;
(c,d) X̄ = 0; (e, f ) X̄ = 0.5; (g,h) X̄ = 1. Black lines: Tc (a,c,e,g) and uc (b,d, f,h); red lines: εε

−1/3
x λuȳ3.

temperature Tw only. Interestingly, the wall shear λu has the analytical expression

λu(X̄, Z) = ∂ ū3

∂ ȳ3

∣∣∣∣
ȳ3=0

= λB
ρ3(X̄, 0, Z)

ρB(0)
= λB

TB(0)

Tw(X̄, Z)
, (2.40)

which can be calculated without solving for the flow field in the boundary layer. The
constant λB will be set to unity on the understanding that the dependence on it is accounted
for by the rescaling as in Smith (1989).

3. Linear stability analysis of the streaky boundary layer

Lower-branch Tollmien–Schlichting (T-S) modes of a subsonic boundary layer are
well known to be governed by the triple-deck structure (Lin 1946; Smith 1979b). As
continuation of oblique T-S modes into the supersonic regime, first Mack modes are
also shown to have the triple-deck scales with the wavelength being of O(ε3) and the
frequency O(ε−2) (Smith 1989). These scales carry over to the viscosity instability of
the heating-induced streaky flow. Therefore, we introduce the rescaled time variable,
t̂ = ε−2t, for instability analysis. The instability remains being governed by the same
triple-deck structure but the lower-deck dynamics differs significantly from that in the
classical settings (Smith 1979b, 1989) and in incompressible streaky flows (Kátai & Wu
2020). By taking advantage of the triple-deck structure, the dependence of the mode on the

940 A20-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.228


K. Zhu and X. Wu

vertical coordinate can be treated analytically, thereby reducing the bi-global instability to
a one-dimensional eigenvalue problem in the spanwise direction.

3.1. Main deck
In the main deck, the perturbed flow field can be expanded as

{u, v, w} = {u2b, ε
2ε2/3

x v2b, ε
2ε2/3

x w2b} + εεd{û2, εv̂2, εŵ2}E, (3.1)

{p, ρ, T} = {ε2ε5/3
x p2b, ρ2b, T2b} + εεd{εp̂2, ρ̂2, T̂2}E, (3.2)

where the quantities with a subscript b signify those of the base flow, the second terms
represent a normal-mode disturbance, in which εd � 1 denotes its amplitude and E =
exp [i(αX − ωt̂)] with α and ω being of O(1). For spatial stability, ω is real denoting
the frequency and α = αr + iαi is complex with αr being the wavenumber and (−αi)
the growth rate. The relative orders of magnitude of the velocity, pressure and density
(temperature) of the disturbance, as indicated by (3.1)–(3.2), are the same as those for the
viscous first mode (Smith 1989). This is because the present instability retains the spatial
and temporal scales of the latter, while the heating-induced mean-flow distortion amounts
to a small correction to the Blasius flow. Substituting (3.1)–(3.2) into the NS equations and
solving the resultant equations, we obtain the leading-order solution,

û2 = A1
∂u2b

∂y2
, v̂2 = −iαA1u2b, ŵ2 = − 1

iαρ2bu2b

∂ p̂2

∂Z
, (3.3a–c)

p̂2 = p̂2(Z), T̂2 = A1
∂T2b

∂y2
, (3.4a,b)

where A1(Z) is introduced as the displacement function.

3.2. Lower deck
In the lower deck, the flow field, consisting of the streaky boundary layer flow and the
modal disturbance, expands as

{u, v, w} = ε{ε−1/3
x u3b, ε

2ε1/3
x v3b, ε

2/3
x w3b} + εεd{û3, ε

2v̂3, ŵ3}E, (3.5)

{p, ρ, T, μ} = {ε2ε5/3
x p3b, ρ3b, T3b, μ3b} + εd{ε2p̂3, ρ̂3, T̂3, μ̂3}E. (3.6)

Since the lower deck for the streaky base flow is much thicker than that for instability
modes, we approximate the base-flow quantities by their Taylor expansions about the wall,

{u3b, v3b, w3b} ≈ ε1/3
x {λu, ε

1/3
x λvy3, λw}y3, {T3b, ρ3b, μ3b} ≈ {Tw, ρw, μw}, (3.7a,b)

where λu is given by (2.40), λw = ∂w3b/∂ ȳ3|ȳ3=0, λv = −1
2 (λu,X̄ + λw,Z), Tw = Tw(X̄, Z),

ρw = 1/Tw and μw = μ(Tw).
Attention should be paid to the asymptotic scalings of the modal disturbance in

