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We are revisiting the topic of travelling fronts for the food-limited (FL) model with
spatio-temporal nonlocal reaction. These solutions are crucial for understanding the
whole model dynamics. Firstly, we prove the existence of monotone wavefronts. In
difference with all previous results formulated in terms of ‘sufficiently small
parameters’, our existence theorem indicates a reasonably broad and explicit range
of the model key parameters allowing the existence of monotone waves. Secondly,
numerical simulations realized on the base of our analysis show appearance of
non-oscillating and non-monotone travelling fronts in the FL model. These waves
were never observed before. Finally, invoking a new approach developed recently by
Solar et al., we prove the uniqueness (for a fixed propagation speed, up to
translation) of each monotone front.
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1. Introduction

In this work, we consider the following food-limited (FL, for short) model [11,13,
15,16,23–26,31,32] with spatio-temporal nonlocal reaction

∂tu(t, x) = ∂xxu(t, x) + u(t, x)
(

1 − (K ∗ u)(t, x)
1 + γ(K ∗ u)(t, x)

)
, x ∈ R. (1.1)

Here

(K ∗ u)(t, x) =
∫ +∞

0

ds
∫

R

K(s, y, τ)u(t− s, x− y) dy,
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and K : R+ × R × R+ → R+ is a function satisfying

Ic,τ (λ) :=
∫

R+×R

K(s, y, τ) e−λ(cs+y) dsdy ∈ R,

Ic,τ (0) = 1, lim
λ→−λ0(c)+

Ic,τ (λ) = +∞,

for all λ ∈ (−λ0(c), λ1(c)), c > 0, and some λ0(c), λ1(c) ∈ (0,+∞]. Parameter τ > 0
takes into account the delayed effects in the model and it is related to the average
maturation time. Note that we admit the distributional kernels K (as in proposi-
tion 1.1), however, we will assume that Ic,τ (λ) is a usual scalar continuous function
of variables c, τ, λ.

In view of the above-mentioned references, model (1.1) seems to be among the
most studied equations of population dynamics. It can be also viewed as a natural
extension of the nonlocal KPP-Fisher equation [2,6,9,12,14,18,22,34] which is
obtained from (1.1) by letting γ = 0. Positive smooth solutions u(t, x) = φ(x+ ct)
of (1.1) satisfying the boundary conditions φ(−∞) = 0, φ(+∞) = 1 (and usually
called wavefront solutions, or simply wavefronts) are key elements for understanding
the whole evolution process governed by the FL equation. The parameter c is called
the wave speed, it is a well-known fact that c � 2 (cf. § 2.2 below). Starting from
the pioneering works by Gourley [15] and Gourley and Chaplain [16], the existence
and monotonicity properties of wavefronts for the FL model have been the object
of investigation in various papers, e.g. see [23,31,32]. From these works, we have
the following consolidated existence result.

Proposition 1.1. Suppose that the kernel K has one of two forms

K(s, y, τ) = δ(y)G1(s, τ), K(s, y, τ) =
e−y

2/4s

√
4πs

G2(s, τ), (1.2)

where either G1(s, τ) = δ(s− τ) (local in space, discrete delay case [15,31]), or
G2(s, τ) = δ(s− τ) (nonlocal in space, discrete delay case [23]), or G1(s, τ) =
(s/τ2)e−s/τ (local in space, strong generic delay case [23,31]), or G2(s, τ) =
(s/τ2)e−s/τ (nonlocal in space, strong generic delay case [23,31,32]), or G2(s, τ) =
(1/τ)e−s/τ (nonlocal in space, weak generic delay case [16]).

Then for each c � 2 there exists τ(c) such that equation (1.1) with τ ∈ (0, τ(c)]
has at least one wavefront propagating with the speed c.

Moreover, in the case when G2(s, τ) = δ(s− τ) and τ < (1 + γ)3/2, there is
c(τ, γ) � 2 such that (1.1) has at least one wavefront for each speed c � c(τ, γ)
[23].

Several relevant remarks are in order. First, in view of approaches used in the
cited works, the numbers τ(c) and 1/c(τ, γ) in proposition 1.1 have to be sufficiently
small. On the other hand, derivation of explicit lower estimates for them seems to
be rather problematic. At the same time, available upper estimations of τ(c) do
not exclude that it may happen that τ(c) → 0 as c→ ∞, see [15,31] or related
argumentation in [19]. Certainly, all this limits the applicability of proposition 1.1.
Second, the monotonicity of obtained wave profiles φ(s) was proved only for the
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particular cases considered in [15,31]. The studies [15,16,23] present numerical
simulations showing that φ(s) is monotone for small τ and that it can oscillate
around the equilibrium 1 if τ is sufficiently large. And third, important and difficult
problem of the uniqueness of wavefronts for the FL model was not discussed in the
mentioned articles.

