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SCHRÖDINGER EQUATIONS WITH SMALL PERTURBATIONS

LIANG ZHANG1∗, X. H. TANG2 AND YI CHEN3

1School of Mathematical Sciences, University of Jinan, Jinan, Shandong 250022,
People’s Republic of China (mathspaper2012@126.com)

2School of Mathematics and Statistics, Central South University, Changsha,
Hunan 410083, People’s Republic of China (tangxh@mail.csu.edu.cn)

3Department of Mathematics, China University of Mining and Technology,
Xuzhou 221116, People’s Republic of China (chenyi@cumt.edu.cn)

(Received 27 May 2017; first published online 29 November 2018)

Abstract In this paper, we consider the existence of multiple solutions for the quasilinear Schrödinger
equation {

−Δu − Δ(|u|α)|u|α−2u = g(x, u) + θh(x, u), x ∈ Ω

u = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain in R
N (N ≥ 1), α ≥ 2 and θ is a parameter. Under the assumption

that g(x, u) is sublinear near the origin with respect to u, we study the effect of the perturbation term
h(x, u), which may break the symmetry of the associated energy functional. With the aid of critical point
theory and the truncation method, we show that this system possesses multiple small negative energy
solutions.
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1. Introduction and main results

This paper deals with the quasilinear Schrödinger equation{
−Δu − Δ(|u|α)|u|α−2u = g(x, u) + θh(x, u), x ∈ Ω
u = 0, x ∈ ∂Ω,

(1.1)

where Ω is a bounded smooth domain in RN (N ≥ 1), θ is a parameter and α ≥ 2. The
quasilinear elliptic equation appears naturally in several physical models, for instance in
the superfluid film equation in plasma physics. For more physical motivations and detailed
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information on applications, we refer readers to [12,13,22] and the references therein.
In recent years, the quasilinear elliptic problem in a bounded domain or whole space has
been widely studied for both its importance in applications and its mathematical interest;
see, e.g. [6,7,9,15–18,20,23].

When g(x, t) is odd in t and h ≡ 0, (1.1) possesses a natural Z2 symmetry, and some
results of multiple solutions for quasilinear Schrödinger equations in bounded domains
or whole space have been obtained with g satisfying various conditions, see [14,25,26,
32,33] and the references therein. It is worth pointing out that the Z2 symmetry plays
a crucial part in these works. In this paper, we mainly focus on the situation when the
symmetry of (1.1) is broken by the effects of non-odd term h. To be more precise, if
g(x, t) is odd and h(x, t) is not odd in t, a natural question is whether multiple solutions
persist for (1.1) in the absence of symmetry. As far as we know, this perturbation problem
for quasilinear Schrödinger equations has not been much investigated, and we are aware
of only one paper [29] in this direction. In [29], we proved that if g, h ∈ C(Ω̄ × R) and
g(x, t) is only locally superlinear with respect to t at the origin, then for any j ∈ N, there
exists θj > 0 such that if |θ| ≤ θj , (1.1) has at least j distinct weak solutions.

In the present work, we consider the perturbation problem in the sublinear case. The
objective of this paper is to prove the existence of multiple solutions for (1.1) under the
assumption that g satisfies a sublinear growth condition around the origin. Our main
approach is based on minimax methods and the truncation technique. Roughly speaking,
the main idea of our proof is to find a suitable truncation of the energy functional of
(1.1), in order to obtain a modified functional that has almost the same small critical
values as the original functional; then, we can obtain multiple solutions for (1.1). Now
we are ready to state our main results, as follows.

Theorem 1.1. Assume that g and h satisfy the following conditions:

(W1) g(x, t) = g1(x, t) + g2(x, t), g1 ∈ C(Ω̄ × R) and there exist constants C0 > 0 and
1 < p < 2α such that

|g1(x, t)| ≤ C0|t|p−1, ∀ (x, t) ∈ Ω̄ × R; (1.2)

(W2) there exists a constant 1 < μ < 2 such that

g1(x, t)t ≤ μG1(x, t), ∀ (x, t) ∈ Ω̄ × R,

where G1(x, t) :=
∫ t

0
g1(x, s) ds;

(W3) G1(x, t) ≥ 0, (x, t) ∈ Ω × R and

lim
t→0

g1(x, t)
t

= +∞ uniformly for x ∈ Ω; (1.3)

(W4) g1(x, t) = −g1(x, −t), ∀ (x, t) ∈ Ω̄ × R;

(W5) g2 is a continuous function defined on Ω̄ × [−δ0, δ0] with some δ0 > 0 and there
exist constants C1 > 0 and α1 > 2α such that

|g2(x, t)| ≤ C1|t|α1−1 for (x, t) ∈ Ω̄ × [−δ0, δ0];
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(W6) g2(x, t) = −g2(x, −t) for (x, t) ∈ Ω̄ × [−δ0, δ0];

(H1) h(x, t) is a continuous function defined on Ω̄ × [−δ1, δ1] for some δ1 > 0.

Then, for any j ∈ N, there exists θj > 0 such that if |θ| ≤ θj , (1.1) possesses at least j
distinct weak solutions.

Remark 1.1. Since we only assume the perturbation term h is continuous without
restricting the growth range with extra bounds, the classical perturbation methods in
[2–4,10,11,19,24,27,28,30,31] cannot be employed to solve our problem directly. We
develop a new variational method based on the minimax methods. Moreover, our method
can also be applied to the perturbation from symmetry problem of elliptic systems and
Hamiltonian systems.

Corollary 1.1. Assume that g and h satisfy (W1)–(W6), (H1) and the following
condition:

(H2) h(x, t) = −h(x, −t) for Ω̄ × [−δ1, δ1].

Then (1.1) possesses a sequence of small negative energy solutions approaching zero.

The rest of this paper is organized as follows. In § 2, we introduce a cut-off function
to define a modified functional ϕθ, and some useful estimates for ϕθ are given. Then we
prove ϕθ satisfies the Palais–Smale condition and construct several minimax sequences
related to the critical values of ϕθ, after which we can prove multiple critical values of ϕθ

and show that ϕθ shares the same small critical values as the energy functional of (1.1).
Last we give an example to illustrate our result in § 4.