(3.5)–(3.7a,b). Its velocity components and pressure have the same scalings as for the
viscous first mode (Smith 1989) as a result of the shared characteristic frequency and
wavelength. However, due to the presence of the O(1) heating-induced spanwise varying
temperature T3b, the spanwise advection induces a temperature disturbance that is greater
than the velocity fluctuation by a factor of ε−1. This is deduced by considering the key
balance in the energy equation as follows. Let the temperature disturbance be denoted
by T̃ . The unsteady term ∂T̃/∂t = O(ε−2T̃) while the spanwise advection w∂T3b/∂z =
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O(εεd · ε−3), and so the balance of the two suggests that T̃ = O(εd). The associated
density disturbance of the same order-of-magnitude would then appear at the leading-order
expansion of the continuity equation. Substituting (3.5)–(3.7a,b) into the NS equations, we
obtain the equations governing the lower-deck normal-mode disturbance,

−iωρ̂3 + ρw

(
iαû3 + ∂v̂3

∂y3
+ ∂ŵ3

∂Z

)
+ iαλuy3ρ̂3 + ∂ρw

∂Z
ŵ3 = 0, (3.8)

ρw
(−iωû3 + iαλuy3û3 + λuv̂3 + λuZy3ŵ3

) = −iαp̂3 + μw
∂2û3

∂y2
3

+ λu
∂μ̂3

∂y3
, (3.9)

∂ p̂3

∂y3
= 0, ρw

(−iωŵ3 + iαλuy3ŵ3
) = −∂ p̂3

∂Z
+ μw

∂2ŵ3

∂y2
3

, (3.10a,b)

ρw

(
−iωT̂3 + iαλuy3T̂3 + ∂Tw

∂Z
ŵ3

)
= μw

∂2T̂3

∂y2
3

, (3.11)

while the expansion of Chapman’s viscosity law yields

μ̂3 = ∂μ

∂ ȳ3
(0)T̂3 = T̂3. (3.12)

It is worth pointing out that (3.8)–(3.11) remain valid for a general viscosity law, but (3.12)
would be different. The present instability exhibits two significantly distinct features from
those of usual T-S or first Mack modes (Smith 1979b, 1989). The temperature/density
fluctuation is of O(εd), much stronger than the O(εεd) velocity fluctuation. As a result, the
temperature/density and velocity fields are coupled, i.e. the disturbance in the lower deck
is fully compressible as opposed to the incompressible dynamics of first Mack modes.
Instability with such an asymptotic structure does not appear to have been identified
before. Governed by partial differential equations, the instability is of a bi-global nature.
Interestingly and remarkably, the system can be reduced to a one-dimensional eigenvalue
problem in the spanwise direction, which amounts to a substantial simplification (cf. Kátai
& Wu 2020). The ensuing algebra may appear rather complex. The end result is (3.21),
which along with (3.25a–c) will form the eigenvalue problem. Readers uninterested in the
derivation may go directly to (3.21).

The lower-deck velocities and temperature can, despite being coupled, be solved in terms
of the pressure by following earlier papers (Smith 1979a; Walton & Patel 1998; Kátai &
Wu 2020). In order to simplify (3.8)–(3.11), we first introduce the rescaled variable

ζ = (iαλuρw/μw)1/3 y3 + ζ0, ζ0 = − (iαλuρw/μw)1/3 ω/(αλu). (3.13a,b)

The z-momentum equation (3.10a,b) is then reduced to an inhomogeneous Airy equation.
The solution for ŵ3, which satisfies the vanishing boundary and matching conditions, is
found as

ŵ3 = π

μw

(
μw

iαλuρw

)2/3
∂ p̂3

∂Z

(
Gi(ζ0)

Ai(ζ0)
Ai(ζ ) − Gi(ζ )

)
, (3.14)

where Ai(ζ ) and Gi(ζ ) denote the Airy and Scorer functions, respectively. With ŵ3 found,
the temperature equation (3.11) amounts to an inhomogeneous Airy equation as well, and
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the solution subject to vanishing matching and boundary conditions is obtained as

T̂3 = − T̂∗
3 (ζ0)

Ai(ζ0)
Ai(ζ ) + T̂∗

3 (ζ ), (3.15)

where

T̂∗
3 (ζ ) = π

iαλuμw

(
μw

iαλuρw

)1/3
∂ p̂3

∂Z
∂Tw

∂Z

(
Gi(ζ0)

Ai(ζ0)
Ai′(ζ ) − Gi′(ζ )

