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Concordance, Crossing Changes,
and Knots in Homology Spheres

Christopher W. Davis

Abstract. Any knot in S3 can be reduced to a slice knot by crossing changes. Indeed, this slice knot
can be taken to be the unknot. In this paper we study the question of when the same holds for knots in
homology spheres. We show that a knot in a homology sphere is nullhomotopic in a smooth homology
ball if and only if that knot is smoothly concordant to a knot that is homotopic to a smoothly slice
knot. As a consequence, we prove that the equivalence relation on knots in homology spheres given
by cobounding immersed annuli in a homology cobordism is generated by concordance in homology
cobordisms together with homotopy in a homology sphere.

1 Introduction and Statement of Results

Classically, a knot K is an isotopy class of smooth embeddings of the circle S1 into
the 3-sphere S3. A knot is called slice if it forms the boundary of a smoothly embed-
ded 2-disk D in the 4-ball. his disk D is called a slice disk for K. his notion was
ûrst considered by Fox and Milnor in 1957 in the study of singularities of surfaces
in 4-manifolds [7, 8]. he question of which knots are slice is closely related to local
obstructions arising in a surgery-theoretic attempt to classify 4-manifolds [2]. Since
then the question of what knots admit slice disks has been at the heart of the study of
4-manifold topology.

While not every knot in S3 is slice, every knot can be transformed into a slice
knot by a ûnite sequence of crossing changes. Indeed, that slice knot can be taken
to be the unknot. In the case of knots in a non-simply connected homology sphere,
the situation is more subtle. A knot representing a nontrivial class in the fundamental
group cannot be reduced to the unknot by any sequence of crossing changes. hemain
goal of this paper is to ask when a knot in a homology sphere can be homotoped to a
new knot that bounds a smoothly embedded disk in homology ball. We will consider
the following question.

Question 1.1 Let Y be a homology sphere and let K be a knot in Y . Does there exist
a homotopy transforming K to a new knot K′ in Y that bounds a smoothly embedded
disk in a smooth homology ball bounded by Y?

If one allows for topological homology balls and locally �at embedded disks,
then the answer to this question is aõrmative for all knots. In [1], Austin and
Rolfsen proved that any knot in a homology sphere admits a homotopy to a knot with
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Alexander polynomial 1. By thework of Freedman andQuinn [9,heorem 11.7B] such
a knot bounds a locally �at embedded disk in a contractible 4-manifold.

In the smooth setting there are obstructions to Question 1.1 having an aõrmative
answer. First, not every homology sphere bounds a homology ball. For example, Y
might be the Poincaré homology sphere or any other homology sphere with nonzero
Rohlin invariant. See [10, Deûnition 5.7.16] for a brief discussion of the Rohlin invari-
ant. Secondly, if K is homotopic in Y to a knot that bounds an embedded disk in a
homology ball, then K is nullhomotopic in that homology ball. By the work of Daemi
[3, Remark 1.6], there exists a knot K in a homology sphere Y such that Y bounds a
homology ball and yet K is not nullhomotopic in any homology ball bounded by Y .
Such a knot cannot be homotopic to a knot that bounds a smoothly embedded disk.

We give a name to the property of bounding a smoothly embedded disk in a ho-
mology ball. Let Y be a homology sphere and let K be a knot in Y . We say that (Y ,K)
is homology slice if there exists a smooth homology ball bounded by Y in which K

bounds a smoothly embedded disk. hus, Question 1.1 asks whether the homotopy
class of K in Y contains a homology slice representative.

he notions of sliceness and homology sliceness extend to equivalence relations.
Two knots K and J in S3 are called concordant if K × {1} ⊆ S3 × {1} and J × {0} ⊆
S3 × {0} cobound a smoothly embedded annulus in S3 × [0, 1]. We call knots K

and J in homology spheres Y and X homology concordant if there exists a smooth
homology cobordism from Y to X in which K ⊆ Y and J ⊆ X cobound a smoothly
embedded annulus. Similar to the relationship between classical concordance and
slice knots, the homology concordance class containing the unknot in S3 is precisely
the set of homology slice knots. Importantly, homology concordance allows one to
compare knots that do not lie in the same 3-manifold. he quotient of the set of knots
in homology spheres by homology concordance is the topic of study of [4, 5, 11, 13]
amongst others.