Notation. Throughout the paper we shall denote Ci various positive constants which
may vary from line to line but are not essential to our proofs.

2. Some preliminary lemmas

First we introduce some functional spaces which will be useful in the sequel. As usual,
for 1 ≤ ν < +∞, let

‖u‖ν =
( ∫

Ω

|u(x)|ν dx

)1/ν

, u ∈ Lν(Ω).

Throughout this paper, we denote by E the usual Sobolev space H1
0 (Ω) equipped with

the following inner product and norm

(u, v) =
∫

Ω

∇u · ∇v dx, ‖u‖ = (u, u)1/2, ∀u, v ∈ H1
0 (Ω).

It is well known that E is continuously embedded into Lν(Ω) for any 1 ≤ ν ≤ 2∗,
i.e. there exists τν > 0 such that

‖u‖ν ≤ τν‖u‖, ∀u ∈ E. (2.1)

Moreover, E is compactly embedded into Lν(Ω) only for any 1 ≤ ν < 2∗.
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In view of (W5) and (H1) in Theorem 1.1, the terms g2 and h are only locally defined,
so we cannot apply the variational methods directly. To overcome this difficulty, we use a
cut-off method to modify g2(x, t) and h(x, t) for t outside a neighbourhood of the origin.
In detail, we have the following lemma.

Lemma 2.1. Assume that (W5) and (H1) are satisfied. Then there exist two new

functions g̃2(x, t) and h̃(x, t) possessing the following properties:

(i) g̃2 ∈ C(Ω̄ × R) and there exists a constant 2α < α′
1 < 2∗α such that

|g̃2(x, t)| ≤ C1|t|α′
1−1, ∀ (x, t) ∈ Ω × R,

where 2∗ := 2N/(N − 2) if N ≥ 3 and 2∗ := ∞ if N = 1, 2;

(ii) there exists a positive constant δ′0 ≤ min{δ0/2, 1/2} such that

g̃2(x, t) = g2(x, t) for (x, t) ∈ Ω̄ × [−δ′0, δ
′
0];

(iii) h̃ ∈ C(Ω̄ × R) and |h̃(x, t)| ≤ C2, ∀ (x, t) ∈ Ω̄ × R, where C2 is a positive constant;

(iv) there exists a positive constant δ′1 ≤ δ1/2 such that

h̃(x, t) = h(x, t) for (x, t) ∈ Ω̄ × [−δ′1, δ
′
1].

Proof. First we prove (i) and (ii). Choose a constant δ′0 = min{δ0/2, 1/2}. Define
a cut-off function χ0 ∈ C1(R, R) such that χ0(t) = 1 for t ≤ 1, χ0(t) = 0 for t ≥ 2 and
−2 ≤ χ′

0(t) < 0 for 1 < t < 2. Set

g̃2(x, t) = χ0(t2/δ′0
2)g2(x, t), ∀ (x, t) ∈ Ω̄ × R. (2.2)

By (W5), (W6) and (2.2), it is easy to verify that (i) and (ii) hold and

g̃2(x, t) = −g̃2(x,−t), ∀ (x, t) ∈ Ω̄ × R. (2.3)

Next we prove (iii) and (iv). Choose a constant δ′1 = δ1/2, define

h̃(x, t) = χ0(t2/δ′1
2)h(x, t), ∀ (x, t) ∈ Ω̄ × R. (2.4)

Since h(x, t) ∈ C(Ω̄ × R), (2.4) implies (iii) and (iv). The proof is completed.
Next we introduce the following modified nonlinear Schrödinger equation{

−Δu − Δ(|u|α)|u|α−2u = g̃(x, u) + θh̃(x, u), x ∈ Ω
u = 0, x ∈ ∂Ω,

(2.5)

where g̃ := g1 + g̃2, g̃2 and h̃ are defined by (2.2) and (2.4).
By direct computation, (2.5) is the Euler–Lagrange equation associated with the energy

functional Jθ : R × E → R given by

Jθ(u) =
1
2

∫
Ω

|∇u|2 dx +
1
2α

∫
Ω

|∇(|u|α)|2 dx −
∫

Ω

G̃(x, u) dx − θ

∫
Ω

H̃(x, u) dx, (2.6)

where G̃(x, t) :=
∫ t

0
g̃(x, s) ds and H̃(x, t) :=

∫ t

0
h̃(x, s) ds. Since Jθ is not well defined

in R × E, we employ a dual approach as in [6,16] to overcome this difficulty. Precisely
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speaking, the idea of the dual approach is that the quasilinear Schrödinger equation (1.1)
can be reduced to a semilinear equation by the use of a suitable function f , then the
classical Sobolev space framework can be used as the working space. In the spirit of the
transformation introduced in [1], we make the change of variables by v = f−1(u), where
the function f can be defined by

f ′(t) = (1 + α|f(t)|2(α−1))−1/2, t ∈ [0,+∞) and f(−t) = −f(t), t ∈ (−∞, 0].

Next we collect some properties of the function f , which will be very useful in the
remainder of the paper. The detailed proof can be found in [1]. �

Lemma 2.2. The function f and its derivative have the following properties:

(f1) f is a uniquely defined C∞ function and invertible;

(f2) 0 < f ′(t) ≤ 1 and |f(t)| ≤ |t|, ∀ t ∈ R;

(f3) limt→0((|f(t)|)/(|t|)) = 1 and limt→∞((|f(t)|α)/(|t|)) =
√

α;

(f4) there exists a positive constant C such that |f(t)|α−1f ′(t) ≤ C, ∀ t ∈ R;

(f5) f ′′(t)f(t) = (α − 1)(f ′(t))2((f ′(t))2 − 1), ∀ t ∈ R.

Therefore, by a change of variable and (2.6), we obtain the following functional

Iθ(v) := Jθ(f(v)) = 1
2

∫
Ω

|∇v|2 dx −
∫

Ω

G̃(x, f(v)) dx

− θ

∫
Ω

H̃(x, f(v)) dx, (θ, v) ∈ R × E.