)
, (3.16)

with the prime representing the derivative with respect to ζ .
Differentiating (3.9) with respect to y3 followed by using the continuity and energy

equations (3.8) and (3.11), to eliminate p̂3, v̂3 and T̂3, (3.9) simplifies to

∂3û3

∂ζ 3 − ζ
∂ û3

∂ζ
= λuZ

iαλu
ŵ3 + λuZ

iαλu
(ζ − ζ0)

∂ŵ3

∂ζ
− 1

iα
∂ŵ3

∂Z
, (3.17)

on which the boundary and matching conditions are imposed as

û3|ζ=ζ0 = 0,
∂2û3

∂ζ 2

∣∣∣∣
ζ=ζ0

=
(

μw

iαλuρw

)2/3 iαp̂3

μw
−

(
μw

iαλuρw

)1/3 λu

μw

∂T̂3

∂ζ

∣∣∣∣∣
ζ=ζ0

,

(3.18a,b)

û3|ζ→∞ = A1λu. (3.19)

With ŵ3 and T̂3 given by (3.14)–(3.15), the solution to (3.17)–(3.19) is found as

û3 = φ1

∫ ζ

ζ0

Ai(t) dt + φ2Ai(ζ ) + φ3Gi(ζ ) + φ4ζAi′(ζ ) + φ5ζGi′(ζ ) − φ6, (3.20)

where the expressions of φ1-φ6 are given in Appendix A. Inserting (3.20) into (3.19), we
obtain the equation for p̂3,

∂2p̂3

∂Z2 − R(Z)
∂ p̂3

∂Z
− α2p̂3 = Q(Z)A1, (3.21)

which is an ordinary differential equation with respect to the spanwise variable Z. The
functions R(Z) and Q(Z) have the expressions,

R(Z) =
(

1
4

μwZ

μw
− 1

4
ρwZ

ρw
+ 1

2
λuZ

λu

)
ζ0

Ai(ζ0)

(
ζ0κ(ζ0) + Ai′(ζ0)

)
+

(
1
4

μwZ

μw
+ 3

4
ρwZ

ρw
+ 3

2
λuZ

λu

)
+

(
1 + Ai′(ζ0)

Ai2(ζ0)
κ(ζ0)

)
∂Tw

∂Z
,

Q(Z) = (iαλu)
5/3 ρ2/3

w μ1/3
w

Ai′(ζ0)

κ(ζ0)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.22)

with

κ(ζ0) =
∫ ∞

ζ0

Ai(t) dt. (3.23)

The reader is reminded that the main result (3.21) with (3.22) is derived under
the assumption of Chapman’s relation for viscosity. When the more accurate viscosity
Sutherland’s law is adopted, (3.21) can still be derived, but the expressions for R(Z) and
Q(Z) would differ from (3.22).
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3.3. Upper deck
Similar to the first mode (Smith 1989), the wall-normal velocity at the outer edge of the
main layer acts on the upper deck to generate a pressure perturbation, which acts in turn on
the viscous lower deck. It thus suffices to consider the pressure of the modal disturbance
in the upper deck, where the pressure expands as

p = ε2ε5/3
x p̄1 + ε2εdp̂1E. (3.24)

The equation governing the pressure disturbance and the matching conditions are

α2
(

M2
∞ − 1

)
p̂1 + ∂2p̂1

∂y2
1

+ ∂2p̂1

∂Z2 = 0,
∂ p̂1

∂y1

∣∣∣∣
y1=0

= −α2A1, p̂1|y1=0 = p̂3(Z).

(3.25a–c)

The instability of the heating-induced streaky flow is governed by (3.25a–c) and (3.21).
Note that the coefficients are only related to the wall shear λu(Z) and wall temperature
Tw(Z), indicating that the instability is, to leading-order accuracy, controlled by λu and Tw
only.

3.4. The eigenvalue problem
Since the coefficients of (3.21) are periodic functions of Z with spanwise number β (see
(2.37)–(2.38a,b)), we use Floquet theory to express p̂1, p̂3 and A1 in the form

{p̂1( y1, Z), p̂3(Z), A1(Z)} = exp (iqβZ)

∞∑
n=−∞

{p̄n( y1), P̄n, Ān} exp (inβZ), (3.26)

where q is the Floquet exponent, which is taken to be real-valued since the disturbance is
bounded in the spanwise direction. Substitution of (3.26) into (3.25a–ca) yields

∂2p̄n

∂y2
1

−
[
(n + q)2β2 − α2(M2

∞ − 1)
]

p̄n = 0. (3.27)

