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The canonical problem of transonic dense gas flows past two-dimensional compression/
expansion ramps has recently been investigated by Kluwick & Cox (J. Fluid Mech.,
vol. 848, 2018, pp. 756–787). Their results are for unconfined flows and have to be
supplemented with solutions of another canonical problem dealing with the reflection
of disturbances from an opposing wall to finally provide a realistic picture of flows
in confined geometries of practical importance. Shock reflection in dense gases for
transonic flows is the problem addressed in this paper. Analytical results are presented
in terms of similarity parameters associated with the fundamental derivative of gas
dynamics (Γ ), its derivative with respect to the density at constant entropy (Λ) and
the Mach number (M) of the upstream flow. The richer complexity of flows scenarios
possible beyond classical shock reflection is demonstrated. For example: incident
shocks close to normal incidence on a reflecting boundary can lead to a compound
shock–wave fan reflected flow or a pure wave fan flow as well as classical flow
where a compressive reflected shock attached to the reflecting boundary is observed.
With incident shock angles sufficiently away from normal incidence regular reflection
becomes impossible and so-called irregular reflection occurs involving a detached
reflection point where an incident shock, reflected shock and a Mach stem shock
which remains connected to the boundary all intersect. This triple point intersection
which also includes a wave fan is known as Guderley reflection. This classical result
is demonstrated to carry over to the case of dense gases. It is then finally shown that
the Mach stem formed may disintegrate into a compound shock–wave fan structure
generating an additional secondary upstream shock. The aim of the present study
is to provide insight into flows realised, for example, in wind tunnel experiments
where evidence for non-classical gas dynamic effects such as rarefaction shocks is
looked for. These have been predicted theoretically by the seminal work of Thompson
(Phys. Fluids, vol. 14 (9), 1971, pp. 1843–1849) but have withstood experimental
detection in shock tubes so far, due to, among others, difficulties to establish purely
one-dimensional flows.
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132 A. Kluwick and E. A. Cox

1. Introduction
The possibility that solutions of the governing equations for compressible inviscid

flows may exhibit jump discontinuities was proposed by Stokes (1848). Following
severe criticism by, among others, Rayleigh, in 1877 the proposal was retracted by
Stokes. Arguments in support of shock discontinuities were however provided by
Earnshaw (1860) and by Rankine (1870) and Hugoniot (1887, 1889) and form the
basis of the present theory of jump discontinuities or shocks. Readers interested in the
history of these early developments are referred to the historical reviews of Johnson
& Chéret (1998) and Kluwick (2018). The main point to be made in this connection
has been formulated most clearly in the paper ‘A History of Shock Waves’ by Krehl
(2001). In summary:

‘The puzzling shock wave, characterised by a stepped wave front, was
difficult to accept by early naturalists because it involved the abandonment
of the principle ‘Natura non facit saltus’. Surprisingly, however, the
problem was tackled neither by experimentalists nor philosophers but rather
by mathematical physicists. Jouget wrote: “the shock wave represents a
phenomenon of rare peculiarity such that it has been uncovered by the pen
of mathematicians, first by Riemann, then by Hugoniot. The experiments
followed afterwards”’.

This statement which then applied exclusively to the class of perfect gases now
is also known to hold for gases having arbitrary equations of state. This is due to
more recent developments starting with the pioneering work by Bethe (1942). Most
importantly he (obviously being unaware of earlier work by Becker (1922)) recognised
that shocks may be of expansive rather than compressive type in fluids which exhibit
regions of negative isentropic curvature in the pressure, specific volume diagram. In
addition he also recognised that this is possible for fluids having large values of
specific heat at constant volume (cv) relative to the universal gas constant (R), i.e.
having complex molecules with a large number of internal degrees of freedom. An
estimate based on the van der Waals equation of state indicated that such shocks may
form in fluids if cv/R> 17.5 (a result obtained slightly later also by Zeldovich (1946)).
A result which Bethe considered unrealistic. This point of view was contested later
by Thompson and coworkers who identified a number of candidates for dense gases
which might exhibit negative isentropic curvature in the general neighbourhood of
the thermodynamic critical point (see Thompson (1971) and Thompson & Lambrakis
(1973)). Measures of isentropic curvature had already been proposed earlier (Duhem
1909) but its non-dimensional version proposed by Thompson (1971) namely

Γ (ρ, s)=
1
c
∂(cρ)
∂ρ

∣∣∣∣
s

, (1.1)

where ρ, s and c are respectively fluid density, entropy and sound speed, is now
commonly used. As Γ plays a predictive role in most areas of compressible flows
it is frequently referred to as the fundamental derivative of gas dynamics. When Γ is
small its variation with density ρ becomes important in determining the nature of the
flow and this is given by the parameter

Λ(ρ, s)= ρ
∂Γ

∂ρ

∣∣∣∣
s

. (1.2)
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Weak shock reflection 133

Because of the pioneering research of Bethe, Zel’dovich and Thompson it is now
common to identify fluids that exhibit negative Γ regions as BZT-fluids.

In passing we mention that theoretical work also suggests a second mechanism
which generates states having Γ < 0 in the two phase region close to the thermo-
dynamic critical point. This second mechanism is associated with the divergence of the
isochoric heat capacity as the thermodynamical critical point is approached, see e.g.
Kluwick (2001) and the more recent study Nannan, Guardone & Colonna (2013). In
what follows we exclude critical point phenomena and concentrate on effects caused
by high molecular complexity in the single phase region.

The analysis and results presented in this paper are for fluid flows in the pressure,
specific volume (V) plane close to the Γ = 0 curve. For particular BZT fluids such as
PP10 (C13F22) this curve has been computed based on sophisticated model equations
of state. The highlighted gas PP10 has a complex fluorinated molecular structure
and has been used as a working fluid in BZT shock tube experiments, (Fergason,
Guardone & Argrow 2003). Qualitative estimates of pressure, specific volume and
temperature associated with a negative Γ region have also been obtained for different
BZT fluids using various thermodynamic models that includes the Martin–Hou,
Soave–Redlich–Kwong and Peng–Robinson model equations of state, see Guardone,
Vigevano & Argrow (2004). Strong agreements between computational models are
observed and the negative Γ region of a BZT fluid is estimated to be within the
ranges 0.75<P/Pc< 1.0, 1.4<V/Vc< 2.5 and 0.96<T/Tc< 1.01 where the subscript
c denotes critical point values. BZT fluid flows in experiments that extend into these
ranges, crossing the Γ = 0 curve, are expected to exhibit phenomena similar to those
described in this paper.

We should note that by assuming Λ=O(1) we exclude a small region of the P, V
plane lying close to where the Γ = 0 curve is tangent to the isentrope. Modelling the
flow in this region requires addition terms in the derived model equations similar to
those obtained in Kluwick (1993) for transonic nozzle flow.

