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The leading-edge receptivity to acoustic waves of two-dimensional parabolic bodies
was investigated using a spatial solution of the Navier–Stokes equations in vortic-
ity/streamfunction form in parabolic coordinates. The free stream is composed of a
uniform flow with a superposed periodic velocity fluctuation of small amplitude. The
method follows that of Haddad & Corke (1998) in which the solution for the basic
flow and linearized perturbation flow are solved separately. We primarily investigated
the effect of frequency and angle of incidence (−180◦ 6 α2 6 180◦) of the acoustic
waves on the leading-edge receptivity. The results at α2 = 0◦ were found to be in
quantitative agreement with those of Haddad & Corke (1998), and substantiated the
Strouhal number scaling based on the nose radius. The results with sound waves at
angles of incidence agreed qualitatively with the analysis of Hammerton & Kerschen
(1996). These included a maximum receptivity at α2 = 90◦, and an asymmetric varia-
tion in the receptivity with sound incidence angle, with minima at angles which were
slightly less than α2 = 0◦ and α2 = 180◦.

1. Introduction
Transition from laminar flow to turbulent flow is still one of the basic and important

technologically relevant fluid mechanics problems. The transition process begins with
the disturbances in the free stream entering the boundary layer and exciting instability
modes within the boundary layer. At this stage the process is called ‘receptivity’, which
is a term first introduced by Morkovin (1969). For a Blasius flow these instability
modes are the Tollmien–Schlichting (T–S) modes. In predicting the transition location,
it is essential to know the initial amplitudes of the T–S waves at the leading edge. The
receptivity coefficient relates the initial amplitude of the T–S waves to the amplitude
of the free-stream disturbance.

Receptivity phenomena can be classified into two groups: vortical receptivity and
acoustic receptivity. Examples of vortical receptivity can be the generation of insta-
bility waves by a vibrating ribbon, unsteady wall suction or blowing and unsteady
wall heating or cooling. In vortical receptivity, the input disturbances generally pro-
duce a fluctuating velocity or vortical component which can directly couple with
the fluid instability wave. The situation is rather different in acoustic receptivity in
incompressible flows. Acoustic receptivity refers to coupling between boundary layer
instabilities and free-stream sound. Assuming that the disturbances are weak enough
so that the receptivity process is linear in the disturbance amplitude, the instability
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waves generated in the boundary layer have the same frequency as the external
acoustic disturbance; however the wavelengths of the acoustic disturbances are much
longer than those of the instability waves. Therefore in order to transfer energy from
the external acoustic disturbances to the instability waves, a wavelength conversion
mechanism is required. This is the essence of acoustic receptivity for incompressible
flows, which only recently has been fully appreciated and understood.

The theoretical framework of receptivity phenomena was first constructed by
Goldstein (1983). His study on flat-plate boundary layers showed that the energy
transfer from long-wavelength free-stream oscillations to short-wavelength boundary
layer instability waves occurs at the leading edge, where there is a sharp change in
the wall curvature which results in a rapid streamwise change in the mean flow, and
a sharp peak in the mean vorticity.

Hammerton & Kerschen (1992) used an asymptotic analysis to study the acoustic
receptivity of boundary layers on parabolic bodies. In their formulation, the effect
of the leading-edge sharpness is represented by a Strouhal number based on the
frequency of the acoustic disturbance and the nose radius of curvature. Their results
showed that the leading-edge receptivity coefficient is a strong function of this Strouhal
number. Later Hammerton & Kerschen (1996) examined the effect of the angle of
incidence of the acoustic disturbances on the receptivity. Their results indicated
that the leading-edge receptivity coefficient increased as the sound incidence angle
increased, reaching a maximum at 90◦. Beyond that angle, the receptivity coefficient
decreased, with minima occurring at angles which were slightly less than 0◦ and
180◦.

Murdock (1981) used a spectral numerical method to model the unsteady flow
and growth of instabilities due to a periodic free-stream oscillation of the flow over
parabolic cylinders. He determined the effect at the leading edge by fitting a curve to
the modulus of the streamwise amplitude distribution and extrapolating upstream to
the leading edge. He also found the leading-edge receptivity coefficient to increase as
the leading-edge radius decreased.

A more recent numerical simulation of the leading-edge receptivity was done
by Haddad & Corke (1998). This involved an efficient spatial formulation of the
linearized Navier–Stokes equations. They also examined the flow over parabolic
bodies with different nose radii of curvature. With this, they considered only a
limited number of acoustic frequencies which were selected to match those of Lin,
Reed & Saric (1990). Their results showed the same dependence of the leading-edge
receptivity coefficient on the leading-edge radius as was found by Murdock (1981)
and Hammerton & Kerschen (1992). They also found good quantitative agreement
with the experimental leading-edge receptivity coefficient of Saric, Wei & Rasmussen
(1994).

