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We prove the existence of radial solutions of

−ε2∆u + V (|x|)u = up, x ∈ R
n, u ∈ W 1,2(Rn), u > 0,

concentrating on a sphere for potentials which might be zero and might decay to zero
at infinity. The proofs use a perturbation technique in a variational setting, through
a Lyapunov–Schmidt reduction.

1. Introduction

There is a great deal of literature on nonlinear Schrödinger (NLS) equations with
potentials, such as

−ε2∆u + V (x)u = up, x ∈ R
n,

u ∈ W 1,2(Rn), u > 0.

}
(1.1)

Solutions of (1.1) for ε small are often called semiclassical states. The main feature
of these semiclassical states, uε of (1.1), is that they concentrate, in the sense that
outside the concentration set uε tend uniformly to zero as ε → 0. Roughly, a classical
result states that if V is smooth and satisfies

∃V0, V1 > 0, such that 0 < V0 � V (x) � V1, (V0)

for any stable isolated stationary point x0 of V , there exists a solution of (1.1)
concentrating at x0 (see, for example, [2, 10]). Stable stationary points of V are
maxima, minima and, more generally, points where the local degree of V ′ is non-
zero. Solutions concentrating at a point are called spikes.

More recently, assumption (V0) has been relaxed. The NLS equation with poten-
tials which can be zero, but such that lim inf |x|→∞ V (x) > 0, has been studied
in [7, 8]. Furthermore, a class of positive potentials which might decay to zero at
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infinity has been considered (see [4, 5], and also [11, 13] for some previous partial
results). However, in the aforementioned papers, only the existence of spikes is
proved.

On the other hand, by dealing with radial potentials, namely with equations like

−ε2∆u + V (|x|)u = up, x ∈ R
n,

u ∈ W 1,2(Rn), u > 0,

}
(1.2)

new classes of solutions concentrating on spheres have been found (see [3]). Let us
define the auxiliary weighted potential M by setting

M(r) = rn−1V θ(r), where θ =
p + 1
p − 1

− 1
2
.

Let r∗ > 0 be a strict maximum or minimum of M and suppose that p > 1 and
that V is smooth. Under the above assumptions, it has been proved in [3] that (1.2)
possesses a radial solution which concentrates as ε → 0 at the sphere |x| = r∗ > 0.

In the present paper we consider radial potentials which might be zero and might
decay to zero at infinity. By improving the preceding results, we show the existence
of a semiclassical radial state concentrating on a sphere (see theorem 2.1 below).

2. Main result

We will assume that the potential V ∈ C1(R+, R) satisfies:

(V1) V (r) � 0, ∀r ∈ R+ and there exist r0, a1, a2 > 0 such that

a1

r2 � V (r) � a2, ∀r > r0; (2.1)

(V2) ∃V ′
1 > 0 such that |V ′(x)| � V ′

1 , ∀r ∈ R+.

The assumptions V (r) � a2 and (V 2) are essential in the proof of lemmas 3.2
and 3.3 (see also [3]).

The main result of this paper is the following theorem.

Theorem 2.1. Let p > 1 and suppose that (V1) and (V2) hold. Moreover, let us
assume that there exists r∗ > r0 such that M has an isolated local maximum or
minimum at r = r∗. Then for ε � 1, equation (1.2) has a solution that concentrates
at the sphere |x| = r∗.

Let us emphasize that, as in [3], any power p > 1 is allowed. It is also worth
pointing out that, as a consequence of the fact that concentration arises where
V (r) > 0, the preceding solutions behave like those found in [3] ad not as in [7,8] (see
remark 5.1, below). It would be interesting to establish the existence of semiclassical
states concentrating on a sphere of radius r̂ > 0, where V (r̂) = 0. Note that such a
r̂ would be a minimum of M .

As a particular case in which the preceding theorem applies, let us consider a
potential V such that

V (r) > 0 ∀r > 0, and ∃α ∈ (0, 2] : V (r) ∼ r−α, as r → +∞. (2.2)
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We find that M(0) = 0 and M(r) ∼ rn−1−αθ as r → +∞. Thus, M(r) → 0 as
r → +∞, provided that αθ > n − 1 and, hence, in such a case, M has a maximum.
Therefore, an application of theorem 2.1 yields the following corollary.

Corollary 2.2. Suppose that V satisfies (V2) and (2.2). Moreover, let αθ > n−1.
Then, for ε � 1, equation (1.2) has a solution that concentrates at a sphere.

In order to prove theorem 2.1, we consider the equation

−∆u + V (ε|x|)u = up, u ∈ W 1,2(Rn), u > 0. (2.3)

If u is a solution of (2.3), then u(x/ε) solves (1.2). This paper is devoted to proving
the existence of solutions of (2.3), for ε small. Following the procedure used in [3,5],
we first use a Lyapunov–Schmidt reduction in order to substitute (2.3) with an
equivalent system consisting of an auxiliary equation and a bifurcation equation
(see § 3).

A great deal of work is devoted to solve the auxiliary equation. First, it is shown
that solutions of this equation can be found by searching the fixed points of a
map Sε in an appropriate set Γε. Roughly, we look for solutions of the form z + w,
where z is peaked near r∗ > r0 and w is small. This allows us to take advantage
of the fact that, for r close to r∗, we have V (r) � C > 0 (see the discussion before
lemma 3.2).

As for the set Γε, it consists of functions with an appropriate decay at infinity
and also near the region where V might vanish. The main point is to show that,
for ε sufficiently small, Sε is a contraction and maps Γε into itself. The arguments
with which to prove these facts are given in § 4 and require several new ingredients
with respect to [3, 5], in order to handle the possible decay of V to zero (which is
not allowed in [3]) as well as the fact that V may vanish in a compact set, which
is not allowed in [3, 5]. In particular, the arguments needed to control the decay
at infinity of Sε(w), w ∈ Γε, are quite different from the ones employed in [5] (see
remark 4.1 and the last part of the proof of lemma 4.5).

