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Parallel weak envelope solitons in multi-ion
plasmas
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(Received 7 September 1998)

Heavy ions frequently appear as minor components in space plasmas, for example as
charged helium in the solar wind and heavy ions in the vicinity of comets. Both the
different components of ions and the associated plasma waves are observed by ex-
traterrestrial in situ measurements. These plasma waves appear as large-amplitude
magnetic field fluctuations in space plasmas. They must be described appropriately
by means of multifluid equations. Because of the nonlinear nature of these waves,
we here investigate nonlinear waves in multi-ion plasmas. Solitary waves that can
only exist in a magnetized bi-ion plasma are presented. We employ a perturbation
theory at the linear solution of a left-hand circularly polarized, low-frequency (be-
low the proton gyrofrequency) plasma wave and take only the first nonlinear terms
into account. Thus the multifluid equations are reduced to a single equation of the
type of a nonlinear Schrödinger equation. The derived soliton solution is valid for
magnetic field amplitudes lower than 10% of the ambient unperturbed magnetic
field. The solutions are discussed for plasma parameters that are typical of the solar
wind. A density enhancement can be observed within the soliton, where the helium
ion density is more enhanced than the proton density.

1. Introduction
Plasmas composed of several particle species are observed by various spacecraft
in the heliosphere. These plasmas consist mainly of electrons and protons, but
also contain one or more non-negligible fractions of heavy ions, such as helium
ions in the solar wind (see e.g. Marsch et al. 1982) or water group ions in the
vicinity of comets (see e.g. Tsurutani and Smith 1986; Tsurutani et al. 1987a). These
minor components of ions may change the plasma properties significantly. Large-
amplitude magnetic field fluctuations are commonly observed by extraterrestrial
in situ measurements in such plasmas (see e.g. Tsurutani et al. 1987b; Tsurutani
1991; Schwartz et al. 1992). They reveal the nonlinear nature of plasma waves
in multi-ion plasmas. This motivates us to investigate the properties of nonlinear
waves (especially solitons) in such plasmas.

A first impression of the effect caused by adding a third species to an electron–
proton plasma is obtained by performing a linear mode analysis. For instance, in
the low-frequency regime (below the proton cyclotron frequency Ωp), a new left-
hand polarized mode emerges (Melrose 1986). In the case of propagation parallel
to the magnetic field, the proton cyclotron mode splits into two modes, as shown
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Figure 1. Dispersion relations ω(k) for propagation parallel to the ambient magnetic field
in (a) a cold collisionless electron–proton plasma and (b) an electron–proton–helium plasma
with 10% 4He2+ (N0i = 0.1N0e, N0p = 0.8N0e). The frequency ω is normalized to the proton
cyclotron frequency and the wavenumber k is normalized to the inverse ion inertial length
of the electron–proton plasma. The dotted curve corresponds to the right-hand polarized
whistler mode. The other curves represent left-hand polarized modes. We draw attention to
the solid line in (b), which begins (k=0) at ωI and ends (k→∞) at Ωp.

in Fig. 1. The associated dispersion relation for a cold and collisionless plasma (see
e.g. Mann et al. 1997) is given by

k2 − ω2 ωI − ω
(Ωp − ω)(Ωi − ω)

= 0, (1.1a)

with

ωI = ZiκiΩi + ZpκpΩp , (1.1b)

where Ωi and Ωp are the cyclotron frequencies, Zi and Zp are the elementary charge
numbers (i.e. Zp = 1), and κi and κp are the undisturbed relative (with respect to
the electron number density, i.e. κα = N0α/N0e) number densities of the ions and
the protons respectively. We are interested in studying the nonlinear properties of
the so-called hybrid mode. Its linear dispersion relation is represented by the solid
curve in Fig. 1(b). It has frequencies between ωI at k = 0 and Ωp at k →∞.

Since it is well known that dispersion and nonlinear effects have to balance each
other in solitons, we expect to find solitons at this hybrid mode: owing to the fact
that this mode has an inflection point, we can adjust the ‘sign’ of the dispersion
to our needs by simply choosing an appropriate k. In contrast to Alfvén solitons
(Spangler and Sheerin 1982; Mjølhus and Wyller 1986, 1988; Mann 1988; Verheest
1990), where the inflection point of the associated Alfvén mode is at k = 0, ω = 0,
we expect here to have a finite ω that ranges somewhere between ωI and Ωp. Thus
we do not find ordinary solitons; rather, we find envelope solitons, similar to the
whistler solitons (Karpman and Washimi 1977; Spatschek et al. 1979) but at a much
larger time scale. However, it is not the electrons but rather the two different ion
species that determine the dynamics of the soliton.

