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Abstract  In this paper, we consider the existence of multiple solutions for the quasilinear Schrédinger
equation

—Au — A(|u|®)|u|*2u = g(z,u) + Oh(z,u), = €Q
u=0, x€d,

where 2 is a bounded smooth domain in RY (N > 1), a > 2 and 6 is a parameter. Under the assumption
that g(z, u) is sublinear near the origin with respect to u, we study the effect of the perturbation term
h(z, u), which may break the symmetry of the associated energy functional. With the aid of critical point
theory and the truncation method, we show that this system possesses multiple small negative energy
solutions.
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1. Introduction and main results

This paper deals with the quasilinear Schrédinger equation

{—Au — A(Ju|*)|u|*2u = g(x,u) + 0h(x,u), =€ Q (1)

u=0, z €,
where Q is a bounded smooth domain in RY (N > 1), 6 is a parameter and a > 2. The

quasilinear elliptic equation appears naturally in several physical models, for instance in
the superfluid film equation in plasma physics. For more physical motivations and detailed
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information on applications, we refer readers to [12,13,22] and the references therein.
In recent years, the quasilinear elliptic problem in a bounded domain or whole space has
been widely studied for both its importance in applications and its mathematical interest;
see, e.g. [6,7,9,15-18, 20, 23].

When g(z, t) is odd in ¢t and h =0, (1.1) possesses a natural Z, symmetry, and some
results of multiple solutions for quasilinear Schrédinger equations in bounded domains
or whole space have been obtained with ¢ satisfying various conditions, see [14, 25,26,
32, 33| and the references therein. It is worth pointing out that the Zy symmetry plays
a crucial part in these works. In this paper, we mainly focus on the situation when the
symmetry of (1.1) is broken by the effects of non-odd term h. To be more precise, if
g(z, t) is odd and h(z, t) is not odd in ¢, a natural question is whether multiple solutions
persist for (1.1) in the absence of symmetry. As far as we know, this perturbation problem
for quasilinear Schrodinger equations has not been much investigated, and we are aware
of only one paper [29] in this direction. In [29], we proved that if g, h € C(Q x R) and
g(z, t) is only locally superlinear with respect to ¢ at the origin, then for any j € N, there
exists #; > 0 such that if |§] < 6;, (1.1) has at least j distinct weak solutions.

In the present work, we consider the perturbation problem in the sublinear case. The
objective of this paper is to prove the existence of multiple solutions for (1.1) under the
assumption that g satisfies a sublinear growth condition around the origin. Our main
approach is based on minimax methods and the truncation technique. Roughly speaking,
the main idea of our proof is to find a suitable truncation of the energy functional of
(1.1), in order to obtain a modified functional that has almost the same small critical
values as the original functional; then, we can obtain multiple solutions for (1.1). Now
we are ready to state our main results, as follows.

Theorem 1.1. Assume that g and h satisfy the following conditions:

(W1) g(z, t) = gi(z, t) + ga(w, t), g1 € C(Q x R) and there exist constants Cy > 0 and
1 < p < 2a such that

lg1 (2, )| < Colt|P™, V(x,t) € Q xR; (1.2)
(W3) there exists a constant 1 < p < 2 such that
g1(z, )t < uGy(x,t), V(z,t) € Q xR,
where Gy (z, t) := fg g1(z, s)ds;
(W3) Gi(x,t) >0, (z,t) € QxR and

t
lim 1Y (z,1)
t—0 t

(W) gi(x, t) = —gi(z, —t), V(z,t) € QxR;

= 400 uniformly for x € (1.3)

(Ws) go is a continuous function defined on Q x [—dy, dg] with some &y > 0 and there
exist constants Cq > 0 and aq > 2« such that

g (@, ) < Ct|™ =" for (x,t) € Q x [0, dol;
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(Ws) galz, t) = —ga(z, —t) for (z, t) € Q x [~dg, do;
(Hy) h(z, t) is a continuous function defined on Q x [—dy, §1] for some §; > 0.

Then, for any j € N, there exists §; > 0 such that if |§] < 6;, (1.1) possesses at least j
distinct weak solutions.

Remark 1.1. Since we only assume the perturbation term h is continuous without
restricting the growth range with extra bounds, the classical perturbation methods in
[2-4,10,11,19,24,27,28, 30, 31] cannot be employed to solve our problem directly. We
develop a new variational method based on the minimax methods. Moreover, our method
can also be applied to the perturbation from symmetry problem of elliptic systems and
Hamiltonian systems.

Corollary 1.1. Assume that g and h satisty (W1)—~(Ws), (Hy) and the following
condition:

(Hs) h(z,t) = —h(x, —t) for Q x [0y, &1].
Then (1.1) possesses a sequence of small negative energy solutions approaching zero.