Once that the auxiliary equation is solved, study of the reduced finite-dimensional
functional is carried out as in [3].

In order to keep the paper to a reasonable length, the arguments that are similar
to those employed in [3, 5] have been sketched and details left to the interested
reader.

2.1. Notation

BR(y) = {x ∈ R
n : |x − y| � R}; BR = BR(0); |BR(y)| denotes the Lebesgue

measure of BR(y).
c1, c2, . . . and C1, C2, . . . denote positive, possibly different, constants.

3. Functional setting and finite-dimensional reduction

We will work in the Hilbert space

E =
{

u ∈ D1,2(Rn) : u is radial,
∫

Rn

V (ε|x|)u2(x) dx < ∞
}

.
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endowed with the scalar product and norm given, respectively, by

(u, v) =
∫

Rn

[∇u · ∇v + V (ε|x|)uv] dx, ‖u‖2 = (u, u). (3.1)

Since we are dealing with a nonlinearity like up where, possibly, p � (n+2)/(n−2),
a truncation is in order. Given c̄ > 0, ĉ > 0 and ϑ > 0 such that ϑ(p − 1) > n, we
choose Fε ∈ C2(Rn × R) satisfying:

Fε(|x|, u) =

⎧⎪⎨
⎪⎩

1
p + 1

|u+|p+1 if |u| < ĉ(1 + ε|x|)−ϑ,

c̄(1 + |εx|)−ϑ(p+1) if |u| > 2ĉ(1 + ε|x|)−ϑ.

(3.2)

Specifically, let us define

Fε(|x|, u) = Υ (x, u)
1

p + 1
|u+|p+1 + (1 − Υ (x, u))c̄(1 + ε|x|)−ϑ(p+1),

where
Υ (x, u) = µ(ĉ−1|u|(1 + ε|x|)ϑ).

Here µ(s) is a real C∞ function equal to one for s < 1 and equal to zero for s > 2.
We set

Iε(u) = 1
2‖u‖2 −

∫
Rn

Fε(|x|, u(|x|)) dx, u ∈ E. (3.3)

A direct computation shows that Iε is of class C2 on E (the inequality ϑ(p−1) > n
is needed).

Remark 3.1. Let uε ∈ E be a critical point of Iε. If there exist ĉ and ϑ such that
|uε(r)| < ĉ(1 + εr)−ϑ, then such a uε is a solution of (2.3).

To solve I ′
ε(u) = 0, we will use a perturbation method based on a finite-dimen-

sional reduction. For a broad exposition of the abstract framework as well as for
further applications, we refer the reader to [1]. First, some preliminaries are in order.
Observe that, under our conditions on V , V (r∗) > 0. For the sake of clarity, we will
assume throughout the paper that V (r∗) > 1. Choose δ > 0 such that r∗ − 4δ > r0
and

V (r) � 1, ∀r ∈ (r∗ − 4δ, r∗ + 4δ), (3.4)

For any ε > 0 small, we will take ρ as a parameter satisfying

r∗ − δ � ερ � r∗ + δ, (3.5)

and, for any k > 0, we denote by Uk(r) the unique positive even function satisfying

−U ′′ + kU = Up, U ∈ W 1,2(R).

It is well known that Uk decays exponentially to zero when r → ±∞.
Define τ : R → R, a C∞ function, such that 0 � τ(r) � 1, τ(r) = 1 if |r| � 1 and

τ(r) = 0 if |r| � 2. We shall use the cut-off function φε,ρ defined as

φε,ρ(r) = φε(r) = τ

(
ε

δ
(r − ρ)

)
.
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On setting

Rd = ρ − d

ε
, Td = ρ +

d

ε
,

φε happens to satisfy

φε(r) =

{
0 if r 
∈ [R2δ, T2δ],
1 if r ∈ [Rδ, Tδ].

Set zε,ρ(r) = φε(r)UV (ερ)(r − ρ) and

Zε = Z = {zε,ρ(r) : ρ satisfying (3.5)}.

We shall look solutions of (2.3) in the form u = zε,ρ + w, with zε,ρ ∈ Zε and
w ⊥ zε,ρ. Letting P denote the orthogonal projection onto (Tzε,ρZ)⊥, the equation
I ′
ε(zε,ρ + w) = 0 is equivalent to the system

PI ′
ε(zε,ρ + w) = 0 (auxiliary equation), (3.6)

(Id − P )I ′
ε(zε,ρ + w) = 0 (bifurcation equation). (3.7)

Most of the paper is devoted to solve the auxiliary equation. In the last section we
deal with the bifurcation equation.

Some preliminary estimates are in order. First of all, as in [3, lemma 3.1], we find
that, for all ρ satisfying (3.5), the following expression holds:

‖zε,ρ‖ ∼ ε(1−n)/2. (3.8)

In the next two lemmas, we shall estimate ‖I ′
ε(zε,ρ)‖ and ‖[PI ′′

ε (zε,ρ)]−1‖. Let us
point out that, since zε,ρ has a uniform exponential decay at infinity, we can choose
ĉ and ϑ such that |zε,ρ(x)| < ĉ(1 + εr)−ϑ. Thus, in the following lemmas we may
suppose that

Iε(u) = 1
2‖u‖2 − 1

p + 1

∫
Rn

|u+|p+1 dx.

Lemma 3.2. For all ρ satisfying (3.5), the following expression holds:

‖I ′
ε(zε,ρ)‖ ∼ ε‖zε,ρ‖ ∼ ε(3−n)/2.

Proof. The same calculation as in [3, p. 437] yields

I ′
ε(zε,ρ)[v] = −(n − 1)

∫ ∞

0
rn−2z′

ε,ρv dr +
∫ ∞

0
rn−1[−z′′

ε,ρ + V (εr)zε,ρ − zp
ε,ρ]v dr.