2. Objective
The objective of this work was to continue the use of the efficient spatial formulation

of Haddad & Corke (1998), and expand their results by (i) examining a considerably
broader range of frequencies of acoustic disturbances that would allow a more
complete check on the applicability of the receptivity dependence on the Strouhal
number based on the nose radius and acoustic frequency, and (ii) examining the effect
of the acoustic disturbance angle of incidence, which was shown to have a dramatic
influence on the leading-edge receptivity in the asymptotic analysis of Hammerton &
Kerschen (1996).
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Figure 1. Schematic view of the physical problem.

3. Physical problem
A schematic view of the physical problem considered is illustrated in figure 1. The

mathematical equation of the parabolic body is given by

x(y) =
1

2R
(y2 − R2), (3.1)

where x and y are the Cartesian coordinates, and R is the nose radius of curvature
of the parabolic body.

3.1. Governing equations

The governing equations of the problem are the full Navier–Stokes (N–S) equations.
Following Davis (1972) and Haddad & Corke (1998), we write them in terms of
streamfunction (ψ) and vorticity (ω). In dimensional form these are given as

∂2ψ∗

∂x∗2 +
∂2ψ∗

∂y∗2 = −ω∗, (3.2)

∂ω∗

∂t∗
+
∂ψ∗

∂y∗
∂ω∗

∂x∗
− ∂ψ∗

∂x∗
∂ω∗

∂y∗
= ν

(
∂2ω∗

∂x∗2 +
∂2ω∗

∂y∗2

)
, (3.3)

where superscript * denotes dimensional terms. We non-dimensionalize the variables
using the free-stream velocity (U∞) and viscosity (ν) such that

x =
x∗

ν/U∞
, y =

y∗

ν/U∞
, t =

t∗

ν/U2∞
, ω =

ω∗

U2∞/ν
, ψ =

ψ∗

ν
. (3.4)

Since we are dealing with a parabolic body, the natural choice is to use parabolic
instead of Cartesian coordinates. The relation between the dimensionless Cartesian
coordinates (x, y) and the dimensionless parabolic coordinates (ξ, η) is given by

x =
ξ2 − η2

2
, y = ξη. (3.5)

Incorporating these, the dimensionless governing equations in parabolic coordinates
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are
∂2ψ

∂ξ2
+
∂2ψ

∂η2
= −(ξ2 + η2)ω, (3.6)

−(ξ2 + η2)
∂ω

∂t
+
∂2ω

∂ξ2
+
∂2ω

∂η2
+
∂ψ

∂ξ

∂ω

∂η
− ∂ψ

∂η

∂ω

∂ξ
= 0. (3.7)

This is the final form of our equations. We did not utilize the additional trans-
formation used by Davis (1972) and Haddad & Corke (1998) to maintain a finite
vorticity at the leading edge for a case when R = 0. We note that for an infinitely
thin flat plate (R = 0), these equations are singular at the leading edge (ξ = 0, η = 0).
Therefore in this study, we will always consider the cases where R > 0.

3.2. Boundary conditions

In parabolic coordinates, the wall of the parabolic body is defined by a constant-η
line, such as

ηwall = R1/2, (3.8)

where R is the radius of curvature at the leading edge. Since we use a viscous
length scale in the non-dimensionalization, R can be considered as the Reynolds
number based on the nose radius of curvature. Similarly, every physical length, when
non-dimensionalized, will be a Reynolds number based on that physical length.

3.2.1. Wall boundary conditions

Streamfunction: the wall is defined by a streamline with a streamfunction value
being an arbitrary constant. We choose to set it to zero, namely

ψ = constant = 0 at η = R1/2. (3.9)

Also on the wall, the no-slip, no-penetration boundary condition requires

∂ψ

∂η
= 0 at η = R1/2. (3.10)

Vorticity: there is no explicit boundary condition for defining vorticity on the wall.
Therefore we will use the streamfunction equation applied at the wall as the boundary
condition for vorticity. Given the streamfunction equation

∂2ψ

∂ξ2
+
∂2ψ

∂η2
= − (ξ2 + η2

)
ω (3.11)

and the conditions on the wall, ψ = 0, giving ψξ = ψξξ = 0, the condition that relates
vorticity and streamfunction at the wall is

ω =

( −1

ξ2 + η2

)
ψηη at η = R1/2. (3.12)

3.2.2. Free-stream boundary conditions

Streamfunction: we have used the free-stream velocity in normalization, therefore
at the free stream the magnitude of the velocity is equal to unity, namely

|U| = 1. (3.13)

Then the velocity components in the free stream will be

u = cos(α), v = sin(α), (3.14)
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where u and v are the respective velocity components in the x- and y-directions,
and α is the angle of the free-stream velocity with respect to the body. Since the
streamfunction is defined as

∂ψ

∂y
= u and

∂ψ

∂x
= −v (3.15)

at the free stream, the value of the streamfunction is defined as

ψ∞ = y cos(α)− x sin(α), (3.16)

where x and y are the Cartesian coordinates. Hence using parabolic coordinates, the
free-stream boundary condition for the streamfunction is

∂ψ

∂η
→ ξ cos(α) + η sin(α) as η →∞. (3.17)

Vorticity: away from the wall, the potential flow has zero vorticity. Therefore

ω → 0 as η →∞. (3.18)

4. Basic flow and perturbation flow equations
To investigate the leading-edge receptivity, we use a spatial approach. This has the

advantage of numerically calculating variables with different orders of magnitude to
greater accuracy. With this approach, the acoustic disturbance is represented as a
periodic, small-amplitude perturbation on the uniform free-stream flow, namely

ψ = ψ∞ + εeiσtψ̃∞ (4.1)

where σ is the temporal frequency, and ε is the amplitude of the perturbation, which
is sufficiently small for linearization.