We describe the three-component plasma by the multifluid equations. Since the
frequency of the hybrid mode is very much smaller than the plasma frequency and
the electron cyclotron frequency, the waves are predominantly carried by the mo-
tions of the ions, and the electrons merely act as a neutralizing fluid. This allows
us to simplify the multifluid equations, by assuming quasineutrality and neglecting
the displacement current and the electron mass (Kakutani et al. 1967). By elimi-

https://doi.org/10.1017/S0022377899007631 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377899007631


Parallel weak envelope solitons in multi-ion plasmas 635

nating the electron-related variables from the equations, we obtain the bi-ion Hall
equations.

The ansatz of a wave packet is made, and thus the carrier wave, which obeys the
linear dispersion relation (1.1), is separated from the envelope function. Since we
know the properties of the carrier wave from linear theory, we are able to deduce the
magnitude of the involved variables in terms of the modulus of the magnetic field.
This enables us to employ a perturbation theory that is truncated after the third
order (the lowest order with nonlinear terms). Through this procedure, a nonlinear
Schrödinger equation is obtained.

Finally, we investigate our resulting equations by applying them to an actual
cold bi-ion plasma. We realize that we must confine the soliton’s magnetic field
amplitude to 10 % of the unperturbed magnetic field. Furthermore, we detect a local
density enhancement within the soliton, whereas the two ion species are treated
differently: one of the species becomes more enhanced than the other one.

2. Bi-ion Hall equations
We describe the magnetized and collisionless plasma by means of bi-ion Hall equa-
tions, which can easily be derived from the multifluid equations that we have pre-
sented previously (Hackenberg et al. 1998) by eliminating the electron-related vari-
ables and the electric field.

In order to formulate the equations in a dimensionless manner, we normalize the
time with the inverse of the proton cyclotron frequency Ωp = eB0/mpc (where e
is the (positive) elementary charge, B0 is the magnitude of the undisturbed mag-
netic field, mp is the proton mass and c is the velocity of light), and the spatial
coordinates are given in terms of the reference length, lref = (mpc

2/4πN0ee
2)1/2.

Then, the reference velocity is found to be vref = lref Ωp = B0/(4πmpN0e)1/2. The
velocity vref corresponds to the Alfvén velocity in a pure electron–proton plasma
with undisturbed electron number density N0e. Note that this normalization is
independent of the composition of the plasma. The magnetic field B, the par-
ticle number densities Nα and all velocities are normalized by the undisturbed
background magnetic field Bref = B0, the unperturbed particle number densities
Nrefα = N0α and the reference velocity vref respectively. The unperturbed temper-
ature T0α and the unperturbed partial pressure p0α are expressed by the plasma
betas βα = 8πp0α/B

2
0 = 8πN0αkBT0α/B

2
0 , which are already dimensionless quanti-

ties. From now on, all quantities are normalized, unless otherwise noted.
Since we only investigate waves propagating parallel to the x axis, we restrict

ourselves to the case where all varying quantities depend only on the time t and
the x coordinate. Owing to quasineutrality, the electron number density is given
by

Ne = κpZpNp + κiZiNi . (2.1)

Despite our claim to eliminate all electron-related variables, we keep Ne in our
equations as a kind of abbreviation.