(3.9)
Let us evaluate the first integral. Denote by K2δ = [R2δ, T2δ] the support of zε,ρ.
Since ρ satisfies (3.5), we may infer that r ∈ K2δ implies that εr ∈ [r∗ − 3δ, r∗ + 3δ],
namely that r ∼ ε−1. Hence,∫ ∞

0
rn−2z′

ε,ρv dr ∼ ε

∫ ∞

0
rn−1z′

ε,ρv dr = ε

∫
r∈K2δ

rn−1z′
ε,ρv dr.
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Moreover, the following inequalities hold:∣∣∣∣
∫

K2δ

rn−1z′
ε,ρv dr

∣∣∣∣ �
[∫

K2δ

rn−1v2 dr

]1/2[∫
K2δ

rn−1|z′
ε,ρ|2 dr

]1/2

� C1

[∫
K2δ

rn−1v2 dx

]1/2

‖zε,ρ‖.

From (3.4) and (3.5) it follows that 1 � V (εr),∀εr ∈ K2δ, and hence∫
K2δ

rn−1v2 dr �
∫

K2δ

rn−1V (εr)v2 dr � ‖v‖2.

In conclusion, we find that∫ ∞

0
rn−2z′

ε,ρv dr ∼ ε‖v‖ · ‖zε,ρ‖.

Similar arguments can be used to estimate the second integral in (3.9) and the
proof can be completed as in [3].

The following uniform estimate is one of the keys of the proof of theorem 2.1.

Lemma 3.3. PI ′′(zε,ρ) is a compact perturbation of the identity. Moreover,
PI ′′

ε (zε,ρ) is uniformly invertible on (Tzε,ρ
Z)⊥ for all zε,ρ ∈ Z, |εξ| � 1. Namely,

there exists C ′ > 0 such that if ε is sufficiently small, then ‖[PI ′′
ε (zε,ρ)]−1‖ � C ′.

Proof. The fact that PI ′′(zε,ρ) is a compact perturbation of the identity map has
been proved in [5, lemma 4]. We turn our attention to its uniform invertibility. By
direct computation, we have

I ′′
ε (zε,ρ)[z, z] =

∫
Rn

(|∇z|2 + V (εx)z2 − pzp+1) dx

=
∫

Rn

(|∇z|2 + V (εx)z2 − zp+1) dx + (1 − p)
∫

Rn

zp+1 dx

= I ′
ε(zε,ρ)[z] + (1 − p)

∫
Rn

zp+1 dx.

Recall that I ′
ε(zε,ρ)[z] � C̄ε‖z‖2 ∼ C̄ε2−n, and observe that∫

zp+1 ∼ ε1−n.

Therefore, I ′′
ε (zε,ρ)[z, z] � −c‖z‖2 for ε small.

We will use the notation

żε,ρ =
∂

∂ρ
zε,ρ(r) =

∂

∂ρ
[φε,ρ(r)UV (ερ)(r)].

It is easy to verify that

żε,ρ = τ

(
ε

δ
(r − ρ)

)(
εV ′(εr)

(
∂

∂V
UV (r − ρ)

)
− ∂

∂r
UV (r − ρ)

)

− ε

δ
τ ′

(
ε

δ
(r − ρ)

)
UV (r − ρ).
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Taking into account the definition of U and τ , we can conclude that żε,ρ ∼ −z′
ε,ρ.

This will be used later, at the end of the proof.
Define X = 〈zε,ρ, żε,ρ〉. We will show that the following inequality holds:

I ′′
ε (zε,ρ)[v, v] � c‖v‖2, ∀v ∈ X⊥.

Let us fix v ∈ X⊥, and suppose that ‖v‖ = 1. First, we claim that there exists
R ∈ (ε−1/4, ε−1/2) such that∫

R<||x|−ρ|<R+1
[|∇v|2 + v2] dx < 2ε1/2‖v‖2 = 2ε1/2. (3.10)

Recall that V (εx) � 1 in [R3δ, T3δ]. Therefore, it follows that∫
||x|−ρ|<ε−1/2+1

[|∇v|2 + v2] dx �
∫

||x|−ρ|<ε−1/2+1
[|∇v|2 + V (εx)v2] dx � 1.

Note that the sum

ε−1/4<R<ε−1/2∑
R∈N

∫
R<||x|−ρ|<R+1

[|∇v|2 + v2] dx � 1

has more than 1
2ε−1/2 summands (for ε small). Thus, it is always possible to choose

R ∈ N, R ∈ (ε−1/4, ε−1/2) so that (3.10) holds.
For such R > 0, define χR as a C∞ radial function verifying 0 � χR(r) � 1,

|∇χR(r)| � 2, and

χR(r) =

{
1 ||x| − ρ| < R,

0 ||x| − ρ| > R + 1.

We define v1 = χRv and v2 = v−v1. First of all, note that the subsequent estimates
of the norms of v1 and v2 hold:

‖v1‖2 −
∫

||x|−ρ|<R

[|∇v|2 + V (εx)v2] dx = O(ε1/2),

‖v2‖2 −
∫

||x|−ρ|>R+1
[|∇v|2 + V (εx)v2] dx = O(ε1/2).

Hence, ‖v1‖2 + ‖v2‖2 − 1 = O(ε1/2), and this implies that (v1, v2) = O(ε1/2). After
these preliminaries, we decompose the above into

I ′′
ε (zε,ρ)[v, v] = I ′′

ε (zε,ρ)[v1, v1] + I ′′
ε (zε,ρ)[v2, v2] + 2I ′′

ε (zε,ρ)[v1, v2]. (3.11)

The last term of the above equation can be estimated easily, as follows:

I ′′
ε (zε,ρ)[v1, v2] = (v1, v2) −

∫
R<||x|−ρ|<R+1

pzp−1v1v2 ∼ ε1/2.

