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Abstract

Aigner showed in 1934 that nontrivial quadratic solutions to x4
+ y4
= 1 exist only in Q(

√
−7). Following

a method of Mordell, we show that nontrivial quadratic solutions to x4
+ 2ny4

= 1 arise from integer
solutions to the equations X4 ± 2nY4

= Z2 investigated in 1853 by V. A. Lebesgue.
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1. Introduction

In 1934, Aigner [1] showed that only in Q(
√
−7) do nontrivial quadratic solutions to

x4
+ y4
= 1 exist. This result was reproven by Faddeev in 1960 [2] and by Mordell in

1967 [5]. We seek to generalise this result and find all solutions to

x4
+ 2ny4

= 1 (1.1)

where x, y are in some quadratic number field and n is a natural number.
To do so, we require some related results. Lebesgue [3, Theorem II, I] proved in

1853 that

X4 − 2nY4
= Z2 and X4

+ 2nY4
= Z2 (1.2)

have nontrivial integer solutions only for n ≡ 1 mod 4 and n ≡ 3 mod 4, respectively,
in which case infinitely many solutions exist. By following the method Mordell
outlined in [5], we will prove the following result.

THEOREM 1.1. If the Diophantine equation x4
+ 2ny4

= 1 has a solution (x, y) in a

quadratic number field, then n . 2 mod 4. Furthermore:

• If n ≡ 0 mod 4, the field is Q(
√
−7).

• If n ≡ 1 mod 4, the field is Q(
√

c) and the solution is (
√

c/a, b/a) where (a, b, c) is

an integer solution to X4 − 2nY4
= Z2.
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• If n ≡ 3 mod 4, the field is Q(
√

c) and the solution is (a/
√

c, b/
√

c) where (a, b, c) is

an integer solution to X4
+ 2nY4

= Z2.

EXAMPLE 1.2. For n = 1, we verify that an integer solution to X4 − 2Y4
= Z2 is

(113)4 − 2(84)4
= (7967)2

and we observe that (
√

7967/113)4
+ 2(84/113)4

= 1.

EXAMPLE 1.3. For n = 3, we verify that an integer solution to X4
+ 8Y4

= Z2 is

(7)4
+ 8(6)4

= (113)2

and we observe that (7/
√

113)4
+ 8(6/

√
113)4

= 1.

1.1. Background. It suffices to examine (1.1) for n = 1, 2, 3 since we can express
any n = 4m + k and rewrite (1.1) as x4

+ 24m+ky4
= x4
+ 2k(2my)4

= 1. Aigner handled
the n = 0 case in [1].

We also note some additional curves that will be useful in finding quadratic
solutions. With the change of variables (x, y) = (Z/X2, Y/X), we can rewrite (1.2) and
focus on rational solutions to

x2
+ 2ny4

= 1 and x2 − 2ny4
= 1

respectively. We can generate solutions to these two rational equations by examining
their related elliptic curves. Note that x2

+ 2ny4
= 1 is birationally equivalent to the

elliptic curve v2
= u3

+ 2n+2u by the maps,

(x, y)→
(

− 2n+1y2

x − 1
,−2n+2y

x − 1

)

, (u, v)→
(

v2 − 2n+3u

v2
,

2u

v

)

.

For n = 2, 3, the elliptic curve v2
= u3

+ 2n+2u has rank 0. But for n = 1 the curve has
rank 1 with generator (1, 3) of infinite order [6, Elliptic Curve 256.b2], so the curve
has infinitely many rational points. A similar birational equivalence exists between
x2 − 2ny4

= 1 and v2
= u3 − 2n−2u defined by the maps,

(x, y)→
(2n−1y2

x − 1
,

2n−1y

x − 1

)

, (u, v)→
(

v2
+ 2n−1u

v2
,

u

v

)

.

Likewise, n = 3 is the only case where v2
= u3 − 2n−2u has rank 1 with generator

(−1, 1) of infinite order [6, Elliptic Curve 256.b1]. For n = 1, 2 the curve has rank 0.
All these observations are in accordance with Lebesgue’s results. The two exceptional
rank 1 curves are summarised below in Table 1.
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TABLE 1. Exceptional equations and corresponding elliptic curves with rank 1.

Integer equation Rational equation Elliptic curve Generators

n = 1 X4 − 2Y4
= Z2 x2

+ 2y4
= 1 v2

= u3
+ 8u (1, 3)

n = 3 X4
+ 8Y4

= Z2 x2 − 8y4
= 1 v2

= u3 − 2u (−1, 1)

Lebesgue also showed that the equation X4
+ 2nY2

= Z4 has no nontrivial integer
solutions regardless of n [3, Theorem IV], which equivalently means that x4

+ 2ny2
= 1

has no nontrivial rational solutions. Additionally, he showed that 2nX4 − Y4
= Z2 has

no nontrivial integer solutions for n = 3 [3, Theorem III].