The rest of this paper is organized as follows. In §2, we introduce a cut-off function
to define a modified functional g, and some useful estimates for g are given. Then we
prove g satisfies the Palais—Smale condition and construct several minimax sequences
related to the critical values of ¢y, after which we can prove multiple critical values of g
and show that ¢y shares the same small critical values as the energy functional of (1.1).
Last we give an example to illustrate our result in § 4.

Notation. Throughout the paper we shall denote C; various positive constants which
may vary from line to line but are not essential to our proofs.

2. Some preliminary lemmas

First we introduce some functional spaces which will be useful in the sequel. As usual,

for 1 <v < 400, let
1/v
llly = ( / |u<z>|“dx) L uer'(Q).

Throughout this paper, we denote by E the usual Sobolev space H}(Q2) equipped with
the following inner product and norm

(u,v) = /QVU -Vodz, Jul = (u,u)l/Q, Yu,ve Hé(Q)

It is well known that E is continuously embedded into L¥(£2) for any 1 < v < 2%
i.e. there exists 7, > 0 such that
lully < 7llull, VueE. (2.1)

Moreover, E is compactly embedded into L”(2) only for any 1 < v < 2*.
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In view of (W5) and (H7) in Theorem 1.1, the terms g, and h are only locally defined,
so we cannot apply the variational methods directly. To overcome this difficulty, we use a
cut-off method to modify go(z, t) and h(z, t) for t outside a neighbourhood of the origin.
In detail, we have the following lemma.

Lemma 2.1. Assume that (Ws) and (H;) are satisfied. Then there exist two new
functions go(x, t) and h(x, t) possessing the following properties:

(i) go € O(Q x R) and there exists a constant 2a < oy < 2*a such that
Gl ) < CHl M, V(1) €2 xR,
where 2* :=2N/(N —2) if N >3 and 2* := 00 if N =1, 2;
(ii) there exists a positive constant § < min{dy/2, 1/2} such that
Go(x,t) = ga(w,t)  for (x,t) € Q x [—6p, 6p);
(iii) h e C(Q x R) and |h(z, t)| < Ca, V(z, t) € Q x R, where Cs is a positive constant;
(iv) there exists a positive constant ¢} < d1/2 such that
h(x,t) = h(z,t) for (z,t) € Q x [=d;,8].

Proof. First we prove (i) and (ii). Choose a constant ¢ = min{dy/2, 1/2}. Define
a cut-off function yo € C*(R, R) such that xo(t) =1 for t <1, xo(t) =0 for ¢t > 2 and
=2 < x((t) <0for 1<t <2 Set

Gz, 1) = x0(t?/6,")ga(a,t), ¥ (x,t) € QA xR, (2:2)
By (Ws), (Ws) and (2.2), it is easy to verify that (i) and (ii) hold and
Go(w,t) = —go(x, —t), V(x,t) € QxR (2.3)

Next we prove (iii) and (iv). Choose a constant ¢ = 61/2, define
h(z,t) = xo(t2/8,2)h(x,t), V(z,t) € QxR (2.4)
Since h(z, t) € C(Q x R), (2.4) implies (iii) and (iv). The proof is completed.
Next we introduce the following modified nonlinear Schrédinger equation
{—Au — A(lu|®)|ul*2u = §(z,u) + Oh(z,u), x€Q

(2.5)
u=0, x€dQ,

where g := g1 + g2, g2 and h are defined by (2.2) and (2.4).
By direct computation, (2.5) is the Euler-Lagrange equation associated with the energy
functional Jy : R x E — R given by

Jg(u):%/ |Vu|2dx+%/ |V(\u|a)|2dx7/ G’(:z:,u)dxfﬂ/gﬁ(z,u)dz, (2.6)

where G(z, t) fo z, s)ds and H(z, t) fo x, 8)ds. Since Jy is not well defined
in Rx FE, we employ a dual approach as in [6 16] to overcome this difficulty. Precisely

https://doi.org/10.1017/50013091518000536 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091518000536

Multiple solutions for sublinear perturbed Schrédinger equations 475

speaking, the idea of the dual approach is that the quasilinear Schrédinger equation (1.1)
can be reduced to a semilinear equation by the use of a suitable function f, then the
classical Sobolev space framework can be used as the working space. In the spirit of the
transformation introduced in [1], we make the change of variables by v = f~!(u), where
the function f can be defined by

F')=A+alfOP) 2t € [0,400) and  f(—t) = —f(t),t € (—00,0].