Our ûrst main result says that every knot in the boundary of a contractible
4-manifold is homology concordant to a knot for which the answer to Question 1.1 is
aõrmative.

heorem 1.2 Let Y be a homology sphere that bounds a smooth contractible 4-manifold.

Let K be a knot in Y. here exists a knot K′ in a homology sphere Y ′ such that (Y ,K)
is homology concordant to (Y ′ ,K′) and K′ is homotopic in Y ′ to a third knot K′′

that bounds a smoothly embedded disk in a smooth contractible 4-manifold bounded

by Y ′.

Said another way, if we let ≃3
h and ≃c denote homotopy in a homology sphere and

homology concordance, respectively, and we let U denote the unknot in S3, then
heorem 1.2 concludes

(Y ,K) ≃c (Y ′ ,K′) ≃3
h (Y ′ ,K′′) ≃c (S3 ,U).

hus, the equivalence relation generated by homology concordance and homotopy
equates every knot in the boundary of a contractible 4-manifold with the unknot.

If a knot K in a homology sphere Y is not nullhomotopic in any homology ball
bounded by Y , then K cannot be related to a homology slice knot by any sequence of

https://doi.org/10.4153/S0008439519000791 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000791


746 C. W. Davis

Figure 1: A knot K in the boundary of a contractible 4-manifold. For a suitable knot T , this
knot is not homology concordant to any knot in S

3 [13, heorem 1.1].

homotopies and concordances. Such a knot exists by [3, Remark 1.6]. he following
theorem reveals that this is the only obstruction.

heorem 1.3 Let Y be a homology sphere that bounds a smooth homology ball W.

Let K be a knot in Y that is nullhomotopic in W. here exists a knot K′ in a homology

sphere Y ′ such that (Y ,K) is homology concordant to (Y ′ ,K′) and K′ is homotopic in

Y to a third knot K′′ that bounds a smoothly embedded disk in a smooth homology ball

bounded by Y ′.

Remark 1.4 In [14, Proposition 2.1], Strle and Owens proved a quantitative version
ofheorem 1.2 for knots in S3. hey showed that if a knot in S3 bounds an immersed
disk in the 4-ball that has n self-intersections, then K is concordant to another knot
K′ (in S3) that can be reduced to a slice knot a�er n crossing changes. While we will
not do so in this document, by marrying their techniques with ours, we expect the
same can be proven of knots in homology spheres.

he work of Kojima [12] implies that if K is a knot in a homology sphere Y that
bounds a homology ball W that has a handle structure lacking any 1-handles, then K

is homotopic in Y to a knot that bounds a smoothly embedded disk in W . hus, in
some cases, the homology concordances ofheorems 1.2 and 1.3 can be removed and
Question 1.1 has an aõrmative answer for every knot in Y . Our next theorem reaches
a similar conclusion when W admits a handle structure that has no 3-handles.

heorem 1.5 Let Y be a homology sphere that bounds a smooth homology ballW that

has a handle structure with no 3-handles. Let K be a knot in Y that is nullhomotopic

in W. hen K is homotopic in Y to a knot K′ that bounds a smoothly embedded disk

in W.