As illustrated in figure 1, the mean flow and acoustic waves can be at incidence
angles with respect to the body. Therefore

ψ = (ξ cos(α1) + η sin(α1)) + εeiσt (ξ cos(α2) + η sin(α2)) (4.2)

where α1 is the angle of attack of the parabolic body with respect to the free-stream
streamline, and α2 is the angle of incidence of acoustic waves with respect to the body
centreline.

Following this, the governing (N–S) equations for streamfunction and vorticity are
converted into two sets of equations, governing the mean (basic) flow and perturbation
flows. This is done by writing the total flow quantities as the sum of the mean (time-
independent) quantities, Ψ and Ω, and the perturbation quantities, ψ̃ and ω̃:

ψ(ξ, η, t) = Ψ (ξ, η) + εeiσtψ̃(ξ, η), (4.3)

ω(ξ, η, t) = Ω(ξ, η) + εeiσtω̃(ξ, η), (4.4)

Substituting these into the governing equations (3.6) and (3.7) leads to the equations
for the basic flow (order ε0), which are

∂2Ψ

∂ξ2
+
∂2Ψ

∂η2
= −(ξ2 + η2)Ω, (4.5)

∂2Ω

∂ξ2
+
∂2Ω

∂η2
+
∂Ψ

∂ξ

∂Ω

∂η
− ∂Ψ

∂η

∂Ω

∂ξ
= 0, (4.6)
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with the boundary conditions

Ψ = 0,
∂Ψ

∂η
= 0, Ω =

( −1

ξ2 + η2

)
∂2Ψ

∂η2
at η = R1/2, (4.7)

∂Ψ

∂η
→ ξ cos(α1) + η sin(α1), Ω → 0 at η →∞, (4.8)

and the equations for the perturbation flow (order ε1), which are

∂2ψ̃

∂ξ2
+
∂2ψ̃

∂η2
= −(ξ2 + η2)ω̃, (4.9)

−iσ(ξ2 + η2)ω̃ +
∂2ω̃

∂ξ2
+
∂2ω̃

∂η2
+
∂Ψ

∂ξ

∂ω̃

∂η
+
∂Ω

∂η

∂ψ̃

∂ξ
− ∂Ψ

∂η

∂ω̃

∂ξ
− ∂Ω

∂ξ

∂ψ̃

∂η
= 0, (4.10)

with the boundary conditions

ψ̃ = 0,
∂ψ̃

∂η
= 0, ω̃ =

( −1

ξ2 + η2

)
∂2ψ̃

∂η2
at η = R1/2, (4.11)

∂ψ̃

∂η
→ ξ cos (α2) + η sin (α2), ω̃ → 0 at η →∞. (4.12)

Note that the equations for the basic flow are nonlinear, and therefore require
an iterative numerical method for their solution. The basic flow variables are real,
and the equations have a real solution. On the other hand, the equations for the
perturbation flow are linear, and therefore can be solved numerically with a direct
linear solver. The perturbation variables are however complex, and the equations have
a complex solution. We also note that the temporal frequency σ appears explicitly in
the equations for the perturbation flow, thus the solution is expected to be frequency
dependent.

To understand the receptivity problem, we have used this spatial approach. For this,
we are interested in the streamwise variation of the amplitude of the perturbation that
couples with the T–S waves of the same frequency. By considering the perturbation
amplitudes to be linear, and using this normal mode form, the basic flow and
perturbation flow can be solved separately to the same order of accuracy. This
approach then allows us to perform more precise numerical calculations on the
perturbation values, and minimize any numerical truncation errors.

5. Grid generation
The contour of the body is defined by the line ηwall = R1/2. The free stream is also

defined by the line η = ηmax. We set the free stream to be at a distance from the
wall that is at least ten times the expected boundary layer thickness. Therefore in the
wall-normal direction we let η vary between the values

R1/2 6 η 6 R1/2 + 35. (5.1)

In the η-direction we have used 36 grid points.
In the streamwise direction,

−ξmax 6 ξ 6 +ξmax. (5.2)

On the surface of the body, the leading edge is located at ξ = 0. The outflow
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boundaries on the lower and upper sides of the body in the physical plane are
located at ξ = −ξmax and ξ = +ξmax in the numerical plane. In the domains between
ξ = 0 and ξ = ∓ξmax, we have used 1001 grid points. This gave a minimum of 10
points per T–S wavelength. We set the last grid point in ξ-direction to be located
at xmax = 1.5 × 106 (including the buffer zone which will be explained later in this
section). Therefore, the last grid point in the streamwise direction was located at

ξmax = (2xmax + R)1/2. (5.3)

In order to capture the physical phenomenon more accurately, more grid points
were located near the wall in η-direction, and near the leading edge in ξ-direction.
This was done using Robert’s stretching transformation of the original uniform grid
(Anderson, Tannehill & Pletcher 1984). The formula of the transformation is

y = h
(β + 1)− (β − 1)[(β + 1)/(β − 1)]1−ȳ

[(β + 1)/(β − 1)]1−ȳ + 1
, (5.4)

where ȳ represents the original uniformly spaced grid points, y are the stretched
grid points and β is the stretching parameter. In our case we used βξ = 1.05 and
βη = 1.005 which produced the accuracy we desired.