As for the second term of (3.11), we have

I ′′
ε (zε,ρ)[v2, v2] = ‖v2‖2 −

∫
||x|−ρ|>R

pzp−1v2
2 .
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By using Hölder and Sobolev inequalities, and the exponential decay of z, we obtain

∫
||x|−ρ|>R

pzp−1v2
2 �

[∫
||x|−ρ|>R

(pzp−1)N/2
]2/N[∫

||x|−ρ|>R

v2∗
]2/2∗

� oε(‖v2‖)2,

and, thus,
I ′′
ε (zε,ρ)[v2, v2] ∼ ε1/2.

We now focus on the first term of (3.11). Observe that, since v1 has compact
support, it belongs to W 1,2(Rn). Actually, we have∫

Rn

v2
1 dx =

∫
||x|−ρ|<R+1

v2
1 dx �

∫
||x|−ρ|<R+1

V (εx)v2
1 dx � ‖v1‖2.

We are concerned with the estimate of

I ′′
ε (zε,ρ)[v1, v1] =

∫
Rn

[|∇v1|2 + [V (εx) − pzp−1
ε,ρ ]v2

1 ] dx

=
∫

||x|−ρ|<R+1
[|∇v1|2 + [V (ερ) − pzp−1

ε,ρ ]v2
1 ] dx

+
∫

||x|−ρ|<R+1
[V (εx) − V (εξ)]v2

1 dx.

Using the boundedness of V ′, we may infer that |V (εr) − V (ερ)| � Mε|r − ρ| �
2Mε1/2. Let

(u, v)ρ =
∫

R

[u′(r) · v′(r) + V (ερ)u(r)v(r)] dr

denote a scalar product in W 1,2(Rn), and let ‖u‖2
ρ = (u, u)ρ denote the associated

norm. Observe that ρ(n−1)/2‖v1‖ρ ∼ ‖v1‖. We now write v1 = φ + w, where φ ∈ X
and w⊥ρX, where ⊥ρ stands for orthogonality in the (·, ·)ρ sense. Let us show that
φ is small compared with w, so v1 turns out to be close to w. Note that φ is given
by

φ = (v1, zε,ρ)ρzε,ρ‖zε,ρ‖−2
ρ + (v1, żε,ρ)ρżε,ρ‖żε,ρ‖−2

ρ ,

We first show that |(v1, zε,ρ) − ρn−1(v1, zε,ρ)ρ| = oε(1)ρ(n−1)/2. Indeed,

|(v1, z) − ρn−1(v1, z)ρ| =
∣∣∣∣
∫

|r−ρ|<R+1
(rn−1 − ρn−1)v′

1(r)z
′
ε,ρ(r)

+
∫

|r−ρ|<R+1
[rn−1V (εr) − ρn−1V (ερ)]v1zε,ρ dx

∣∣∣∣
= oε(1)

∫
|r−ρ|<R+1

rn−1|v′
1(r)z

′
ε,ρ(r)| + rn−1v1(r)zε,ρ(r) dr

= oε(1)ρ(n−1)/2,

since ‖v1‖ � 1 + C
√

ε and ‖z‖ ∼ ρ(n−1)/2. Taking into account v = v1+v2 and v⊥X
with respect to the scalar product in E, we deduce that |(v1, zε,ρ)| = |(v2, zε,ρ)|. We
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then find that

|(v1, zε,ρ)| = |(v2, zε,ρ)|

�
∫

||x|−ρ|>R

[|∇v2 · ∇zε,ρ| + V (εx)|v2|zε,ρ] dx

�
(∫

Rn

|∇v2|2 dx

)1/2(∫
||x|−ρ|>R

|∇zε,ρ|2 dx

)1/2

+ C2

(∫
Rn

V (εx)|v2|2 dx

)1/2(∫
||x|−ρ|>R

z2
ε,ρ dx

)1/2

.

Recall that R > ε−1/4. Then, because of the uniform exponential decay of zε,ρ and
its derivatives, we find that |(v1, zε,ρ)| = oε(1). We then conclude that |(v1, zε,ρ)ρ| =
oε(1)ρ(1−n)/2. In the same way, we can estimate (v1, żε,ρ)ρ. From this we obtain
‖φ‖ = oε(1), ‖φ‖ρ = oε(1)ρ(1−n)/2.

We turn our attention to w. Note that ‖w‖ρ � Cρ(1−n)/2. From the expression of
żε,ρ, we can easily conclude that ‖z′

ε,ρ + żε,ρ‖ρ = oε(1). The non-degeneracy result
of [12] then implies that∫

R+

[w′(r)2 + (V (ερ) − pzp−1
ε,ρ )w(r)2] dr � c1‖w‖2

ρ − oε(ρ1−n) (3.12)

By reasoning as above, we can conclude that∫
Rn

[|∇w|2 + (V (εξ) − pzp−1
ε,ρ )2]w2 dx � c2ρ

n−1‖w‖2
ρ − oε(1) � c3‖w‖2 − oε(1).

From the previous computations, we deduce that

I ′′
ε (zε,ρ)[v, v] � c4‖v1‖2 + c5‖v2‖2 − oε(1).

Since ‖v1‖2 + ‖v2‖2 = 1 + O(ε1/2), we may infer that

I ′′
ε (zε,ρ)[v, v] � c6,

and the proof is completed.

The preceding lemma allows us to transform the auxiliary equation into a fixed-
point problem. Actually, on fixing zε,ρ, and letting

Sε = Sε,ρ : (Tzε,ρZ)⊥ �→ (Tzε,ρZ)⊥

be defined by
Sε(w) = w − [PI ′′

ε (zε,ρ)]−1(PI ′
ε(zε,ρ + w)),

equation (3.6) is equivalent to Sε(w) = w.