In the present work, inspired by recent significant advances in the studies of
nonlocal KPP-Fisher equation [1,6,8,9,12,18,19,21] (i.e. of equation (1.1) with
γ = 0), we are going to clarify all three aforementioned aspects concerning the FL
model. We will also discuss remarkable differences existing between the cases γ = 0
and γ > 0. We explain why, even in more simple case of monotone wavefronts for
(1.1), it seems impossible to obtain a concise criterion, similar to the Fang and Zhao
criterion [9], of their existence when γ � 1.

Previously, three main approaches were used to prove proposition 1.1: a) the Zou
and Wu monotone iterations method [34], extended for nonlocal systems in [30]. It
allows to consider rather general kernels K and prove the monotonicity of waves, see
[15,31]; b) the linear chain technique combined with Fenichel’s invariant manifold
theory. Only special kernels are admitted by this approach, see [16,32]; c) the Hale-
Lin perturbation techniques [10,17,18] based on the use of the Lyapunov-Schmidt
reduction of the profile equation in appropriate infinite-dimensional spaces. In this
case the non-perturbed equation (when τ = 0 or 1/c = 0) has a wavefront and it is
shown that it can be extended continuously for small τ > 0 or large c� 2. As in
a), this method can also be applied to rather general forms of K, see [23].

In our analysis of the wavefront existence problem for the FL model, we are using
an appropriate modification of the Zou and Wu monotone iterations algorithm from
[34]. The recent works [9,12,19,29] have shown high efficiency of this method in
the studies of delayed [12,29], nonlocal [9] and neutral [19] versions of the KPP-
Fisher equation as well as of the nonlocal diffusive equation of the Mackey-Glass
type [29]. In this regard, this paper provides a natural extension, for γ > 0, of the
findings in [9,12] containing them as very particular cases.

Clearly, the existence of classical travelling wave solution u(x, t) = φ(x+ ct)
amounts to the existence of positive solution φ(t) to the following boundary value
problem

φ′′(t) − cφ′(t) + φ(t)
(

1 − (Nc ∗ φ)(t)
1 + γ(Nc ∗ φ)(t)

)
= 0, φ(−∞) = 0, φ(+∞) = 1, (1.3)

where

Nc(v, τ) :=
∫ +∞

0

K(s, v − cs, τ) ds, so that
∫

R

Nc(v, τ)e−λv dv = Ic,τ (λ).

Note that each non-constant solution φ(t) ∈ [0, 1], t ∈ R, of (1.3) satisfies φ′(t) > 0
and φ(t) ∈ (0, 1) for all t ∈ R, see lemmas 3.1 and 3.2 below.

After linearizing (1.3) around the positive equilibrium, we get the characteristic
function χ+ determining the asymptotic behaviour of wavefronts at +∞,

χ+(z, c, τ) = z2 − cz − 1
1 + γ

∫
R

Nc(v, τ)e−zv dv.

Now we are in a position to state the first main result of this work.
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Theorem 1.2. If, for some c′ � 2, τ > 0, the equation χ+(z, c′, τ) = 0 has a neg-
ative root z′ satisfying the inequality γ(z′2 − cz′) � 1 then equation (1.1) has a
monotone wavefront u(x, t) = φ(x+ c′t), φ′(s) > 0, s ∈ R. Conversely, if equation
(1.1) has a monotone wavefront propagating with some speed c′ then c′ � 2 and
there exists a negative real number z′ such that χ+(z′, c′, τ) = 0.

To compare this result with proposition 1.1, let us consider the second kernel in
(1.2). We have∫

R

Nc(v, τ)e−λv dv =
∫ +∞

0

G2(s, τ)e(λ2−λc)s ds ∈ R+, (1.4)

so that

χ+(z, c, τ) = χ(z2 − cz, τ), where χ(w, τ) = w − 1
1 + γ

∫ +∞

0

G2(s, τ)ews ds.

Here is an immediate consequence of the above computation and theorem 1.2.