Let Λ = (n + q)2β2 − α2(M2∞ − 1), whose real part is denoted by Λr. Typically, αr
turns out to be significantly greater than αi numerically, and so the far-field behaviour of
p̄n is dominated by Λr. The solution satisfying (3.25a–cc) is found as

p̄n = P̄n exp(−Λ1/2y1) if Λr > 0, p̄n = P̄n exp(−i(−Λ)1/2y1) if Λr < 0;
(3.28a,b)

here we dismiss the branch that becomes exponentially large in the far field when
Λr > 0, while for Λr < 0, the branch corresponding to a negative group velocity in the
wall-normal direction is dismissed on physical grounds. Equation (3.28b) indicates that
due to spanwise-periodic heating, instability modes may emit acoustic waves to the far field
while attenuating slowly, the rate of which is controlled by αi. When the mode is neutral,
the disturbance is purely oscillatory in the far field, in contrast to non-radiating first Mack
modes. Substitution of (3.28a) or (3.28b) into (3.25b) yields the pressure-displacement
relation

Ān = α−2Ln(α)P̄n, (3.29)

where Ln(α) = Λ1/2 for Λr > 0, while Ln(α) = i(−Λ)1/2 for Λr < 0.
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4. Numerical analysis and results

4.1. Dispersion relation
In order to solve the eigenvalue problem, (3.21) and (3.29), which is one dimensional in
the spanwise direction, we express R(Z) and Q(Z) in (3.21) as Fourier series

R(Z) =
∞∑

l=−∞
Rl eilβZ, Q(Z) =

∞∑
l=−∞

Ql eilβZ . (4.1a,b)

Equating the coefficients of the respective Fourier components, we obtain an
infinite-dimensional system for P̄n, which is truncated to [−N, N] and written in the matrix
form

MP̄ = 0, P̄ = (P̄−N, P̄−N+1, . . . , P̄0, . . . , P̄N)T, (4.2a,b)

where M = M1(α, β, q) + M2(α, β, ω, q, λu, Tw), with M1 being a diagonal matrix and
M2 a full matrix,

(M1)n,n = α2 + β2(q + n)2, (M2)n,j = iβ(j + q)Rn−j + α−2LnQn−j. (4.3a,b)

For (4.2a,b) to have non-zero solutions, the determinant of matrix M must vanish, namely,

D(α) = det (M(α, β, ω, q, λu, Tw)) = 0, (4.4)

which is the dispersion relation. In the limiting case where the heating is absent or
negligible (i.e. h = 0 in (2.37)), λu = 1, we have Rl = 0 ∀l, and Ql = 0 ∀l /= 0. The
relation (4.4) simplifies to

D(α) = α2
(
α2 + β2(q + K)2

)
κ(ζ0) + (iα)5/3 ρ2/3

w μ1/3
w LKAi′(ζ0) = 0, (4.5)

where κ(ζ0) is given in (3.23). For any integer K, this is the dispersion relation for first
Mack modes with spanwise wavenumber βTS = β(q + K) (Smith 1989).

4.2. Growth rates
The streaky flow induced by surface temperature distribution (2.37)–(2.38a,b) with h = 1,
d = 0.5 and β = 2π was calculated in § 2 for M∞ = 3, and we now consider the impact of
the heating on linear stability. The eigenvalue problem is solved starting from a position far
upstream where the effect of heating is negligible so that the value of α for the first Mack
mode, obtained by solving (4.5), is taken as the first guess in Muller’s iteration (Muller
1956). At subsequent streamwise locations, the convergent value of α for the previous
location is used as an initial guess to find the root of the dispersion relation (4.4). The
tolerance is taken to be 10−10. Resolution checks were performed, and it was found that
the results with the Fourier series truncated at N = 7, 15 and 31 exhibit no difference to
the graphical precision; the relative errors between the two resolutions (N = 15 and 7) are
O(10−6), and the relative errors between N = 15 and 31 reduced to be no greater than
10−10, the level of tolerance. The rapid convergence with respect to N is due to the simple
sinusoidal distribution of the surface temperature Tw(Z) and wall shear λu(Z). A larger N
is likely required for a more complex spanwise distribution (cf. Kátai & Wu 2020).