The multifluid equations consist of the continuity equations

∂

∂t
Nα +

∂

∂x
NαVαx = 0 (2.2)
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for the protons (α=p) and the ions (α=i). The three spatial components of the
momentum equation for the protons are

Ne
Ωp

dp
dt
Vpx = ρi[(Vpy−Viy)Bz−(Vpz−Viz)By]− 1

2
∂

∂x
B2− βpNe

2ρp

∂

∂x
Nγp
p −

βe
2

∂

∂x
Nγe
e ,

(2.3a)
Ne
Ωp

dp
dt
Vpy = ρi[(Vpz − Viz)Bx − (Vpx − Vix)Bz] +Bx

∂

∂x
By , (2.3b)

Ne
Ωp

dp
dt
Vpz = ρi[(Vpx − Vix)By − (Vpy − Viy)Bx] +Bx

∂

∂x
Bz , (2.3c)

with the comoving derivative

dα
dt

=
∂

∂t
+ Vαx

∂

∂x
,

the charge density ρα = καZαNα and the polytropic index γα. The momentum
equation for the ions is obtained from the proton momentum equation (2.3a–c) by
simply exchanging the indices p and i. The induction equation closes our set of
equations:

∂

∂t
By =

∂

∂x

1
Ne

[
Bx

∂

∂x
Bz − ρp(VpxBy − VpyBx)− ρi(VixBy − ViyBx)

]
, (2.4a)

∂

∂t
Bz = − ∂

∂x

1
Ne

[
Bx

∂

∂x
By − ρp(VpzBx − VpxBz)− ρi(VizBx − VixBz)

]
. (2.4b)

We further simplify our equations by assuming that the waves are propagating
parallel to the ambient magnetic field, i.e. the magnetic field is aligned with the
x axis. Thus its constant x component becomes Bx = 1.

Since there is a high symmetry in the transverse equations (2.3b,c) and (2.4a,b),
it is convenient to define the complex variables

b = i By +Bz , vp = i Vpy + Vpz , vi = i Viy + Viz . (2.5)

We are able to do this, because the original variables are real variables. They can
be recovered by taking the real and imaginary part of the new variables.

3. Derivation of a nonlinear Schrödinger equation
According to our goal of searching for envelope solitons (see Sec. 1), we make the
ansatz of a wave packet:

b∗(x, t) = b̂(x, t) ei(kx−ωt) , v∗α(x, t) = v̂α(x, t) ei(kx−ωt) . (3.1)

We have taken b∗ and v∗α instead of b and vα to ensure that the carrier wave is
left-hand polarized for positive ω and k. The asterisk denotes the complex conju-
gate. The dispersion relation (1.1) (see Fig. 1) defines the relationship ω(k). The
envelope functions b̂ and v̂α should vary far less rapidly than the carrier, i.e. the
inequalities ∣∣∣∣∣∂b̂/∂xb̂

∣∣∣∣∣� k ,

∣∣∣∣∣∂b̂/∂tb̂

∣∣∣∣∣� ω, (3.2a)
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and ∣∣∣∣∂v̂α/∂xv̂α

∣∣∣∣� k ,

∣∣∣∣∂v̂α/∂tv̂α

∣∣∣∣� ω (3.2b)

should hold.
By inserting the ansatz (3.1) into the momentum equations, we get

ρp
Ωp

dp
dt
Vpx +

ρi
Ωi

di
dt
vix = −1

2

(
∂

∂x
|b̂|2 + βe

∂

∂x
Nγe
e + βp

∂

∂x
Nγp
p + βi

∂

∂x
Nγi
i

)
,

(3.3)

1
Ωp

dp
dt
Vpx − 1

Ωi

di
dt
vix = − 1

2 i[(v̂
∗
p − v̂∗i )b̂− c.c.]− βp

2ρp

∂

∂x
Nγp
p +

βi
2ρi

∂

∂x
Nγi
i (3.4)

for the longitudinal components and

ρp
Ωp

dp
dt
v̂p +

ρi
Ωi

di
dt
v̂i =

∂

∂x
b̂− iρpv̂p

Ωp
(kVpx − ω)− iρiv̂i

Ωi
(kVix − ω) + ikb̂, (3.5)

1
Ωp

dp
dt
v̂p− 1

Ωi

di
dt
v̂i = −i[(v̂p−v̂i)−(Vpx−Vix)b̂]− iv̂p

Ωp
(kVpx−ω)+

iv̂i
Ωi

(kVix−ω) (3.6)

for the transverse components. The induction equation yields

∂

∂t
b̂−iωb̂ =

{
∂

∂x

1
Ne

+
ik

Ne

}[
−i
(

∂

∂x
b̂+ikb̂

)
+ρp(v̂p−Vpxb̂)+ρi(v̂i−Vixb̂)

]
. (3.7)

The term enclosed by curly braces in (3.7) is an operator, i.e. the differentiation
has to be applied to the terms within the square brackets.

