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Abstract

Aigner showed in 1934 that nontrivial quadratic solutions to x* + y* = 1 exist only in Q( V-7). Following
a method of Mordell, we show that nontrivial quadratic solutions to x* + 2"y* = 1 arise from integer
solutions to the equations X* + 2"Y* = Z? investigated in 1853 by V. A. Lebesgue.
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1. Introduction

In 1934, Aigner [1] showed that only in Q( V—7) do nontrivial quadratic solutions to
x* + y* = 1 exist. This result was reproven by Faddeev in 1960 [2] and by Mordell in
1967 [5]. We seek to generalise this result and find all solutions to

oyt =1 (1.1)

where x, y are in some quadratic number field and # is a natural number.
To do so, we require some related results. Lebesgue [3, Theorem II, I] proved in
1853 that

X*-2"v*=7> and X*+2'v*=27% (1.2)

have nontrivial integer solutions only for n = 1 mod 4 and n = 3 mod 4, respectively,
in which case infinitely many solutions exist. By following the method Mordell
outlined in [5], we will prove the following result.

THEOREM 1.1. If the Diophantine equation x* +2"y* = 1 has a solution (x,y) in a
quadratic number field, then n # 2 mod 4. Furthermore:

e Ifn = 0 mod 4, the field is Q(V-T).
e If n =1 mod 4, the field is Q(~/c) and the solution is (\/c/a,b/a) where (a, b, c) is
an integer solution to X* — 2"Y* = 72,
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» If n =3 mod 4, the field is Q(/c) and the solution is (a/+/c, b/+Jc) where (a, b, ) is
an integer solution to X* + 2"Y* = 72,

EXAMPLE 1.2. For n = 1, we verify that an integer solution to X* — 2¥Y* = Z% is
(113)* = 2(84)* = (7967)

and we observe that (V7967/113)* + 2(84/113)* = 1.

EXAMPLE 1.3. For n = 3, we verify that an integer solution to X* + 8Y* = Z? is
(D* +8(6)* = (113)

and we observe that (7/V113)* + 8(6/V113)* = 1.

1.1. Background. It suffices to examine (1.1) for n = 1,2, 3 since we can express
any n = 4m + k and rewrite (1.1) as x* + 2¥mky* = x* 4 2K(27y)* = 1. Aigner handled
the n = O case in [1].

We also note some additional curves that will be useful in finding quadratic
solutions. With the change of variables (x, y) = (Z/X?,Y/X), we can rewrite (1.2) and
focus on rational solutions to

¥ +2% =1 and ¥*-2% =1
respectively. We can generate solutions to these two rational equations by examining

their related elliptic curves. Note that x> +2"y* = 1 is birationally equivalent to the
elliptic curve v? = u? + 2"*?u by the maps,

2n+1y2 _2n+2y
x—1" x-1

2 _ 2n+3 2
), (u,v) = (v—zu —u).

@ - (-

% v
For n = 2,3, the elliptic curve v> = u? + 2"*2y has rank 0. But for n = 1 the curve has
rank 1 with generator (1, 3) of infinite order [6, Elliptic Curve 256.b2], so the curve
has infinitely many rational points. A similar birational equivalence exists between
x? = 2"y* = 1 and v = u® — 2"2u defined by the maps,

2n—1y2 2n—ly V2 + 2n—lu u
2y (B2
x—1 x-1 v v

mwﬁ(

Likewise, n = 3 is the only case where v?> = u® — 2”72y has rank 1 with generator

(=1, 1) of infinite order [6, Elliptic Curve 256.b1]. For n = 1,2 the curve has rank 0.
All these observations are in accordance with Lebesgue’s results. The two exceptional
rank 1 curves are summarised below in Table 1.

https://doi.org/10.1017/5S0004972720001173 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972720001173

[3] The Diophantine equation x* + 2"y* = 1 23

TABLE 1. Exceptional equations and corresponding elliptic curves with rank 1.

Integer equation Rational equation Elliptic curve Generators
n=1 X4 -2v* =272 P+t =1 v =u®+8u (1,3)
n=3 Xt + 8yt =272 2 -8yt =1 v =u? —2u (-1,1)

Lebesgue also showed that the equation X* + 2"Y? = Z* has no nontrivial integer
solutions regardless of 7 [3, Theorem IV], which equivalently means that x* + 2"y? = 1
has no nontrivial rational solutions. Additionally, he showed that 2"X* — Y* = Z? has
no nontrivial integer solutions for n = 3 [3, Theorem III].