As an application, consider the knot in a homology sphere (Y ,K) of Figure 1. By
[13, heorem 1.1], this knot does not bound a piecewise linear embedded disk in any
smooth homology ball. As a consequence, (Y ,K) is not homology concordant to any
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knot in S3. However, notice that Y bounds a contractible 4-manifold that has one
0-handle, one 1-handle, one 2-handle, and most importantly no 3-handles. hus, by
heorem 1.5, K is homotopic to another knot in Y that is homology slice.

here is an extension of the equivalence relations ≃3
h and ≃c . Given knots K and J

in homology spheres Y and X, if there exists a smooth homology cobordism from Y

to X in which K and J are homotopic, then we write (Y ,K) ≃4
h (X , J). Equivalently

and more geometrically we say (Y ,K) ≃4
h (X , J) if there exists a smooth homology

cobordism from Y to X in which K and J cobound an immersed annulus. It is clear
that if (Y ,K) and (X , J) are related by a sequence of homotopies and homology con-
cordances, then they are related under ≃4

h . he following theorem reveals the con-
verse: if (Y ,K) ≃4

h (X , J), then (Y ,K) is related to (X , J) by a sequence consisting of
one homotopy and two homology concordances. hus, the equivalence relation ≃4

h is
generated by homotopy and homology concordance.

heorem 1.6 Let (Y ,K) and (X , J) be knots in homology spheres. If there exists a

smooth homology cobordism from Y to X in which K is homotopic to J, then there exist

knots K′ and J′ in some homology sphere Z such that

(Y ,K) ≃c (Z ,K′) ≃3
h (Z , J′) ≃c (X , J).

Outline of Paper

In Section 2, we consider the case that a knot K in a homology sphere Y is nullhomo-
topic in a homology ball that has no 3-handles and prove heorem 1.5. In Section 3,
we manipulate handle structures of homology balls in order to separate the 1- and
3-handles. We go on to prove heorems 1.2 and 1.5. In Section 4, we take advantage
of the group structure on C to proveheorem 1.6.

2 In the Absence of 3-handles

hroughout this paper, we make extensive use of handle decompositions of smooth
manifolds. A good reference is [10]. We begin with the following proposition reveal-
ing that if W is a 4-manifold, Y ⊆ ∂W , and (W ,Y) has no relative 1-handles, then
every homotopy class in ker(π1(Y) → π1(W)) is represented by a knot that bounds
a smoothly embedded disk in W .

Proposition 2.1 Let W be a smooth, connected, compact, orientable 4-manifold and

let Y be a submanifold of ∂W. Suppose that (W ,Y) admits a handle structure with no

1-handles. Let γ ∈ ker(π1(Y) → π1(W)). here exists a knot K in the homotopy class,

γ, which bounds a smoothly embedded disk in W.

Proof Let β1 , . . . , βm ⊆ Y be the attaching spheres of the 2-handles of (W ,Y) re-
garded as framed knots. Notice that if we take any collection of framed pushoòs of the
various β i , then the resulting link bounds a collection of disjoint smoothly embedded
disks in W . Indeed, these disks are pushoòs of the cores of the 2-handles.

Pick a basepoint q in Y . A�er a choice of basing arcs, the homotopy classes
[β1], . . . , [βm] normally generate ker(π1(Y , q) → π1(W , q)). By assumption, γ is in
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ker(π1(Y , q) → π1(W , q)). We conclude that γ is a product of conjugates of the β i :

γ =
n
∏
k=1

[ckβєkik c
−1
k ]

for some choice of arcs ck ⊆ Y running from q to a point on βk and єk = ±1. Here,
[ckβєkik c

−1
k ] ∈ π1(Y , q) is the homotopy class of the result of following ck , then β ik

(or its reverse if єk = −1), and ûnally the reverse of ck . A�er a small homotopy we
assume that the various ck are embedded arcs, are disjoint from each other (except
for the point at q), and have interiors disjoint from the various β i .
As a consequence, we can construct a knot K in the the homotopy class γ by start-

ing with a single unknot based at q and banding it with pushoòs of the β ik (or the
reverse β−1

ik ) along bands around the ck . Finally, we build a smoothly embedded disk
bounded by K as follows. For each k = 1, . . . , n let ∆k be a pushoò of the core of
the 2-handle attached along β ik (or its orientation reverse if єk = −1). Observe that
∆1 , . . . , ∆n are disjoint smoothly embedded disks. Band each ∆k to a single disk
bounded by the unknot centered at q along the arc ck . he resulting surface is the
required smoothly embedded disk. ∎

heorem 1.5 amounts to a special case of Proposition 2.1

heorem 1.5 Let Y be a homology sphere that bounds a smooth homology ballW that

has a handle structure with no 3-handles. Let K be a knot in Y that is nullhomotopic

in W. hen K is homotopic in Y to a knot K′ that bounds a smoothly embedded disk

in W.