Extensive theoretical studies elaborating on the non-classical and often counter-
intuitive behaviour of BZT fluids, including the possible formation of rarefaction
shocks, followed the stimulating work of Thompson (1971). Early investigations
concentrated on unsteady flow phenomena which are not at the core of the present
study. Readers interested in this field of research are referred to recent reviews,
(Kluwick 2017, 2018). The present study focuses on a well-defined specific problem
of steady inviscid dense gas flow and, therefore, is not intended to provide a complete
account of the rapidly growing literature in general. To put our work in perspective,
however, we briefly address important other areas such as unconfined flows, flows past
single airfoils as well as nozzle and cascade configurations which have been studied
among others by Cramer & Tarkenton (1992), Cramer & Fry (1993), Kluwick (1993),
Monaco, Cramer & Watson (1997), Wang & Rusak (1999), Rusak & Wang (2000),
Cinella & Congedo (2005), Congedo, Corre & Cinella (2007), Guardone, Zamfirescu
& Colonna (2010), Gori, Vimercati & Guardone (2017), Vimercati, Kluwick &
Guardone (2018).

Unfortunately, efforts to support the theoretical predictions that rarefaction shocks
may form in negative Γ fluids by experimental evidence have failed so far. But
although fully developed single phase planar rarefaction shocks have not yet been
observed in shock tubes, some recent work carried out at the FAST (Flexible
Asymmetric Shock Tube) facility of the DTU in Delft points to the existence of
‘embryo’ negative Γ shocks, (Mathijssen 2017). This work, however, also reveals
significant challenges for the search of the ‘holy grail’ of rarefaction shocks using
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134 A. Kluwick and E. A. Cox

shock tubes. Thermodynamic states which can be realised at present have |Γ | � 1,
i.e. isentropes just barely enter the negative Γ region. Rarefaction shocks expected
to form thus will be weak and extremely sensitive to disturbances resulting from
deviations from one-dimensional flow conditions caused primarily by fast opening
devices such as punched diaphragms or valves. In contrast, experimental investigations
of shocks under steady flow conditions will not be contaminated by such disturbances
and therefore represent a promising alternative – hence the motivation for the present
paper where the canonical problem of shock reflection is of primary interest. The
associated wave reflection pattern then results from two building blocks – oblique
shock fronts and centred wave fans which simplifies both the theoretical analysis and
the interpretation of experimental data.

A complete picture of phenomena to be expected in the limit of small disturbances
with special emphasis on the transonic flow regime where dense gas effects are most
pronounced has recently been given by Kluwick & Cox (2018), while fully nonlinear
solutions have been obtained numerically by Vimercati et al. (2018). Their results
are for an oblique shock in an unconfined flow and have to be supplemented with
solutions of another canonical problem dealing with the reflection of disturbances from
an opposing solid wall to finally provide a realistic picture of phenomena arising in
confined geometries of practical importance.

The present study of the reflection problem is based on the assumptions formulated
in Kluwick & Cox (2018) which are briefly summarised in § 2. Extensions required
to treat shock reflections are also derived in § 2, where it is shown that solutions
depend on a set of three non-dimensional parameters which characterise, respectively,
the strength of the incoming shock, the Mach number range where transonic effects
are of importance and the influence of dense gas behaviour. Based on these parameters
different regimes of regular and irregular reflections are identified and analysed in
§§ 3 and 4. Finally § 5 summarises the main achievements of the present work and
addresses open questions which require further efforts.

2. Formulation
We consider the problem of steady shock wave reflection in a channel as sketched

in figure 1. Uniform supersonic flow is incident on a thin wedge located in a channel
wall and the shock wave generated is reflected off the opposite facing wall. The
channel is of width H, the wedge has an inclination angle θ ≈ aδ � 1 and the
upstream supersonic uniform flow u = (u∞, 0) is aligned with the x axis and the
channel axis. The wedge geometry introduces a small asymptotic parameter δ > 0
for the problem with the order-one parameter a providing, in the asymptotic model,
a measure of the inclination of the wedge. The flow generated by the wedge is
described in terms of the velocity u= (u, v) non-dimensionalised with the free-stream
velocity and involves a perturbed velocity with components (ũ, ṽ) given by

u
u∞
= 1+

δ2/3

Γ
1/3
∞

ũ+ o(δ1/2), (2.1)

v

u∞
= δ sgn(Γ∞)ṽ + o(δ), (2.2)

where we have assumed that Γ given by (1.1) evaluated in the free-stream reference
state and denoted by Γ∞ is O(δ1/2). This perturbed flow (ũ, ṽ) can be shown to satisfy
the transonic small disturbance equations formulated here for BZT fluids as

∂j
∂ξ
+
∂ṽ

∂η
= 0, j=−K1ũ− ũ2

+
K2

3
ũ3, (2.3a,b)
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H

x

u∞

y = a∂x

œ

y

FIGURE 1. Flow geometry for reflection of a plane shock generated by a wedge located
at x= 0, y= 0 with inclination aδ > 0 in a channel of width H.

∂ ũ
∂η
−
∂ṽ

∂ξ
= 0, (2.4)

with the scaled non-dimensional channel coordinates

ξ = δ−1/3
|Γ∞|

−1/3 x
H
, η=

y
H
, δ� 1, (2.5a,b)

which account for rapid variations in the x coordinate compared to y, consistent with
the near normal orientation of incident and reflected shocks.

The order-one similarity parameters K1 and K2 are given by

K1 =
M2
∞
− 1

(δΓ∞)2/3
, K2 =

δ2/3Λ∞

Γ
4/3
∞

, (2.6a,b)

where K1 is a rescaled transonic similarity parameter with M∞ = u∞/c∞ the Mach
number of the unperturbed upstream flow defined using c∞ the upstream unperturbed
sound speed. The parameter K2 with Λ∞ =Λ(ρ∞, s∞)= O(1) measures the relevant
importance of cubic and quadratic nonlinearity, see Cramer & Tarkenton (1992) for
details. The choice of scalings leading to (2.3)–(2.6) ensure that the formulation
reduces to the classical case when Γ∞ = O(1) see Cole & Cook (1986). Equations
(2.3)–(2.6) were first derived in Cramer & Tarkenton (1992) in the context of steady
transonic flow over thin airfoils and more recently in Kluwick & Cox (2018) for flow
over a wedge.