The geometry we are dealing with is a semi-infinite body. Since the numerical
calculations cover a finite domain, the buffer domain technique used by Haddad &
Corke (1998) was used to provide the outflow boundary condition. The approach is
to gradually kill the elliptic (∂2/∂ξ2) terms in the governing equations in a buffer
zone at the downstream end of the computational domain. To accomplish this, these
elliptic terms were multiplied by a weighting factor s. At the beginning of the buffer
zone, s = 1. At the end of the buffer zone, s = 0. In between, the s changes according
to

s(i) =
tanh (4) + tanh(arg)

2 tanh (4)
(5.5)

where

arg = 4

(
1− 2(i− ibuf)

(imax − ibuf)
)

(5.6)

and i is the numerical streamwise index, imax is the numerical index of the last grid
point in the streamwise direction, and ibuf is the index (i) of the first grid point
at the beginning of the buffer zone. The length of the buffer zone corresponded to
approximately 5 T–S wavelengths, which was well beyond the minimum of 3 given
by Haddad & Corke (1998).

6. Numerical method
For the solution of the nonlinear steady basic flow equations, we developed an

iterative numerical method. The basic flow variables are improved through a pseudo-
time marching until convergence is achieved (Erturk 1999; Erturk & Corke 2001).
For the solution of the linear perturbation equations, we used an efficient direct linear
solver (linpack subroutines). The solution methodology of the problem is to first
solve the basic flow equations. Using the basic flow solution, the coefficients in the
perturbation equations were next calculated. With specified values of the frequency,
σ, and angle of incidence of the acoustic waves, α2, the perturbation equations are
then solved. In the results presented here, the angle of incidence of the body, α1, was
always zero.
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For the numerical solution of the perturbation equations, we used the same numer-
ical grid and buffer zone that was used for the solution of the basic flow equations.
We note that all the results that were presented here are grid independent.

7. Results and discussion
7.1. Basic flow solutions

In order to make a quantitative check of our numerical solutions, we compared the
wall skin friction and surface pressure distributions for a family of parabolas with
different nose radii, to those of Haddad & Corke (1998). We note that by comparing
our basic flow solutions with theirs, we indirectly also compare our results to those
of Davis (1972), which agreed with those of Haddad & Corke (1998).

The skin friction coefficient is defined as

Cf =
τ∗w
ρU2∞

(7.1)

where τ∗w = µ(∂u∗/∂y∗)|w . If we write the above equation in terms of the non-
dimensional streamfunction variable and use the streamfunction equation at the
wall, we obtain

Cf = −Ω|w . (7.2)

Haddad & Corke (1998) followed Davis (1972) and scaled the above equation with
(ξ2 +η2)/ξ. Using the same approach, our scaled skin friction coefficient has the form

Cf =
− (ξ2 + η2

)
ξ

Ω(ξ, R1/2). (7.3)

Figure 2 shows the scaled skin friction distribution over parabolic bodies with dif-
ferent nose radii. The skin friction is a maximum at the leading edge for any particular
parabolic body, and increase as the nose radius (Reynolds number) increase. Davis
(1972) pointed out that the flow over a parabolic body asymptotically approaches
Blasius flow away from the leading edge. As a check on the numerical solution, the
skin friction coefficient for a Blasius flow is shown by the dotted line. As can be seen,
all of the skin friction distributions asymptote to the Blasius value downstream of the
leading edge. The symbols correspond to the results from Haddad & Corke (1998).

In order to obtain an expression for the surface pressure distribution, we start with
the x∗-momentum equation (in dimensional variables):

u∗
∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −1

ρ

∂p∗

∂x∗
+ ν

[
∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

]
. (7.4)

We apply the boundary conditions at the wall, that is u∗ = v∗ = 0. Also, we introduce
the streamfunction as u∗ = ∂Ψ ∗/∂y∗. When we non-dimensionalize the pressure to
be in the form p = (p∗ − p∗ξ=−∞)/(ρU2∞), and use the streamfunction equation, the
momentum equation (7.4) takes the following form in parabolic coordinates:

∂p

∂ξ
= −∂Ω

∂η
. (7.5)

This equation relates the pressure gradient to the vorticity variable. Haddad &
Corke (1998) followed Davis (1972) and instead of using streamfunction and vorticity
variables in the governing equations, they used transformed variables in order to
remove the singularity that occurs at the leading edge in the case of an infinitely thin
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Figure 2. Skin friction distribution on parabolic bodies.