Before we can apply the perturbation theory, we have to know the order of
magnitude of our variables. We compare each variable with the (small, positive)
quantity ε.

We begin with the amplitude of the magnetic field b̂, which is (by definition) of
order ε, i.e. b̂ = O(ε). In contrast, all constants (including ω and k) are of order one,
i.e. O(1). For very small ε, we already know the solution of our equations, since this
is the result of the linear theory: owing to the presence of the left-hand polarized
wave, there are transverse velocities, which are of the same order as the magnetic
field (see (3.5) and (3.6)), i.e. v̂α = O(ε); but there are no density fluctuations
nα = Nα − 1 and no longitudinal velocities Vαx in the linear theory. They will be
induced by the nonlinear terms b̂b̂∗, v̂∗p b̂ and v̂∗i b̂ in (3.3) and (3.4), which are of
order ε2, i.e. nα = O(ε2) and Vαx = O(ε2).

In the first two orders of the perturbation theory, only the transverse equations
(3.5)–(3.7) have to be taken into account, since the longitudinal equations (3.3) and
(3.4) first contribute to the third order. From that, we obtain

∂

∂x
b̂ +

1
vg

∂

∂t
b̂ +O(ε3) = 0, (3.8)

with the group velocity

vg =
∂ω

∂k
=

2ωk (Ωp − ω)(Ωi − ω)
k2 (2ΩpΩi − ωΩp − ωΩi)− ω3 . (3.9)

This means that the peak of our wave packet has to move with a velocity close to
the group velocity of the carrier wave. For the sake of completeness, the transverse
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velocities are given by

v̂p = − Ωp
Ωp − ω

ω

k

[
b̂− i

2
ω2 − k2(Ωp − Ωi)
(Ωp − ω)(Ωi − ω)

vg
k2

∂

∂x
b̂

]
+O(ε3), (3.10)

v̂i = − Ωi
Ωi − ω

ω

k

[
b̂− i

2
ω2 + k2(Ωp − Ωi)
(Ωp − ω)(Ωp − ω)

vg
k2

∂

∂x
b̂

]
+O(ε3) . (3.11)

In fact, the first term on the right-hand side of (3.4),

1
2 i[(v̂

∗
p − v̂∗i )b̂− c.c.] = −Ωp − Ωi

ωI − ω
(

1 +
kvg

ωI − ω
)

∂

∂x
|b̂|2 +O(ε4) = O(ε3) (3.12)

does not contribute to the second order of the perturbation theory.
In the third (and last) order of the perturbation theory, the induction equa-

tion (3.7) becomes

2ik
{

∂

∂x
b̂ +

1
vg

∂

∂t
b̂

}
+ k

v′g
vg

∂2

∂x2 b̂

−k
2(Ωi − ω)− ω2

Ωp − Ωi

(
np − 2Ωp − ω

Ωp − ω
k

ω
Vpx

)
b̂

+
k2(Ωp − ω)− ω2

Ωp − Ωi

(
ni − 2Ωi − ω

Ωi − ω
k

ω
Vix

)
b̂ +O(ε4) = 0, (3.13)

with the group dispersion v′g = ∂vg/∂k. Owing to the nonlinear terms, the densities
nα and the longitudinal velocities Vαx are also involved.

To proceed further, we have to express nα and Vαx in terms of b̂. In fact, owing to
(3.3) and (3.12), they are connected to |b̂|2 (the squared modulus of the envelope). No
phase information of b̂ is involved. In order to integrate the continuity equation (2.2)
and the longitudinal components of the momentum equation (3.3) and (3.4), we go
into a comoving system (with velocity U ), in which we assume |b̂|2, nα and Vαx to
be stationary. The envelope function b̂ will not be stationary in this system. The
coordinate transformation into this new system is given by

(x, t) 7→ (ξ, τ ), with ξ = x− Ut and τ = t . (3.14)

In particular, the substitutions

x 7→ ξ + Uτ,
∂

∂x
7→ ∂

∂ξ
, (3.15a)

t 7→ τ,
∂

∂t
7→ −U ∂

∂ξ
+
∂

∂τ
(3.15b)

are to be applied to the above-mentioned equations. Since our variables are station-
ary in the comoving frame of reference, the τ -derivatives vanish. Thus we obtain
ordinary differential equations with respect to ξ.