In figure 4 we show in the α–ω plane the growth rates of instability modes with different
spanwise wavenumbers for λu(Z) being calculated for surface temperature distribution
(2.38a,b) with (2.39). Different lines refer to different streamwise locations between
X̄ = −1.2 (thick solid lines) and X̄ = 0 (thick dotted lines) with an increment of 0.05.
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Figure 4. Growth rates vs the frequency ω at various streamwise locations X̄ for S(Z) = cos(2πZ). Thick solid
lines: X̄ = −1.2; thick dotted lines: X̄ = 0. Different lines in between refer to different streamwise locations
with an increment of 0.05. The red dotted lines represent the continuation of the mode to the right/left by
increasing/descreasing ω for fixed X̄ = 0.

The thick solid lines can be considered as representing the growth rates of first Mack
modes. Due to the local nature of the instability problem as well as the symmetry of the
wall temperature (2.37) and the wall shear (2.40), it suffices to calculate only the upstream
half of the heating region. Six representative spanwise wavenumbers (βTS/β = 0.2, 0.3,
0.4, 0.6, 0.7 and 0.8) are chosen. For weakly three-dimensional modes with βTS < 0.5β

(figures 4a–c), there is always a range of frequencies in which the growth rate (−αi) of
instability modes decreases monotonically from the upstream to the centre of the elements.
For example, for βTS/β = 0.3, a stabilising effect occurs for 4 < ω < 6. For sufficiently
low and high frequencies, the growth rate increases monotonically. Between the low
and intermediate frequencies, the growth rate varies non-monotonically. However, for
strongly three-dimensional modes with βTS > 0.5β, figures 4(d–f ) show that the growth
rate (−αi) increases monotonically with X̄ for almost all frequencies with the exception
for high values in figure 4( f ), and the heating elements play a broad destabilising role.
Non-continuous variations of the growth rate (−αi) with the frequency ω can be observed
for high frequencies in figures 4(a, f ). Such discontinuities will be discussed later.

As in Kátai & Wu (2020), for βTS/β = 0.5 (i.e. q = 0.5), we have also identified
antisymmetric and symmetric modes, whose eigenfunctions p̂3(Z) are odd and even
functions of Z, respectively, and their growth rates are shown in figure 5(a,b). The
instability characteristics of these antisymmetric/symmetric modes are similar to that
of weakly/strongly three-dimensional modes in figure 4, and can be regarded as the
continuation of the latter, respectively. The spanwise distributions of the lower-deck
pressure p̂3(Z) of these modes, which are also referred to as subharmonic modes, are
displayed in figure 6(a,b). In addition to q = 1/2, antisymmetric/symmetric modes are
also found for q = k/2 with k = 2, 3, . . .. Of these, q = 1 (k = 2) represents fundamental
parametric resonance. Different from the subharmonic ones, figure 5(c,d) shows nearly
the same variation (increase) of the growth rates for antisymmetric and symmetric
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Figure 5. Growth rates vs the frequency ω of subharmonic (a,b) and fundamental modes (c,d): (a,c)
antisymmetric modes; (b,d) symmetric modes. Thick solid lines: X̄ = −1.2; thick dotted lines: X̄ = 0. Different
lines in between refer to different streamwise locations with an increment of 0.05.

(a) (b)

(c) (d)

–0.06

–0.03

0

0.03

0.06

–2

–1

0

1

2

–1

0

1

2

3

–0.2

–0.1

0

0.1

0.2

–0.2

–0.1

0

0.1

0.2

–2

–1

0

1

2

–1

0

1

2

3

–0.2

–0.1

0

0.1

βTS/β = 0.5 βTS /β = 0.5

βTS /β = 1 βTS /β = 1

Z

R
e(
p̂ 3

)
R

e(
p̂ 3

)

Im
(p̂

3
)

Im
(p̂

3
)

–0.5 0 0.5

Z
–0.5 0 0.5

–0.5 0 0.5 –0.5 0 0.5

Figure 6. Spanwise shapes p̂3(Z) of symmetric (b,d) and antisymmetric (a,c) modes at X̄ = 0 with ω = 3:
(a,b) subharmonic modes; (c,d) fundamental modes.

fundamental modes. The corresponding spanwise distributions of the pressure p̂3(Z) are
presented in figure 6(c,d).

Calculations are carried out also for heating elements with larger spanwise spacing,
corresponding to β = π. The growth rates are displayed in figure 7. Compared with the
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Figure 7. Growth rates vs the frequency ω at various streamwise locations X̄ for S(Z) = cos(πZ). Thick solid
lines: X̄ = −1.2; thick dotted lines: X̄ = 0. Different lines in between refer to different streamwise locations
with an increment of 0.05. The red dotted lines represent the continuation of the mode to the right/left by
increasing/descreasing ω for fixed X̄ = 0.

case of β = 2π shown in figure 4, the instability characteristics are broadly similar, but
appreciable differences arise. For example, for βTS = 0.4β (figure 7b), a distinctive band
of high-frequency Mack modes are destabilised to become as dominant as destabilised
low-frequency modes, and this band is marked by non-continuous variations with the
frequency. For βTS > 0.5β, the modes within a small range of frequencies are stabilised
by an amount that becomes rather moderate as βTS increases.