Corollary 1.3. Let the kernel be as in (1.2) with G2(s, τ) and γ > 0. Then, if
equation (1.1) has a monotone wavefront propagating with the speed c′, χ has a
positive zero w′. Conversely, suppose that χ has a zero w′ ∈ (0, 1/γ). Then for each
c′ � 2 equation (1.1) has a monotone wavefront propagating with the speed c′.

Example 1.4. As in [16], consider weak generic delay kernel G2(s, τ) = (1/τ)e−s/τ .
Then

χ(w, τ) = w +
1

(1 + γ)(wτ − 1)
, w < 1/τ,

and after invoking corollary 1.3, it is easy to find that the inequality τ � (1 + γ)/4
is a necessary condition for the existence of monotone wavefronts. By the same
corollary, a straightforward analysis shows that monotone wavefronts exist when

τ �
{

(1 + γ)/4 , γ ∈ (0, 1],
γ/(1 + γ) , γ � 1. (1.5)

In difference with the result provided by proposition 1.1, the upper estimate for τ in
(1.5) is explicit and does not vanish as c→ +∞. Moreover, for values of γ ∈ (0, 1],
the inequality τ � (1 + γ)/4 gives a sharp criterion for the existence of monotone
wavefronts. To understand what can happen for γ > 1, following [16], we applied
the linear chain technique rewriting equation (1.1) as the system of two coupled
reaction-diffusion equations

ut = duxx + u

(
1 − v

1 + γv

)
, vt = dvxx +

1
τ

(u− v). (1.6)

Here, similarly to [16], we introduced a diffusivity parameter d to have a greater
control of the propagation speed (in any case, notice that condition (1.5) neither
depends on the diffusivity d nor on the speed c). Next, we realized numerical sim-
ulations with MATLAB taking γ = 40, τ = 10, d = 50 and considering (1.6) on
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Figure 1. Development of a minimal non-monotone non-oscillating wavefront in the
nonlocal FL model with the weak generic delay kernel.

the interval [0, 1800] with homogeneous Neumann boundary conditions and initial
conditions

u(0, x) = v(0, x) =
{

0 , x � 1500,
1 , x > 1500.

With the above indicated values, we have 10 = τ � (1 + γ)/4 = 41/4, however,
γ(dz′2 − cz′) = γw′ = 2(1 − 1/

√
41) > 1. As figure 1 shows, the solution u(t, x)

of the problem converges to a wavefront propagating with the minimal speed
c = 10

√
2. This wavefront is clearly non-monotone, with its maximal value being

bigger than 1. Nevertheless, as the analysis in [20] suggests, the wavefront neither is
oscillating around the positive equilibrium (actually, all zeros of χ+(z, 10

√
2, 10) are

real). It seems that such a dynamical behaviour (the existence of a non-monotone
but eventually monotone wavefront in the FL model) was not observed in the pre-
vious numerical experiments, cf. [15,16,23]. From the analysis in [20] we see that
the reason of this phenomenon can be explained by the fact that the nonlinear
function

F (u, v) := u

(
1 − v

1 + γv

)
(1.7)
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with γ > 0 does not satisfy the sub-tangency condition at the positive steady state

F (u, v) � Fu(1, 1)(u− 1) + Fv(1, 1)(v − 1) =
1 − v

1 + γ
, u, v ∈ (0, 1).

This fact also indicates that the problem of determining necessary and sufficient
conditions for the existence of monotone wavefronts in (1.1) with γ > 0 might not
have an explicit solution in terms of the parameters τ, γ, c. Here we have a full
analogy with the very difficult problem of determining speed of propagation of the
pushed wavefronts, see [3] and references therein.

Example 1.5. As in [23,31,32], consider the strong generic delay kernelG2(s, τ) =
(t/τ2)e−s/τ . Then

χ(w, τ) = w − 1
(1 + γ)(wτ − 1)2

, w < 1/τ,

and the sufficient condition of corollary 1.3 for the existence of monotone wavefronts
takes the form

τ �

⎧⎪⎨
⎪⎩

4(1 + γ)/27 , γ ∈ (0, 4/5],

γ

(
1 −

√
γ

1 + γ

)
, γ � 4/5.

Moreover, the inequality τ � 4(1 + γ)/27 is a necessary condition for the existence
of monotone wavefronts. All other conclusions and discussion of example 1.4 are
also apposite to this particular case.

Example 1.6. Finally, as in [15], we consider the FL model with a single discrete
delay and without nonlocal interaction, i.e. when the kernel in (1.2) is chosen with
G1(s, τ) = δ(t− τ) and γ > 0. In several aspects, this case appears to be more
difficult than the situations considered in examples 1.4, 1.5. As we have already
mentioned, it does not allow the use of the linear chain technique. It is immediate
to find that

χ+(z, c, τ) = z2 − cz − e−zch

1 + γ
.