Proof Let Y be a smooth homology sphere that bounds a smooth homology ballW
that has a handle structure with no 3-handles. Turning this handle structure upside-
down gives a handle structure on (W ,Y) with no 1-handles. hus, Proposition 2.1
applies, so that since the homotopy class ofK is in ker(π1(Y) → π1(W)), we conclude
that K is homotopic in Y to a knot that bounds a smoothly embedded disk in W . ∎

3 Separating 3-handles from 1-handles

In the case of a homology ball W that has 3-handles, we split W into two pieces sep-
arating the 1- and 3-handles.

Proposition 3.1 Let W be a smooth homology ball with boundary ∂W = Y. hen

there exists a smooth homology ball W ′ with ∂W ′ = Y ′ and a smooth homology cobor-

dism V from Y ′ to Y such that

(i) W ′ ∪Y ′ V =W;

(ii) W ′ has a handle structure with neither 3- nor 4-handles and so (W ′ ,Y ′) has

neither 0- nor 1-handles;
(iii) (V ,Y ′) has a handle structure with neither 0- nor 1-handles, so that (V ,Y) has

neither 3- nor 4-handles.

If W is a contractible 4-manifold, then W ′ can be arranged to also be contractible.
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Proof Start by picking a handle decomposition ofW consisting of a single 0-handle,
n 1-handles,m 2-handles, some number of 3-handles and no 4-handles. LetW(d) de-
note the union of all handles of dimension atmost d. Let α1 , . . . , αn ⊆ ∂W(1) be curves
dual to the belt spheres of the added 1-handles. he homology classes [α1] . . . [αn]
give a basis for H1(W(1)) ≅ Zn . Let β1 , . . . , βm ⊆ ∂W(1) be the attaching spheres of
the added 2-handles. We express the homology classes [β1], . . . , [βm] ∈ H1(W(1)) as
vectors in terms of the basis [α1], . . . , [αn] in order to get an (m × n) presentation
matrix, P, for H1(W) = 0. See, for example, [10, Section 4.2].
As P presents the trivial group, a sequence of row-moves reduces P to an (m × n)

matrix with 1’s on the main diagonal and 0’s elsewhere. hese row-moves in turn can
be realized by reordering and reversing some β i ’s and by sliding some β i ’s over other
β j ’s. See, for example, [10, Section 5.1]. hus, a�er performing these moves, we can
assume that in H1(W(1)), [β i] = [α i] for all i ≤ n and [β i] = 0 for all i > n.

Let W ′ be the result of adding to W(1) 2-handles along β1 , . . . , βn . Since [β i] =
[α i] in H1(W(1)) for i = 1, . . . n, we see that H1(W ′) = H2(W ′) = 0. Because W ′

has neither 3- nor 4-handles, H3(W ′) = H4(W ′) = 0. hus,W ′ is a homology ball.
Let Y ′ = ∂W ′ and V be given by starting with Y ′ × [0, 1], adding 2-handles along
βn+1 , . . . , βm and ûnally adding all 3-handles. hen W = W ′ ∪Y ′ V . BecauseW and
W ′ are both homology balls, aMayer–Veitoris argument reveals thatV is a homology
cobordism. By its very construction, (V ,Y ′) has only 2- and 3-handles. his gives the
desired result when W is a homology ball.