2. Mordell’s method

ASSUMPTION 2.1. Suppose there exists a quadratic number field Q(
√

d) in which we
have a solution x, y ∈ Q(

√
d) to (1.1).

It follows that x2, y2 ∈ Q(
√

d) as well. Motivated by [4], we introduce the following
parameterisation of the equation x4

+ 2ny4
= 1. Suppose that y2

= −(x2
+ 1)/t. Then

t = −(x2
+ 1)/y2 ∈ Q(

√
d). Thus

x2
=

2n − t2

2n
+ t2

and y2
=

2t

2n
+ t2

.

There are two cases which we handle separately. In the case that t is rational, we will
show quadratic solutions (x, y) exist, in fact an infinite number, of the forms described
in the theorem. In the case that t is irrational, there are no quadratic solutions.

2.1. t is rational. Since t is rational, then x2 and y2 are necessarily rational and x, y ∈
Q(
√

d) are either rational or rational multiples of
√

d. If both x, y are rational, then we
have a nontrivial rational solution to x4

+ 2ny4
= 1. But this leads to a contradiction,

because then we can exhibit a nontrivial rational solution to x4
+ 2ny2

= 1 which is
impossible as noted in Section 1.1. This also excludes the case x ∈ Q, y < Q.

2.1.1. x irrational, y rational. In this case, we have a nontrivial rational solution to
x2
+ 2ny4

= 1. Therefore, based on Section 1.1, we must have n = 1. Further, using
the birational equivalence between x2

+ 2y4
= 1 and the elliptic curve v2

= u3
+ 8u,

this nontrivial rational solution corresponds to a rational point on the elliptic curve.
Conversely, a rational point on v2

= u3
+ 8u can be used to generate the nontrivial

rational solution to x2
+ 2y4

= 1. Through the change of variables in Section 1.1,
this rational solution can be rewritten as (c/a2)2

+ 2(b/a)4
= 1 for an integer solution

(a, b, c) to X4 − 2Y4
= Z2, which gives a quadratic solution (

√
c/a)4

+ 2(b/a)4
= 1 to

(1.1) in Q(
√

c).

EXAMPLE 2.2. Using the generator (1, 3) of v2
= u3

+ 8u mentioned in Section 1.1 we
can find the rational solution (7/9)2

+ 2(2/3)4
= 1 by the map given in Section 1.1.
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This yields the quadratic solution to (1.1) in Q(
√

7),

(

√
7

3

)4

+ 2
(2

3

)4

= 1.

2.1.2. x,y irrational. In this case, we conclude that x = a
√

d and y = b
√

d since
x2, y2 ∈ Q. Observe then that

2n − t2

2t
=

x2

y2
=

a2d

b2d
= s2

where s is rational. So we have a nontrivial rational solution to t2
+ 2ts2

= 2n. Mapping
(p, q) = (t + s2, s), this becomes p2 − 2n

= q4 and dividing by q4 we get a nontrivial
rational solution to x2 − 2ny4

= 1. Therefore, from Section 1.1, we must have n = 3.
Furthermore, a nontrivial solution to x2 − 8y4

= 1 arises from an integer solution
(a, b, c) to X4

+ 8Y4
= Z2, which gives (a/

√
c)4
+ 8(b/

√
c)4
= 1 in Q(

√
c).

EXAMPLE 2.3. To generate nontrivial rational solutions to x2 − 8y4
= 1, we use

rational points on the corresponding elliptic curve v2
= u3 − 2u and follow the map

specified in Section 1.1. For example, from the generator (−1, 1) of v2
= u3 − 2u

mentioned in Section 1.1, we get the rational solution (−3)2 − 8(−1)4
= 1. This yields

the quadratic solution to (1.1) in Q(
√
−3),

( 1
√
−3

)4

+ 8
(

− 1
√
−3

)4

= 1.

EXAMPLE 2.4. The rational point (338, 6124) on v2
= u3 − 2u yields the rational

solution (57123/2392)2 − 8(13/239)4
= 1. This gives the quadratic solution

( 239
√

57123

)4

+ 8
( 13
√

57123

)4

= 1.

REMARK 2.5. Note that in both Sections 2.1.1 and 2.1.2 there are an infinite number of
fields Q(

√
c) in which solutions to (1.1) exist. Suppose for a contradiction there are a

finite number of such Q(
√

c). Clearly, by the procedures outlined in these sections, we
can generate infinitely many quadratic solutions to (1.1), so one of the finitely many
Q(
√

c) must then contain infinitely many solutions to (1.1). However, by Faltings’s
theorem, a curve of genus 3, such as (1.1), can only have finitely many solutions over
any number field. Thus there must be an infinite number of such fields Q(

√
c).