A discussion of the discontinuities in figures 4 and 7 is in order. The discontinuities
reflect coexistence of a multi-family of modes and ‘mode crossing’ phenomenon. The
eigenvalue α(ω, X̄) is a function of ω and X̄. It can be calculated by using either of
the two approaches: the first fixes X̄ but varies ω gradually, and while the second fixes
ω but increases X̄ in small increments. The data in the figures were calculated by the
latter approach. Each eigen mode so obtained evolves from an upstream first mode with a
spanwise wavenumber βTS = (k + q)β with 0 ≤ q ≤ 1/2, and, hence, each mode can be
distinguished by (k, q), and be designated by αk,q(ω, X̄) with k = 0, ±1, . . ., as shown by
Kátai & Wu (2020). At each X̄, these modes coexist and are intricately interlinked as X̄ and
ω vary. If k and q are fixed also, αk,q(ω, X̄) may not be a continuous function of ω. Taking
X̄ = 0 as an example, a jump occurs at ωc ≈ 6.5 as is shown figure 4(a), and the modes on
both sides may be designated as α0,0.2(ω, X̄), which evolves from a first mode upstream
with βTS = 0.2β. On the other hand, with X̄ = 0 being fixed, the mode to the left of the
jump with ω < ωc may be continued parametrically to the right by gradually increasing
ω, and similarly, the mode to the right of the jump with ω > ωc may be continued to the
left by decreasing ω. The results are indicated by the red dotted lines. Interestingly, these
extended lines turned out to coincide with the dotted lines in figure 4( f ), and the jumps
in figure 4(a, f ) overlap. As each mode on the dotted lines in figure 4( f ) develops from
an upstream first mode with βTS = (−1 + 0.2)β, it is designated as α−1,0.2(ω, X̄) and so
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Figure 8. Growth rates vs the frequency ω at various streamwise locations X̄ for S(Z) = 0.5 + cos(2πZ).
Thick solid lines: X̄ = −1.2; thick dotted lines: X̄ = 0. Different lines in between refer to different streamwise
locations with an increment of 0.05.

is the mode on the red extended lines in figure 4(a). Indeed, starting with a mode on this
line, we can trace it back to an upstream first mode with βTS/β = 0.8. It follows that as ω

crosses ωc, there is a crossover from α0,0.2(ω, X̄) to α−1,0.2(ω, X̄) despite the fact they are
on the same smooth line.

The jumps in figure 7(c,d) are associated with similar crossovers of modes. Again take
X̄ = 0 for illustration. The discontinuous dotted curve represents the mode α0,0.4(ω, X̄).
The small segment between the two jumps on the left can be continued to the smaller
and larger ω, whilst the dotted line to the left of the first jump is continued to the right
(to connect with α0,0.4(ω, X̄)). The extended lines turn out to be the same as the three
segments of the dotted line in figure 7(d), and, thus, represent the mode α−1,0.4(ω, X̄),
which evolves from an upstream first mode with βTS = (−1 + 0.4)β. Similarly, the dotted
lines to the right/left of the third jump in figure 7(c) can also be continued to the left/right,
respectively. The resulting extended lines represent the mode α1,0.4(ω, X̄), which develops
from an upstream first mode with βTS = (1 + 0.4)β (not shown).

Figure 8 displays the results for the heating elements with spanwise distribution S(Z)

given in (2.38a,b) with s0 = 0.5, s1 = 1 and sn = 0 for all n ≤ 2, that is,

S(Z) = 0.5 + cos(2πZ), (4.6)

which combines a spanwise uniform part with a simple spanwise-harmonic Fourier
component. Stabilising effects can be observed for most cases except low-frequency
modes for βTS/β < 0.5 plus a band of high-frequency modes for βTS/β = 0.2. Comparing
figure 8 with figure 4, one notes that the addition of the spanwise uniform component leads
to an opposite effect for the modes with βTS/β > 0.5, whose growth rates are substantially
reduced, while for modes βTS/β < 0.5, the effect remains similar but quantitatively the
combined spanwise uniform and periodic heating causes a stronger stabilising effect.
These results indicate the possibility of inhibiting/enhancing first Mack modes via a
suitable combination of Fourier components in the spanwise distribution S(Z).
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Figure 9. Distributions of (p̂1)r and corresponding Fourier components (p̄n)r at X̄ = 0 for a radiating mode
with ω = 3 and βTS/β = 1: (a,c) contours of (p̂1)r; (b,d) profiles of (p̄n)r for several values of n.