To the authors’ knowledge evolution equations exhibiting both quadratic and cubic
nonlinearity were first studied for the simpler case of unsteady planar waves, e.g.
Cramer & Kluwick (1984). Extensions to more complex geometries are discussed in
Kluwick (1991) which also includes an example of purely cubic nonlinearity, see also
Lee-Bapty & Crighton (1987).
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136 A. Kluwick and E. A. Cox

Just as in the classical case the modified transonic small disturbance equations (2.3),
(2.4) arises as a distinguished asymptotic limit for the Euler equations leading to the
estimates

u− u∞
u∞

=O(δ1/2),
v

u∞
=O(δ), M2

∞
− 1=O(δ), (2.7a−c)

and differing from the classical results due to the assumption that Γ∞ = O(δ1/2)

and Λ∞ = O(1) which ensures that both K1 and K2 are O(1). Consistent with the
asymptotic scalings in (2.7) we construct solutions of (2.3), (2.4) satisfying the
asymptotic boundary conditions

on η= 0 : ṽ = 0, ξ < 0, (2.8a)
ṽ = a sgn(Γ∞), ξ > 0, (2.8b)

on η= 1 : ṽ = 0,−∞< ξ <∞. (2.8c)

In other words solutions to the transonic small disturbance equations (2.3), (2.4)
are sought so that the incident shock generated by the wedge deflects the flow to
ṽ= a sgn(Γ∞). After reflection from the boundary at η= 1 the flow must then satisfy
the downstream condition ṽ = 0.

The basic building blocks used to construct the flows generated include shock waves
and centred simple waves. If we first consider shock waves: denoting the jump in a
flow property β across a shock as [β] = β2 − β1, where subscripts 1 and 2 reference
upstream and downstream states, then it is readily established that across a shock we
have

[ṽ]

[ũ]
=±

√
−
[ j]
[ũ]
, j=−K1ũ− ũ2

+
K2

3
ũ3. (2.9a,b)

Details can be found in Kluwick & Cox (2018). It is useful to introduce a scaled
Mach number for the flows associated with a shock jump. As shown in Kluwick &
Cox (2018) the local Mach number M satisfies

2
(M − 1)
(δΓ∞)2/3

=K1 + 2ũ−K2ũ2
=−

dj
dũ
. (2.10)

With supersonic flow upstream, shock jumps described by (2.9) may involve
supersonic–supersonic or supersonic–subsonic jump transitions as calculated
from (2.10).

The so-called shock polar curve is a plot derived from (2.9) of all possible
downstream states (ũ2, ṽ2) that can be connected to a given fixed upstream
state (ũ1, ṽ1) by a shock jump. This is illustrated in figure 2(a) for the case
K1 = 1,K2 =−0.8 and upstream state ũ1 = 0, ṽ1 = 0 i.e. we plot

ṽ2(ũ2)=−ũ2

√
K1 + ũ2 −

K2

3
ũ2

2. (2.11)

With decreasing values of the downstream velocity ũ2, i.e. increasing shock strength,
we see a shock transition S1 from a supersonic–supersonic shock to a supersonic–
subsonic shock S2.
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M > 1 M < 1

S3

S2

S2

S1

S1

Sso

Sso

M > 1

u2
¡

uso
¡

√2
¡

-2 -1

1

1

1

˙

1

1

˙

1 ≈

≈

≈

1

˙0

(a)

(b)

(c)

(d)

FIGURE 2. (a) Shock polar for K1 = 1, K2 = −0.8 with the construction of shocks
S1, S2, Sso, S3 of increasing strength. The shock Sso corresponds to downstream sonic
conditions ũ2 = ũso and the possible shock S3 violates the speed ordering condition. In
(b–d) the corresponding shocks in the ξ, η plane are plotted with the shocks shown in (a)
to be orthogonal to the shock chord (Rayleigh line) in the polar plot.

If the shock surface is located at η = ηs(ξ) then integrating (2.3), (2.4) across the
shock discontinuity leads to a shock slope given by

dηs

dξ
=∓

1√
−
[ j]
[ũ]

, (2.12)

where we observe the useful geometric construction that the slope of the chord in
the (ũ, ṽ) hodograph plane, connecting upstream states (ũ1, ṽ1) to downstream states
(ũ2, ṽ2), given by [ṽ]/[ũ] in (2.9) is orthogonal to the shock slope dηs/dξ in the (η, ξ)
plane with appropriately chosen signs. This construction is illustrated in figure 2(a)
and the orientation of the shocks S1, S2 in the physical (ξ , η) plane is shown in
figures 2(b) and 2(c).

Not all jump discontinuities described by (2.9) lead to physically acceptable shock
solutions. We require in addition the imposing of criteria to eliminate non-physical
solutions. A fundamental requirement is that that entropy does not decrease across a
shock i.e. [s]> 0 which leads to the constraint ũ2 6 ũ1, see Kluwick & Cox (2018).
Only portions of the solution curve of (2.9) satisfying the entropy jump condition
are plotted in figure 2(a). It was shown by Cramer & Kluwick (1984) in the context
of BZT fluids with |Γ | � 1 and Λ = O(1) that the entropy condition is too weak
to rule out certain inadmissible supersonic–supersonic shock discontinuities, where
inadmissibility is understood in terms of shocks for which no thermoviscous profile
can be constructed. It was shown that in addition a wave speed ordering condition
must be imposed.
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138 A. Kluwick and E. A. Cox

We develop this condition, applicable to supersonic–supersonic shock jumps, by first
noting that characteristics of (2.3), (2.4) have slopes in the (ξ , η) plane given by

dη
dξ
=∓

1√
−

dj
dũ

, (2.13)

and we then require that the shock slope lies between the characteristic slopes of flow
states generating the shock i.e.√

−
dj
dũ

∣∣∣∣
1

>

√
−
[ j]
[ũ]

>

√
−

dj
dũ

∣∣∣∣
2

. (2.14)

Results are stated here for forward orientated waves (i.e. dη/dξ > 0) and holding
for −dj/dũ|1,2 > 0 which ensures that the characteristics are real and the flow is
supersonic ahead and behind the shock. Shocks where one of the equalities in (2.14)
holds are termed ‘sonic shocks’, see Kluwick (2001). Equation (2.14) is recognised as
the Lax entropy condition and when one of the equalities is satisfied the shocks are
also referred to as a left or right contact shocks, see Dafermos (2005). The possibility
of ‘sonic shocks’ (contact shocks) occurring has no classical gas dynamics counterpart
– the shock condition given in (2.14) reduces on setting K2 = 0 to√

K1 + 2ũ1 >
√

K1 + ũ1 + ũ2 >
√

K1 + 2ũ2, (2.15)

which is the well-known classical ideal gas case, with strict inequalities applying, see
Cole & Cook (1986). Also and in contrast to the non-classical gas case this wave
speed ordering condition when applied is simply equivalent to the selection rule [s]>0
rather than a further constraint.

In figure 2(a) the shock labelled S3 represents jumps to downstream states ũ2, ṽ2
(plotted as a dashed curve) constructed from (2.11) which satisfies [s] > 0 or
equivalently M2 < M1 but violates the speed ordering condition (2.14). There is a
limiting shock strength ũso where ‘sonic’ conditions hold downstream and represented
by shock Sso in figures 2(a) and 2(d). The supersonic state ũso is determined from
the downstream equality in (2.14) i.e. setting

[ j]
[ũ]
=

dj
dũ

∣∣∣∣
2

, (2.16)

which leads to ũ2= ũso= 3/2k2. The construction in figure 2 also indicates that when
sonic conditions hold the shock chord is tangential to the shock polar curve – a
straightforward result to show. Inadmissible shocks then are associated with shock
chords that cut the shock polar as seen for S3.