4. Fixed points of Sε

Fixed points of Sε are found in an appropriate subset of E. For m = a1/ε2, let us
set

u1(r) = r−σ, σ =
n − 2 +

√
(n − 2)2 + 4m

2
, (4.1)
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and, given c1 > 0, let Wε denote the set of w ∈ E such that the following pointwise
estimates hold:

|w(r)| � 2c1
√

ε exp{−δ/ε}, ∀r ∈ [0, R3δ], (4.2)

|w(r)| � c1
√

ε exp{−|r − R2δ|}, ∀r ∈ [R3δ, R2δ], (4.3)

|w(r)| � c1
√

ε
u1(r)

u1(T2δ)
, ∀r � T2δ. (4.4)

Next, let us also define

Γε = {w ∈ Wε, w ⊥ zε,ρ | ‖w‖ � c0ε‖zε,ρ‖}.

In the above definitions, c0 and c1 are positive constants to be defined (see equations
(4.9), (4.13)).

We will show that there exist c0, c1 > 0 such that Sε maps Γε into itself and is a
contraction there (see proposition 4.3, below).

Remark 4.1. The function u1 is a fundamental solution of

−∆u +
m

|x|2 u = 0,

to which equation (2.3) will be compared. Let us also point out that, in contrast
with [5], here it does not suffice to take m sufficiently large. Rather, we need to
choose m ∼ ε−2; it is this choice that allows us to prove that Sε(w), w ∈ Γε, has
the decay at infinity required in (4.4).

In the remainder of the paper, we will make use of the following result.

Lemma 4.2. For all ρ satisfying (3.5), all w ∈ Γε and all 0 � s � 1, the equality

‖I ′′
ε (zε,ρ + sw) − I ′′

ε (zε,ρ)‖ = o(εq/2), q = 1 ∧ (p − 1),

holds.

Proof. We can choose ĉ and ϑ in (3.2) such that |zε,ρ + w| < ĉ(1 + εr)−ϑ. We can
then assume that

Iε(u) = 1
2‖u‖2 − 1

p + 1

∫
Rn

|u+|p+1

and, using the notation q = 1 ∧ (p − 1), we have

|I ′′
ε (zε,ρ + sw)[v, v] − I ′′

ε (zε,ρ)[v, v]| � C1

∫
Rn

|(|zε,ρ| + |w|)p−1 − zp−1
ε,ρ |v2 dx

� C2

∫
Rn

|w|qv2 dx.

In order to estimate the last integral, we write∫
Rn

|w|qv2 dx =
∫

|x|�R3δ

|w|qv2 dx +
∫

R3δ�|x|�T3δ

|w|qv2 dx +
∫

|x|�T3δ

wqv2 dx.

(4.5)
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Let us evaluate the first integral on the right-hand side. We have

∣∣∣∣
∫

|x|�R3δ

|w|qv2 dx

∣∣∣∣ �
[∫

|x|�R3δ

v2∗
dx

]2/2∗[∫
|x|�R3δ

|w|qn/2 dx

]2/n

� C1‖v‖2
[∫

|x|�R3δ

|w|qn/2 dx

]2/n

.

Using (4.2) we find that∫
|x|�R3δ

|w|qn/2 dx � C2 exp
{

−C3

ε

}
|BR3δ

| � C4ε
−n exp

{
−C3

ε

}
,

and hence ∫
|x|�R3δ

|w|qv2 dx � C5ε
−n exp

{
−C3

ε

}
‖v‖2. (4.6)

Consider now the second integral on the right-hand side of (4.5). Using (4.12), we
get ∫

R3δ�|x|�T3δ

|w|qv2 dx � cεq/2
∫

R3δ�|x|�T3δ

v2 dx.

For x in the annulus R3δ � |x| � T3δ we obtain r0 < r∗ − 4δ � εr � r∗ + 4δ. As in
the proof of lemma 3.2, V (εr) � 1 for εr ∈ [r∗ − 4δ, r∗ + 4δ], and hence∫

R3δ�|x|�T3δ

v2 dx � C6‖v‖2,

which yields ∫
R3δ�|x|�T3δ

|w|qv2 dx � C7ε
q/2‖v‖2. (4.7)

Finally, for

r � T3δ = ρ +
3δ

ε

we obtain

|w(r)| � c1
√

ε
u1(r)

u1(T2δ)
.

Then∣∣∣∣
∫

|x|�T3δ

|w|qv2 dx

∣∣∣∣ � C8ε
q/2

∫
|x|�T3δ

(
u1(|x|)
u1(T2δ)

)q

v2 dx

� C8ε
q/2

[∫
Rn

v2∗
dx

]2/2∗[∫
|x|�T3δ

(
u1(|x|)
u1(T2δ)

)qn/2

dx

]2/n

� C8ε
q/2‖v‖2

[∫
|x|�T3δ

(
u1(|x|)
u1(T2δ)

)qn/2

dx

]2/n

.
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The last integral can be estimated as follows:∫
|x|�T3δ

(
u1(|x|)
u1(T2δ)

)qn/2

dx = T
σqn/2
2δ

∫
r�T3δ

rn−1r−σqn/2 dr

= T
σqn/2
2δ

T
n−σqn/2
3δ

σqn/2 − n
=

Tn
3δ

σqn/2 − n

(
T2δ

T3δ

)σqn/2

.

Since
T2δ

T3δ
� r∗ + 3δ

r∗ + 4δ
< 1 and σ ∼ ε−1,

the above expression tends to zero.
On substituting this inequality, (4.6) and (4.7) into (4.5), we obtain∣∣∣∣

∫
Rn

wqv2 dx

∣∣∣∣ � Cεq/2‖v‖2, q = 1 ∧ (p − 1), (4.8)

for some C > 0, and the lemma follows.

Proposition 4.3. Sε(Γε) ⊂ Γε, and is a contraction, provided that ε is sufficiently
small.

Proposition 4.3 is an immediate consequence of the following two lemmas.