By Lemmas 2.1 and 2.2, for fixed θ0 ∈ R, Iθ0 ∈ C1(E, R) and

〈I ′θ0
(v), w〉 = (v, w) −

∫
Ω

g̃(x, f(v))f ′(v)w dx − θ0

∫
Ω

h̃(x, f(v))f ′(v)w dx

for any v, w ∈ E. It is obvious that the critical points of Iθ are the weak solutions of the
following problem{

−Δv = (1 + α|f(v)|2(α−1))−1/2(g̃(x, f(v)) + θh̃(x, f(v))), x ∈ Ω,

v = 0, x ∈ ∂Ω.
(2.7)

Arguing similarly to the proof of Lemma 2.6 and Remark 2.7 in [1], if v0 ∈ E is a critical
point of the functional Iθ0 , then u0 = f(v0) ∈ E is a weak solution of problem (2.5) with
θ = θ0. Next we introduce a modified functional ϕθ. When θ is small enough, we can
show that the functional ϕθ possesses the same multiple critical values as Iθ.
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First we introduce a cut-off function ζ ∈ C∞(R, R) satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
ζ(t) = 1, t ∈ (−∞, 1]
0 ≤ ζ(t) ≤ 1, t ∈ (1, 2)
ζ(t) = 0, t ∈ [2,∞)
|ζ ′(t)| ≤ 2, t ∈ R.

(2.8)

With the help of this cut-off function ζ, we define

k(v) = ζ

(‖v‖2

T0

)
, ∀ v ∈ E, (2.9)

where T0 is a positive constant independent of v determined by both (2.24) and (2.26).

Lemma 2.3. The functional k given by (2.9) is of C1(E, R) and∣∣∣∣〈k′(v),
f(v)
f ′(v)

〉∣∣∣∣ ≤ C3, ∀ v ∈ E, (2.10)

where C3 is a positive constant independent of v.

Proof. By (2.9) and direct calculation, we have

〈k′(v), w〉 = 2ζ ′
(‖v‖2

T0

)
(v, w)

T0
, ∀ v, w ∈ E. (2.11)

Assume that vn → v0 in E. In view of (2.11), for any w ∈ E, we obtain

|〈k′(vn) − k′(v0), w〉| = 2
∣∣∣∣ζ ′(‖vn‖2

T0

)
(vn, w)

T0
− ζ ′

(‖v0‖2

T0

)
(v0, w)

T0

∣∣∣∣
≤ 2T0

−1‖w‖
[∣∣∣∣ζ ′(‖vn‖2

T0

)∣∣∣∣‖vn − v0‖

+
∣∣∣∣ζ ′(‖vn‖2

T0

)
− ζ ′

(‖v0‖2

T0

)∣∣∣∣‖v0‖
]
,

which implies that ‖k′(vn) − k′(v0)‖E∗ → 0, n → ∞. This means that k ∈ C1(E, R).
By (f5) in Lemma 2.2 and direct computation, there exists a positive constant C4

independent of v such that ∥∥∥ f(v)
f ′(v)

∥∥∥ ≤ C4‖v‖, ∀ v ∈ E. (2.12)

In combination with (2.8), (2.11) and (2.12), we get∣∣∣∣〈k′(v),
f(v)
f ′(v)

〉∣∣∣∣ ≤ 2C4

∣∣∣∣ζ ′(‖v‖2

T0

)∣∣∣∣‖v‖2

T0
≤ 8C4, ∀ v ∈ E,

which implies that (2.10) holds. This completes the proof.
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Next we introduce a modified functional ϕθ on R × E as follows:

ϕθ(v) = 1
2‖v‖2 −

∫
Ω

G1(x, f(v)) dx − k(v)
∫

Ω

G̃2(x, f(v)) dx − θ

∫
Ω

H̃(x, f(v)) dx,

(2.13)

where G1(x, t) :=
∫ t

0
g1(x, s) ds and G̃2(x, t) :=

∫ t

0
g̃2(x, s) ds. Under assumptions of

Theorem 1.1, by Lemmas 2.1 and 2.3, for fixed θ0 ∈ R, it is easy to verify that
ϕθ0 ∈ C1(E, R) and

〈ϕ′
θ0

(v), w〉 = (v, w) −
∫

Ω

g1(x, f(v))f ′(v)w dx − 〈k′(v), w〉
∫

Ω

G̃2(x, f(v)) dx

− k(v)
∫

Ω

g̃2(x, f(v))f ′(v)w dx − θ0

∫
Ω

h̃(x, f(v))f ′(v)w dx (2.14)

for any v, w ∈ E. Next we give some properties of ϕθ which will be useful in the sequel. �

Lemma 2.4. Suppose that (W1), (W2) and (W5) are satisfied. Then:

(i) for every θ ∈ R, ϕθ satisfies the Palais–Smale condition. Moreover, there exists a
positive constant C5 independent of v such that

|ϕ0(v) − ϕθ(v)| ≤ C5|θ|, ∀ v ∈ E; (2.15)

(ii) ϕ0 has no critical point with positive critical value on E and K0 = {0}, where
K0 :=

{
v ∈ E : ϕ0(v) = 0, ϕ′

0(v) = 0
}
.