4.3. Distribution of eigenfunctions
The eigenfunction distributions in the upper and lower decks are of interest as they project
distinctive features of the instability modes. Figure 9(a) displays the distribution of the
upper-deck pressure at X̄ = 0 of a radiating mode with ω = 3 and βTS/β = 1 for the
spanwise distribution S(Z) = cos(2πZ). Only the real part, (p̂1( y1, Z))r, is shown since
the distribution of the imaginary part looks similar. As is illustrated, the mode radiates
an acoustic wave to the far field while undergoing slow attenuation, which is controlled
by αi. The profiles of several low-order Fourier components (p̄n( y1))r are shown in
figure 9(b), where n = −1 represents the radiating component while other components
rapidly attenuate exponentially in the region y1 = O(1) as shown in figure 9(c,d). That
the n = −1 component emits a sound wave is indicated by (3.28b). For an integer βTS/β,
there is at least one value n = −q ensuring Λr < 0, and so the n = −1 component is
radiating for modes with βTS/β = 1 (i.e. q = 1 and K = 0). It is worth noting that the
growth rate of the mode shown is rather significant. For modes with reduced growth rates,
the radiating character becomes even more prominent (see figure 12). These modes are
fundamentally different from the radiating modes identified in high enthalpy boundary
layers over a cooled wall (Mack 1984; Chuvakhov & Fedorov 2016).

Figure 10 displays the contours of the temperature and velocity disturbances in the
y3–Z plane at three streamwise locations, X̄ = −1, −0.5 and 0, for a mode with ω = 4
and βTS/β = 0.3; again, only the real parts, (T̂3( y3, Z))r and (û3( y3, Z))r, are shown
as representatives. One notes that (T̂3)r (left column) and (û3)r (right column) feature
double- and single-deck structures, respectively. From the upstream to the centre of the
elements, (T̂3)r and (û3)r exhibit qualitatively similar characters, but they both become
progressively more concentrated in the spanwise direction with their maxima and minima
moving closer to the centreline. This mode exhibits no symmetry about Z = 0. Contours
of the eigenfunction of a symmetric radiating mode with ω = 3 and βTS/β = 1 are shown
in figure 11. A comparison with figure 10 reveals a number of differences between the
eigenfunction contours of symmetric and asymmetric modes. The temperature contours of
the present symmetric mode again feature two decks of cells, but the cells in each deck
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Figure 10. Contours of (T̂3)r (a,c,e) and (û3)r (b,d, f ) for ω = 4 and βTS/β = 0.3 at three locations X̄ = −1
(a,b), −0.5 (c,d) and 0 (e, f ). Solid and dashed lines represent contours of positive and negative values.

remain of the same sign, in contrast to the alternating signs of (T̂3)r for an asymmetric
mode. Within one spanwise wavelength, contours of (û3)r consist of three cells with the
central cell being flanked symmetrically by two side ones.

Figures 12 and 13 display the eigenfunction distributions respectively in the upper and
lower decks of the mode with ω = 3 and βTS/β = 1 for the spanwise heating distribution
(4.6); the parameters are otherwise the same as those in figures 9 and 11. Figure 12
indicates a more prominent acoustic radiation than that shown in figure 9. As explained
earlier, this is due to the fact that the growth rate is reduced by the stabilising effect of
heating in this case. Contours of the real parts of disturbance temperature and velocity,
(T̂3( y3, Z))r and (û3( y3, Z))r, are broadly similar to those in figure 11.

5. Summary and conclusions

In this paper we have investigated the impact of streamwise-elongated, spanwise-periodic
surface heating on supersonic first Mack modes, whose streamwise and spanwise
wavelengths are both of O(Re−3/8L), which is on the triple-deck scale. We take the
spanwise length scale of the heating elements to be of this order, but the streamwise length
scale is assumed to be much longer. A simplified system governing the heating-induced
streaky flow is then deduced. When Chapman’s viscosity law is employed, a
remarkably simple similarity solution is found in terms of the Dorodnitsyn–Howarth
variable.