2. Mordell’s method

ASSUMPTION 2.1. Suppose there exists a quadratic number field Q( Vd) in which we
have a solution x, y € Q( Vd) to (1.1).

It follows that x2, y2 € Q( Vd) as well. Motivated by [4], we introduce the following
parameterisation of the equation x* + 2"y* = 1. Suppose that y* = —(x*> + 1)/t. Then
t = —(x* + 1)/y* € Q(Vd). Thus

2.2 s 5 2t
20+ 12
There are two cases which we handle separately. In the case that 7 is rational, we will

show quadratic solutions (x, y) exist, in fact an infinite number, of the forms described
in the theorem. In the case that ¢ is irrational, there are no quadratic solutions.

2.1. tisrational. Since ¢ is rational, then x> and y? are necessarily rational and x, y €
Q( Vd) are either rational or rational multiples of Vd. If both x, y are rational, then we
have a nontrivial rational solution to x* + 2"y* = 1. But this leads to a contradiction,
because then we can exhibit a nontrivial rational solution to x* + 2"y?> = 1 which is
impossible as noted in Section 1.1. This also excludes the case x € Q,y ¢ Q.

2.1.1. x irrational, y rational. 1In this case, we have a nontrivial rational solution to
X+ 2”y4 = 1. Therefore, based on Section 1.1, we must have n = 1. Further, using
the birational equivalence between x> + 2y* = 1 and the elliptic curve v* = > + 8u,
this nontrivial rational solution corresponds to a rational point on the elliptic curve.
Conversely, a rational point on v> = > + 8u can be used to generate the nontrivial
rational solution to x?> + 2y* = 1. Through the change of variables in Section 1.1,
this rational solution can be rewritten as (c/a*)*> + 2(b/a)* = 1 for an integer solution
(a,b,c) to X* —2Y* = 72, which gives a quadratic solution (vc/a)* + 2(b/a)* = 1 to
(1.1) in Qo).

EXAMPLE 2.2. Using the generator (1, 3) of v? = u® + 8u mentioned in Section 1.1 we
can find the rational solution (7/9)> + 2(2/3)* = 1 by the map given in Section 1.1.

https://doi.org/10.1017/5S0004972720001173 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972720001173

24 A.Li [4]

This yields the quadratic solution to (1.1) in Q(W7),

Y o -

2.1.2. x,y irrational. In this case, we conclude that x = aVd and y = b Vd since
x%,y* € Q. Observe then that

2n — 2 B ¥ a¥d

2t Y2 bd

where s is rational. So we have a nontrivial rational solution to > + 2ts> = 2. Mapping

(p,q) = (t + 52, 5), this becomes p*> — 2" = ¢* and dividing by ¢* we get a nontrivial

rational solution to x* — 2”y4 = 1. Therefore, from Section 1.1, we must have n = 3.
Furthermore, a nontrivial solution to x> — 8y* = 1 arises from an integer solution

(a,b,c) to X* + 8Y* = Z2, which gives (a/v/c)* + 8(b/v/c)* = 1 in Qo).

EXAMPLE 2.3. To generate nontrivial rational solutions to x> —8y* =1, we use
rational points on the corresponding elliptic curve v = u® — 2u and follow the map
specified in Section 1.1. For example, from the generator (—1,1) of v? = u® — 2u
mentioned in Section 1.1, we get the rational solution (—3)? — 8(—1)* = 1. This yields
the quadratic solution to (1.1) in Q(\/—_3),

1\ 1
) A -
-3 -3
EXAMPLE 2.4. The rational point (338,6124) on v* = u® — 2u yields the rational
solution (57123/239%)? — 8(13/239)* = 1. This gives the quadratic solution

( 239 )4+8( 13 )4_1

V57123 V57123

REMARK 2.5. Note that in both Sections 2.1.1 and 2.1.2 there are an infinite number of
fields Q(+/c) in which solutions to (1.1) exist. Suppose for a contradiction there are a
finite number of such Q(+/c). Clearly, by the procedures outlined in these sections, we
can generate infinitely many quadratic solutions to (1.1), so one of the finitely many
Q(y/c) must then contain infinitely many solutions to (1.1). However, by Faltings’s
theorem, a curve of genus 3, such as (1.1), can only have finitely many solutions over
any number field. Thus there must be an infinite number of such fields Q(+/c).