At early times (t→−∞ or ξ→∞), the wave packet is far away and the plasma is
still undisturbed. This provides boundary conditions,

np(ξ→∞)= 0 ,

ni(ξ→∞)= 0 ,

Vpx(ξ→∞)= 0 ,

Vix(ξ→∞)= 0 ,

}
and |b̂|2(ξ→∞) = 0 , (3.16)

which enables us to fix constants of integration.
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From (3.8), which can be written as

∂

∂x
|b̂|2 +

1
vg

∂

∂t
|b̂|2 +O(ε3) = 0 , (3.17)

we obtain by integration

U = vg +O(ε) . (3.18)

Therefore the speed U of the comoving system must be close to the group veloc-
ity vg, and we are able (if precision permits it) to replace U by vg. Integration of
the continuity equation (2.2) yields

Vpx = vg np +O(ε3), Vix = vg ni +O(ε3) , (3.19)

and from the momentum equations (3.3) and (3.4) we get

κpZp
Ωp

(C2
sp + Ωpc2

se − v2
g)np +

κiZi
Ωi

(C2
si + Ωic2

se − v2
g)ni +

1
2
|b̂|2 +O(ε3) = 0 , (3.20)

1
Ωp

(C2
sp−v2

g)np−
1
Ωi

(C2
si−v2

g)ni−
1
2

Ωp − Ωi
ωI − ω

(
1 +

kvg
ωI − ω

)
|b̂|2 +O(ε3) = 0 . (3.21)

The quantities

c2
se = 1

2βeγe , C2
sp = Ωp

βpγp
2κpZp

, C2
si = Ωi

βiγi
2κiZi

, (3.22)

are closely related to the plasma sound speeds Cs1 and Cs2, which are given by the
roots of a biquadratic polynomial (see Mann et al. 1997):

(x2 − C2
s1)(x2 − C2

s2) = x4 − x2 [C2
sp + C2

si + (κpZpΩp + κiZiΩi) c2
se]

+C2
spC

2
si + (κpZpΩpC2

si + κiZiΩiC2
sp) c

2
se (3.23)

Now, all the necessary ingredients exist, and we can assemble the final equations.
Since we have finished the perturbation theory, we refrain from writing down the
orders O(ε).

From (3.20) and (3.21), we get for the number densities

np =
Ωp |b̂|2

2(v2
g − C2

s1)(v2
g − C2

s2)

×
[(

Ωi − ω
ωI − ω − 1

)(
1 +

kvg
ωI − ω

)
[C2
si + Ωic2

se − v2
g] + [C2

si − v2
g]
]
, (3.24a)

ni =
Ωi |b̂|2

2(v2
g − C2

s1)(v2
g − C2

s2)

×
[(

Ωp − ω
ωI − ω − 1

)(
1 +

kvg
ωI − ω

)
(C2
sp + Ωpc2

se − v2
g) + (C2

sp − v2
g)
]
, (3.24b)

which are proportional to |b̂|2, and with (3.19) we also know the longitudinal veloc-
ities. Thus we can merge most of the third term in (3.13) into a constant

CN =
k2(Ωi − ω)− ω2

Ωp − Ωi

(
1− 2Ωp − ω

Ωp − ω
k

ω
vg

)
np

|b̂|2

−k
2(Ωp − ω)− ω2

Ωp − Ωi

(
1− 2Ωi − ω

Ωi − ω
k

ω
vg

)
ni

|b̂|2 , (3.25)

https://doi.org/10.1017/S0022377899007631 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377899007631


640 P. Hackenberg and G. Mann

and rewrite (3.13) as{
i

[
∂

∂τ
+ (vg − U )

∂

∂ξ

]
+
v′g
2

∂2

∂ξ2 + CN |b̂|2
}
b̂ = 0 , (3.26)

which is of the form of a nonlinear Schrödinger equation. Note that |b̂| must be
stationary in the comoving system.