flat plate. In order to compare our results with theirs, we also used the transformed
variables. Thus following Davis (1972),

P = p− η

(ξ2 + η2)
g(0, R1/2), (7.6)

where g is the transformed vorticity variable, and is related to vorticity by

g(ξ, η) =
−(ξ2 + η2)

ξ
Ω(ξ, η). (7.7)

Substituting equation (7.6) into equation (7.5) we obtain

∂P

∂ξ
= −∂Ω

∂η
+

2ξη

(ξ2 + η2)2
g(0, R1/2). (7.8)

We use the pressure at downstream infinity on the lower surface as a reference pressure,
and integrate the above equation back along the surface using the trapezoidal method.

Figure 3 shows the pressure distribution obtained for parabolic bodies with different
nose radii. As can be seen, the pressure gradient is favourable everywhere, meaning
that the pressure gradient is stabilizing everywhere in terms of T–S instabilities. The
pressure is a maximum at the stagnation point (i.e. at the leading edge) and decreases
monotonically to zero far downstream. Again the agreement with Haddad & Corke
(1998) is excellent.

The method that we developed for the solution of two-dimensional incompressible
steady N–S equations has proved to be very effective. The results were found to
agree well with those of Haddad & Corke (1998) (and thereby Davis 1972), and far
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Figure 3. Pressure distribution on parabolic bodies.

downstream to asymptote to the Blasius solution. Based on this we are confident of
their accuracy.

7.2. Perturbation flow solutions

7.2.1. Sound at zero angle of incidence

We first consider a zero sound incidence angle in order to make comparisons to the
perturbation solution of Haddad & Corke (1998), and examine the Strouhal number
scaling of the leading-edge receptivity.

In this study, the streamwise distance is denoted by a Reynolds number based on
the surface arc length. The surface arc length along the parabolic body is given by

s(x) =
R

2

{(
1 +

2x

R

)1/2(
2 +

2x

R

)1/2

+ ln

[(
1 +

2x

R

)1/2

+

(
2 +

2x

R

)1/2
]}

. (7.9)

Since we use a viscous length scale in non-dimensionalization, throughout this study
s and Res are identical.

We non-dimensionalize the disturbance frequency such that σ is defined as

σ =
2πfν

U2∞
. (7.10)

We have examined frequencies ranging from σ = 50.0× 10−6 to σ = 120.0× 10−6.
This range is shown with respect to the Blasius neutral curve in figure 4. The
extent of the computational domain that figure shows that we encompass all of
the linear amplified region for the full band of frequencies. For a physical reference
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Figure 4. Neutral stability curve for Blasius boundary layer.

for comparison to experiments, in for example air, with ν = 1.5× 10−5 m2 s−1 and a
free-stream velocity U∞ = 6.7 m s−1, the dimensional frequencies will range between
f = 23.81 and f = 57.16 Hz.

In order to verify our numerical solutions, a comparison with the results of Haddad
& Corke (1998) was made. In their study, they only considered the conditions where
the free-stream oscillations have a non-dimensional frequency of σ = 230.0× 10−6,
and a zero angle of incidence of sound, or α2 = 0◦. We compared our results at
R = 10.

Figure 5 shows the magnitude of the perturbation vorticity on the wall with respect
to the Reynolds number based on the surface arc length along the body. In this figure,
the vorticity axis has been magnified in order to show the instability waves, in the
linear amplified region. The spatial oscillations in the magnitude of the perturbation
wall vorticity are clearly evident in the figure and there is excellent agreement with
the previous results of Haddad & Corke (1998), shown as symbols.

There are a number of steps in the process of obtaining the leading-edge receptivity
coefficient from the vorticity perturbation solution such as shown in figure 5. The
first is to calculate the streamwise velocity perturbation, u, at different heights above
the body surface. Examples of these at consecutive downstream locations are shown
in figure 6, for R = 100, σ = 120.0× 10−6, and α2 = 0◦.

The total streamwise velocity perturbation as seen in figure 6 is made up forced
non-Orr–Sommerfeld modes, a Stokes wave, and T–S waves. Our interest is in the
receptivity of the T–S wave, so that it was necessary to separate out the effect of
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Figure 5. Enlarged view of perturbation wall vorticity along the surface; R = 10, σ = 230× 10−6.

the other modes from the total perturbation solution. As a first step, we needed to
subtract the Stokes wave from the total perturbation solution.

The Stokes flow is the natural response of the fluid to the free-stream oscillations
and it is governed by the following equations:

∂2ψ̃

∂ξ2
+
∂2ψ̃

∂η2
= −(ξ2 + η2)ω̃, (7.11)

−iσ(ξ2 + η2)ω̃ +
∂2ω̃

∂ξ2
+
∂2ω̃

∂η2
= 0, (7.12)

with the boundary conditions

ψ̃ = 0,
∂ψ̃

∂η
= 0, ω̃ =

( −1

ξ2 + η2

)
∂2ψ̃

∂η2
at η = R1/2, (7.13)

∂ψ̃

∂η
= ξ cos (α2) + η sin (α2), ω̃ = 0 at η = ηmax, (7.14)

where i is the imaginary number, σ is the frequency of the oscillations and α2 is the
angle of the free-stream acoustic waves. These equations are identical to the total
perturbation flow equations without the convective terms. As such, the method of
solution was identical to that of the perturbation flow equations. Figure 7 shows the
u-profiles of the Stokes flow which corresponds to the conditions of figure 6.