Proof. In view of (f3) in Lemma 2.2, there exist positive constants M0 and C6 such
that

|f(t)| ≤ C6|t|1/α, |t| ≥ M0. (2.16)

Since α ≥ 2, in combination with (f3) in Lemma 2.2 and (2.16), there exists a positive
constant C7 independent of t such that

|f(t)| ≤ C7|t|1/α, t ∈ R. (2.17)

It follows from (2.4) that there exists a positive constant C8 independent of v such that∣∣∣∣ ∫
Ω

H̃(x, f(v)) dx

∣∣∣∣ ≤ C8, ∀ v ∈ E. (2.18)

By (1.2), (2.9), (2.13), (2.17) and (2.18), when ‖v‖2 > 2T0, for any θ ∈ R we have

ϕθ(v) ≥ 1
2‖v‖2 − C9‖v‖p/α − C8|θ|. (2.19)

Since 1 < p < 2α, for any θ ∈ R, (2.19) implies that ϕθ(v) → +∞ as ‖v‖ → +∞.
Next we show that for any θ ∈ R, ϕθ satisfies the Palais–Smale condition. Assume

that {vn}n∈N ⊂ E is a (Palais–Smale) sequence of ϕθ, i.e. {ϕθ(vn)}n∈N is bounded and
ϕ′

θ(vn) → 0 as n → +∞. We need to prove that {vn} has a convergent subsequence. For
any θ ∈ R, ϕθ is coercive. Then {vn} is bounded; passing to subsequence, also denoted
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by {vn}, it can be assumed that vn ⇀ v0, n → ∞. Since vn ⇀ v0, by (i) in Lemma 2.1,
(f2) in Lemma 2.2, (1.2) and (2.17), we obtain∫

Ω

g1(x, f(vn))f ′(vn)(vn − v0) dx → 0, n → ∞ (2.20)

and ∫
Ω

g̃2(x, f(vn))f ′(vn)(vn − v0) dx → 0, n → ∞. (2.21)

In view of (iii) in Lemma 2.1 and (f2) in Lemma 2.2, we have∫
Ω

h̃(x, f(vn))f ′(vn)(vn − v0) dx → 0, n → ∞. (2.22)

Moreover, combining (i) in Lemma 2.1, (2.1), (2.11) and (2.17), we get∣∣∣∣〈k′(vn), vn − v0〉
∫

Ω

G̃2(x, f(vn)) dx

∣∣∣∣
≤ 2(α′

1+2α)/(2α)C1C
α′

1
7 τ

α′
1/α

α′
1/α T

(α′
1−2α)/(2α)

0 ‖vn − v0‖2 + on(1). (2.23)

Since α′
1 > 2α, we can choose T0 small enough such that

2(α′
1+2α)/(2α)C1C

α′
1

7 τ
α′

1/α

α′
1/α T

(α′
1−2α)/(2α)

0 < 2−1. (2.24)

For any θ ∈ R, it follows from (2.14) and (2.20)–(2.24) that

|〈ϕ′
θ(vn), vn − v0〉| ≥ 2−1‖vn − v0‖2 + on(1),

which implies that vn → v0, n → ∞. Moreover, by (2.13) and (2.18), we have that (2.15)
holds.

Next we prove (ii) by contradiction. If v0 is a critical point of ϕ0 with ϕ0(v0) > 0, by (i)
in Lemma 2.1, (W1) and (2.13), we get v0 �= 0. Without loss of generality, we can assume
‖v0‖2 ≤ 2T0. Otherwise, by (2.9) and (2.11), we have k(v0) = 0 and k′(v0) = 0. Then it
follows from (W2), (2.13) and (2.14) that

0 < ϕ0(v0) = ϕ0(v0) − μ−1

〈
ϕ′

0(v0),
f(v0)
f ′(v0)

〉
≤ μ − 2

2μ
‖v0‖2 < 0,

which yields a contradiction, so ‖v0‖2 ≤ 2T0. In view of (i) in Lemma 2.1, (W2), (2.1),
(2.10), (2.13), (2.14) and (2.17), we obtain

0 < ϕ0(v0) = ϕ0(v0) − μ−1

〈
ϕ′

0(v0),
f(v0)
f ′(v0)

〉
≤ μ − 2

2μ
‖v0‖2 + (C3 + 1)C1C

α′
1

7 τ
α′

1/α

α′
1/α ‖v0‖α′

1/α. (2.25)

In view of α′
1 > 2α, we can choose T0 small enough such that if ‖v‖2 ≤ 2T0,

(C3 + 1)C1C
α′

1
7 τ

α′
1/α

α′
1/α ‖v‖α′

1/α <
2 − μ

4μ
‖v‖2. (2.26)
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By (2.25) and (2.26), we have a contradiction. So ϕ0 has no critical point with positive
critical value on E. Moreover, by a similar proof and direct computation, K0 = {0}. The
proof is completed. �

3. Proofs of main results

It is well known that the eigenvalue problem for the following equation{
−Δu = λu, x ∈ Ω
u = 0, x ∈ ∂Ω,

has a sequence of eigenvalues λn (counted with multiplicity) and 0 < λ1 < λ2 < · · · <
λn < · · · → ∞. The corresponding system of normalized eigenfunctions {en : n ∈ N}
forms an orthogonal basis in E. Hereafter, let En := span{e1, . . . , en} and let E⊥

n be
the orthogonal complement of En in E.

By this normalized orthogonal sequence {en}∞n=1, we define some subspaces as follows:

Bn = {v ∈ En; ‖v‖ ≤ 1}, Sn = {v ∈ En; ‖v‖ = 1}
and

Sn+1
+ = {v = w + ten+1; ‖v‖ = 1, w ∈ Bn, 0 ≤ t ≤ 1}.

With the help of these subspaces, we can introduce some continuous maps and a minimax
sequence of ϕ0 as follows

Λn := {γ ∈ C(Sn, E); γ is odd} (3.1)

and
bn := inf

γ∈Λn

max
v∈Sn

ϕ0(γ(v)). (3.2)

In view of (3.1)–(3.2), it is easy to get bn ≤ bn+1, n ∈ N. Next we give some useful
estimates for the sequence of minimax values bn.

Lemma 3.1. Assume that (W3), (W4) and (W5) hold. Then for any n ∈ N, bn < 0.