2.2. t is irrational. Since 7 € Q(Vd) is irrational, r = a+bVd with b # 0. By
definition, ¢ is also the root of an irreducible quadratic F(z) = 7> + Bz + C.

REMARK 2.6. In deriving a contradiction to Assumption 2.1 that there exists a field
Q(\/E) with a solution to (1.1), it will suffice to show that no such F(z) can exist. By
showing F(z) cannot exist, it follows no ¢ can exist, thus the field Q(\/E) from which ¢
comes cannot exist either.
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To keep everything in terms of # we perform a change of basis in Q(Vd) and write
K={a+bt:a,beQ}= Q(\/ﬁ). We shall define new elements X, Y € K,

X=Q"+xy and Y =@2"+>)y.
Squaring,
X2 =2t2"-7) and Y?=2:2" + 7).

For X, Y € K we can also write X = a; + bytand Y = a, + byt foray, by, az, b, € Q.
Thus, t is the root of the polynomials

(a) +b12)* = 222" - 2) @2.1)
(ar + by2)* = 222" + 20). 2.2)
It follows that F(z) divides (2.1) and (2.2) in Q[z], so we have the identities
(a1 + b2 = 222" = 2%) = F)(P) + 012) 2.3)
(@ + b22)* = 22(2" + 2) = F(2)(P2 + 022) (2.4)

for Pi,Q1, P2, Q> € Q. We shall investigate the roots of the linear terms P; + Q;z
and P, + O,z to better characterise F(z). Clearly z = —P;/Q) is a rational root of the
right-hand side of (2.3) so it must be a root of the left-hand side, the polynomial (2.1).
Likewise, we conclude z = —P,/Q» is a rational root of (2.2). So, we are interested in
rational roots of (2.1) and (2.2). In fact, for y; = a; + b;z and x; = z, these rational roots
are nontrivial rational points on the elliptic curves

yi=2x(2" - x}) (2.5)

V3 = 202" +X3). (2.6)

Mapping (1, v) = (—2x;,2y;), we observe these are exactly the elliptic curves noted in
Section 1.1. As noted, (2.5) has rank 1 for n = 3 as does (2.6) for n = 1, otherwise they
have rank 0. For n = 2, both elliptic curves have rank 0, so we handle this simpler case
first.

2.2.1. n=2. Both (2.5) and (2.6) have only trivial points. For (2.5), they are
(0,0), (£2,0) so z; = 0, £2 are roots of (2.1). For (2.6) it is (0, 0) so z; = 0 is the only
root of (2.2).

Case 1: 71 =0, zp = 0. Since z; = 0 is a root of (2.1), from (2.3) we conclude a; =0
and P; = 0. Since z; = 0, from (2.4) we get a; = 0 and P, = 0. After substituting and
dividing by z, the identities (2.3) and (2.4) become,

Q1F(z) =22 +biz -8
O,F(z) = 272+ b%z - 8.

Comparing coefficients, clearly 8 # —8, so evidently no such F(z) exists.
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Case 2: 71 =2, zp =0. From (2.3) and the root z; =2, we get a; = —2b; and
Py = —20; s0(2.3) becomes

(=201 + b12) = 22(4 = %) = F)(-2Q:1 + Q12).
After factoring and dividing by z — 2, this produces the system
Q1F(2) = 22 + (b} + 4)z - 2b]
02F(2) = =22 + b3z - 8.
Observe that 2b% = —8 is impossible, so again no such F(z) exists.

Case 3: 71 = =2, 7o = 0. Following the same process, a; = 2b and P; = 2(Q;, giving
01F(z) = 22% + (b — d)z + 217
02F(7) = -22° + b%z - 8.

So bt —4 = —b5 and 2b7 = 8. This means that b; = +2, but then b, = 0 which is a

contradiction since F(z) = z> — 4 is not irreducible. Therefore, the case n = 2 produces
no quadratic solutions.