To remove its effect, the Stokes flow solution was subtracted point by point from
the total perturbation solution. An example of this is shown in figure 8, which again
corresponds to the conditions in figure 6. As can be seen from figure 8, in the vicinity of
the leading edge, the wall-normal u-distributions do not resemble a T–S eigenfunction.
Near the leading edge, we suspect that the perturbation flow, after subtracting off the
Stokes wave, is made up of a combination of forced (non-Orr–Sommerfeld) modes
and T–S modes. Further downstream of the leading edge, for example at Res = 438.7,
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Figure 6. Total streamwise perturbation velocity profiles at consecutive downstream locations
before Stokes wave is subtracted; R = 100, σ = 120× 10−6.

the wall-normal streamwise velocity profiles eventually develop a T–S eigenfunction
shape. Based on the lower peak in the wall-normal profile, we observe the amplitude
to decrease with downstream distance. This is the expected behaviour since all of the
locations shown in figure 8 are upstream of Branch I, which occurs at Res ≈ 149× 103

for this frequency.
In this study, the receptivity coefficient is defined as the ratio of the maximum

T–S amplitude at the leading edge, to the free-stream disturbance amplitude. This is
referred to as KLE = |(uTS )LE/u∞|. Note that since we have already normalized the
velocity perturbation with the free-stream velocity in the original formulation, the u-
perturbation velocity profiles, such as shown in figure 8, correspond to the receptivity
coefficient at their respective streamwise locations. The remaining step in obtaining
the leading-edge receptivity coefficient is to extrapolate the value corresponding to
T–S waves, upstream to the leading edge.

In figure 8 we observe that the maximum T–S amplitude (lower peak) occurs
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Figure 7. Streamwise velocity profiles of Stokes wave at consecutive downstream locations;
R = 100, σ = 120× 10−6.

at a constant η-position above the body surface. In order to get the receptivity
coefficient at the leading edge, the u-amplitude at the η-position of the maximum, for
distributions which had a T–S-like shape, were used to extrapolate from downstream
positions, upstream to the leading edge. This is illustrated in figure 9, which shows the
maximum T–S amplitude versus Res for two cases of leading-edge Reynolds number
and free-stream frequency. Plot (a) has a linear scale for u. We expect that the T–S
amplitude should decay exponentially, therefore to illustrate this better, the same data
are plotted in figure 9(b) with u on a log axis. Based on plots like this, the exponential
decay (linear in log scale) was best fit and used to extrapolate the T–S amplitude,
and thereby receptivity coefficient, to the leading edge. Examples of the fit are shown
as the solid curves through the data points in figure 9.

In their analytical study, Hammerton & Kerschen (1992) used a Strouhal number
to represent the effect of leading-edge radius on receptivity. The Strouhal number
is defined as St = 2πfrn/U∞, where rn is the leading-edge radius of curvature, and
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Figure 8. Streamwise perturbation velocity profiles at consecutive downstream locations after
Stokes wave is subtracted; R = 100, σ = 120× 10−6.

f is the dimensional frequency of the free-stream acoustic oscillations. Using our
non-dimensional nose radius (R), and frequency (σ), the Strouhal number is simply
St = σR.

We decided to test the applicability of this Strouhal number, by varying the
frequency and nose radius so that the Strouhal number remained the same. This is
illustrated in figure 9, for two combinations in which St = 0.012. Clearly, although
the T–S amplitude decay is different for the two frequency–radius combinations, the
values of the leading-edge receptivity coefficient, which is found by extrapolating to
Res = 0, are identical. Similar cases at different Strouhal numbers have verified it as
an appropriate similarity variable for the leading-edge receptivity coefficient.

The effect of Strouhal number on the leading-edge receptivity coefficient is docu-
mented in figure 10: plot (a) used a linear scale for the receptivity coefficient, and plot
(b) presents the receptivity coefficient on a log scale. These results are quantitatively
similar to those of Haddad & Corke (1998), although the present results give slightly
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Figure 9. Comparison of the extrapolated leading-edge receptivity coefficient value obtained by
using different nose Reynolds numbers and frequencies for a particular Strouhal number; St = 0.012.

larger KLE at St = 0, and a slightly different decrease in KLE with increasing St. The
difference between the results of Haddad & Corke (1998) and the present results can
be attributed to the uncertainty in the extrapolation of the decaying T–S amplitudes
to the leading edge that was illustrated in figure 9. With the higher frequencies used
by Haddad & Corke (σ = 230.0× 10−6), the exponential decay is steeper, compared
to the lower frequencies used here (σ = 100.0× 10−6). As a result, the exponential fits
and extrapolations used here are more accurate than in the previous study.