Proof. Since En is a finite-dimensional space, there exists �n > 0 such that

‖v‖ ≤ �n‖v‖2, ∀ v ∈ En. (3.3)

By direct computation and the definition of f , there exists a positive constant C10 such
that

|f(t)| ≥ C10|t|, |t| ≤ 1. (3.4)

In view of (1.3), we can choose 0 < r0 ≤ 1 such that

g1(x, t) ≥ 8�2
nC−2

10 t (3.5)

for all x ∈ Ω and 0 ≤ t ≤ r0. By (3.5) and direct computation, we obtain

G1(x, t) ≥ 4�2
nC−2

10 t2 (3.6)
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for all x ∈ Ω and 0 ≤ t ≤ r0. In view of (W4), G1(x, t) is an even function in t. Combining
this with (f2) in Lemma 2.2, (3.4) and (3.6), we get

G1(x, f(t)) ≥ 4�2
nC−2

10 f2(t) ≥ 4�2
nt2, x ∈ Ω and |t| ≤ r0. (3.7)

Since En is finite dimensional, we claim that there exists a constant κ > 0 such that

1
2

∫
Ω

|v(x)|2 dx ≥
∫
|v|>r0

|v(x)|2 dx, ∀ v ∈ En with ‖v‖ ≤ κ. (3.8)

If (3.8) does not hold true, there exists a sequence of {vk} ⊂ En\{0} such that vk → 0 in
En and

1
2

∫
Ω

|vk(x)|2 dx <

∫
|vk|>r0

|vk(x)|2 dx, ∀ k ∈ N. (3.9)

Set uk = ‖vk‖−1
2 vk, k ∈ N. By (3.3) and (3.9), {uk}k∈N is bounded and

1
2 <

∫
|vk|>r0

|uk(x)|2 dx, ∀ k ∈ N. (3.10)

On the other hand, since En is a finite-dimensional space, we can assume that uk → u0

in En. So uk → u0 in L2(Ω). Moreover, in view of vk → 0 in En, we have

meas{x ∈ Ω : |vk(x)| > r0} → 0 as k → ∞. (3.11)

Therefore, by (3.11), we obtain∫
|vk|>r0

|uk(x)|2 dx ≤ 2
∫

Ω

|uk(x) − u0(x)|2 dx + 2
∫
|vk|>r0

|u0(x)|2 dx → 0, k → ∞,

which contradicts (3.10). So (3.8) holds.
By (i) in Lemma 2.1 and (2.13), there exists a constant κ′ > 0 such that

ϕ0(v) ≤ ‖v‖2 −
∫

Ω

G1(x, f(v)) dx, ∀ v ∈ En with ‖v‖ ≤ κ′. (3.12)

In combination with (W3), (3.3), (3.7)–(3.8), (3.12), if v ∈ En with ‖v‖ ≤ min{κ, κ′}, we
get

ϕ0(v) ≤ ‖v‖2 −
∫

Ω

G1(x, f(v)) dx

≤ ‖v‖2 −
∫

Ωr0

G1(x, f(v)) dx

≤ ‖v‖2 − 4�2
n

∫
Ωr0

|v(x)|2 dx

= ‖v‖2 − 4�2
n

( ∫
Ω

|v(x)|2 dx −
∫

Ω\Ωr0

|v(x)|2 dx

)
≤ −‖v‖2, (3.13)

where Ωr0 = {x ∈ Ω : |v(x)| ≤ r0}. Choose 0 < ρ0 < min{κ, κ′}, and let γ0(v) = ρ0v, v ∈
Sn. In view of (3.2) and (3.13), bn < 0. This completes the proof. �
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Lemma 3.2. Suppose that (W1) and (W5) are satisfied. Then there exists a positive
constant C11 independent of n such that for all n large enough

bn ≥ −C11n
(−2p)/(N(2α−p)). (3.14)

Proof. For any γ ∈ Λn (n ≥ 2), if 0 �∈ γ(Sn), then the genus ϑ(γ(Sn)) is well defined
and ϑ(γ(Sn)) ≥ ϑ(Sn) = n. By [21, Proposition 7.8], γ(Sn) ∩ E⊥

n−1 �= ∅. Otherwise, 0 ∈
γ(Sn), and we have 0 ∈ γ(Sn) ∩ E⊥

n−1. So for any γ ∈ Λn (n ≥ 2), γ(Sn) ∩ E⊥
n−1 �= ∅.

Therefore, for any γ ∈ Λn (n ≥ 2), we obtain

max
v∈Sn

ϕ0(γ(v)) ≥ inf
v∈E⊥

n−1

ϕ0(v). (3.15)

In view of (i) in Lemma 2.1, (1.2), (2.9), (2.13) and (2.26), we conclude that

ϕ0(v) ≥ 1
4‖v‖2 − C12‖v‖p/α

2 , ∀ v ∈ E. (3.16)

When v ∈ E⊥
n−1, λn‖v‖2

2 ≤ ‖v‖2. If v ∈ E⊥
n−1, by (3.16), we get

ϕ0(v) ≥ 1
4‖v‖2 − C12λ

−p/(2α)
n ‖v‖p/α. (3.17)

Combining this with (3.2), (3.15) and (3.17), for n ≥ 2, we have

bn ≥ inf
t≥0

{
1
4 t2 − C12λ

−p/(2α)
n tp/α

}
= −C13λ

−p/(2α−p)
n , (3.18)

where C13 is a positive constant independent of n and λn. When n is large enough, it is
well known that λn ≥ C14n

2/N . In view of (3.18), (3.14) holds. The proof is completed. �

For any δ > 0, set

Γn(δ) = {γ ∈ Γn; ϕ0(γ(v)) ≤ bn + δ, v ∈ Sn}, (3.19)

where Γn :=
{
γ ∈ C(Sn+1

+ , E); γ|Sn ∈ Λn

}
. For any δ > 0, by (3.1), there exists γ0 ∈ Λn

such that ϕ0(γ0(v)) ≤ bn + δ, ∀ v ∈ Sn. So we can extend γ0 to Sn+1
+ as a continuous

function. Hence Γn(δ) is non-empty. Moreover, we have the following lemma.