Next we collect some properties of the function f, which will be very useful in the
remainder of the paper. The detailed proof can be found in [1]. |

Lemma 2.2. The function f and its derivative have the following properties:

h
f2) 0< f'(t) < 1and|f(t)| < |t|, VtER;

(f) f
(f2)
(f3) Timy—o((IF@)])/(It])) = 1 and lim oo ((|F(B)|*)/([t])) = Va;
(f4)
(f5)

is a uniquely defined C'*° function and invertible;

f4) there exists a positive constant C such that |f(t)|*71f'(t) < C, Vt € R;

f5) 10 F(#) = (a = DI ®)?((f'(1)* - 1), VteR.

Therefore, by a change of variable and (2.6), we obtain the following functional

Ip(v) := /|Vv\2dx—/Gx flv

fﬂ/H:vf dz, (0,v) eRx E.
By Lemmas 2.1 and 2.2, for fixed 6y € R, I, € C(E, R) and

(15, (0),w) = (v, w) — / 3z, £(0)) ' (v)wdz — 6o / hie, (o)) f (0w da

for any v, w € E. It is obvious that the critical points of Iy are the weak solutions of the
following problem

{_AU = (14 | f(v)2@=D)"12(g(x, f(v)) + Oh(=, f(v), = €Q, (2.7)
v=0, x €

Arguing similarly to the proof of Lemma 2.6 and Remark 2.7 in [1], if vg € F is a critical
point of the functional Iy, then ug = f(vy) € E is a weak solution of problem (2.5) with
0 = 0y. Next we introduce a modified functional pg. When 6 is small enough, we can
show that the functional ¢y possesses the same multiple critical values as Iy.
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First we introduce a cut-off function ¢ € C*°(R, R) satisfying

(W=1,  te(-o0,1]
0<(¢(t) <1, te(l,2)
(=0, telzw) %)
I@®l<2,  tekR
With the help of this cut-off function ¢, we define
k(v) = C<W> VveFE (2.9)
To 9 )

where T is a positive constant independent of v determined by both (2.24) and (2.26).

Lemma 2.3. The functional k given by (2.9) is of C*(E, R) and

‘<k’(v), J{/((z))>’ < (s VYveE, (2.10)

where C3 is a positive constant independent of v.

Proof. By (2.9) and direct calculation, we have

(K'(v),w) = 2('<||U2) (v,w)7 Vo, we E. (2.11)

o ) T

Assume that v, — vg in E. In view of (2.11), for any w € E, we obtain
[vonl*Y (vn,w) ¢ ol (vo, w)
To To T To
¢ lvn 12

To
o(onl?Y o (Nlvoll?
(55 - o () o]

which implies that ||k'(v,) — k'(vo)||g= — 0, n — co. This means that k € C1(E, R).
v (f5) in Lemma 2.2 and direct computation, there exists a positive constant Cy
independent of v such that

(K (vn) — K (v0), w)| = 2|¢’

[[on = ol

< 2Ty H|w|| [

_|_

f(v)
H 70 H < Cylv]l, YveE. (2.12)
In combination with (2.8), (2.11) and (2.12), we get
iy f(0) A 1PN lol?
‘<k (’U),fl<v)>'§204 < i > i §804, VUGE,

which implies that (2.10) holds. This completes the proof.
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Next we introduce a modified functional ¢y on R x E as follows:

v) = Lv||? = 1(x, f(v))dz — k(v ~2:1:, v))dx — H(z
po(v) = Llv] /QG(f())d k()/QG(f())d e/ﬂH( -

where Gi(z, t) fo g1(z, s)ds and Gy(z, t) fo g2(z, s)ds. Under assumptions of
Theorem 1.1, by Lemmas 2.1 and 2.3, for ﬁxed 0o € R, it is easy to verify that
vp, € CH(E, R) and

(pn(0)0) = ()= [ 1l J)F ©wde = F(0)w) [ Gafe (o
~ k(o) | Gl fO)F@wda =00 [ B fo)f uds (214

Q

for any v, w € E. Next we give some properties of ¢y which will be useful in the sequel. [J

Lemma 2.4. Suppose that (Wy), (W2) and (W3) are satisfied. Then:

(i) for every 6 € R, @y satisfies the Palais-Smale condition. Moreover, there exists a
positive constant C5 independent of v such that

[po(v) — @o(v)] < Csl0], Vv e E; (2.15)

(ii) @o has no critical point with positive critical value on E and Ky = {0}, where
K()Z:{’UGEZQO(]()—O QOO —0}

Proof. In view of (f3) in Lemma 2.2, there exist positive constants My and Cg such
that

[F(B)] < Colt]V*, [t = M. (2.16)

Since a > 2, in combination with (f3) in Lemma 2.2 and (2.16), there exists a positive
constant C7 independent of ¢ such that

[f(B)] < Clt[V*, teR. (2.17)

It follows from (2.4) that there exists a positive constant Cys independent of v such that

‘/ﬁ(a:,f(v))dx <Cs, VveE. (2.18)
Q

By (1.2), (2.9), (2.13), (2.17) and (2.18), when |[v||?> > 2T}, for any 6 € R we have
po(v) > 5lv]|* = Collv][”/* - Cgl6]. (2.19)

Since 1 < p < 2a, for any 6 € R, (2.19) implies that pp(v) — +oo as [Jv]| — +o0.