Now suppose that W is a contractible 4-manifold. Pick a basepoint q ∈ ∂W(1).
A�er a choice of basing arcs, we see that π1(∂W(1) , q) ≅ π1(W(1) , q) is the free group
on the set of homotopy classes [α1], . . . , [αn]. Moreover, as W is simply connected,

π1(∂W(1)) = ker (π1(∂W(1) , q) Ð→ π1(W , q) = {0})
is normally generated by the homotopy classes of the attaching spheres of the
2-handles [β1], . . . , [βm], a�er a choice of basing arcs. hus, each α i is homotopic
in ∂W(1) to a product of conjugates of the attaching regions:

[α i] =
ℓ i

∏
k=1

[c i ,kβє i ,kj i ,k c
−1
i ,k]

for some choices of arcs c i ,k running from q to a point on β j i ,k and є i ,k = ±1. A�er
a small homotopy, we can assume that the various c i ,k are all embedded, have dis-
joint interiors, and have interiors disjoint from the various β j . Similar to the proof of
Proposition 2.1, we build a knot A i in ∂W(1) representing the homotopy class [α i] by
starting with a small unknot near q and banding with framed pushoòs of the various
β j i ,k (or their reverses if є i ,k = −1) along bands centered on the c i ,k . Let A1 , . . . ,An be
the resulting knots. By construction, [A i] = [α i] in π1(∂W(1) , q).

Since A i is constructed by starting with the unknot and banding it with the β j i ,k ,
we can slide each A i over the various β j i ,k to reduce the link A1∪⋅ ⋅ ⋅∪An to the unlink
in ∂W(2). hus, the various A i bound disjoint disks in ∂W(2). Restrict a framing of
these disks to a framing on A i . Form a new 4-manifold by starting with W(2) and
adding 2-handles along the knots A1 , . . . ,An . Because the A i bound disjoint disks in
∂W(2) the boundary of this new 4-manifold is the connected sum of ∂W(2) with n
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copies of S1 × S2. Add 3-handles along these new non-separating 2-spheres. he
2-handles added to A i together with these 3-handles form cancelling pairs [10, Propo-
sition 4.2.9] so that the 4-manifold resulting from adding these 2- and 3-handles
to W(2) is diòeomorphic to W(2). Construct a 4-manifold diòeomorphic to W by
adding the remaining 3-handles.

hus, we can assume that W has a handle structure with 2-handles attached along
framed curves A1 , . . . ,An , β1 , . . . , βm ⊆ ∂W(1) where [A1], . . . , [An] give a free basis
for π1(W(1)). Let W ′ be given by adding to W(1) only the 2-handles attached along
A1 , . . . ,An . It now follows that W ′ is a simply connected homology ball. herefore,
W is contractible by a standard application of the Hurewicz homomorphism and
the Whitehead theorem. See, for example, [6, Corollary 6.70]. Let Y ′ = ∂W ′ and
V be given by starting with Y ′ × [0, 1], adding 2-handles along β1 , . . . , βm and then
3-handles. his gives the desired result. ∎
Finally, we proveheorems 1.2 and 1.3.

heorem 1.2 Let Y be a homology sphere that bounds a smooth contractible 4-manifold.

Let K be a knot in Y. here exists a knot K′ in a homology sphere Y ′ such that (Y ,K)
is homology concordant to (Y ′ ,K′) and K′ is homotopic in Y ′ to a third knot K′′ that
bounds a smoothly embedded disk in a smooth contractible 4-manifold bounded by Y ′.

Proof Let Y be the boundary of a contractible smooth 4-manifold W . Let K be a
knot in Y . Appeal to Proposition 3.1 to decompose W as W ′ ∪Y ′ V where W ′ is a
contractible 4-manifold with boundary Y ′, V is a homology cobordism from Y to Y ′,
(V ,Y) has only relative 1- and 2-handles, and (W ′ ,Y ′) has no 1-handles. As (V ,Y)
has only 1- and 2-handles, we can realize V by starting with Y × [0, 1] and adding 1-
and 2-handles on Y ×{1}. We isotope K slightly to make it disjoint from the attaching
regions for these handles. he image of K × [0, 1] in Y × [0, 1] ⊆ V gives a homology
concordance from K to some knot K′ in Y ′. Now, π1(W ′) is trivial so that K′ is
nullhomotopic in W ′. Since W ′ has no 3-handles, heorem 1.5 applies and we see
that K′ is homotopic to some other knot K′′ in Y ′ that bounds a smoothly embedded
disk in W ′. ∎