2.2. t is irrational. Since t ∈ Q(
√

d) is irrational, t = a + b
√

d with b , 0. By
definition, t is also the root of an irreducible quadratic F(z) = z2

+ Bz + C.

REMARK 2.6. In deriving a contradiction to Assumption 2.1 that there exists a field
Q(
√

d) with a solution to (1.1), it will suffice to show that no such F(z) can exist. By
showing F(z) cannot exist, it follows no t can exist, thus the field Q(

√
d) from which t

comes cannot exist either.
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To keep everything in terms of t we perform a change of basis in Q(
√

d) and write
K = {a + bt : a, b ∈ Q} = Q(

√
d). We shall define new elements X,Y ∈ K,

X = (2n
+ t2)xy and Y = (2n

+ t2)y.

Squaring,

X2
= 2t(2n − t2) and Y2

= 2t(2n
+ t2).

For X,Y ∈ K we can also write X = a1 + b1t and Y = a2 + b2t for a1, b1, a2, b2 ∈ Q.
Thus, t is the root of the polynomials

(a1 + b1z)2 − 2z(2n − z2) (2.1)

(a2 + b2z)2 − 2z(2n
+ z2). (2.2)

It follows that F(z) divides (2.1) and (2.2) in Q[z], so we have the identities

(a1 + b1z)2 − 2z(2n − z2) = F(z)(P1 + Q1z) (2.3)

(a2 + b2z)2 − 2z(2n
+ z2) = F(z)(P2 + Q2z) (2.4)

for P1, Q1, P2, Q2 ∈ Q. We shall investigate the roots of the linear terms P1 + Q1z

and P2 + Q2z to better characterise F(z). Clearly z = −P1/Q1 is a rational root of the
right-hand side of (2.3) so it must be a root of the left-hand side, the polynomial (2.1).
Likewise, we conclude z = −P2/Q2 is a rational root of (2.2). So, we are interested in
rational roots of (2.1) and (2.2). In fact, for yi = ai + biz and xi = z, these rational roots
are nontrivial rational points on the elliptic curves

y2
1 = 2x1(2n − x2

1) (2.5)

y2
2 = 2x2(2n

+ x2
2). (2.6)

Mapping (u, v) = (−2xi, 2yi), we observe these are exactly the elliptic curves noted in
Section 1.1. As noted, (2.5) has rank 1 for n = 3 as does (2.6) for n = 1, otherwise they
have rank 0. For n = 2, both elliptic curves have rank 0, so we handle this simpler case
first.

2.2.1. n = 2. Both (2.5) and (2.6) have only trivial points. For (2.5), they are
(0, 0), (±2, 0) so z1 = 0,±2 are roots of (2.1). For (2.6) it is (0, 0) so z2 = 0 is the only
root of (2.2).

Case 1: z1 = 0, z2 = 0. Since z1 = 0 is a root of (2.1), from (2.3) we conclude a1 = 0
and P1 = 0. Since z2 = 0, from (2.4) we get a2 = 0 and P2 = 0. After substituting and
dividing by z, the identities (2.3) and (2.4) become,

Q1F(z) = 2z2
+ b2

1z − 8

Q2F(z) = −2z2
+ b2

2z − 8.

Comparing coefficients, clearly 8 , −8, so evidently no such F(z) exists.
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Case 2: z1 = 2, z2 = 0. From (2.3) and the root z1 = 2, we get a1 = −2b1 and
P1 = − 2Q1 so (2.3) becomes

(−2b1 + b1z)2 − 2z(4 − z2) = F(z)(−2Q1 + Q1z).

After factoring and dividing by z − 2, this produces the system

Q1F(z) = 2z2
+ (b2

1 + 4)z − 2b2
1

Q2F(z) = −2z2
+ b2

2z − 8.

Observe that 2b2
1 = −8 is impossible, so again no such F(z) exists.

Case 3: z1 = −2, z2 = 0. Following the same process, a1 = 2b1 and P1 = 2Q1, giving

Q1F(z) = 2z2
+ (b2

1 − 4)z + 2b2
1

Q2F(z) = −2z2
+ b2

2z − 8.

So b2
1 − 4 = −b2

2 and 2b2
1 = 8. This means that b1 = ±2, but then b2 = 0 which is a

contradiction since F(z) = z2 − 4 is not irreducible. Therefore, the case n = 2 produces
no quadratic solutions.