The second important class of elementary solutions, aside from shocks, are simple
waves – identified as flows associated with only one family of characteristics. Looking
for solutions depending on only a single variable r(ξ , η) i.e. ũ = ũ(r), ṽ = ṽ(r) we
rewrite (2.3), (2.4) as

dj
dr
∂r
∂ξ
+

dṽ
dr
∂r
∂η
= 0, j=−K1ũ− ũ2

+
K2

3
ũ3, (2.17a,b)
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Weak shock reflection 139

dũ
dr
∂r
∂η
−

dṽ
dr
∂r
∂ξ
= 0. (2.18)

Solutions for (rξ , rη) exist then only if

dṽ
dr
=±

√
−

dj
dũ

dũ
dr
. (2.19)

The curve ũ(r), ṽ(r) parameterised by the ‘phase’ variable r has slope

dṽ
dũ

∣∣∣∣
r

= ±

√
−

dj
dũ

∣∣∣∣∣
r

(2.20)

which is orthogonal to the straight line of constant phase given by

dη
dξ

∣∣∣∣
r

=∓
1√
−

dj
dũ
(r)

, (2.21)

which is the characteristic slope (compare with (2.13)). The similarity with (2.9) and
(2.12) is clear. A relevant example of a simple wave is a centred wave fan with rays

η

ξ
=

1√
−

dj
dũ
(r)

, ra 6 r 6 rb, (2.22)

which provides the continuous transition from one uniform flow (ũ(ra), ṽ(ra)) to
another uniform flow (ũ(rb), ṽ(rb)) past sharp corners. Details of shock and wave fan
constructions can be found in Kluwick & Cox (2018).

With these basic building blocks we can consider the problem of shock reflection.
This problem has been the subject of extensive research in ideal gas dynamics with
theoretical results going back to Mach (1878), Neumann (1963a), Neumann (1963b)
and early experiments in Bleakney & Taub (1949). With the wedge angle measured
by the parameter a we have for small angles the regular reflection pattern of figure 1.
As is well known in the classical case K2 = 0 with increasing angle a the shock
reflection undergoes so-called irregular reflection off the channel wall. This involves
the detachment of both the incident and reflected shock from the surface and the
generation of a third and stronger shock which remains attached to the surface. The
point at which the three shocks meet is termed the triple point (T). As indicated in
figure 3 the flow also includes an expansion fan and a slip line (not drawn as not
realisable in the irrotational flow model considered here). The inclusion of the wave
fan is significant and helps resolve the so-called von Neumann paradox that three
intersecting shocks are seen in experiments but unsupported by theoretical analysis.
The inclusion of the wave fan is due to Guderley (1947), Guderley (1957) a result that
was overlooked for many decades until recent work by Hunter & Brio (1997), Hunter
& Brio (2000), Hunter & Tesdall (2004) on the unsteady transonic flow equations (the
time-dependent form of equations (2.3) and (2.4) with K2= 0) and by Vasil’ev (1998)
and Vasil’ev & Krajko (1999) for the compressible Euler equations. The structure
in the neighbourhood of the triple point is complex and revealed in the numerical
results of Tesdall & Hunter (2002) and Tesdall, Sanders & Popivanov (2015) and the
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x

y = a∂x

œ

y

H

T

FIGURE 3. Flow geometry for irregular reflection of a plane shock generated by a wedge
located at x= 0, y= 0 with inclination aδ > 0 in a channel of width H.

i
r

M < 1

T1

T2

T3

Tn

FIGURE 4. (Colour online) Sketch of the complex reflection structure due to Tesdall &
Hunter (2002). Near the leading triple point T1 there is a cascade of supersonic patches
each patch terminated by a shock (in red) leading to multiple triple points T2,T3 . . . . Blue
lines denote centred wave fans generated at each triple point and dashed curves denote
sonic curves bounding the supersonic patches.

experimental results of Cachucho & Skews (2012). These results are summarised in
the sketch of figure 4. Behind the triple point T=T1 of figure 3 there is a sequence of
supersonic patches each patch terminated by a shock leading to multiple triple points
T2, T3 . . . .

In this paper we consider shock reflection for non-ideal gases using the modified
small disturbance equations (2.3) and (2.4). In a previous paper (Kluwick & Cox
2018) the authors consider the flow over a ramp and in this follow-on paper we
consider a shock generated by such a flow impinging now on a reflecting surface as
encountered in a channel with a wedge.
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FIGURE 5. (a) Shock polars (incident polar I, reflected polar R) for regular reflection of a
plane shock generated by a wedge with inclination a for K1> 0,−3/4K1<K2 6 0. Results
are for K1 = 1, K2 = −0.7. The incident shock i deflects the flow to ũ1, ṽ1 and a weak
reflected shock r generates supersonic flow ũ2w, ṽ2 = 0 downstream of the shock – flow
which is parallel to the channel wall. The incident and reflected shocks are depicted in
(b) in the (ξ , η) plane using the construction indicated in (a). The shock reflection point
is labelled as (ξs, ηs).

3. Regular reflection
In Kluwick & Cox (2018) we identified distinctly different flows in the parameter

space (K1 > 0, K2) for the parameter ranges K2 < −1/K1, −1/K1 < K2 < −3/4K1,
−3/4K1<K2 6 0 and K2> 0. For each of these intervals we now consider an incident
shock reflection problem with the emphasis on regular reflection. We then show in § 4
that when regular reflection breaks down with increased ramp angle (or equivalently
incident shock strength) the pure triple shock structure does not exist. This result
extends a well-known result for ideal gases.

We note that descriptions of flows in this paper will assume that Γ∞ is positive.
This is to simplify the interpretation of the results obtained but is not a requirement
for the analysis. As a consequence shocks are compressive and wave fans are
expansive. The results are easily reinterpreted for an expanding channel with
expansion shocks and compression wave fans associated with Γ∞ < 0.

3.1. Case: K1 > 0,−3/4K1 <K2 6 0
This case is qualitatively similar to the classical case which is included as a special
case on setting K2 = 0. The wave configuration for regular shock reflection is shown
in figure 1 where a steady incident shock wave generated by a wedge reflects from a
plane boundary. A reflected shock wave, formed at the point of intersection with the
incident shock wave and the channel wall, then returns the flow which is deflected
towards the wall by the incident shock to a flow parallel again to the wall.