Next we show that for any 6 € R, @y satisfies the Palais—Smale condition. Assume
that {v,}neny C E is a (Palais-Smale) sequence of ¢y, i.e. {©g(vn)}nen is bounded and
vp(vn) — 0 as n — +oo. We need to prove that {v,} has a convergent subsequence. For
any 6 € R, oy is coercive. Then {v,} is bounded; passing to subsequence, also denoted
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by {v,}, it can be assumed that v, — v, n — oo. Since v, — v, by (i) in Lemma 2.1,
(f2) in Lemma 2.2, (1.2) and (2.17), we obtain

[ o1 @ (o) o~ w)do 0, -0 (220)
Q
and
[ Bl S @) = ) dz =0, (221)
Q
In view of (iii) in Lemma 2.1 and (f2) in Lemma 2.2, we have

/Qﬁ(x, F ) ' (00)(vn —vo)dz — 0, n — oo. (2.22)

Moreover, combining (i) in Lemma 2.1, (2.1), (2.11) and (2.17), we get

‘<k’(vn),vn—vo>/Qég(x,f(vn))d3:

< olel+20)/(20) o oot ol fapat—2e)/a) e gy (2.23)

ay/a”0
Since o > 2a, we can choose Ty small enough such that

22/ O AT < 7, (2.24)

For any 6 € R, it follows from (2.14) and (2.20)—(2.24) that
(@b (vn), vn = vo)| = 27 |vn — voll* + 0n(1),

which implies that v, — vg, n — oo. Moreover, by (2.13) and (2.18), we have that (2.15)
holds.

Next we prove (ii) by contradiction. If vy is a critical point of ¢ with ¢g(vg) > 0, by (i)
in Lemma 2.1, (W7) and (2.13), we get vy # 0. Without loss of generality, we can assume
lvg]|? < 2Tp. Otherwise, by (2.9) and (2.11), we have k(vg) = 0 and k’(vg) = 0. Then it
follows from (W5), (2.13) and (2.14) that

0 < ¢o(vo) = wo(vo) — #1<806(U0)7 J}f,((f}z))> < NQ;QHUOH2 <0,

which yields a contradiction, so ||vg||? < 27Tp. In view of (i) in Lemma 2.1, (Ws), (2.1),
(2.10), (2.13), (2.14) and (2.17), we obtain

- f(Uo)
0 < o(vo) = wo(vo) — p 1<806(U0)7 (o)
-2 o o/ o o
< EZ o + (Cs + 1)C1 5 73 2w | 3/ (2.25)

In view of o > 2a, we can choose T small enough such that if ||v]|? < 2T,

oy _af/a ol /o 2_:“
(Cs + DT ol < =L E ol (2.26)
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By (2.25) and (2.26), we have a contradiction. So ¢ has no critical point with positive
critical value on E. Moreover, by a similar proof and direct computation, Ky = {0}. The
proof is completed. O

3. Proofs of main results

It is well known that the eigenvalue problem for the following equation

—Au=Au, x€Q
u =0, x € 09,

has a sequence of eigenvalues A, (counted with multiplicity) and 0 < A\ < Ay < -+ <
Ap < -+ — 00. The corresponding system of normalized eigenfunctions {e, : n € N}
forms an orthogonal basis in E. Hereafter, let E, :=span{ey, ..., e,} and let E- be
the orthogonal complement of E,, in E.

By this normalized orthogonal sequence {e,, }5° ;, we define some subspaces as follows:

B" ={ve Ey; [l <1}, S ={ve Ey; [jv]| =1}
and
ST ={v=w+te,t1; |v| =1, we B", 0 <t <1},

With the help of these subspaces, we can introduce some continuous maps and a minimax
sequence of ¢q as follows

A, i ={y € C(S", E); v is odd} (3.1)

and
= inf . 2
bu = inf max wo(7(v)) (3:2)

In view of (3.1)-(3.2), it is easy to get b, < bp41, n € N. Next we give some useful
estimates for the sequence of minimax values b,,.