Lemma 4.4. There exists c0 > 0 such that, for ε sufficiently small, we have

‖Sε(w)‖ � c0ε for all w ∈ Γε.

Moreover, Sε is a contraction in Γε.

Lemma 4.5. For all ε sufficiently small, we have Sε(Γε) ⊂ Wε, for every w ∈ Γε.

Proof of lemma 4.4. Let C̄ > 0 such that ‖I ′
ε(zε,ρ)‖ � C̄ε‖zε,ρ‖. Observe that, by

lemma 3.3, ‖[PI ′′
ε (zε,ρ)]−1‖ � C ′ for some C ′ > 0. Choose

c0 = 2C ′C̄, (4.9)

in the definition of Γε. We first compute S′
ε(w) for some w ∈ Γε. The equality

S′
ε(w)[v] = v − [PI ′′

ε (zε,ρ)]−1(PI ′′
ε (zε,ρ + w)[v])

holds. We apply PI ′′
ε (zε,ξ), and obtain

‖PI ′′
ε (zε,ρ)[S′

ε(w)[v]]‖ = ‖PI ′′
ε (zε,ρ)[v] − PI ′′

ε (zε,ρ + w)[v]‖ � Cε(1∧(p−1))/2‖v‖

where we have used lemma 4.2. Then, for any w1, w2 ∈ Γε, we use the mean value
theorem to get

Sε(w1) − Sε(w2) = S′
ε[sw1 + (1 − s)w2](w1 − w2),

for some s ∈ (0, 1). Since the sw1 + (1 − s)w2 belong to Γε, we find that

‖Sε(w1) − Sε(w2)‖ = oε(1)‖w1 − w2‖. (4.10)

Equation (4.10) yields the contraction property for Sε.
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Next, we show that ‖Sε(w)‖ � c0ε for any w ∈ Γε. Using (4.10) with w1 = w and
w2 = 0, we obtain

‖Sε(w) − Sε(0)‖ = oε(1)‖w‖.

On the other hand,

‖Sε(0)‖ = ‖[PI ′′
ε (zε,ρ)]−1(PI ′

ε(zε,ρ))‖ � C ′‖PI ′
ε(zε,ρ)‖ � C ′C̄ε‖zε,ρ‖.

Hence, we finally deduce

‖Sε(w)‖ � ‖Sε(w) − Sε(0)‖ + ‖Sε(0)‖
� oε(1)‖w‖ + C ′C̄ε‖zε,ρ‖ � (oε(1)c0 + C ′C̄)‖εzε,ρ‖
� c0ε‖zε,ρ‖.

The proof of lemma 4.4 is thus completed.

Proof of lemma 4.5. Take w ∈ Γε, and define w̃ = Sε(w). We shall prove that w̃
satisfies (4.2)–(4.4).

By recalling the definition of Sε, the equation w̃ = Sε(w) can be rewritten as

− ∆w̃ + V (εx)w̃ − pzp−1
ε,ρ w̃

= ∆zε,ρ − V (εx)zε,ρ + [(zε,ρ + w)+]p − pzp−1
ε,ρ w + η(∆żε,ρ + V (εx)żε,ρ),

where η = ‖żε,ξ‖−2(I ′′
ε (zε,ρ)[w̃ − w] + I ′

ε(zε,ρ + w), żε,ξ). Recall that zε,ρ = 0 for
any r /∈ [R2δ, T2δ]. Therefore, w̃ satisfies the equation

−∆w̃(x) + V (εx)w̃(x) = [w+(x)]p, ∀|x| /∈ [R2δ, T2δ]. (4.11)

By using the radial lemma [6, lemma A:III], we get the following inequality for any
r � R3δ:

|w̃(r)| � r(2−n)/2‖w̃‖ � c0εr
(2−n)/2‖zε,ρ‖ � C0

√
ε. (4.12)

Given such a constant C0, we choose c1 in the definition of Γe as

c1 = 2C0. (4.13)

We will first prove inequalities (4.2) and (4.3). In order to do that, we define

V̂ (r) =

{
0, r ∈ [0, R3δ],
1, r ∈ (R3δ, R2δ].

Because of the assumptions on V , it holds that V̂ (r) � V (εr). Hence, the maximum
principle implies that 0 � w̃ � ŵ in B(0, R2δ), where ŵ is the solution of

∆ŵ + V̄ (|x|)ŵ = [w+(x)]p, x ∈ B(0, R2δ),

ŵ(x) = w̃(x) � C0
√

ε, |x| = R2δ.

}
(4.14)

Therefore, it suffices to prove inequalities (4.2) and (4.3) for ŵ. Since w satis-
fies (4.2), ∆ŵ � ζ, where

ζ =
(

2c1
√

ε exp
{

−δ

ε

})p

.
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We then find that ŵ satisfies

ŵ(R3δ) � ŵ(r) � ŵ(R3δ) + ζ
R2

3δ − r2

2n
, (4.15)

and this implies that

0 � ŵ′(R3δ) � −R3δ

n

(
2c1

√
ε exp

{
−δ

ε

})p

.

This estimate will be very useful in what follows.
We now study equation (4.14) in the annulus R3δ < r < R2δ; in such a domain,

ŵ satisfies

−∆ŵ + ŵ = w+(r)p, R3δ < r < R2δ,

with the following conditions on the boundary:

ŵ(R2δ) < C0
√

ε, 0 � ŵ′(R3δ) � −R3δ

n
ζp.