The nonlinear Schrödinger equation (3.26) may be solved by the ansatz

b̂(ξ, τ ) = b̂(ξ) e−iΩτ , (3.27)

which satisfies the stationarity of |b̂|. Thus it is reduced to an ordinary differential
equation {

Ω + i(vg − U )
∂

∂ξ
+
v′g
2

∂2

∂ξ2 + CN |b̂|2
}
b̂(ξ) = 0 , (3.28)

whose general solution is given in the Appendix. For solitary boundary conditions,
the solution is

b̂(ξ) = b0 sech
[(

CN
v′g

)1/2

b0 (ξ − ξ0)
]
ei[(U−vg)ξ/v′g−φ0], (3.29)

with the maximum amplitude

b0 =
[
− 2Ω
CN
− (U − vg)2

v′gCN

]1/2

. (3.30)

Note that the quantities within the square roots in (3.29) and (3.30) must be posi-
tive; in particular, v′g CN > 0 must hold.

We find

B = Re[b0 (ez + iey) eiφ0 ei[(U−vg)/v′g (x−Ut)] ei[kx−(ω+Ω)t]]

× sech
[(

CN
v′g

)1/2

b0 (x− Ut− ξ0)
]

+ ex (3.31)

as a final solution in still-normalized variables. In the last exponential, the term
ω + Ω appears. It denotes a frequency shift of the carrier wave. The shift increases
quadratically with the maximum amplitude b0 (see (3.30) with U = vg), and Ω is
therefore called the nonlinear frequency shift (Whitham 1974).

4. Discussion
In order to illustrate the results of the previous section, an electron–proton–helium
plasma with 10 % 4He2+, i.e.N0i = 0.1N0e andN0p = 0.8N0e, is adopted for example.
Such a plasma can be found in the solar wind near the Sun. Other helium densities,
as long as the densities do not become very small or large, will only change the
quantitative but not the qualitative results of this discussion.

For simplicity, we assume a cold plasma (cse = 0, Csp = 0, Csi = 0). The number
densities (3.24) simplify to

np =
Ωp

Ωp − ω
[
1 +

ω2 − k2(Ωp − ω)
(Ωp − ω)(Ωi − ω)

vg
k

]
ω2

2v2
gk

2 |b̂|2 , (4.1a)
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Figure 2. Plot of CN as a function of ω. In the grey-shaded region, v′g > 0. Hence no solitary
wave can exist there. The dotted line at ω = 0.74 Ωp marks the location of our calculation.
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Figure 3. Ratio of the number density n and the envelope amplitude |b̂|2 as a function of ω;
see (4.1). See Fig. 2 for further explanations.

ni =
Ωi

Ωi − ω
[
1 +

ω2 − k2(Ωi − ω)
(Ωp − ω)(Ωi − ω)

vg
k

]
ω2

2v2
gk

2 |b̂|2 , (4.1b)

and thus the constant CN is given by

CN =
ω3 − k2(ΩpΩi − ω2)
(Ωp − ω)(Ωi − ω)

ω2

4vgk3

×
[
1 +

ω2 − k2(Ωp − ω)
(Ωp − ω)(Ωi − ω)

ω2 − k2(Ωi − ω)
(Ωp − ω)(Ωi − ω)

(Ωp − ω)(Ωi − ω) + 2ΩpΩi
ω3 − k2(ΩpΩi − ω2)

v2
g

]
.(4.2)

First, we determine the region in which the soliton could exist, i.e.where v′gCN > 0
is fulfilled. The inflection point of the hybrid mode (ωI 6 ω < Ωp) is located at
ω ≈ 0.705 (see Fig. 1). To its left, the group dispersion v′g is positive, while to its
right, group dispersion is negative. Thus the constant CN decides in which of these
two regions we can find a solitary wave. In Fig. 2, CN is plotted as a function of ω.
Since CN is overall negative, the solitary wave can only exist at ω >∼ 0.705.

In order to be beyond the boundary of existence (ω >∼ 0.705), we choose ω = 0.74
for example. At this point, we have k = 1.11, vg = 0.19, v′g = −0.09 andCN = −1.34.

We conclude from (4.1), which is plotted in Fig. 3, that the coefficient of propor-
tionality between nα and |b̂|2 is of the order of ten. Since, owing to our perturbation
theory, the number densities nα must not exceed |b̂|2, the upper limit for b0 is at
0.1, i.e. the maximum magnetic field amplitude should be limited to 10% of the
unperturbed magnetic field.