Lemma 3.1. Assume that (Ws), (Wy4) and (W5) hold. Then for any n € N, b,, < 0.
Proof. Since F,, is a finite-dimensional space, there exists g, > 0 such that
|l < onllvll2, Vv € E,. (3.3)

By direct computation and the definition of f, there exists a positive constant Cig such
that

lf(t)] = Crolt], [t] <1 (3.4)

In view of (1.3), we can choose 0 < ro < 1 such that
g1z, 1) > 805, Ci’t (3.5)
for all x € Q and 0 <t < rg. By (3.5) and direct computation, we obtain

Gi(z,t) > 402 O (3.6)
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forallz € Q and 0 <t < ro. In view of (Wy), G1(z, t) is an even function in ¢t. Combining
this with (f2) in Lemma 2.2, (3.4) and (3.6), we get

Gi(z, f(1) > 40202 f2(t) > 40212, = € Q and |t] < 7. (3.7)

Since FE), is finite dimensional, we claim that there exists a constant x > 0 such that
%/ lv(z)|* do > / lv(z)|*dz, Vv € E, with |jv]| < &. (3.8)
Q [v]>70

If (3.8) does not hold true, there exists a sequence of {vx} C E,\{0} such that v — 0 in
FE,, and
%/ (@) de < / loe(@)2dz, Ve N. (3.9)
Q [vk|>10

Set ug = |lvglly 'vk, k € N. By (3.3) and (3.9), {ug }ren is bounded and
i </ lug(2)|? dz, Yk eN. (3.10)
[vkl>7o

On the other hand, since F,, is a finite-dimensional space, we can assume that ui — ug
in E,. So ux — ug in L?(Q). Moreover, in view of vy, — 0 in E,,, we have

meas{z € Q: |vg(x)] >1r0} =0 ask — oo. (3.11)

Therefore, by (3.11), we obtain
/ \uk(x)|2dx§2/ |uk(x)—uo(x)|2dx+2/ luo(z)|*dz — 0, k — oo,
[vk|>ro Q [vk[>T0

which contradicts (3.10). So (3.8) holds.
By (i) in Lemma 2.1 and (2.13), there exists a constant " > 0 such that

wo(v) < |v|)? —/QGl(x,f(v))dx, Vv € E, with |lv]| < &' (3.12)

In combination with (Ws), (3.3), (3.7)—(3.8), (3.12), if v € E,, with ||v|| < min{x, &'}, we
get

po(v) < o] - / Gy (x. /(v)) dz
< ]2 - / Gile f()ds

< Joll? — 402 / fo(a)? dz

0

ol = ag2 ([ ot a - [ . )P dr)

70

IN

—[lv (3.13)

)

where Q,, = {z € Q: Jv(x)| < rp}. Choose 0 < pg < min{x, '}, and let vy (v) = pov, v €
S™. In view of (3.2) and (3.13), b, < 0. This completes the proof. O
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Lemma 3.2. Suppose that (W;) and (W5) are satisfied. Then there exists a positive
constant C1y independent of n such that for all n large enough

b, > _Clln(—2p)/(N(204—P)). (3.14)

Proof. For any v € A,, (n > 2),if 0 & y(S™), then the genus J(y(S™)) is well defined
and 9(7(S™)) > 9(S™) = n. By [21, Proposition 7.8], v(S™) N E;- , # 0. Otherwise, 0 €
7(8™), and we have 0 € v(S") N E;- ;. So for any v € A, (n>2), v(S")NEL- | #0.
Therefore, for any v € A,, (n > 2), we obtain

> inf . 3.15
max ¢o(y(v)) 2 inf go(v) (3.15)

n—1

In view of (i) in Lemma 2.1, (1.2), (2.9), (2.13) and (2.26), we conclude that

eo(v) > lvl* ~ Crallolly’, Vv e B, (3.16)
When v € Ei- 1, M\|[v]|3 < |[v]|?. If v € Ej-_ 4, by (3.16), we get
o(v) > Fllv]]? = Cra /2w Pre. (3.17)

Combining this with (3.2), (3.15) and (3.17), for n > 2, we have

> i 142 —p/(20)4p/a
by, > %1215{4t Cha, t }

= —Cia\, P/ 2oP) (3.18)

where C13 is a positive constant independent of n and \,. When n is large enough, it is
well known that \,, > Cy4n?/N. In view of (3.18), (3.14) holds. The proof is completed. [

For any ¢ > 0, set
[ (8) = {v € Tn; wo(v(v)) < by +6, veE S (3.19)

where T',, := {y € C’(Sfrl, E); v|sn € A, }. For any § > 0, by (3.1), there exists 7o € A,
such that @g(y0(v)) < b, + 9, Vv € S,. So we can extend 7y to Sﬁ“ as a continuous
function. Hence I',,(0) is non-empty. Moreover, we have the following lemma.