Let ϕ1 and ϕ2 be the fundamental solutions of the problem −∆u+u = 0, that is

ϕ1(r) = r1−n/2BK

(
n − 2

2
, r

)
, ϕ2(r) = r1−n/2BI

(
n − 2

2
, r

)
,

where BI and BK are the modified Bessel functions of the first and second kind,
respectively. From the basic properties of the Bessel functions (see [9, §§ 5.7 and
5.16.4]), we have

ϕ1(r) ∼ 1√
2
r(1−n)/2e−r, ϕ2(r) ∼ 1√

2
r(1−n)/2er, r → +∞,

ϕ′
1(r)

ϕ1(r)
∼ −1,

ϕ′
2(r)

ϕ2(r)
∼ 1, r → +∞,

ϕ1(r)ϕ′
2(r) − ϕ′

1(r)ϕ2(r) = r1−n, ∀r > 0.

Using the preceding estimates, we can write ŵ by means of the variation of con-
stants:

ŵ(r) = ϕ1(r)
∫ r

R3δ

sn−1ϕ2(s)[w+(s)]p ds

− ϕ2(r)
∫ r

R3δ

sn−1ϕ1(s)[w+(s)]p ds + aϕ1(r) + bϕ2(r),

for any r ∈ [R3δ, R2δ] and some constants a = aε, b = bε. From these and the above
estimate of ŵ′(R3δ), we get

|ŵ′(R3δ)| = |aϕ′
1(R3δ) + bϕ′

2(R3δ)| � R3δ

n
ζp. (4.16)
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Next, let us compute ŵ(R2δ), which must be smaller than C0
√

ε:

ŵ(R2δ) = ϕ1(R2δ)
∫ R2δ

R3δ

sn−1ϕ2(s)[w+(s)]p ds

− ϕ2(R2δ)
∫ R2δ

R3δ

sn−1ϕ1(s)[w+(s)]p ds + aϕ1(R2δ) + bϕ2(R2δ)

= ϕ1(R2δ)ϕ2(R2δ)
[ ∫ R2δ

R3δ

sn−1 ϕ2(s)
ϕ2(R2δ)

[w+(s)]p ds

−
∫ R2δ

R3δ

sn−1 ϕ1(s)
ϕ1(R2δ)

[w+(s)]p ds

]
+ aϕ1(R2δ) + bϕ2(R2δ)

∼ 1
2Rn−1

2δ

[∫ R2δ

R3δ

sn−1 ϕ2(s)
ϕ2(R2δ)

[w+(s)]p ds −
∫ R2δ

R3δ

sn−1 ϕ1(s)
ϕ1(R2δ)

[w+(s)]p ds

]
+ aϕ1(R2δ) + bϕ2(R2δ)

We observe that

ϕ1(s)
ϕ1(R2δ)

∼ e−s+R2δ ,
ϕ2(s)

ϕ2(R2δ)
∼ es−R2δ , ∀s ∈ (R3δ, R2δ).

We now remark that, since w satisfies (4.3), the integral expressions above both
have order

√
ε

p. By taking into account the above expression and the estimate
(4.16), we obtain

|b| = |bε| �
√

εC0e−R2δ , |a| = |aε| � R3δ

n
ζpeR3δ .

Reasoning as above, we can now conclude that, for any R ∈ [R3δ, R2δ],

ŵ(R) = ϕ1(R)
∫ R

R3δ

sn−1ϕ2(s)[w+(s)]p ds

− ϕ2(R)
∫ R

R3δ

sn−1ϕ1(s)[w+(s)]p ds + aϕ1(R) + bϕ2(R)

∼ 1
2Rn−1

∫ R

R3δ

sn−1
[

ϕ2(s)
ϕ2(R)

− ϕ1(s)
ϕ1(R)

]
[w+(s)]p ds + aϕ1(R) + bϕ2(R).

Recall that w satisfies (4.3), which implies that

[w+(r)]p � c1ε
p/2ep(r−R2δ) = c1ε

p/2ep(r−R)ep(R−R2δ).

Therefore, reasoning as above, we see that the integral expressions above are of
an order smaller than εp/2ep(R−R2δ). Finally, the term aϕ1(R) + bϕ2(R) is of order

aϕ1(R) + bϕ2(R) � R3δ

n
ζpeR3δe−R +

√
εC0e−R2δeR

� R3δ

n
εp/2e(R3δ−R2δ)peR3δ−R + C0

√
εeR−R2δ ,

which implies that ŵ satisfies (4.3).
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In particular, we obtain ŵ(R3δ) � c1
√

εe−δ/ε. By inserting this into equation
(4.15), we obtain

ŵ(r) � c1
√

εe−δ/ε + ζ
R2

3δ

2n
� 2c1

√
εe−δ/ε, ∀r < R3δ,

that is, ŵ satisfies (4.2).
Finally, let us prove inequality (4.4). It is easy to check (see [5]) that the funda-

mental solutions of
−∆u +

m

|x|2 u = 0

are

u1(r) = r−σ, u2(r) = r2−n+σ, σ =
n − 2 +

√
(n − 2)2 + 4m

2
.

Observe that if r > T2δ, w̃(r) � w̆(r), where w̆ is defined by

∆w̆ +
m

|x|2 w̆ = f(r)p, |x| > T2δ,

w̆(x) = C0
√

ε, |x| = T2δ,

w̆(x) → 0 x → ∞,

where m = a1/ε2 (a1 is given by (2.1)) and

f(r) =
[
c1

√
ε

u1(r)
u1(T2δ)

]
.

Note that, with this choice of m, we have σ ∼ ε−1.
Then, w̆ is given by the variation of constants:

w̆(r) =
1
d
u1(r)

∫ r

T2δ

sn−1u2(s)fp(s) ds

− 1
d
u2(r)

∫ r

T2δ

sn−1u1(s)fp(s) ds + au1(r) + bu2(r), (4.17)

where
d = dε =

√
(n − 2)2 + 4m ∼ ε−1

and a = aε, b = bε are constants. Observe that, since w satisfies (4.2), both the
integrals above are uniformly bounded for any r. Moreover, the condition w̆(r) → 0,
r → +∞, implies that

b =
∫ +∞

T2δ

u1(s)fp(s)sn−1 ds.