Hammerton & Kerschen (1992) stated that the decay of KLE is exponential with
respect to increasing St. We found this to be the case, as can be seen in figure 10(b),
where the receptivity coefficient decreases almost exponentially (straight line) with
Strouhal numbers greater than approximately 0.05.
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Figure 10. Variation of the leading-edge receptivity coefficient with Strouhal number.

7.2.2. Sound at an angle of incidence

To this point, all the results correspond to free-stream acoustic disturbances at a
zero angle of incidence to the body (α2 = 0). The following results document the effect
of a non-zero acoustic angle of incidence on the leading-edge receptivity coefficient.

Figure 11 demonstrates the effect of the angle of incidence of the acoustic waves on
the amplitude of the instability waves near Branch II. This shows the u-perturbation
velocity just above the wall for R = 10. The different cases correspond to incidence
angle (α2) of 0◦, 10◦, 20◦, 90◦, 110◦, and 170◦ with respect to the body centreline. The
oscillations in the u-velocity correspond to the T–S waves. If we draw an envelope
connecting the peaks, its magnitude is indicative of the local receptivity coefficient.
At the location of the maximum amplitude neutral growth point, the u value is by
definition the Branch II receptivity coefficient, KII . We observe that, as the angle of
incidence of sound increases, up to 90◦, KII increases. Beyond an angle of 90◦, KII

decreases. Qualitatively this agrees with our expectations based on the analysis of
Hammerton & Kerschen (1996). However the receptivity coefficient at Branch II can
be deceiving because it is also dependent on the pressure gradient from the leading
edge to Branch II, which makes it body-specific. We therefore prefer to show the
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Figure 11. Streamwise variation of the u-velocity just above the wall near Branch I and II as a
function of free-stream acoustic angle; R = 10, σ = 100× 10−6.

effect of the angle of incidence of sound on the leading-edge receptivity coefficient,
KLE .

As before, the leading-edge receptivity coefficient was found by fitting an exponen-
tial function to the Res distribution of the maximum T–S amplitude. Figure 12 shows
the streamwise variation of the u-perturbation velocity amplitude for the incidence
angle (α2) of 0◦, 60◦, 90◦, 120◦, 150◦, and 170◦ for R = 10. The solid lines are the
exponential fit used in extrapolating to the leading edge. This shows that KLE increase
as α2 increases up to α2 = 90◦, and then decreases for larger angles, in a manner
which was previously observed with KII .

One of the interesting aspects of the streamwise variation in the u-perturbation is
the appearance of a local minimum at the larger angles of incidence, for example at
α2 = 120◦ and 150◦ in figure 12. Since the governing equations for the perturbation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

54
56

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001005456


Boundary layer leading-edge receptivity to sound at incidence angles 401

3

2

1

0

0 200 400 600 800 1000

α2 = 0°

u

0 200 400 600 800 1000

α2 = 120°

3

2

1

0

0 200 400 600 800 1000

α2 = 60°

u

0 200 400 600 800 1000

α2 = 150°

3

2

1

0

0 200 400 600 800 1000

α2 = 90°

u

0 200 400 600 800 1000

α2 = 170°

Res Res

Figure 12. Streamwise variation of the maximum u-velocity near the leading edge as a function of
free-stream acoustic angle; R = 10, σ = 100× 10−6.

flow are linear, we considered that the local minimum might be the result of a linear
phase change. To investigate this, we plotted the corresponding phase difference
between the free-stream oscillations and the Stokes-removed u-perturbations at the
wall-normal amplitude maximum. This is shown for α2 = 120◦ and 150◦ in figure 13(a)
and 13(b).

The phase distribution documents that the amplitude minimum in these cases does
correspond to a 180◦ phase shift. This suggests that the amplitude minimum results
from a linear phase cancellation mechanism. However we do not know precisely
the source of the phase change. Wall-normal profiles of the u-perturbation for α2 =
120◦ in figure 14 show that a characteristic change occurs near the location of
the streamwise phase change (Res ≈ 200). Upstream of that location (Res < 60),
the wall-normal profile has a two-peaked shape which is characteristic of a T–S
eigenfunction. Near Res ≈ 200, the wall-normal profile has a three-peaked shape,
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Figure 13. The minimum in (a) streamwise u-velocity magnitude distribution and (b) the
streamwise u-velocity phase distribution; R = 10, σ = 100× 10−6.

with a minimum occurring at the previous (upstream) location of the wall-normal
distribution maximum. Downstream of this location, the amplitude maximum returns
to its original upstream location above the wall.

An additional observation is that the streamwise location of the phase change moves
upstream with increasing angle of incidence of sound. At α2 = 170◦ in figure 12, it
appears to be virtually at the leading edge.

These results prompted us to only use the streamwise region which was upstream
of the phase change to extrapolate to the leading edge for determining KLE in these
cases. For the large values of α2, the shorter region for the exponential fit increased
somewhat the uncertainty of the leading-edge value.