heorem 1.3 Let Y be a homology sphere that bounds a homology ball W. Let K be

a knot in Y that is nullhomotopic in W. here exists a knot K′ in a homology sphere Y ′

such that (Y ,K) is homology concordant to (Y ′ ,K′) and K′ is homotopic in Y to a third

knot K′′ that bounds a smoothly embedded disk in a smooth homology ball bounded

by Y ′.

Proof Let Y be the boundary of a smooth homology ballW . he proof begins in the
same manner as the proof of heorem 1.2. Appeal to Proposition 3.1 to decompose
W as W ′ ∪Y ′ V where W ′ is a homology ball with boundary Y ′, V is a homology
cobordism from Y to Y ′, (V ,Y) has only relative 1- and 2-handles, and (W ′ ,Y ′) has
no relative 1-handles. As (V ,Y) has only 1- and 2-handles, we realize V by starting
with Y × [0, 1] and adding 1- and 2-handles to Y × {1}. We can isotope K slightly to
get K disjoint from the attaching regions. he image of K × [0, 1] in Y × [0, 1] ⊆ V

gives a concordance from K to some knot K′
0 in Y ′. From here the proof diòers from
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that of heorem 1.2. As W ′ is not simply connected, we cannot conclude that K′
0 is

nullhomotopic in W ′.
Let K′

+ be a pushoò of K′
0. he choice of pushoò will not be relevant to the proof.

Pick a basepoint q ∈ Y ′ that lies on K′
+. Since K is nullhomotopic in W by assump-

tion, K′
+ is nullhomotopic in W as well. herefore, the homotopy class [K′

+] lies
in ker(π1(V , q) → π1(W , q)). Recall that (W ′ ,Y ′) has only 2- and 3-handles. A�er
making a choice of basing arcs, the homotopy classes of the attaching regions for
these 2-handles, β1 , . . . , βn ⊆ Y ′, normally generate ker(π1(V , q) → π1(W , q)).
hus, [K′

+] is equal in π1(V , q) to a product of conjugates of these β i . More pre-
cisely, in π1(V , q), [K′

+] = ∏m
k=1[ckβєkik c

−1
k ] for some choices of embedded curves

ck ⊆ V running from q to a point on β ik . Since (V ,Y ′) has no relative 1-handles,
π1(Y ′ , q) → π1(V , q) is onto, andwe can assume that each ck is embedded inY ′. With
this assumption, we have∏m

k=1[ckβєkik c
−1
k ] ∈ π1(Y ′ , q) is a product of conjugates of the

attaching regions β1 , . . . , βn . hus,∏m
k=1[ckβєkik c

−1
k ] is in ker(π1(Y ′ , q) → π1(W ′ , q)).

heorem 1.5 concludes that ∏m
k=1[ckβєkik c

−1
k ] ∈ π1(Y ′ , q) is represented by a knot K′′

in Y ′ that bounds a smoothly embedded disk in W ′.
Summarizing the proof so far, there is a smoothly embedded annulus C in V

bounded by K ⊆ Y and K′
0 ⊆ Y ′. In turn, K′

0 is homotopic in V to another knot
K′′ ⊆ Y ′ that bounds a smoothly embedded disk in W ′. If this homotopy were in Y ′,
then we would be done. It remains to alter the annulus C and the knot K′