Lemma 3.3. Assume that (Wy), (W), (W3) and (W5) are satisfied. Then for any
n € N and any § > 0, there exists ~,, € I',,(d) such that

max (1 (v)) < 0. (3.20)
veSfrl
Proof. In view of (3.19), for fixed n € N, when 0 < ¢ < ¢’, we have I';,(§) C T, ().
By Lemma 3.2, b,, < 0, n € N. So we only need to find ~,, € T',,(d) with 6 € (0, |b,|) such
that (3.20) holds. For any § € (0, |b,|), it follows from (3.2) that there exists o € Ay,
such that max,esn ©o(70(v)) < by, + 6/2. Since v (S™) is a compact set in E, there exists
a positive integer mg such that

max ©0((Prmg ©70)v) < by + 6, (3.21)
vesn

where P,,, denotes the orthogonal projective operator from E to E,,,.
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For any ¢ € R, let p§ = {v € E : ¢o(v) < c}. Choose € = —(b,, + 9)/2 > 0. By a similar
argument to that in Lemma 3.1, there exists p,,+1 > 0 such that if v € B(0, po) N Epg 11,
wo(v) <0, where B(xg, p) denotes the open ball of radius p centred at xo in E, and
B(xg, p) denotes the closure of B(zg, p) in E. Since ¢y € C(E, R) and ¢(0) = 0, we
have dist(0, @5 °) > 0. Define pfy = min { pp, 41, dist(0, ¢g°)}, then pj > 0. By the defor-
mation theorem (see [21, Theorem A.4]), there exists ¢ € (0, &) and a continuous map
n € C([0, 1] x E, E) such that

77(1a’U) =, if (PO(U) g [757 5] (322)
and
(1, 95\ B(0, py)) C g~ (3.23)

where B(0, pf) is a neighbourhood of Ky given by (ii) in Lemma 2.4.
By (3.1), Py, 07 € C(S™, Ep,). Since E,41 is a metric space with the norm |||

and S" is a closed subset in E),11, there exists an extension P, 0 yo : Eyp+1 — Eip, of
P, © o by the Dugundji extension theorem (see [8, Theorem 4.1]); furthermore,

P

((Pmy ©70) Ent1) C co((Prmg ©70)5™), (3.24)

where the symbol co denotes the convex hull. Since (P,,, o 79)S™ is a compact set in Ey,,,
by the definition of a convex hull, co((P,, ©70)S™) is a bounded set in E,,,. Then there
exists a constant v such that ¢o(v) <v, Yov € co((Pn, ©70)S™). It follows from (3.24)
that

©0((Prmg ©70)v) < v, v € Epqq. (3.25)
Next we consider two possible cases.
Case 1. v < e. Since Py, ov0 € C(Eni1, Enm,), by (3.25), we have

(Pmo © FYO)IU € 9087 mo? V,U S En+1a (326)

where ¢ ,,,, = {v € B, po(v) < e} Define a map T' as follows:

T(v) = {v’ v & B0, pg) N B, (3.27)
vt (o — [vI*) Pemos1, v € B0, pf) N By
Tt is obvious that T € C(Ep,, Fmg+1) and
(T 0 (Prg 070))v N B(0,ph) =0, Vv & Eppr. (3.28)
When v € E,,11 and ||(Pnjo\z>/'y0)v|| > pb, by (3.26) and (3.27), we get
(T o (P ©70))v = (Prg ©70)V € €5 1y - (3.29)

Otherwise, if v € E,,11 and ||(P;;\E>/70)v|| < pp, in view of (3.27), ||[(T o (Pn:;\;yo))vﬂ =
ph- By the definition of p{ and (3.29), we conclude that

—~

(T (Prg 0 90))V € 95, Vv € Enp. (3.30)
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Define a map v, : Epy1 — F as follows:

—~

Yn() = 1(1, (T © (P, ©70))(+)- (3.31)
Next we prove 7, € I',(d) and MAax, ¢ gn+i wo(vn(v)) < 0. First, it is obvious that 7, €
C(S%, E). By the Dugundji extension theorem, we obtain

—_~

(Prmo ©70)v = (Pmy 0Y0)v, Vv € S™ (3.32)
By (3.21), (P, 07%0) v € ¢g 2%, Vv € S™. By the definition of pl) and 52 C ¢y €, we get
[(Prmo ©70) vll = po, Vv e S (3.33)

It follows from (3.27), (3.32) and (3.33) that

—~—

(T (P ©70)) v = T'0 (P ©70) ©) = (P 070) v, Vv € S™. (3.34)

In view of (P, 0 70) v € ¢y >5, Yv € S™, by (3.22) and (3.34), we obtain

—_~—

’Yn(v) = n(la (To (Pmo O’YO)) U) = (Pmo O’YO) v, VoveSs”, (335)
which implies that v, |sn» € A,. Moreover, in view of (3.21) and (3.35), we have =, €
I',,(8). Since S"*! C E, 41, by (3.28) and (3.30), we have (T o (P, ©70))v N B(0, ph) =
0, Vo e ST and (T o (P, 070))v € @5, Yo € ST It follows from (3.23) and (3.31)
that Max, e gt wo(n(v)) < —e<0.