Applying theorem 1.2 and after some computation, we see that a monotone
wavefront exists for each c � 2 if

0 � τ � γ ln
1 + γ

γ
.

But even if the latter inequality is not satisfied, the monotone wavefronts still exist
for the speeds

2 � c � ln(1 + γ)/γ
τ
√

1/γ − 1/τ ln(1 + γ)/γ
.

In figure 2, the regions of parameters (τ, c) ∈ [0,+∞) × [2 + ∞) bounded by the
blue lines and the coordinate axes correspond to some subdomains of existence
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Figure 2. The domains bounded by the blue (respectively, red) lines and the coordinate
axes correspond to the sufficient (respectively, necessary) conditions for the existence of
monotone waves. Here we take γ ∈ {0.1, 1, 3}.

of monotone wavefronts (determined by the sufficient condition of corollary 1.3).
The domains bounded by the red lines and the coordinate axes correspond to the
domains of the existence of eventually monotone wavefronts (necessary condition
of corollary 1.3).

The next main result of this paper answers the question about the uniqueness of
monotone waves.

Theorem 1.7. Suppose that φ(t), ψ(t) are two monotone wavefronts to equation
(1.1) propagating with the same speed. Then there exists a real number t′ such that
φ(t) ≡ ψ(t+ t′).

It is important to stress that the above uniqueness result is valid only within the sub-
class of monotone wavefronts. As it was shown in [18], the uniqueness property does
not hold within the larger class of all wavefronts even for the nonlocal1 KPP-Fisher
equation (i.e. when γ = 0).

Theorem 1.7 is a non-trivial extension of the uniqueness result from [9] established
for the case γ = 0. Indeed, the proof in [9] (see also [12]) uses in an essential way the
sub-tangency property of F (u, v) (given by (1.7)) at the equilibrium 1. In particular,
this property (valid only for γ = 0) is needed to identify the first term of asymptotic
representation of the wavefront profile at +∞. Hence, in order to prove theorem 1.7
(where γ > 0), it was necessary to find a completely different way to the uniqueness
problem. In part, our approach was suggested by the recent study [27] proposing a
new method for tackling the wave uniqueness problem for the delayed differential
reaction-diffusion equation. However, the proofs in [27] work only for the delayed

1But it does hold for the delayed local KPP-Fisher equation, see [27].
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diffusive equations with local interaction. To get rid of this restriction imposed in
[27], here we are considering only monotone wavefronts and combine the main ideas
from [27] with the sliding solution method of Berestycki and Nirenberg [4,5] (see
also [7]).

Finally, a few words concerning the organization of the paper. Theorem 1.2 is
proved in § 2. Section 3 contains the proofs of theorem 1.7 as well as several other
auxiliary assertions.

2. Monotone wavefronts: the existence

2.1. Sufficiency conditions

In this subsection, using the monotone iteration techniques developed in [9,12,
34], we prove that equation (1.1) has a monotone wavefront propagating with the
speed c′ � 2 in the case when the characteristic equation χ+(z, c′, τ) = 0 has a
negative root z′ satisfying the inequality γ(z′2 − cz′) � 1 . In what follows, we will
omit the prime symbol in c′ and write χ+(z′, c, τ) = 0. Next, Cb(R,R) will denote
the space of all bounded continuous functions (its topology will be chosen later).

First, we observe that equation (1.3) can be rewritten in the form

φ′′(t) − cφ′(t) + φ(t) = (Fφ)(t), (2.1)

where operator F : Cb(R,R) → Cb(R,R) defined by

(Fφ)(t) = φ(t)
(1 + γ)(Nc ∗ φ)(t)
1 + γ(Nc ∗ φ)(t)

is clearly monotone non-decreasing in φ. Now, suppose that c � 2, then the equation
z2 − cz + 1 = 0 has two positive roots 0 < z1 � z2 (counting multiplicity). Further-
more, it is easy to see [9,12] that every non-negative bounded solution of (2.1)
should satisfy the integral equation

φ(t) =
∫ +∞

0

A(s)(Fφ)(t+ s) ds =: (Aφ)(t), (2.2)

where

A(s) =

⎧⎨
⎩
a(e−z1s − e−z2s) , s � 0 and c > 2,

se−s , s � 0 and c = 2,
0 , s � 0, c � 2,

,

with positive a chosen to assure the normalization condition
∫

R
A(s) ds = 1.