Lemma 3.3. Assume that (W1), (W2), (W3) and (W5) are satisfied. Then for any
n ∈ N and any δ > 0, there exists γn ∈ Γn(δ) such that

max
v∈Sn+1

+

ϕ0(γn(v)) < 0. (3.20)

Proof. In view of (3.19), for fixed n ∈ N, when 0 < δ < δ′, we have Γn(δ) ⊂ Γn(δ′).
By Lemma 3.2, bn < 0, n ∈ N. So we only need to find γn ∈ Γn(δ) with δ ∈ (0, |bn|) such
that (3.20) holds. For any δ ∈ (0, |bn|), it follows from (3.2) that there exists γ0 ∈ Λn

such that maxv∈Sn ϕ0(γ0(v)) ≤ bn + δ/2. Since γ0(Sn) is a compact set in E, there exists
a positive integer m0 such that

max
v∈Sn

ϕ0((Pm0 ◦ γ0)v) ≤ bn + δ, (3.21)

where Pm0 denotes the orthogonal projective operator from E to Em0 .
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For any c ∈ R, let ϕc
0 = {v ∈ E : ϕ0(v) ≤ c}. Choose ε̄ = −(bn + δ)/2 > 0. By a similar

argument to that in Lemma 3.1, there exists ρm0+1 > 0 such that if v ∈ B̄(0, ρ0) ∩ Em0+1,
ϕ0(v) ≤ 0, where B(x0, ρ) denotes the open ball of radius ρ centred at x0 in E, and
B̄(x0, ρ) denotes the closure of B(x0, ρ) in E. Since ϕ0 ∈ C1(E, R) and ϕ0(0) = 0, we
have dist(0, ϕ−ε̄

0 ) > 0. Define ρ′0 = min
{
ρm0+1, dist(0, ϕ−ε̄

0 )
}
, then ρ′0 > 0. By the defor-

mation theorem (see [21, Theorem A.4]), there exists ε ∈ (0, ε̄) and a continuous map
η ∈ C([0, 1] × E, E) such that

η(1, v) = v, if ϕ0(v) �∈ [−ε̄, ε̄] (3.22)

and
η(1, ϕε

0\B(0, ρ′0)) ⊂ ϕ−ε
0 , (3.23)

where B(0, ρ′0) is a neighbourhood of K0 given by (ii) in Lemma 2.4.
By (3.1), Pm0 ◦ γ0 ∈ C(Sn, Em0). Since En+1 is a metric space with the norm ‖·‖

and Sn is a closed subset in En+1, there exists an extension ˜Pm0 ◦ γ0 : En+1 → Em0 of
Pm0 ◦ γ0 by the Dugundji extension theorem (see [8, Theorem 4.1]); furthermore,

(( ˜Pm0 ◦ γ0)En+1) ⊂ co((Pm0 ◦ γ0)Sn), (3.24)

where the symbol co denotes the convex hull. Since (Pm0 ◦ γ0)Sn is a compact set in Em0 ,
by the definition of a convex hull, co((Pm0 ◦ γ0)Sn) is a bounded set in Em0 . Then there
exists a constant ν such that ϕ0(v) ≤ ν, ∀ v ∈ co((Pm0 ◦ γ0)Sn). It follows from (3.24)
that

ϕ0(( ˜Pm0 ◦ γ0)v) ≤ ν, v ∈ En+1. (3.25)

Next we consider two possible cases.
Case 1. ν ≤ ε. Since ˜Pm0 ◦ γ0 ∈ C(En+1, Em0), by (3.25), we have

( ˜Pm0 ◦ γ0)v ∈ ϕε
0, m0

, ∀ v ∈ En+1, (3.26)

where ϕε
0, m0

:= {v ∈ Em0 : ϕ0(v) ≤ ε}. Define a map T as follows:

T (v) =

{
v, v �∈ B̄(0, ρ′0) ∩ Em0

v + (ρ′20 − ‖v‖2)1/2em0+1, v ∈ B̄(0, ρ′0) ∩ Em0 .
(3.27)

It is obvious that T ∈ C(Em0 , Em0+1) and

(T ◦ ( ˜Pm0 ◦ γ0))v ∩ B(0, ρ′0) = ∅, ∀ v ∈ En+1. (3.28)

When v ∈ En+1 and ‖( ˜Pm0 ◦ γ0)v‖ > ρ′0, by (3.26) and (3.27), we get

(T ◦ ( ˜Pm0 ◦ γ0))v = ( ˜Pm0 ◦ γ0)v ∈ ϕε
0, m0

. (3.29)

Otherwise, if v ∈ En+1 and ‖( ˜Pm0 ◦ γ0)v‖ ≤ ρ′0, in view of (3.27), ‖(T ◦ ( ˜Pm0 ◦ γ0))v‖ =
ρ′0. By the definition of ρ′0 and (3.29), we conclude that

(T ◦ ( ˜Pm0 ◦ γ0))v ∈ ϕε
0, ∀ v ∈ En+1. (3.30)
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Define a map γn : En+1 → E as follows:

γn(·) = η(1, (T ◦ ( ˜Pm0 ◦ γ0))(·)). (3.31)

Next we prove γn ∈ Γn(δ) and maxv∈Sn+1
+

ϕ0(γn(v)) < 0. First, it is obvious that γn ∈
C(Sn+1

+ , E). By the Dugundji extension theorem, we obtain

( ˜Pm0 ◦ γ0)v = (Pm0 ◦ γ0)v, ∀ v ∈ Sn. (3.32)

By (3.21), (Pm0 ◦ γ0) v ∈ ϕ−2ε̄
0 , ∀ v ∈ Sn. By the definition of ρ′0 and ϕ−2ε̄

0 ⊂ ϕ−ε̄
0 , we get

‖(Pm0 ◦ γ0) v‖ ≥ ρ′0, ∀ v ∈ Sn. (3.33)

It follows from (3.27), (3.32) and (3.33) that

(T ◦ ( ˜Pm0 ◦ γ0)) v = T ◦ ((Pm0 ◦ γ0) v) = (Pm0 ◦ γ0) v, ∀ v ∈ Sn. (3.34)

In view of (Pm0 ◦ γ0) v ∈ ϕ−2ε̄
0 , ∀ v ∈ Sn, by (3.22) and (3.34), we obtain

γn(v) = η(1, (T ◦ ( ˜Pm0 ◦ γ0)) v) = (Pm0 ◦ γ0) v, ∀ v ∈ Sn, (3.35)

which implies that γn|Sn ∈ Λn. Moreover, in view of (3.21) and (3.35), we have γn ∈
Γn(δ). Since Sn+1 ⊂ En+1, by (3.28) and (3.30), we have (T ◦ ( ˜Pm0 ◦ γ0))v ∩ B(0, ρ′0) =
∅, ∀ v ∈ Sn+1

+ and (T ◦ ( ˜Pm0 ◦ γ0))v ∈ ϕε
0, ∀ v ∈ Sn+1

+ . It follows from (3.23) and (3.31)
that maxv∈Sn+1

+
ϕ0(γn(v)) ≤ −ε < 0.