Therefore, w̆ can be rewritten as

w̆(r) =
1
d
u2(r)

∫ r

T2δ

sn−1u1(s)fp(s) ds+
1
d
u1(r)

[∫ +∞

r

sn−1u2(s)fp(s) ds+au1(r)
]
.

Let us compute b explicitly:

b = cp
1ε

p/2
∫ +∞

T2δ

s−σs−pσT pσ
2δ sn−1 ds = cp

1ε
p/2 T−σ+n

2δ

(p + 1)σ − n
.
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Next, to obtain a, we use the boundary condition w̆(T2δ) = C0
√

ε. Precisely, from
(4.17) we get

w̆(T2δ) = C0
√

ε =
1
d
(aT−σ

2δ + bT 2−n+σ
2δ ),

which yields
a = dC0

√
εT σ

2δ − bT 2−n+2σ
2δ . (4.18)

Finally, in order to prove that w̆ satisfies (4.4), we study the expression

w̆(r)
u1(r)

u1(T2δ)

as follows:

w̆(r)
u1(r)

u1(T2δ) = T−σ
2δ

1
d

∫ r

T2δ

sn−1u2(s)fp(s) ds

+ T−σ
2δ

1
d

[
u2(r)
u1(r)

∫ +∞

r

sn−1 u1(s)
u2(s)

u2(s)fp(s) ds + a

]
.

Taking into account the fact that u1(s)/u2(s) is decreasing, we get

w̆(r)
u1(r)

u1(T2δ) � T−σ
2δ

1
d

∫ r

T2δ

sn−1u2(s)fp(s) ds

+ T−σ
2δ

1
d

[∫ +∞

r

sn−1u2(s)fp(s) ds + a

]
,

and, thus,

w̆(r)
u1(r)

u1(T2δ) � T−σ
2δ

1
d

[
cp
1
√

ε
p
T pσ

2δ

∫ +∞

T2δ

sn−1s2−n+σs−pσ ds + a

]
.

We use (4.18) to estimate the expression

T−σ
2δ

1
d
a = T−σ

2δ

[
C0

√
εT σ

2δ − 1
d
bT 2−n+2σ

2δ

]

= C0
√

ε − T−σ
2δ

1
d
cp
1ε

p/2 T−σ+n
2δ

(p + 1)σ − n
T 2−n+2σ

2δ

= C0
√

ε − cp
1ε

p/2 1
d
T 2

2δ

1
(p + 1)σ − n

� C0
√

ε.

Moreover, we have

T−σ
2δ

1
d
cp
1ε

p/2T pσ
2δ

∫ +∞

T2δ

s1−(p−1)σ ds =
1
d
cp
1ε

p/2T
(p−1)σ
2δ

T
2−(p−1)σ
2δ

(p − 1)σ − 2

= cp
1ε

p/2 1
d

1
(p − 1)σ − 2

T 2
2δ.

https://doi.org/10.1017/S0308210500004789 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500004789


906 A. Ambrosetti and D. Ruiz

Since T2δ ∼ ε−1, σ ∼ ε−1 and d ∼ ε−1, the above expression is also smaller than
C0

√
ε, provided ε is small enough. In conclusion we have

w̆(r) � 2C0
√

ε
u1(r)

u1(T2δ)
,

which proves (4.4).

5. Completion of the proof of theorem 2.1

According to proposition 4.3, for every zε,ρ ∈ Z, the auxiliary equation (3.6) has
a locally unique solution wε,ρ ∈ Γε. It remains to solve the bifurcation equation,
(Id − P )I ′

ε(zε,ρ + wε,ρ) = 0, obtained by inserting wε,ρ into (3.7). It is known (see
[1, theorem 2.12]) that, in order to find a solution of the bifurcation equation, it
suffices to find a stationary point of the reduced functional

Φε(ρ) = Iε(zε,ρ + wε,ρ).

We follow [3] closely. The equality

Φε(ρ) = Iε(zε,ρ) + I ′
ε(zε,ρ)[wε,ρ] + O(‖wε,ρ‖2)

holds. Using lemma 3.2 and the fact that wε,ρ ∼ ε‖zε,ρ‖ ∼ ε(3−n)/2 (see the defini-
tion of Γε and (3.8)), we deduce that I ′

ε(zε,ρ)[wε,ρ] + O(‖wε,ρ‖2) = O(ε3−n). Then,
the same calculation as in [3, § 5,p. 449] yields

Φε(ρ) = C0ρ
n−1V θ(ερ) + O(ε3−n), C0 =

1
p + 1

∫
Up+1.

Thus,
εn−1Φε(ρ) = C0M(ερ) + O(ε2),

and the maximum (or minimum) r∗ of M gives rise to a maximum (or minimum)
ρε ∼ r∗/ε of Φε. It follows that uε = zρε,ε + wρε,ε is a critical point of Iε, defined
in (3.3). Since zε,ρ has a uniform exponential decay at infinity and wε,ρ belongs to
Γε, there exist ĉ and ϑ > 0 such that |uε(r)| � ĉ(1+ε|x|)−ϑ and, thus, according to
remark 3.1, uε is a radial solution of (2.3). Consequently, uε(r/ε) is a radial solution
of (1.2) and, from uε(r) ∼ U(r − r∗/ε), it follows that uε(r/ε) ∼ U((r − r∗)/ε)
concentrates near the sphere r = r∗ (here U stands for UV (r∗)). This completes the
proof of theorem 2.1.

Remark 5.1. The fact that uε(r/ε) ∼ U((r − r∗)/ε) makes it clear that the solu-
tions found in theorem 2.1 have the same behaviour as those in [3]. On the other
hand, the peaks of the solutions found in [7, 8] become small as ε → 0. As antici-
pated after the statement of theorem 2.1, this difference is due to the fact that in
the present case the concentration arises in the region where V (r) > 0.
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