0 to arrange
that the homotopy from K′

0 to K′′ lies in Y ′.
Let ν(K) ≅ K×D2 be an open product neighborhood of K in Y , ν(C) be the image

of ν(K) × [0, 1] in Y × [0, 1] ⊆ V , and ν(K′
0) = ν(C) ∩ Y ′. Choosing these tubular

neighborhoods small enough, K′
+ is disjoint from ν(K′

0). As [K′
+] = [K′′] in π1(V , q),

it follows that the product [K′+]−1[K′′] is nullhomotopic in V . hus, [K′+]−1[K′′] ∈
ker(π1(V − ν(C), q) → π1(V , q)), which is normally generated by the homotopy
class of a meridian m(K′

0) ⊆ Y ′ of K′
0 based at q. hus, we conclude that there is a

product of conjugates of meridians of K′
0, δ = ∏k[dkm(K′

0)єkd−1
k ] with each dk an

embedded arc in V − ν(C), such that [K′+]−1[K′′]δ−1 is nullhomotopic in V − ν(C).
As ν(C) is the image of ν(K) × [0, 1] in Y × [0, 1] ⊆ V and (V ,Y) has only 1- and

2-handles, it follows that (V − ν(C),Y − ν(K)) has only 1- and 2-handles. Turning
this handle structure upside-down, (V − ν(C),Y ′ − ν(K′

0)) has only relative 2- and
3-handles. In particular, π1(Y−ν(K′

0)) → π1(V−ν(C)) is onto. hus, we can assume
that each dk lies in Y ′ − ν(K′

0). As a consequence, δ ∈ π1(Y ′ − ν(K′
0), q).

We now have [K′+]−1[K′′]δ−1 ∈ ker(π1(Y ′ − ν(K′
0)) → π1(V − ν(C))). Again

making use of the fact that (V − ν(C),Y ′ − ν(K′
0)) has no 1-handles, Proposition 2.1

implies that the homotopy class [K′+]−1[K′′]δ−1 ∈ π1(Y ′ − ν(K′
0)) contains a knot

J that bounds a smoothly embedded disk DJ in V − ν(C). he disk DJ ⊆ V is dis-
joint from the annulus C. We band C to DJ along an embedded arc in Y ′ and see a
homology concordance from K to a new knot K′ with [K′] = [K′

+][J] in π1(Y ′ , q).
Expanding in π1(Y ′ , q),

[K′] = [K′
+][J] = [K′

+]([K′+]−1[K′′]δ−1) = [K′′]δ−1 .

As δ is a product of conjugates of meridians of K′
0, δ is nullhomotopic in Y ′. hus, in

π1(Y ′ , q), [K′] = [K′′].
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Summarizing, there is a homology cobordism V from Y to Y ′ in which the knots
K and K′ cobound a smoothly embedded annulus. he knot K′ ⊆ Y ′ is homotopic
in Y ′ to a third knot K′′, which bounds a smoothly embedded disk in the homology
ball W ′. his completes the proof. ∎

4 The Equivalence Relation Generated by Homotopy and
Homology Concordance

Next we set our eyes on heorem 1.6, which concludes that two knots in possibly dif-
ferent homology spheres cobound an immersed annulus in a homology cobordism if
and only if they are related by a sequence of homology concordances and homotopies.
Recall the following notation from the introduction:

● (Y ,K) ≃3
h (Y , J) means K and J cobound an immersed annulus in the homol-

ogy sphere Y .
● (Y ,K) ≃c (X , J) means there exists a homology cobordism from Y to X in
which K and J cobound a smoothly embedded annulus.

● (Y ,K) ≃4
h (X , J) means there exists a homology cobordism from Y to X in

which K and J cobound an immersed annulus.

First we check that the operation of connected sum of pairs is well deûned under
each of these equivalence relations. Recall that the connected sum (Y ,K)#(X , J)=
(Y#X ,K#J) is given by picking points p ∈ K and q ∈ J, removing small neighbor-
hoods ν(p) ⊆ Y and ν(q) ⊆ X, of p and q, so that K − ν(p) and J − ν(q) are properly
embedded arcs from a point p+ to a point p− and from q+ to q−. We form the con-
nected sum Y#X by gluing these two spherical boundaries together along an orienta-
tion reversing diòeomorphism that sends p+ to q− and p− to q+. he connected sum
K#J is given by gluing together K − ν(p) and J − ν(q).