Next, we consider the following modification of equation (1.3):

φ′′(t) − cφ′(t) + φ(t)
(

1 − (Nc ∗ φ)(t)
1 + γ

)
= 0. (2.3)

By our assumptions, for the fixed speed c = c′, the integral

Ic,τ (λ) =
∫

R

Nc(s, τ)e−λs ds
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is converging for λ = z′ < 0 and therefore Λ = (−λ0(c), 0] ⊃ [z′, 0]. Therefore [9,
theorems 1.1, 1.2] imply the existence of a unique (up to translation) mono-
tone wavefront solution φ+(t) to equation (2.3). Observe here that c′ � 2 > c∗ :=
2/
√

1 + γ, with c∗ being the minimal speed of propagation in (2.3). Clearly,

φ′′+(t) − cφ′+(t) + φ+(t)
(

1 − (Nc ∗ φ+)(t)
1 + γ(Nc ∗ φ+)(t)

)
� 0, (2.4)

so that (Aφ+)(t) � φ+(t), t ∈ R, (i.e. φ+(t) is an upper solution for equation (1.3)).
Now, since χ+(z′, c, τ) = 0, χ+(0, c, τ) < 0, χ+(−λ0(c)+, c, τ) = −∞, and

χ
(4)
+ (z, c, τ) < 0, z ∈ Λ, the function χ+(z, c, τ) = 0 has at most four negative zeros.

Without loss of generality we can assume that z′ is the maximal negative zero so
that χ+(z, c, τ) < 0 for z ∈ (z′, 0].

2.1.1. Non-critical case: c > 2 and z′ is a simple zero of χ+(z, c, τ) satisfying
γ(z′2 − cz′) � 1 Assuming the above restrictions, we will consider the following
function

φ−(t) =
{

1 − ez
′t , t � ζ

aez1t , t � ζ
,

where positive a and ζ ∈ R are chosen to assure the continuity of the derivative
φ′−(t) on R. Taking into account the opposite convexities of these two pieces of φ−,
it is easy to deduce the existence of such a, ζ; in addition, due to the same reason,

1 − ez
′t < aez1t, t < ζ. (2.5)

Note that φ+(t) and φ−(t) have similar asymptotic behaviour at +∞ and φ+(t)
decreases more slowly than φ−(t) as t→ −∞. Indeed, since z′ is a simple zero of
χ+(z, c, τ), invoking [9, lemma 3.2], we find that

φ+(t) = 1 − ez
′t(θ+ + o(1)), t→ +∞,

for some θ+ > 0. On the other hand, since c > 2 > 2/
√

1 + γ and reaction term of
equation (2.3) satisfies the following sub-tangency condition at 0:

φ(t)
(

1 − (Nc ∗ φ)(t)
1 + γ

)
� φ(t)

1 + γ
,

we may conclude (cf. [12, lemma 28]) that, for some θ− > 0, it holds

φ+(t) = ezγt(θ− + o(1)), t→ −∞,

where zγ < z1 is the minimal positive root of equation z2 − cz + 1/(1 + γ) = 0.
Therefore there exists some non-negative σ such that φ+(t+ σ) > φ−(t) for all
t ∈ R, cf. [12, lemma 18]. Clearly, without loss of generality, we can suppose that
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σ = 0 so that

φ−(t) < φ+(t), t ∈ R. (2.6)

The above form of function φ− was suggested in [9,12]. It follows from the definition
of ζ that

1 − ez
′ζ = aez1ζ ,

so that ez
′ζ ∈ (0, 1). Therefore, for all t � ζ,

1 + γ(Nc ∗ φ−)(t) � 1 + γ(Nc ∗ (1 − ez
′·)(t) = 1 + γ(1 − (1 + γ)(z′2 − cz′)ez

′t) �

(1 + γ)(1 − γ(z′2 − cz′)ez
′ζ) > (1 + γ)(1 − γ(z′2 − cz′)) � 0. (2.7)

Lemma 2.1. Assume that γ(z′2 − cz′) � 1 then

I−(t) := φ′′−(t) − cφ′−(t) + φ−(t)
(

1 − (Nc ∗ φ−)(t)
1 + γ(Nc ∗ φ−)(t)

)
� 0, t 
= ζ, (2.8)

i.e. φ−(t) is a lower solution for (1.3), (Aφ−)(t) � φ−(t), t ∈ R.