2.2.2. n = 1. The only rational point on (2.5) is (0, 0) so z1 = 0 is the only root of
(2.1). From (2.3), a1 = 0 and P1 = 0 so

Q1F(z) = 2z2
+ b2

1z − 4. (2.7)

Next, (2.6) has infinitely many rational points with x2 ≥ 0. First we shall handle the
case where x2 = z2 = 0 is a root of (2.2). This gives a2 = 0 and P2 = 0, producing

Q2F(z) = −2z2
+ b2

2 − 4.

Comparing coefficients with (2.7) shows this is impossible. So we turn to the general
case. Let (x2, y2) be one of infinitely many rational points on (2.6) with x2 > 0. By
definition, we have a2 = y2 − b2x2 and since z2 = x2 is a root of (2.2), it follows that
P2 = −Q2x2. So, (2.4) becomes

((y2 − b2x2) + b2z)2 − 2z(2 + z2) = F(z)(−Q2x2 + Q2z).

Dividing by z − x2,

Q2F(z) = −2z2
+ (b2

2 − 2x2)z + (−x2b2
2 + 2y2b2 − 2x2

2 − 4). (2.8)

Equating coefficients between (2.7) and (2.8) gives the system

b2
1 = −(b2

2 − 2x2)

4 = −x2b2
2 + 2y2b2 − 2x2

2 − 4. (2.9)

Note that the disciminant of (2.9) with respect to b2 is equal to −4(2x3
2 + 8x2 − y2

2).
Substituting (2.6), the discriminant becomes −4(4x2). Since x2 > 0, the discriminant
must always be negative. So there is no rational b2 and thus F(z) does not exist, and
the n = 1 case yields no additional solutions.
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2.2.3. n = 3. We follow a similar process to the n = 1 case. The only rational point
on (2.6) is (0, 0), so z2 = 0 is the only root of (2.2). From (2.4), a2 = 0 and P2 = 0 so

Q2F(z) = −2z2
+ b2

2z − 16. (2.10)

Now (2.5) has infinitely many rational points without any conditions on x and y.
Again we shall handle the point (0, 0) first, so z1 = 0 is a root of (2.1), yielding

Q1F(z) = 2z2
+ b2

1z − 16.

As in the n = 1 case, this is impossible. So we turn to the general case. Let (x1, y1) be
one such rational point on (2.5) with x1, y1 , 0. From (2.3), we conclude P1 = −Q1x1

and the identity becomes

((y1 − b1x1) + b1z)2 − 2z(8 − z2) = F(z)(−Q1x1 + Q1z).

Again dividing by z − x1,

Q1F(z) = 2z2
+ (b2

1 + 2x1)z + (2y1b1 − b2
1x1 + 2x2

1 − 16). (2.11)

Equating coefficients from (2.10) and (2.11) we get a similar system,

b2
2 = −(b2

1 + 2x1) (2.12)

16 = 2y1b1 − b2
1x1 + 2x2

1 − 16. (2.13)

The discriminant of (2.13) in b1 is −4(32x1 − 2x3
1 − y2

1) which reduces to −4(16x1) =
−64x1. For positive x1, clearly no F(z) exists as in the n = 1 case. But for negative x1,
because b1 ∈ Q by assumption, we see that −x1 must be a perfect square. So −x1 = e2

for some positive rational e. Rewriting in terms of e, (2.5) becomes

y2
1 = −2e2(8 − e4) =⇒ y1 = ±e

√
2e4 − 16.

Further, in terms of e, (2.13) becomes the following quadratic in b1,

0 = e2b2
1 + (±2e

√
2e4 − 16)b1 + (2e4 − 32). (2.14)

Solving (2.14) and squaring,

b1 =

√
2e4 − 16 ± 4

e
or b1 =

−
√

2e4 − 16 ± 4

e
=⇒ b2

1 =
2e4 ± 8

√
2e4 − 16

e2
.

We also know from (2.12) that b2
1 − 2e2

= −b2
2 so it follows that

−b2
2 =

2e4 ± 8
√

2e4 − 16

e2
− 2e2

=

2e4 ± 8
√

2e4 − 16 − 2e4

e2

= ±8
√

2e4 − 16

e2
.
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We discard the positive sign as it is impossible. So for b2 to be rational, 2
√

2e4 − 16
must be square, or equivalently,

√
2e4 − 16 = 2 f 2 for some rational f. It follows

that 2e4 − 16 = 4 f 4 and thus e4 − 2g2
= 2 f 4 for g = 2. Multiplying by a common

denominator exhibits a solution E4
= 2G2

+ 2F4 with E, F, G ∈ Z. Evidently, 2 | E4

so 2 | E and we can reduce the equation further to 8E4
1 = G2

+ F4 for 2E1 = E. But
this is impossible as noted in Section 1.1. Thus no such rational f exists and b2 < Q.
There are no additional solutions for n = 3 and the proof is complete. �
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