Case 2. v > e. Let ¢o|p,,, denote the restriction of oo on Ep,. Arguing as in Lemma 2.4,
we can prove that ¢o|g,, satisfies the Palais-Smale condition. Moreover, ¢o|g,,, has no
critical point with positive critical values on E,,,. By the non-critical interval theorem
(see [5, Theorem 5.1.6]), ¢ ,,, is a strong deformation retraction of ¢f ., . So there
exists a map ¢ such that ¢ € C(4f .5 0, m,) and s(v) = v, if v € ¢ ,, . Define a map
from E,,+; — E as follows:

—~—

Yn () = n(1, (T o (s © (Pmg ©70)))("))-

By a similar proof to that used in Case 1, %, € T',,(d) and Max, e gnt1 ©0(Yn(v)) < — <0.
This completes the proof. (I

Under assumptions of Theorem 1.1, in view of Lemma 3.1, b, < b,11 and (3.14), it
is impossible that b,,+1 = b,, for all large n. So we can construct critical values of ¢y as
follows.
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Lemma 3.4. Let n be a positive integer satisfying b,41 > b,. For any
o€ (0, bye1 —by) and |0| < 0, where 6,, is a positive constant depending on n given
by (3.40). Define

cp(0,0) = inf max v)). 3.36
.0)= dnf | max, ou(o(0) (3.36)

Then ¢, (0, o) is a critical value of pg. Moreover, for any o € (0, b,+1 — b,) and |0 < 0,
we have

b1 — C510] < cn(0,0) < cpy1 + Cs0), (3.37)
where C5 is given in (2.15) and ¢y 41 is defined by (3.39).
Proof. By (2.15), for any (0, v) € R x E, we have
@o(v) = Cs[0] < pp(v) < @o(v) + Cs|0]. (3.38)
For any o € (0, by,41 — by,), by Lemma 3.3, there exists v,, € I',,(0) such that

Cnt1:= max @o(yn(v)) <O0. (3.39)
vesn T

+

We can choose 6,, small enough such that for o € (0, b, +1 — by,) and 0] < 0,,,
bn +o0+ 2C5|9| < bn+1, Cn+1 + C5|9| < 0. (340)
In view of (3.36) and (3.38)—(3.40), for any o € (0, b,+1 — b,) and |0| < 6,,, we obtain

cn(0,0) < max wo(vn(v)) + C5|0] = cny1 + Csl0] < 0. (3.41)

1)€Sz+

For an arbitrary v € I',,(0), we have the natural odd extension of v on S™*! denoted by
7, 1.e. 7(v) = y(v) for v € ST and F(v) = —y(—v) for v € =S . So we get 7 € A, 11.
Since Iy is an even functional,

max_po(7(v)) = max_o(5(v)). (3.42)
vesyH vesnH

For any o € (0, b,41 — by,) and |0] < 0,,, by (3.2), (3.38) and (3.42), we conclude that

max ¢y(y(v)) = max ¢o(y(v)) — Cs6|
vGSi+l vGSi+1

= max ¢o(3(v)) - Cs[f]

> by — Csl6). (3.43)

Taking the infimum on I, (¢) in (3.43), in view of (3.36) and (3.40), for any o € (0, bp+1 —
b,) and |0| < 6,,, we get

Cn(e,O') > bn—i—l — C5|9| >b, +o0+ C5‘9| (344)

For any o € (0, b,41 — b,) and |0| < 6,,, we claim that ¢, (6, o) is a critical value of
wp. If not, ¢, (0, o) is a regular value. Set & = (¢, (0, o) — by, — 0 — C5|0])/2; then € > 0
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by (3.44). By the deformation theorem, there exists € € (0, £) and a continuous map
n € C([0, 1] x E, E) such that

77(15 U) =v if 909(1}) g [Cn(97 U) — &, Cn(g, U) + {'j (345)
and
n(1, o570 o0 (3.46)
By (3.36), there exists v € I', (o) such that
max @g(v0(v)) < cn(0,0) +¢. (3.47)
veSiJrl
Define
Yo(v) =n(1,70(v)), wveSTH. (3.48)
It is obvious that 5o € C(S}H", E). Since 79 € I',(0), it follows from (3.19), (3.38) and
(3.44) that

wo(70(v)) < wo(0(v)) + Cs10| < by, + 0+ C510| = ¢, (0,0) — 28, velS". (3.49)

By (3.45), (3.48) and (3.49), we obtain Jo(v) = vo(v), v € S™, which yields
Yols, € A and  @o(F0(v)) = wo(y0(v)) < b, + 0, veS™. (3.50)

So we have 3y € 'y, (o) by (3.50). In combination with (3.46)—(3.48), we get

max g(J0(v)) = max ¢g(n(1,70(v))) < cn(f,0) — e,
vesyt veSTT!

which contradicts (3.36). Consequently, for any o € (0, by,11 — by,) and 0] < 0,,, ¢, (0, 0)

is a critical value of pg. Moreover, in view of (3.41) and (3.44), (3.37) holds. This completes

the proof. O

Lemma 3.5. For any ¢ > 0, there exists 7 > 0 such that if || <7, ¢},(v) =0 and
lpo(v)| < 7, then ||v]| < e.