Proof. Since (2.8) can be written as

φ′′−(t) − cφ′−(t) + φ−(t) � φ−(t)
(1 + γ)(Nc ∗ φ−)(t)
1 + γ(Nc ∗ φ−)(t)

and ez1t is an eigenfunction for the linear equation y′′(t) − cy′(t) + y(t) = 0, relation
(2.8) clearly holds for all t < ζ.

Now, using (2.5) we find that, for all t ∈ R,

1 − (Nc ∗ φ−)(t) � 1 − (Nc ∗ (1 − ez
′·)(t) = (Nc ∗ ez′·)(t) = (1 + γ)(z′2 − cz′)ez

′t.

Note that z′2 − cz′ > 0. Therefore, in view of (2.7), for t > ζ, we obtain that

e−z
′tI−(t)

z′2 − cz′
� −1 +

[1 − ez
′t](1 + γ)

1 + γ(1 − (1 + γ)(z′2 − cz′)ez′t)

= −1 +
1 − ez

′t

1 − γ(z′2 − cz′)ez′t
=
ez

′t(γ(z′2 − cz′) − 1)
1 − γ(z′2 − cz′)ez′t

� 0.

This completes the proof of lemma 2.1. �

Since operator A is monotone, (2.6) implies that

φ− � Aφ− � Aφ+ � φ+.

Similarly, since φ±(t) � φ±(t+ s) for each s > 0, we conclude that Aφ±(t) are non-
decreasing functions on R. In this way, the sequence φn(t) = Anφ+, n = 0, 1, 2 . . .
consists from non-decreasing continuous functions satisfying

φ−(t) � φn+1(t) � φn(t) � φ+(t), t ∈ R.
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Let φ∗(t) = limn→+∞ φn(t). Then φ∗(t) is nondecreasing on R and φ∗(−∞) = 0,
φ∗(+∞) = 1. Next, since φn+1 = Aφn, the obtained limit function satisfies φ∗ =
Aφ∗ in virtue of Lebesgue’s dominated convergence theorem. This means that φ∗(t)
is a wavefront profile. Since φ∗(t) ∈ (0, 1), t ∈ R, it is easy to see that φ′∗(t) > 0 for
all t ∈ R, see also lemmas 3.1 and 3.2 below.

2.1.2. Critical case: either c = 2 or z′ is a multiple zero of χ+(z, c, τ) satisfying
γ(z′2 − cz′) � 1 First, we consider the case when γ(z′2 − cz′) < 1. Then the conti-
nuity of Ic,τ (λ) and a direct geometric analysis of the graph of χ+ show that there
exist strictly decreasing sequences γj → γ and cj → c such that γj(z′2j − cjz

′
j) < 1

where zj is the (maximal) negative simple zero of χ+(z, cj , τ). By the result of
§ 2.1.1, equation (1.3) γ = γj and c = cj has a monotone wavefront φj for each j.
Without loss of generality, we can assume the condition φj(0) = 0.5. In addition,
we conclude from equation (1.3) that the derivatives φ′j(t) are uniformly bounded,
0 < φ′j(t) � 2/c, t ∈ R, j ∈ N. Therefore the functional sequence {φj(t)} converges,
uniformly on bounded sets, to some nondecreasing non-negative bounded function
φ∗(t), φ∗(0) = 0.5. Taking limit, as j → +∞, in an appropriate integral form of the
differential equation

φ′′j (t) − cjφ
′
j(t) − φj(t) = −2φj(t) + (Fφj)(t),

we find that φ∗(t) also satisfies (1.3). Since φ∗(0) = 0.5 and φ∗(t) is a non-
negative and monotone function, we conclude that φ∗(+∞) = 1, φ∗(−∞) = 0. This
completes the analysis of the critical case when γ(z′2 − cz′) < 1.

Next, fix c, γ, τ and suppose that γ(z′2 − cz′) = 1. Also consider a sequence of
shifted kernels Mj(v, τ) := Nc(v + 1/j, τ) together with the problem

φ′′(t) − cφ′(t) + φ(t)
(

1 − (Mj ∗ φ)(t)
1 + γ(Mj ∗ φ)(t)

)
= 0, φ(−∞) = 0, φ(+∞) = 1. (2.9)

Clearly, Mj has the same general properties as Nc while

(Mj ∗ φ)(t) =
∫

R

Nc(v, τ)φ(t− v + 1/j) dv

and the characteristic function χ+ at the positive equilibrium takes the form

χ+,j(z, c, τ) = z2 − cz − ez/j

1 + γ

∫
R

Nc(v, τ) e−zv dv.