Case 2. ν > ε. Let ϕ0|Em0
denote the restriction of ϕ0 on Em0 . Arguing as in Lemma 2.4,

we can prove that ϕ0|Em0
satisfies the Palais–Smale condition. Moreover, ϕ0|Em0

has no
critical point with positive critical values on Em0 . By the non-critical interval theorem
(see [5, Theorem 5.1.6]), ϕε

0, m0
is a strong deformation retraction of ϕν

0, m0
. So there

exists a map ς such that ς ∈ C(ϕν
0, m0

, ϕε
0, m0

) and ς(v) = v, if v ∈ ϕε
0, m0

. Define a map
from En+1 → E as follows:

γ̄n(·) = η(1, (T ◦ (ς ◦ ( ˜Pm0 ◦ γ0)))(·)).

By a similar proof to that used in Case 1, γ̄n ∈ Γn(δ) and maxv∈Sn+1
+

ϕ0(γ̄n(v)) ≤ −ε < 0.
This completes the proof. �

Under assumptions of Theorem 1.1, in view of Lemma 3.1, bn ≤ bn+1 and (3.14), it
is impossible that bn+1 = bn for all large n. So we can construct critical values of ϕθ as
follows.
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Lemma 3.4. Let n be a positive integer satisfying bn+1 > bn. For any
σ ∈ (0, bn+1 − bn) and |θ| < θn, where θn is a positive constant depending on n given
by (3.40). Define

cn(θ, σ) = inf
γ∈Γn(σ)

max
v∈Sn+1

+

ϕθ(γ(v)). (3.36)

Then cn(θ, σ) is a critical value of ϕθ. Moreover, for any σ ∈ (0, bn+1 − bn) and |θ| < θn,
we have

bn+1 − C5|θ| ≤ cn(θ, σ) ≤ cn+1 + C5|θ|, (3.37)

where C5 is given in (2.15) and cn+1 is defined by (3.39).

Proof. By (2.15), for any (θ, v) ∈ R × E, we have

ϕ0(v) − C5|θ| ≤ ϕθ(v) ≤ ϕ0(v) + C5|θ|. (3.38)

For any σ ∈ (0, bn+1 − bn), by Lemma 3.3, there exists γn ∈ Γn(σ) such that

cn+1 := max
v∈Sn+1

+

ϕ0(γn(v)) < 0. (3.39)

We can choose θn small enough such that for σ ∈ (0, bn+1 − bn) and |θ| < θn,

bn + σ + 2C5|θ| < bn+1, cn+1 + C5|θ| < 0. (3.40)

In view of (3.36) and (3.38)–(3.40), for any σ ∈ (0, bn+1 − bn) and |θ| < θn, we obtain

cn(θ, σ) ≤ max
v∈Sn+1

+

ϕ0(γn(v)) + C5|θ| = cn+1 + C5|θ| < 0. (3.41)

For an arbitrary γ ∈ Γn(σ), we have the natural odd extension of γ on Sn+1 denoted by
γ̄, i.e. γ̄(v) = γ(v) for v ∈ Sn+1

+ and γ̄(v) = −γ(−v) for v ∈ −Sn+1
+ . So we get γ̄ ∈ Λn+1.

Since I0 is an even functional,

max
v∈Sn+1

+

ϕ0(γ(v)) = max
v∈Sn+1

ϕ0(γ̄(v)). (3.42)

For any σ ∈ (0, bn+1 − bn) and |θ| < θn, by (3.2), (3.38) and (3.42), we conclude that

max
v∈Sn+1

+

ϕθ(γ(v)) ≥ max
v∈Sn+1

+

ϕ0(γ(v)) − C5|θ|

= max
v∈Sn+1

ϕ0(γ̄(v)) − C5|θ|

≥ bn+1 − C5|θ|. (3.43)

Taking the infimum on Γn(σ) in (3.43), in view of (3.36) and (3.40), for any σ ∈ (0, bn+1 −
bn) and |θ| < θn, we get

cn(θ, σ) ≥ bn+1 − C5|θ| > bn + σ + C5|θ|. (3.44)

For any σ ∈ (0, bn+1 − bn) and |θ| < θn, we claim that cn(θ, σ) is a critical value of
ϕθ. If not, cn(θ, σ) is a regular value. Set ε̄ = (cn(θ, σ) − bn − σ − C5|θ|)/2; then ε̄ > 0
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by (3.44). By the deformation theorem, there exists ε ∈ (0, ε̄) and a continuous map
η ∈ C([0, 1] × E, E) such that

η(1, v) = v if ϕθ(v) �∈ [cn(θ, σ) − ε̄, cn(θ, σ) + ε̄] (3.45)

and
η(1, ϕ

cn(θ,σ)+ε
θ ) ⊂ ϕ

cn(θ,σ)−ε
θ . (3.46)

By (3.36), there exists γ0 ∈ Γn(σ) such that

max
v∈Sn+1

+

ϕθ(γ0(v)) < cn(θ, σ) + ε. (3.47)

Define
γ̄0(v) = η(1, γ0(v)), v ∈ Sn+1

+ . (3.48)

It is obvious that γ̄0 ∈ C(Sn+1
+ , E). Since γ0 ∈ Γn(σ), it follows from (3.19), (3.38) and

(3.44) that

ϕθ(γ0(v)) ≤ ϕ0(γ0(v)) + C5|θ| ≤ bn + σ + C5|θ| = cn(θ, σ) − 2ε̄, v ∈ Sn. (3.49)