The shock polars describing regular reflection are shown in figure 5(a) and represent
the repeated application of (2.9) to the incident and reflected shocks. Without loss of
generality we can assume that the upstream perturbed flow for the reflection problem
is ũ= 0, ṽ= 0. So the incident shock is described by possible downstream states (ũ, ṽ)
satisfying

ṽ(ũ)=−ũ

√
K1 + ũ−

K2

3
ũ2, (3.1)
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FIGURE 6. (a) Shock polar for regular reflection of a plane shock generated by a wedge
with inclination as for K1> 0,−3/4K1<K2 6 0. Results are for K1= 1,K2=−0.7. A weak
reflected shock generates sonic flow ũ2w, ṽ2 = 0 which is parallel to the channel wall.
The incident (i) and reflected shock (r) are depicted in (b). The shock reflection point
is labelled as (ξs, ηs).

and plotted as curve I in figure 5(a). A wedge inclination angle of magnitude a
generates, as shown, two possible downstream flows satisfying the wedge boundary
condition ṽ = a sign Γ∞, see (2.8b). We will consider a weak incident shock jump
to a supersonic state ũ1, ṽ1 = a sign Γ∞ located on the incident shock polar I in
figure 5(a).

The reflected shock then is described by downstream states (ũ2, ṽ2) with states
(ũ1, ṽ1) upstream. This reflected shock polar derived from (2.9) is given by

ṽ2(ũ2)= ṽ1 + (ũ2 − ũ1)

√
K1 + ũ1 + ũ2 −

K2

3
(ũ2

1 + ũ2
2 + ũ1ũ2). (3.2)

The reflected shock polar R intersects the ṽ = 0 axis at two values of ũ2
both corresponding to possible downstream flow states. We distinguish these two
downstream states as in one case generating a weak shock connecting typically to
supersonic flow downstream (ũ2w, ṽ2 = 0) and in the other case generating a strong
shock connecting always to a subsonic flow downstream (ũ2s, ṽ2 = 0). Which state
is realised in practice depends critically on the boundary conditions downstream and
the reader is encouraged to see the discussion in Kluwick & Cox (2018) for more
details. It is the weak shock certainly that is commonly observed in experiments and
depicted in figure 5. The incident and reflected shocks have slopes given by (2.12)
and are plotted in figure 5(b) in the asymptotic coordinate system (ξ , η). We have
indicated in figure 5(a) the construction leading to the determination of the shock
slopes in figure 5(b) which implements (2.12).

The regular reflection pattern shown in figure 5 holds for small wedge inclination
angles. As the wedge angle is increased the weak downstream shock state associated
with the reflected shock eventually becomes sonic with M=1. The value of a at which
this occurs is denoted by as. The shock polars for this case are shown in figure 6(a)
and the incident and reflected shocks in the (ξ, η) plane are shown in figure 6(b). With
increasing a> as the weak shock now describes a jump to subsonic downstream states
as shown in figure 7 and with further increases in wedge angle a eventually the weak
and strong downstream states coalesce. This gives a detachment wedge angle a= ad
such that for values of a> ad regular reflection becomes impossible. For a> ad the
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FIGURE 7. (a) Shock polar for regular reflection of a plane shock generated by a wedge
with inclination a> as for K1> 0,−3/4K1<K2 6 0. Results are for K1= 1,K2=−0.7. The
incident shock I deflects the flow to ũ1, ṽ1 and a weak reflected shock generates subsonic
flow ũ2w, ṽ2 = 0 which is parallel to the channel wall. The incident and reflected shocks
are depicted in (b). The shock reflection point is labelled as (ξs, ηs).

M < 1 M > 1

0.4

0.2

0u¡

√¡

a sgn(˝∞)

-1

I

R

FIGURE 8. Shock polar for reflection of a plane shock generated by a wedge with
inclination a > ad for K1 > 0, −3/4K1 < K2 6 0. Results are for K1 = 1, K2 = −0.7. No
reflected shock can return the fluid flow to downstream parallel channel flow.

flow after any reflected shock is still positive towards the wall and the downstream
ṽ= 0 boundary condition cannot be satisfied by any point on the reflected shock polar,
see figure 8.

It is possible in the ideal gas case (K2 = 0) to evaluate as and ad explicitly and a
straightforward calculation gives

as =
(3−
√

5)
√

1+
√

5
8

K3/2
1 ≈ 0.1718K3/2

1 , ad =
2

53/2
K3/2

1 ≈ 0.1789K3/2
1 . (3.3a,b)
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FIGURE 9. (a) Shock polar for regular reflection of a plane shock generated by a wedge
with inclination a for K1 > 0,−1/K1 < K2 <−3/4K1. Results are for K1 = 1, K2 =−0.8.
The incident shock generated on the incident shock polar I deflects the flow to ũ1, ṽ1
with ũ1 =−0.05 and a reflected supersonic shock returns the flow parallel to the channel
wall. The incident shock (i) and reflected sonic shock (r) are depicted in (b). The shock
reflection point is at (ξs, ηs).

3.2. Case: K1 > 0,−1/K1 <K2 <−3/4K1

In the previous case the shock reflection problem led to flows similar to the classical
case with Λ∞= 0 (K2= 0). With decreasing values of K2 and so larger negative values
of Λ∞ the shock reflection problem begins to show features that have no counterpart
in ideal gas dynamics.

For small wedge angles the incident and reflected shock polar plots are given in
figure 9(a) for ũ1 = −0.05, K1 = 1 and K2 = −0.8. The construction is as already
described in the previous case in § 3.1. The polar plots terminate now not with normal
orientated shocks but with sonic conditions, i.e. shocks of increased strength would
result in the shock chord cutting the shock polar – these are excluded. It is clear that
the reflected shock polar intersects the ṽ = 0 axes now only once to give a unique
reflection shock with a supersonic downstream state returning the deflected flow to
parallel channel flow. With increasing wedge angle we have a three shock solution
shown in figure 10 involving now an additional subsonic downstream flow labelled ũ3
as well as the two-shock solution similar to the classical ideal gas reflections.

As the wedge angle continues to increase the flow scenarios associated with the
reflected shock jumps to ũ3 become more complicated as shown in the reflected shock
polar plots of figure 11 which should be compared to the inset in figure 10. The
downstream state ũ3 with increasing angle (i.e. decreasing ũ1) eventually becomes
supersonic and then with further increases the reflected shock is a downstream sonic
shock and shock state ũ3 is replaced by a sonic shock to ũso and a centred fan
structure returning the flow to parallel channel flow. This latter scenario is shown
in figure 12(a) for ũ1 = −0.13185 with the three possible reflection flows one
of which is the compound shock/fan structure. The centred wave fan is constructed
from (2.20) (with the appropriate sign) which we integrate from (ũso, ṽso) to (ũ3, 0). In
figure 12(b) the reflected sonic shock r and the attached wave fan rays terminating at
ũ3 are plotted for this latter case where we have used the shock slope condition (2.12)
and the characteristic ray equation (2.22).