Since ez/j < 1 for negative z, equation χ+,j(z, c, τ) = 0 has a negative root z′j sat-
isfying the relation γ(z′2j − cz′) < 1 for all positive integer j. By the first part of
this subsection, this implies the existence of strictly monotone solution φj(t) of
(2.9) for each j. As before, we assume that φj(0) = 0.5 and that {φj(t)} converges,
uniformly on compact subsets of R, to a non-decreasing function φ∗(t). Thus we
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can use the Lebesgue dominated convergence theorem to establish the limit

(Mj ∗ φj)(t) =
∫

R

Nc(v, τ)φj(t− v + 1/j) dv

→ (Mc ∗ φ∗)(t) =
∫

R

Nc(v, τ)φ∗(t− v) dv

for each t ∈ R. In order to complete the proof, we can now argue as in the first part
of this subsection.

2.2. Necessity of the condition imposed on χ+(z, c, τ )

Let φ be a positive monotone wavefront of equation (1.3). Then equation (1.3)
can be rewritten as

φ′′(t) − cφ′(t) + (1 −R(t))φ(t) = 0, (2.10)

where the function

R(t) =
(1 + γ)(Nc ∗ φ)(t)
1 + γ(Nc ∗ φ)(t)

, R(−∞) = 0,

is also monotone on R and satisfies
∫ 0

−∞ |R′(s)|ds = R(0) <∞. This allows the
use of the Levinson asymptotic integration theorem showing that the speed of
propagation c should satisfy the inequality c � 2, cf. the proof of lemma 18 in [12].

Next, our proofs in this subsection simplify when the support suppNc of Nc
belongs to (−∞, 0]. Then the characteristic function χ+ takes the form

χ+(z, c, τ) = z2 − cz − 1
1 + γ

∫ 0

−∞
Nc(v, τ)e−zv dv,

so that χ+(0, c, τ) < 0 and χ+(−∞, c, τ) = +∞. In consequence, χ+(z, c, τ) has at
least one negative zero if suppNc ⊂ (−∞, 0]. Thus we have to analyze only the
situation when suppNc ∩ (0,+∞) 
= ∅, i.e. when there exists r0 > 0 that for each
s ∈ R and positive ν =

∫ +∞
r0

Nc(r, τ) dr ∈ (0, 1), it holds

1 − (Nc ∗ φ)(s) =
∫

R

(1 − φ(s− r))Nc(r, τ) dr

�
∫ +∞

r0

(1 − φ(s− r))Nc(r, τ) dr

� ν(1 − φ(s− r0)). (2.11)

Our subsequent analysis is inspired by the arguments proposed in [9] and [19], we
present them here for the sake of completeness.
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Set y(t) = 1 − φ(t), where φ(t) is a positive monotone wavefront. Then (2.2) takes
the form

y(t) =
∫ +∞

0

A(s)
(1 + γ)(Nc ∗ φ)(t+ s)y(t+ s) + (Nc ∗ y)(t+ s)

1 + γ(Nc ∗ φ)(t+ s)
ds.

In view of (2.11), this implies that, for all t ∈ R,

y(t) �
∫ +∞

0

A(s)ν
y(t+ s− r0)

1 + γ
ds

�
∫ r0/2

0

A(s)
ν

1 + γ
y(t+ s− r0) ds � ν̂y(t− r0/2),

where ν̂ = ν
∫ r0/2
0

A(s) ds/(1 + γ). Therefore, for some C > 0 and σ = 2r−1
0 ln

ν̂ < 0,

y(t) � Ceσt, t � 0. (2.12)

Hence,

0 � σ∗ = lim inf
t→+∞

1
t

ln y(t) � σ. (2.13)

Suppose, on the contrary, that χ+(z, c, τ) has not negative zeros. Then
χ+(σ∗, c, τ) < 0 (we admit here the situation when χ+(σ∗, c, τ) = −∞), so that
there exist a large n0 > 0 and small δ, ρ > 0 such that

q := inf
x∈(σ∗−δ,σ∗+δ)

(1 + γ)(1 − ρ) +
∫ n0

−n0
Nc(v, τ) e−xv dv

(1 + γ)(x2 − cx+ 1)
> 1.

Next, let μ ∈ (σ∗ − δ, σ∗) be such that

μ+ n−1
0 ln q > σ∗.

Clearly, for some C1 > 0, it holds that

y(t) � C1e
μt, t � −n0.