By (3.45), (3.48) and (3.49), we obtain γ̄0(v) = γ0(v), v ∈ Sn, which yields

γ̄0|Sn
∈ Λn and ϕ0(γ̄0(v)) = ϕ0(γ0(v)) ≤ bn + σ, v ∈ Sn. (3.50)

So we have γ̄0 ∈ Γn(σ) by (3.50). In combination with (3.46)–(3.48), we get

max
v∈Sn+1

+

ϕθ(γ̄0(v)) = max
v∈Sn+1

+

ϕθ(η(1, γ0(v))) ≤ cn(θ, σ) − ε,

which contradicts (3.36). Consequently, for any σ ∈ (0, bn+1 − bn) and |θ| < θn, cn(θ, σ)
is a critical value of ϕθ. Moreover, in view of (3.41) and (3.44), (3.37) holds. This completes
the proof. �

Lemma 3.5. For any ε > 0, there exists τ > 0 such that if |θ| ≤ τ , ϕ′
θ(v) = 0 and

|ϕθ(v)| ≤ τ , then ‖v‖ < ε.

Proof. We prove this lemma by contradiction. If the result is false, there exist
sequences {vn} and {θn} such that θn → 0, ϕ′

θn
(vn) = 0, ϕθn

(vn) → 0 and ‖vn‖ ≥ ε0,
where ε0 > 0 is independent of n. By a similar argument to that used in (2.25) in Lemma
2.4, we have

ϕθn
(vn) = ϕθn

(vn) − μ−1

〈
ϕ′

θn
(vn),

f(vn)
f ′(vn)

〉
≤ μ − 2

4μ
‖vn‖2 + θnμ−1

( ∫
Ω

h̃(x, f(vn))f(vn) dx −
∫

Ω

H̃(x, f(vn)) dx

)
. (3.51)

In combination with (2.4), (2.18) and (3.51), we get

ϕθn
(vn) ≤ μ − 2

4μ
‖vn‖2 + C15|θn| ≤ μ − 2

4μ
ε2
0 + C15|θn|, (3.52)

where C15 is a positive constant independent of n. Since θn → 0, (3.52) contradicts the
fact that ϕθn

(vn) → 0. The proof is completed. �
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Proof of Theorem 1.1. In view of Lemma 3.5, there exists τ0 > 0 such that if
|θ| ≤ τ0, ϕ′

θ(v) = 0 and |ϕθ(v)| ≤ τ0, then ‖v‖2 < T0. Combining (2.8), (2.9) and (2.11),
we have k(v) = 1 and k′(v) = 0, implying that I ′θ(v) = 0 by (2.14) and v is a weak solu-
tion of (2.7). By the facts above, Lemma 3.5 and elliptic regularity theory, we can
choose a positive constant τ ′

0 ≤ τ0 if |θ| < τ ′
0, ϕ′

θ(v) = 0 and |ϕθ(v)| ≤ τ ′
0; then v is a

weak solution of (2.7) and ‖v‖C(Ω̄) ≤ min{δ′0, δ′1}, where δ′0 and δ′1 are defined as in
Lemma 2.1.

In view of Lemmas 3.1 and 3.2, we have bn → 0, n → ∞. For any j ∈ N and τ ′
0 defined

above, choose strictly increasing integers pi (1 ≤ i ≤ j) such that

bpi+1 > bpi
> −τ ′

0, 1 ≤ i ≤ j and bp(i+1) > cpi+1, 1 ≤ i ≤ j − 1, (3.53)

where cpi+1 is defined as in (3.39). By (3.36), (3.37) and (3.53), we can choose a positive
constant θj ≤ τ ′

0 such that cpi
(θ, σi) with 1 ≤ i ≤ j are well defined for |θ| ≤ θj , where

σi ∈ (0, bpi+1 − bpi
). Moreover, when |θ| ≤ θj we also have −τ ′

0 < bp1 − C5|θ| and

cpi+1 + C5|θ| < bp(i+1) − C5|θ|, 1 ≤ i ≤ j − 1. (3.54)

In view of (3.37) and (3.54), for |θ| ≤ θj , ϕθ has at least j critical values

−τ ′
0 < cp1(θ, σ1) < cp2(θ, σ2) < · · · < cpj

(θ, σj) < 0,

which implies that for |θ| ≤ θj , (2.7) has at least j distinct weak solutions v1(θ), v2(θ),
. . ., vj(θ) and ‖vi(θ)‖C(Ω̄) ≤ min{δ′0, δ′1}, 1 ≤ i ≤ j. Then for any |θ| ≤ θj , (2.5) has at
least distinct weak solutions ui(θ) = f(vi(θ)), 1 ≤ i ≤ j. Moreover, by (f2) in Lemma 2.1,
for any θ with |θ| ≤ θj , we obtain

‖ui(θ)‖C(Ω̄) ≤ min{δ′0, δ′1}, 1 ≤ i ≤ j. (3.55)

Combining (ii), (iv) in Lemma 2.1 and (3.55), u1(θ), u2(θ), . . . , uj(θ) are also j distinct
weak solutions for (1.1) with |θ| ≤ θj . This completes the proof. �

4. Examples

Example 4.1. In (1.1), let Ω be a bounded smooth domain in R4 and α = 2. Define
g(x, t) = a(x)|t|−1/2t ln(e + t4), (x, t) ∈ Ω × R, where a(x) ∈ C(Ω̄, R) with infx∈Ω̄ a(x) >
0 and h(x, t) is a continuous function defined on Ω̄ × [−δ0, δ0] for some δ0 > 0. Set

g1(x, t) = a(x)|t|−1/2t, g2(x, t) = a(x)|t|−1/2t(ln(e + t4) − 1).

It is obvious that g = g1 + g2. By the Lagrange theorem, |g2(x, t)| ≤ M |t|9/2, (x, t) ∈
Ω × R, where M is a positive constant. Choose μ = p = 3/2 and α1 = 11/2, so all the
conditions of Theorem 1.1 are satisfied. By Theorem 1.1, for any j ∈ N, there exists θj > 0
such that if |θ| ≤ θj , (1.1) possesses at least j distinct weak solutions.
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