Shock behaviour described by figure 12 does not persist as the wedge angle
continues to increase. The compound downstream shock/wave fan structure requires
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FIGURE 10. Shock polar for regular reflection of a plane shock generated by a wedge
with inclination a for K1 > 0,−1/K1 < K2 <−3/4K1. Results are for K1 = 1, K2 =−0.8.
The incident shock generated on the incident shock polar I deflects the flow to ũ1, ṽ1 with
ũ1 =−0.12175. Reflection shocks are possible to three downstream states a weak shock
ũ2w and as included in the inset two strong subsonic shock states ũ2s and ũ3.

that the sonic shock involves a jump transition to supersonic flow downstream.
A shock bifurcation occurs when the wedge angle increases so that the incident
shock involves a jump to

ũ1 =
1− 2
√

1+K1K2

K2
. (3.4)

At this point the reflected sonic shock is normal to the channel wall and describes a
jump to sonic (M= 1) downstream flow. The shock polar plot for this bifurcating flow
is shown in figure 13. For increasing wedge angles so that ũ1<(1− 2

√
1+K1K2)/K2

the compound shock/fan flow is now no longer possible and the shock polars describe
a classical reflection pattern involving the transition, with increasing wedge angle,
from a strong subsonic and weak supersonic reflected shock to two subsonic reflected
shocks as shown by the shock polar curves in figure 14 for ũ1 =−0.257.

Non-classical behaviour involving a compound sonic shock/wave fan occurs over a
narrow range of incident shock strengths (or wedge angles). For the particular flow
described with K1 = 1 and K2 =−0.8 the existence of a third solution branch occurs
in the interval

− 0.131966 . ũ1 .−0.1217425. (3.5)

3.3. Case: K1 > 0,K2 <−1/K1

In the previous cases the shock reflection problem has multiple solutions. In
contrast the shock configuration is unique for K2 < −1/K1. We will consider
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FIGURE 11. Section of reflection polar K1 > 0, −1/K1 < K2 < −3/4K1. Results are for
K1=1,K2=−0.8. The transition is shown to a compound shock/fan structure as the wedge
angle increases (or ũ1 decreases) leading to the downstream state ũ3.

values of a less than

a sign Γ∞ =−
3

2K2

√
K1 +

3
4K2

, (3.6)

which is the wedge angle, as shown in figure 15, at which an incident shock becomes
sonic and beyond which the incident flow consists of a compound sonic shock/wave
fan structure. We have for small wedge angles a classical regular reflection shock
configuration as seen in figure 15. With increasing wedge angle the reflected shock
consists of a sonic shock/wave fan configuration and as the wedge angle increases
further the reflected shock strength decreases until with a greater than

a sign Γ∞ =−
1

K2

√
K1 +

2
3K2

, (3.7)

the incident shock generates a reflected wave fan only. The analysis used to plot
figure 15 is that already described in §§ 3.1 and 3.2.

3.4. Case: K1 > 0,K2 > 0
From a careful reading of Kluwick & Cox (2018) the only relevant flow is associated
with negative downstream ũ values. The shock polars are qualitatively similar to the
classical case and the reflection problem can be analysed in a similar manner. We do
not provide details of this case.
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FIGURE 12. (a) Shock polar for regular reflection of a plane shock generated by a wedge
with inclination a for K1 > 0,−1/K1 < K2 <−3/4K1. Results are for K1 = 1, K2 =−0.8.
The incident shock generated on the incident shock polar I deflects the flow to ũ1, ṽ1 with
ũ1 =−0.13185. Reflection shocks are possible to three downstream states a weak shock
ũ2w a strong subsonic shock ũ2s and a compound sonic shock ũso and wave fan to ũ3. The
sonic shock (r) and rays for the attached fan are shown in (b).

M > 1 M < 1 M > 1
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0.4

0.2
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u¡u3
¡ uso

¡ -1

FIGURE 13. Shock polar for strong reflected shocks for K1 > 0, −1/K1 < K2 < −3/4K1.
Results are for K1= 1,K2=−0.8. A non-classical reflection shock/fan solution is obtained
for ũ1= (1− 2

√
1+K1K2)/K2 involving a normal orientated sonic reflection shock and an

attached fan with a transition to ũ3 downstream.

4. Irregular reflection

It is a well-known result that in planar steady flows a pure triple shock structure
does not exist i.e. you cannot have three shocks intersecting with constants states
between them. This result is discussed, for example, in Courant & Friedrichs
(1948), Neumann (1963a), Neumann (1963b) and Henderson & Menikoff (1998).
More recently in Serre (2007) a proof is presented that is independent of any
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FIGURE 14. Shock polar for K1 > 0, −1/K1 < K2 < −3/4K1. Results are for K1 = 1,
K2 =−0.8. Two classical subsonic solutions ũ2w and ũ2s are obtained for ũ1 =−0.257.
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FIGURE 15. Shock polar for regular reflection of a plane shock generated by a wedge
with inclination a for K1 > 0, K2 < −1/K1. Results are for K1 = 1, K2 = −1.2. Small
wedge angles lead to a classical regular reflection shock. Larger wedge angles lead to
a sonic shock/wave fan configuration. Wedge angles with a greater than a sign Γ∞ =
−(1/K2)

√
K1 + 2/3K2 result in a reflected wave fan only.

assumption on the equation of state of the gas. A corresponding result for the
unsteady transonic small disturbance equation can be found in Tabak & Rosales
(1994). The result presented here is for steady flow of the modified transonic small
disturbance equation and is based on the geometry of the shock polar curves. In
figure 16(a) we show the shock geometry associated with a pure triple shock with
the reflected shock (r) and incident shock (i) both forward facing. Both shocks
intersect a third shock – the so-called Mach stem (m) at the triple point (T). In
figure 16(b) we show the plot of the reflected polar when a> ad as illustrated for K2

in the parameter range −3/4K1 <K2 < 0. A shock from state (ũ1= 0, ṽ1= 0) to state
(ũ2, ṽ2) on the incident shock polar is followed by a second shock from (ũ2, ṽ2) to
(ũ3, ṽ3) where (ũ3, ṽ3) lies on the reflected shock polar. The requirement that a triple
shock arrangement is possible would require that the reflected shock polar intersects
the incident shock polar at (ũ3, ṽ3) generating a third jump from (0, 0) to (ũ3, ṽ3).
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FIGURE 16. (a) Sketch of the shock geometry in the ξ, η plane associated with a pure
triple point construction. The incident shock (i), reflected shock (r) and Mach stem (m)
intersect at the triple point (T). (b) Shock polars for irregular reflection of a plane shock
generated by a wedge with inclination a > ad for K1 > 0, 3/4K1 < K2 < 0. The incident
shock i deflects the flow to ũ2, ṽ2 and a weak reflected shock (r) generates supersonic
flow ũ3, ṽ3. The pure triple point construction in (a) would require that ũ3, ṽ3 coincides
with the point D on the incident shock polar.