A compilation of the leading-edge receptivity coefficients for the full range of
sound incidence angles, for three different nose-radius Strouhal numbers is shown
in figure 15. This shows clearly that KLE increases as the sound angle of incidence
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Figure 14. Profiles of u-perturbation velocity at consecutive downstream locations at free-stream
acoustic angle of α2 = 120◦; R = 10, σ = 100× 10−6.

increases in the range 0◦ 6 α2 6 90◦. The maximum receptivity coefficient occurs at
α2 = 90◦. In addition, the variation of the leading-edge receptivity coefficient with
sound angle is not symmetric about the 90◦ angle. This is most evident near the
minima in the KLE . Rather than being at α2 = 0◦ and 180◦, the minimum occurs at
α2 = −10◦ and 170◦. This result agrees with the analysis of Hammerton & Kerschen
(1996), which showed the same kind of asymmetry for small reduced frequencies. In
their case, it was seen as a balance between symmetric and antisymmetric components,
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Figure 15. Variation of the leading-edge receptivity coefficient with respect to the angle of the
acoustic wave as a function of Strouhal number.

cos(α2) and a1/2 sin(α2) respectively, where a is an aerodynamic reduced frequency.
Except near α2 = 0◦ and 180◦, the antisymmetric component is dominant, as we
observed here.

The variation of KLE with sound angle is not dependent on the nose-radius Strouhal
number. The only effect is that the smaller radius (smaller Strouhal number) has a
larger receptivity coefficient, regardless of the sound angle. This is of course consistent
with the results in figure 10.

An interesting aspect of the asymmetry of the KLE with changing acoustic angle
is illustrated in figure 16. This shows the streamwise amplitude variation of the u-
perturbation maximum on either side of the leading edge for α2 = 10◦, 0◦, and −10◦.
These are similar to those in figure 9, which only showed the variation on the upper
surface (positive-ξ side). Of course, these distributions are used to extrapolate to the
leading edge to obtain KLE . When α2 = 0◦, the value obtained by extrapolating from
the lower surface or upper surface is the same. However, at a small sound angle of
10◦, the value extrapolated from the lower surface is different from that extrapolated
from the upper surface. In this case with α2 = 10◦, the value extrapolated from the
lower surface equals the one extrapolated from the upper surface at α2 = −10◦. This
asymmetry exists at all angles but 0◦ and 90◦. It is most pronounced near α2 = 0◦ and
180◦.
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Figure 16. Amplitude distribution of the instability waves on both the upper and lower surfaces
of the parabola.

8. Conclusions
The spatial formulation used in this problem was successful in modelling the

evolution of the T–S instability induced by acoustic free stream disturbances at
various angles of incidence. For these, we found that the Strouhal number defined
as St = 2πfrn/U∞ was a correct similarity variable for the leading-edge receptivity
coefficient dependence on the nose radius of curvature. This agreed with the analysis
of Hammerton & Kerschen (1992).

The leading-edge receptivity coefficient increased as the Strouhal number decreased.
This again agreed with the analysis of Hammerton & Kerschen (1992) and the
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previous computations of Haddad & Corke (1998). The variation of KLE with
Strouhal number was found to be exponential for St > 0.05.

The results showed that the leading-edge receptivity coefficient increased with
increasing angle of incidence of sound, up to 90◦. For angles greater than 90◦, it
decreased. The minimum receptivity did not occur at angles of 0◦ and 180◦, but
slightly shifted to values of −10◦ and 170◦ respectively. This result in an asymmetry
between the leading-edge receptivity coefficient based on an extrapolation to the
leading edge of the T–S amplitudes on the upper or lower surfaces of the body. This
asymmetry was predicted in the analysis of Hammerton & Kerschen (1996) for small
reduced frequencies.

With higher angles of sound, we observed a sharp minimum in the streamwise
development of the Stokes-removed u-perturbation slightly downstream of the lead-
ing edge. This minimum was found to coincide with a 180◦ phase shift in the
u-perturbation phase. This suggests that the amplitude minimum is caused by a linear
interaction between modes, most likely T–S and non-Orr–Sommerfeld (forced) modes.
This is supported by wall-normal distributions, which in the vicinity of the streamwise
amplitude minimum develop a peak nearer to the wall. The exact implication of this
is unknown, although this minimum was observed to move upstream as the sound
angle increased, and it was virtually at the leading edge when the angle was 170◦. The
sound angle of 170◦ (and its complement, −10◦) was approximately the value that
produced the minimum leading-edge receptivity.

Overall we found very good quantitative agreement with the previous computations
of Haddad & Corke (1998), which were for a more limited frequency range and with
a zero sound incidence angle. The differences in the geometry, semi-infinite in our case
versus finite, only allowed qualitative comparisons between our receptivity coefficients
and those from the analysis of Hammerton & Kerschen (1996). However overall we
found excellent qualitative agreement which suggests that we agreed in the essential
physics of the acoustic receptivity process.

E. Erturk is grateful for the financial support of the Gebze Institute of Technology
through the funds of the Turkish Council of Higher Education while conducting this
research.
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