It is very important that this inspection is done quantitatively with the present
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Figure 4. Snapshot (t = 0) of the wave packet’s magnetic field Bz, whose maximum is
located at x = 0. The envelope |b̂| is depicted by the grey-shaded region.
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Figure 5. Enrichment of helium ions and protons within the wave packet. The maximum
relative enrichments are 9.5% for the helium ions and 4.9% for the protons.

plasma. Otherwise there is the risk that the restrictions imposed in the derivation
of the the nonlinear Schrödinger equation are violated. The nonlinear Schrödinger
equation itself does not contain any hint as to which amplitudes are valid and
which are not. This information can only be obtained from the applied perturbation
theory.

We stay away from the maximum amplitude and choose b0 = 0.075, resulting in
a nonlinear frequency shift Ω = 0.0038, which is (being 0.5% of ω) negligibly small.
For simplicity, we choose U = vg. We have not found any remarkable effect that
would justify a more complicated choice.

Now all parameters are fixed, and we can have a look at the result. The z com-
ponent of the magnetic field is shown in Fig. 4 (ξ0 = 0, φ0 = 0, t = 0). All-in-all,
we get the following picture. The wave packet (depicted by the grey-shaded region
in Fig. 4) moves with velocity U = 0.19 from left to right. The left-hand polarized
carrier wave (represented by Bz), trapped within the wave packet, moves faster
from left to right, with a phase velocity vph = ω/k = 0.67. Simultaneously, protons
and helium ions are enriched within the solitary wave (see Fig. 5).

The helium ions are more enriched than the protons within the solitary wave. The
fact that the helium ions are nearly twice as enriched as the protons is due to the
chosen parameters, as shown in Fig. 3. The characteristics of the enrichment can
be chosen through ω. Note, ω or k must not be too large, otherwise strong damping
by kinetic effects occur in the real (not cold) plasma. Kinetic effects are neglected
in multifluid descriptions.
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Figure A.1. Sketch of the potential V (a). The mass starts infinitely slowly at a = 0, reaches
its maximum amplitude at a0, and then approaches a = 0 again, where it stops at infinite
later time.
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Appendix
With (3.28), we have derived an ordinary differential equation of the form{

A + iB
∂

∂x
+ C

∂2

∂x2 + |ψ(x)|2
}
ψ(x) = 0, with A,B,C ∈ R . (A 1)

We shall show how this equation is solved (see Whitham 1974; Karpman 1975).
We denote differentiation with respect to x with a prime. The ansatz

ψ(x) = a(x)eiφ(x), with a, φ ∈ R, (A 2)

allows us to split (A 1) into its real part

Aa−B aφ′ + C (a′′ − aφ′2) + a3 = 0 (A 3)

and its imaginary part

Ba′ + C (2 a′ φ′ + aφ′′) = 0 . (A 4)

By integrating (A 4), inserting the resulting formula for φ′ in (A 3) and integrating
again, one obtains (

A +
B2

4C

)
a2 +

1
2
a4 +

D2

4C
1
a2 + C a′2 = E , (A 5)

with the two real constants of integration D and E. Solitary boundary conditions,
i.e. a(x→∞) = 0, a′(x→∞) = 0 and φ′(x→∞) = O(1), render the two constants
zero (D = E = 0). Hence we can view (A 5) as an equation

V (a) + a′2 = 0, with V (a) =
(
A

C
+
B2

4C2

)
a2 +

1
2C

a4 , (A 6)

that describes the motion of a mass in a potential V (a). Since solitary solutions
correspond to non-cyclical solutions, the only possible shape of V is as depicted in
Fig. A.1. Thus the signs of the coefficients in (A 6) are given by

A +
B2

4C
< 0, C > 0 , (A 7)

and we can integrate (A 6).
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Finally, the solution of (A 1) with the maximum amplitude a0 located at x0 is

ψ(x) = a0 sech
[

a0

(2C)1/2
(x− x0)

]
e−i[(B/2C)x+φ0] (A 8a)

with

a0 =
(
− 2A− B2

2C

)1/2

. (A 8b)

Note that (A 1) can also be solved in a very similar manner for periodic solutions
and so-called inverse solitons. One just has to choose other boundary conditions
(and other signs for the potential coefficients).
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