Proposition 4.1 Suppose that (Y ,K), (Y ′ ,K′), and (X , J) are knots in homology

spheres. For any ≃∈ {≃3
h , ≃c , ≃4

h}, if (Y ,K) ≃ (Y ′ ,K′), then (Y ,K)#(X , J) ≃ (Y ′ ,K′)
#(X , J). (In the case of ≃3

h , we assume Y = Y ′.)

Proof heproofs in the cases of ≃c and ≃4
h are nearly identical. Suppose that (Y ,K),

(Y ′ ,K′), and (X , J) are knots in homology spheres. LetW be a homology cobordism
from Y to Y ′ in which A is an embedded (or immersed in the case of ≃4

h) annulus
bounded by K and K′. Let α be an embedded curve in A running from a point on
K to a point on K′. If A is not embedded, then α is chosen to be disjoint from all
self-intersection points of A. Let p be a point on J. Glue together W − ν(α) and
(X − ν(p)) × [0, 1] to get a homology cobordism V from Y#X to Y ′#X. Let A′ be
the result of gluing A− ν(α) to (J − ν(p)) × [0, 1] in this homology cobordism. hen
A′ is an embedded (or immersed if A is not embedded) annulus bounded by K#J
and K′#J. hus, if (Y ,K) ≃c (Y ′ ,K′), then (Y#X ,K#J) ≃c (Y ′#X ,K′#J), and if
(Y ,K) ≃4

h (Y ′ ,K′), then (Y#X ,K#J) ≃4
h (Y ′#X ,K′#J).

Suppose that (Y ,K) ≃3
h (Y ′ ,K′) so that Y = Y ′ and K is homotopic to K′ in Y .

We can assume that the homotopy is constant on a small neighborhood of some point
p of K. Using this as the point we use in the connected sum construction and using
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the constant homotopy on J ⊆ Y , we see that K#J and K′#J are homotopic in Y#X,
completing the proof. ∎

heorem 1.6 Let Y and X be homology spheres. Let K and J be knots in Y and X,

respectively. If there exists a smooth homology cobordism from Y to X in which K is

homotopic to J, then there exist knots K′ and J′ in some homology sphere Z such that

(Y ,K) ≃c (Z ,K′) ≃3
h (Z , J′) ≃c (X , J).

Proof of Theorem 1.6 Suppose that (Y ,K) and (X , J) are knots in homology
spheres and that (Y ,K) ≃4

h (X , J).
By Proposition 4.1, (Y# − X ,K# − J) ≃4

h (X# − X , J# − J). Here, −X indicates the
orientation reverse of X and −J the orientation reverse of J. Let V be a homology
cobordism from Y#− X to X#− X in which K#− J and J#− J cobound an immersed
annulus C. Just as for knots in S3, J# − J bounds a smoothly embedded disk, ∆, in a
homology ball,W , bounded by X#−X. Glue together V andW along their common
X# − X boundary. his gives a homology ball bounded by Y# − X in which K# − J

bounds an immersed disk, C ∪ ∆. hus, K# − J is nullhomotopic in a homology ball.
heorem 1.3 now applies and concludes that there exists another homology sphere Z0
and knots L and L′ in Z0 such that

(Y# − X ,K# − J) ≃c (Z0 , L) ≃3
h (Z0 , L′) ≃c (S3 ,U),

where U is the unknot in S3. By Proposition 4.1, we can take the connected sum of
each of these terms with (X , J) to get

((Y# − X)#X , (K# − J)#J) ≃c (Z0#X , L#J) ≃3
h (Z0#X , L′#J) ≃c (X , J).

Togetherwith the observation that (Y ,K)≃c (Y#(−X#X),K#(−J#J)), this completes
the proof. ∎
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