In the presence of spanwise-periodic heating elements, the linear stability of the streaky
flow is fully compressible in the lower deck with the disturbance temperature and velocity
being coupled. The instability is bi-global in its nature. For the viscous instability on
the triple-deck scale, this bi-global stability is simplified to a one-dimensional eigenvalue
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problem in the spanwise direction. Moreover, the instability is shown to be controlled by
the spanwise-dependent wall shear λu and wall temperature Tw only. With Tw prescribed
and λu obtained analytically from the similarity solution, it was possible to omit the
calculation of the streaky flow and focus on the instability directly, which may be
considered as the continuation of upstream first Mack modes into the streaky region.
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Figure 13. Contours of (T̂3)r (a,c,e) and (û3)r (b,d, f ) for ω = 3 and βTS/β = 1 at three locations X̄ = −1
(a,b), −0.5 (c,d) and 0 (e, f ) when heating is of form (4.6). Solid and dashed lines represent contours of
positive and negative values.

The asymptotic approach provides an efficient tool to predict the surface-heating-induced
streaky flow, and further to quantify the effect of heating on linear stability. Equally
importantly, it reveals a priori the distinctive characteristics of the instability, namely,
strong temperature perturbation within the boundary layer and spontaneous radiation of
an acoustic wave to the far field.

The reduced eigenvalue problem was solved numerically for an array of
spanwise-periodic heating elements whose streamwise and spanwise distributions are
taken to be Gaussian and cosine, respectively. Heating of this form stabilises weakly
three-dimensional modes in a range of frequencies. Outside of this band, the effect is
opposite. For strongly three-dimensional modes, an appreciable destabilising effect is
observed for almost all frequencies. Calculations are performed also for the heating
elements with a different spanwise distribution which combines spanwise uniform and
sinusoidal Fourier components. Apart from the low-frequency modes and high-frequency
weakly three-dimensional modes, stabilising effects are found for the heating with this
spanwise combination. These results, pertinent to some simplest spanwise distributions
of heating, suggest that it is possible to suppress/enhance transition by using this simple
active control technique. The required stabilising/destabilising effects may be achieved
and optimized by a suitable combination of the Fourier components in the spanwise
distribution of the heating source. The destabilising effect might be exploited in scramjet
combustor to expedite transition and thereby enhance mixing.

It should be pointed out here that the numerical results summarised above are limited
to supersonic flows of moderate Mach number where Chapman’s viscosity law is valid.
Furthermore, the ratio of the streamwise and spanwise length scales of the heating
elements is assumed to be no greater than Re3/8. It is necessary to extend the analysis
and calculations to a more accurate (e.g. Sutherland’s) law for viscosity and/or to heating
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elements which are more elongated than assumed here. Work on these aspects is in
progress.
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Appendix A

The expressions of φ1–φ6 in (3.20) are found as

φ1 = 1
Ai′(ζ0)

(
μw

iαλuρw

)2/3 (
iαp̂3

μw
− 1

iαμ2
w

∂ p̂3

∂Z
∂Tw

∂Z

)

+
(

μw

iαλuρw

)2/3
π

iαμ2
w

∂ p̂3

∂Z
∂w

∂Z

(
Gi(ζ0)

Ai(ζ0)
Ai′(ζ0) − Gi′(ζ0)

)
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2
0

4

− 1
Ai′(ζ0)

(
B1ζ0Ai(ζ0) + B2ζ0Gi(ζ0) + 1

4
B4ζ

2
0 Gi′(ζ0) + B4 − 4B2

4π

)
,

φ2 = B1 − 3
4

B3, φ3 = B2 − 3
4

B4, φ4 = 1
4

B3, φ5 = 1
4

B4, φ6 = 1
3

B5,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

where
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(
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3
ρwZ
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3
λuZ

λu

)
ζ0Γ
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∂Z

(
Gi′(ζ0)

Ai(ζ0)
− Gi(ζ0)Ai′(ζ0)

Ai2(ζ0)

)

+
(

1
3

μwZ
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3
ρwZ
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+ 5

3
λuZ

λu

)
Γ

∂ p̂3

∂Z
Gi(ζ0)

Ai(ζ0)
− Γ

∂2p̂3

∂Z2
Gi(ζ0)

Ai(ζ0)
,

B2 = −
(

1
3

μwZ

μw
+ 2

3
ρwZ

ρw
+ 5

3
λuZ

λu
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Γ

∂ p̂3

∂Z
+ Γ

∂2p̂3
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1
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3
ρwZ
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3
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∂ p̂3

∂Z
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Ai(ζ0)
, B4 = −B3

Ai(ζ0)

Gi(ζ0)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

with

Γ = π

iαμw

(
μw

iαλuρw

)2/3

. (A3)
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