2.2.2. n=1. The only rational point on (2.5) is (0, 0) so z; = 0 is the only root of
(2.1). From (2.3), a; = 0 and P, = 0 so

Q1F(z) =27 + biz — 4. (2.7)

Next, (2.6) has infinitely many rational points with x, > 0. First we shall handle the
case where x, = zp = 0 is a root of (2.2). This gives a, = 0 and P, = 0, producing

0:F(z) = —27° + b3 — 4.

Comparing coefficients with (2.7) shows this is impossible. So we turn to the general
case. Let (x5,y2) be one of infinitely many rational points on (2.6) with x, > 0. By
definition, we have a, = y, — byx, and since z; = x, is a root of (2.2), it follows that
P> = —-0yx,. So, (2.4) becomes

(02 = baxa) + br2)* = 22(2 + 2%) = F(2)(=Qax2 + 022).
Dividing by z — x;,
02F(2) = =227 + (b5 — 2x0)z + (—x2b3 + 2y2by — 225 — 4). (2.8)
Equating coefficients between (2.7) and (2.8) gives the system
b = —(b3 - 2x2)
4 = —xb3 + 2y2by — 223 — 4. (2.9)

Note that the disciminant of (2.9) with respect to b, is equal to —4(2x3 + 8x3 — y3).
Substituting (2.6), the discriminant becomes —4(4x;). Since x, > 0, the discriminant
must always be negative. So there is no rational b, and thus F(z) does not exist, and
the n = 1 case yields no additional solutions.
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2.2.3. n=3. We follow a similar process to the n = 1 case. The only rational point

on (2.6) is (0, 0), so z, = 0 is the only root of (2.2). From (2.4), a, = 0 and P, = 0 so
Q>F(z) = =22 + byz — 16. (2.10)

Now (2.5) has infinitely many rational points without any conditions on x and y.
Again we shall handle the point (0, 0) first, so z; = 0 is a root of (2.1), yielding

0F(z) = 2722 + bfz - 16.

As in the n = 1 case, this is impossible. So we turn to the general case. Let (x,y;) be
one such rational point on (2.5) with x1,y; # 0. From (2.3), we conclude P; = —Qx;
and the identity becomes

((y1 = b1x1) + bi2)* = 22(8 — 2%) = F(2)(-Q1x1 + Q12).
Again dividing by z — x1,

Q1F(2) = 22 + (b} + 2x1)z + (2y1b — bix; + 2x7 — 16). (2.11)

Equating coefficients from (2.10) and (2.11) we get a similar system,
b} = —(b? +2xy) (2.12)
16 = 2y,b; — bjx; + 2x7 — 16. (2.13)

The discriminant of (2.13) in by is —4(32x; — 2x; — y7) which reduces to —4(16x;) =
—64x,. For positive x|, clearly no F(z) exists as in the n = 1 case. But for negative x,
because b; € Q by assumption, we see that —x; must be a perfect square. So —x| = ¢’
for some positive rational e. Rewriting in terms of e, (2.5) becomes

yi=-228-¢") = y = xeV2et - 16.

Further, in terms of e, (2.13) becomes the following quadratic in by,

0 = e*b + (2 V2e* — 16)b; + (2¢* - 32). (2.14)
Solving (2.14) and squaring,

V2e* — 16 + 4 —V2e* - 16+ 4 , 2e*+£8V2e* - 16
bj=——— o by=——— = b = 5 .
e e e
We also know from (2.12) that b% -2¢% = —b% so it follows that

,  2e*+8V2et - 16 2
-b; = 5 —2e

e
2¢* + 8 V2e* — 16 — 2¢*

- 2

e
_ 8V2e 16
e
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We discard the positive sign as it is impossible. So for b, to be rational, 2 V2¢* — 16
must be square, or equivalently, V2e* — 16 = 2> for some rational f. It follows
that 2¢* — 16 = 4f* and thus e* — 2g> = 2f* for g = 2. Multiplying by a common
denominator exhibits a solution E* = 2G?* + 2F* with E,F,G € Z. Evidently, 2 | E*
s0 2| E and we can reduce the equation further to 8E] = G* + F* for 2E; = E. But
this is impossible as noted in Section 1.1. Thus no such rational f exists and b, ¢ Q.
There are no additional solutions for n = 3 and the proof is complete. O
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