Proof. We prove this lemma by contradiction. If the result is false, there exist
sequences {v,} and {0,} such that 6, — 0, ©j (vn) =0, g, (vn) — 0 and |lv,]| > o,
where g > 0 is independent of n. By a similar argument to that used in (2.25) in Lemma
2.4, we have

o, (vn) = @o,, (vn) — u‘1<<p’en (va), m>
p—2 5 . - -
< gy lenl 4 Ons </Qh(z,f(vn))f(vn)d;z:—/QH(:L’,f(vn))dx>. (3.51)

In combination with (2.4), (2.18) and (3.51), we get
W

ve, (vn) < <

-2
. lvnll® + C15

p—2 5
0, < C1510,, 3.52
1 | m gp + Ci5(0n] (3.52)

where C5 is a positive constant independent of n. Since 6,, — 0, (3.52) contradicts the
fact that @g_ (v,) — 0. The proof is completed. O
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Proof of Theorem 1.1. In view of Lemma 3.5, there exists 79 > 0 such that if
16] < 10, py(v) =0 and |pg(v)| < 79, then [[v]|* < Tp. Combining (2.8), (2.9) and (2.11),
we have k(v) =1 and k'(v) = 0, implying that I;(v) = 0 by (2.14) and v is a weak solu-
tion of (2.7). By the facts above, Lemma 3.5 and elliptic regularity theory, we can
choose a positive constant 7 < 7¢ if |0 < 77, ¢y(v) =0 and |pg(v)| < 7); then v is a
weak solution of (2.7) and ||vc(q) < min{dy, 61}, where dj and §; are defined as in
Lemma 2.1.

In view of Lemmas 3.1 and 3.2, we have b,, — 0, n — oo. For any j € N and 7 defined
above, choose strictly increasing integers p; (1 < i < j) such that

bpr1 > by, > =70, 1<i<j and by, >cpa1, 1<i<j—1, (3.53)

where ¢, 11 is defined as in (3.39). By (3.36), (3.37) and (3.53), we can choose a positive
constant 6; < 7 such that ¢,, (0, o;) with 1 <14 < j are well defined for |0| < 6;, where
oi € (0, bp,+1 — bp,). Moreover, when |0| < 0; we also have —7) < b,, — C5|6| and

Cpi+1+05|9| <b —C5|(9|, 1<i<y -1, (3.54)

Pit+1)

In view of (3.37) and (3.54), for |#] < 6;, @g has at least j critical values
—7 < Cp, (0,01) < ¢p,(0,02) <--- < ¢p,(0,05) <0,

which implies that for |6] < 6;, (2.7) has at least j distinct weak solutions vy (0), v2(0),

-, v;(0) and [[v;i(0)[| ¢y < min{dp, 61}, 1 <i < j. Then for any [0 < 0, (2.5) has at
least distinct weak solutions u;(0) = f(v;(0)), 1 < ¢ < j. Moreover, by (f2) in Lemma 2.1,
for any 0 with || < 6;, we obtain

[ui(0)llc@) < min{dy, 01}, 1<i<j. (3.55)
Combining (ii), (iv) in Lemma 2.1 and (3.55), ui(6), u2(9), ... , u;(0) are also j distinct
weak solutions for (1.1) with |#] < ;. This completes the proof. O

4. Examples

Example 4.1. In (1.1), let Q be a bounded smooth domain in R* and o = 2. Define
gz, t) = a(x)|t| " *tin(e + %), (z,t) € A x R, where a(z) € C(€, R) withinf,cq a(x) >
0 and h(z, t) is a continuous function defined on € x [—dg, dg] for some dy > 0. Set

g1(z,t) = a(z)|t\71/2t, g2z, t) = a(x)|t|71/2t(ln(e +th) —1).

It is obvious that g = g; + go. By the Lagrange theorem, |gs(z, t)| < M|t|*/?, (x, t) €
Q x R, where M is a positive constant. Choose u =p = 3/2 and «; = 11/2, so all the
conditions of Theorem 1.1 are satisfied. By Theorem 1.1, for any j € N, there exists 6; > 0
such that if |§] < 6}, (1.1) possesses at least j distinct weak solutions.
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