This does not occur as seen in figure 16(b) – a result that we can prove holds more
generally.

The incident shock polar for (ũ1 = 0, ṽ1 = 0) is given by the curve

ṽ(ũ)=−ũ

√
K1 + ũ−

K2

3
ũ2, ũn 6 ũ< 0, (4.1)

which gives all flow states (ũ, ṽ(ũ)) that can be connected to (0, 0) by an incident
shock. For a given state ṽ2= ṽ(ũ2) we construct then the reflected shock polar which
describes all flows which can be connected to (ũ2, ṽ2) by a reflected shock. These are
the flow states

ṽ(ũ)=−ũ2

√
K1 + ũ2 −

K2

3
ũ2

2
− (ũ− ũ2)

√
K1 + ũ+ ũ2 −

K2

3
(ũ2 + ũũ2 + ũ2

2),

ũe 6 ũ< ũ2, (4.2)

and depicted as the labelled curve C1 in figure 16(b). We have assumed here that the
reflected shock is a forward pointing shock. Now we require that the incident shock
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curve given by (4.1) lies above the reflected shock curve (4.2). It is readily shown
that this reduces to the inequality√

K1 + ũ−
K2

3
ũ2 <

√
K1 + ũ2 −

K2

3
ũ2

2, ũe 6 ũ< ũ2, (4.3)

which is true providing

1−
K2

3
(ũ+ ũ2) > 0. (4.4)

This inequality which is trivially true for K2= 0 holds in the two cases −1/K1<K2<
−3/4K1 and −3/4K1 <K2 6 0 where we can show that

1−
K2

3
(ũ+ ũ2) >

1
3
. (4.5)

For the remaining K2 > 0 case as we require that that the flow downstream of the
incident shock is supersonic this excludes sonic incident shocks. The remaining flows
have ũ+ ũ2 < 0 and so inequality (4.4) is trivially satisfied.

An important consequence of this result is the von Neumann paradox. For ideal
gases numerical results and experiments show that for certain parameters the fluid flow
appears to be described by three shocks separated by constant states which contradicts
the theoretical results. A resolution of this paradox is the scenario given by Tesdall &
Hunter (2002), Tesdall et al. (2015) where numerical experiments on a fine grid show
that there is a supersonic region behind the triple point, which consists of a sequence
of supersonic patches, shocks, wave fans and multiple triple points. The numerical
results do not indicate whether there are finitely many such triple points or not.

We can provide analysis that suggests a similar construction holds in the dense
gas case. Hunter & Brio (2000) proposed the shock configuration shown in figure 3
where as well as an incident shock, reflected shock and Mach stem there is a centred
simple wave behind the reflected shock. The incident, reflected and Mach shocks
are all forward facing and the wave fan is backward facing. Given the upstream
state (ũ = 0, ṽ = 0), the wedge angle a and the flow behind the reflected shock ũ2
this configuration can be uniquely constructed. An argument presented in Guderley
(1957) suggests that the flow behind the reflected shock is sonic. This leads to the
shock polar/characteristic construction shown in figure 17 for the case K2 > 0 and
−3/4K1 <K2 < 0. The expansion fan is generated by the characteristic curve obtained
by integrating

dṽ
dũ
=

√
K1 + 2ũ−K2ũ2, (4.6)

from the sonic state ũ= ũ3= (1/K2)(1−
√

1+K1K2) to ũ= ũ4 where the characteristic
curve (4.6) intersects the incident shock polar. While (4.6) can be integrated
analytically the point of intersection with the incident shock has to be determined
numerically. Figure 17(b) shows the shock and wave fan orientations and the flow
deflected through the Mach stem (m). The flow downstream of the Mach stem is
still not aligned with the channel wall and so cannot describe the full reflection
problem which must certainly involve a curved Mach stem eventually orientated to
generate a normal shock at the channel wall. The likely solution is that proposed by
Tesdall & Hunter (2002) where the expansion fan reflects off a sonic curve to form
a compression wave which in turn generates a shock that incident on the Mach stem
generates a new expansion fan. This process can be repeated with a shrinking series
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FIGURE 17. (a) Shock polar and characteristic plot for irregular reflection of a plane
shock generated by a wedge with inclination a for K1 > 0, −3/4K1 < K2 6 0. Results
are for K1 = 1, K2 = −0.73. The incident shock i deflects the flow to ũ2, ṽ2 and a
weak reflected shock (r) generates the sonic flow ũ3, ṽ3 downstream. A centred wave
fan solution describes a continuous expansion from ũ3, ṽ3 to ũ4, ṽ4 which intersects the
incident shock polar and generates the shock jump across the Mach stem (m). This
so-called Guderley reflection is plotted in (b) with a sketch appended (dotted line) of the
curved Mach stem that then returns the flow to parallel downstream channel flow.

of supersonic pockets generated as sketched in figure 4. The recent high resolution
results of Tesdall et al. (2015) confirms this picture for ideal gases.

The scenario of a curved Mach stem orientating the flow to normal channel flow at
the boundary has to be modified for the case −1/K1<K2<−3/4K1. Observations are
based on the shock polar diagram of figure 18. As the Mach stem shock originating
at ũ4, ṽ4 increases in strength the flow downstream becomes supersonic and eventually
the Mach stem shock turns sonic with downstream flow ũso. The Mach stem shock
remains sonic (and so of fixed orientation) with then decreasing downstream ṽ

values now associated with a wave fan along the characteristic curve (dash-dot curve)
connecting ũso to ũe. This wave fan propagates into a subsonic downstream region and
will itself form a supersonic pocket by reflection from a sonic boundary. A possible
flow pattern is sketched in figure 19 where we note that as for the triple point
the wave fan characteristics reflecting off the sonic curve are expected to intersect
constructing a new downstream shock. Current research is underway to confirm this
proposed scenario.

5. Conclusions

The analysis of Kluwick & Cox (2018) is extended to treat the problem of weak
shock reflection in a channel. Together with the results derived in Kluwick & Cox
(2018) the present work yields a complete picture of dense gas transonic flow past
a configuration frequently used in wind tunnel experiments which also represents
a simple model of the entry region of a gas turbine designed to exploit possible
advantages such as increased efficiency resulting from the use of gases with high
molecular complexity.
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u¡
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FIGURE 18. Shock polar plot for irregular reflection of a plane shock generated by a
wedge with inclination a for K1 > 0, −1/K1 < K2 < −3/4K1. Results are for K1 = 1,
K2 =−0.8. A proposed curved Mach stem is generated from the shock polar connecting
the downstream state (ũ4, ṽ4) to ũso where the Mach stem shock becomes sonic. Flow
described by a characteristic (dash-dot) curve returns the flow through a wave fan to
normal orientated channel flow on the boundary with ũ= ũe.

To study non-classical gas dynamic effects associated with such flow media
analytically we assume transonic flow |M∞− 1|� 1 and |Γ∞|� 1 while the quantity
Λ(ρ, s) = ρ(∂Γ /∂ρ)|s is taken to be of O(1). It is then found that solutions of the
problem under consideration depend on the elements of the non-dimensional group
(a, K1, K2) representing, respectively, the strength of the incident shock generated
by a ramp with ramp angle a, a generalised transonic similarity parameter and the
combined effects of Γ∞ and Λ∞. As in classical gas dynamics, two essentially
different classes of solutions classified as regular and irregular reflections have to be
distinguished.

Flow patterns of the first type are characterised by the property that there exists
a reflected shock or a compound shock/wave structure which emanates from the
point where the incident shock impinges at the upper channel wall and returns the
thereby deflected flow to a flow parallel to the wall again. Consequently, the reflected
wave pattern is self-similar and can be constructed by appropriate generalisations
of methods introduced in Kluwick & Cox (2018) to study the ramp problem. For
upstream supersonic flow K1> 0 considered here three ranges of the second similarity
parameter K2 corresponding to qualitatively different flow scenarios can be identified.
For negative values of K2 larger than −3/4K1 the flow behaviour is similar to the
one known from classical gas dynamics, which is included as the special case K2= 0.
In the two remaining distinguished parameter ranges −1/K1 < K2 < −3/4K1 and
K2 < −1/K1 the resulting flow pattern, however, exhibits features which have no
counterpart in ideal gas dynamics.
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i
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M < 1

M > 1

T1
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T3

Tn

FIGURE 19. (Colour online) Sketch of flow scenario associated with a sonic Mach stem
generating a supersonic pocket attached to the reflecting channel wall and terminating in
an upstream shock.

Parameter range Flow response

−
3

4K1
<K2 < 0 Two solutions representing weak and strong reflection (figures 5, 6, 7)

−
1

K1
<K2 <−

3
4K1

Up to 4 different solutions including non-classical phenomena such as
sonic shocks and compound shock/fan structures (figures 9, 10, 11, 12,
13) but also cases of weak and strong reflection (figure 14)

K2 <−
1

K1
Unique solutions. Increasing ramp angles cause the transition from a
classical regular reflected shock to a sonic shock/fan combination and
finally to the truly exotic situation of a pure reflected fan (figure 15)

TABLE 1. Overview of the phenomena observed for K2 < 0.

Table 1 is intended to provide a more detailed but still compact overview of the
phenomena observed for K2 < 0.

With increasing ramp angle the point of shock reflection eventually is found to
detach from the upper wall if a critical value acrit is exceeded. In such cases of
irregular reflection self-similarity of the associated wave pattern is lost which makes
the analytical treatment of the full problem impossible although analytical progress
is still possible by seeking local solutions. Experiments for perfect gases suggest the
existence of a triple point formed by three colliding shocks: the incident and the
reflected shocks and the Mach stem which extends up to the solid wall to satisfy the
boundary condition there. Theoretical analysis for perfect as well as arbitrary media,
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however, predicts that a pure triple shock configuration, i.e. three shocks separated
by regions of constant state, is impossible, (Courant & Friedrichs 1948; Neumann
1963a,b; Henderson & Menikoff 1998; Serre 2007). The present analysis shows that
this result, known as the von Neumann paradox, is consistently captured by the
transonic flow approximation for the type of fluids which are of interest here: the
reflected shock polar for values a > acrit is located completely inside the incident
shock polar. Therefore, both polars do not intersect and consequently there is no
common state downstream of the Mach stem and the reflected shock. To the authors’
knowledge this graphical interpretation of the von Neumann paradox has been pointed
out first by Oswatitsch (1977) for perfect gases but is non-trivially extended even
to cases of dense gases where the incident shock polar in the hodograph plane is
no longer closed but terminates if sonic conditions are reached and thus has to
be supplemented with characteristic curves which emanate from the point where
the shock polar terminates. As for perfect gases one possibility to resolve the von
Neumann paradox in the context of transonic flows is that proposed by Guderley
as early as 1957 but which did not receive full recognition until recently. Guderley
argued that the state behind the reflected shock is sonic and connects with the
state downstream of the Mach stem via a weak wave fan. It should be noted that
the resulting four wave system formed by the incident shock, the reflected shock,
the Mach stem and the intervening wave fan represents an exact solution of the
transonic small perturbation equation for both perfect and dense gases. However,
it does not satisfy the boundary condition at the upper channel wall and thus, as
far as the global flow field is concerned, has to be interpreted as a solution which
describes the local flow behaviour close to the origin of the wave fan confined within
a small supersonic pocket. Recent numerical solutions, see Tesdall et al. (2015)
and references therein, indicate that this pocket spawns additional local supersonic
patches. A possible explanation is based on observations known from conventional
aerodynamics, that local supersonic regions in general generate shocks which, in the
present context, then provide the agents to perpetuate the mechanism introduced to
eliminate the von Neumann paradox in the first place. It is therefore expected that
irregular reflections in dense gases will be qualitatively similar to those in perfect
gases. A new non-classical feature, however, arises in cases where the shock polar
in the hodograph plane is no longer closed but terminates at a sonic point with
the normal velocity component v being non-zero. Consequently, the interaction of
a single Mach stem shock with the upper wall is not able to satisfy the boundary
condition v = 0 there. Rather the combined action of an oblique Mach stem shock
with an attached wave fan is required to return the deflected flow to a flow again
parallel to the wall. Numerical work to support this tentative picture is presently been
carried out.

The present analysis is based on the assumption of inviscid strictly two-dimensional
flow. Extensions to represent the dynamics of more ‘realistic’ flows are clearly
desirable. Questions concerning the stability of solutions involving shocks have been
addressed already in Kluwick & Cox (2018) and will not be repeated here. Following
the study by Kluwick & Kornfeld (2014) weakly three-dimensional effects can in
principle be incorporated by letting the various flow quantities depend on an additional
Cartesian coordinate which varies slowly in the lateral direction. Triple-deck theory
is expected to provide the proper framework to account for the effects of laminar
boundary layers in the limit of high Reynolds number, (Wrabel & Kluwick 2005;
Kluwick & Meyer 2010, 2011). Here the differences of the flow field caused by
compression shocks which drive the flow towards separation and rarefaction shocks
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which accelerate the flow medium will be of prime interest. First steps in the treatment
of fully developed turbulent dense gas in unconfined and channel flows in have
been taken by Alferez & Touber (2017), Sciacovelli, Cinnella & Gloerfelt (2017).
Further progress in the treatment of aerodynamic configurations will require the
formulation of a strategy based on the Reynolds averaged equations, see e.g. Walker
(1998).
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