Since y(+∞) = 0, without loss of generality, we can assume that (Nc ∗ y)(s) < ρ
for all s � 0, then (Nc ∗ y)(t+ s) < ρ for all t, s � 0 and

y(t) �
∫ +∞

0

A(s)
(1 + γ)(1 − ρ)y(t+ s) + (Nc ∗ y)(t+ s)

1 + γ
ds

� C1e
μt

∫ +∞

0

A(s) eμs
(1 + γ)(1 − ρ) +

∫ n0

−n0
Nc(v, τ) e−μv dv

1 + γ
ds

= C1
eμt

μ2 − cμ+ 1

(1 + γ)(1 − ρ) +
∫ n0

−n0
Nc(v, τ) e−μv dv

1 + γ
� C1q eμt, t � 0.
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Repeating the same argument for y(t) on the interval [n0,+∞), we find similarly
that y(t) � C1q

2eμt, t � n0. Reasoning in this way, we obtain the estimates

y(t) � C1q
j+1eμt � C1e

(μ+n−1
0 ln q)t, t ∈ [n0j, n0(j + 1)], j = 0, 1, 2 . . .

This yields the following contradiction:

σ∗ = lim inf
t→+∞

1
t

ln y(t) � μ+ n−1
0 ln q > σ∗.

As a by product of the above reasoning, we also get the following statement:

Lemma 2.2. Suppose that suppNc ∩ (0,+∞) 
= ∅ and let φ(t) be a positive
monotone wavefront. Set y(t) = 1 − φ(t) and let σ∗ be defined as in (2.13).
Then χ+(σ∗, c, τ) is finite and non-negative. In particular, −λ0(c) < σ∗ < 0 and
χ+(x, c, τ) has at least one zero on the interval [σ∗, 0].

Remark 2.3. Lemma 3.3 below improves further the result of lemma 2.2. Next,
let {z : �z > α(φ)} ⊂ C be the maximal open strip where the Laplace transform
ỹ(λ) of y(t) is defined. Since y(t) is bounded on R, we have that α(φ) � 0. On the
other hand, by the definition of σ∗, it is easy to see that limt→+∞ y(t)e−λt = +∞
for every λ < σ∗. Thus α(φ) � σ∗ > −λ0(c). Note also that α(φ) is a singular point
of ỹ(λ), cf. [33].

3. Monotone wavefronts: the uniqueness

3.1. Three auxiliary results

Lemma 3.1. Suppose that φ(t) ∈ [0, 1], t ∈ R, is a non-constant solution of equation
(1.3). Then φ(t) > 0 for all t and there exists s′ ∈ R ∪ {+∞} such that φ′(t) > 0 for
all t < s′ and φ(t) = 1 for all t � s′. Moreover, s′ = +∞ if supp Nc ∩ (0,+∞) 
= ∅.

Proof. Equation (1.3) can be rewritten as φ′′(t) − cφ′(t) + ω(t)φ(t) = 0, where

ω(t) :=
(

1 − (Nc ∗ φ)(t)
1 + γ(Nc ∗ φ)(t)

)
� 0, t ∈ R,

is a continuous bounded function. Suppose that φ(s) = 0 for some s. Then non-
negativity of φ implies that φ′(s) = 0. Therefore, in view of the existence and
uniqueness theorem for linear ordinary differential equations, we have that φ ≡ 0
which contradicts our assumption. Thus φ(t) > 0 for all t ∈ R.

Next, integrating the above equation with respect to φ′(t), we find easily that

φ′(t) =
∫ +∞

t

ec(t−s)ω(s)φ(s) ds � 0.

This immediately implies the existence of s′ with the above-indicated properties.
Now, if s′ is finite then w(t) = 0 for all t � s′ so that (Nc ∗ φ)(t) = 1 for all t � s′.
Evidently, this can happen if and only if φ(t) = 1 for all t � s′ and supp Nc ∩
(0,+∞) = ∅. �
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In fact, as we will see from the next lemma, s′ = +∞ for every admissible Nc.

Lemma 3.2. Suppose that supp Nc ∩ (0,+∞) = ∅ and let φ(t) be a monotone
wavefront to equation (1.3). Then y(t) = 1 − φ(t) satisfies

y(t) � y(s)e(s−t)/(c(1+γ)) for all t � s. (3.1)

Proof. We have

y′′(t) − cy′(t) − φ(t)
y ∗Nc(t)

1 + γφ ∗Nc(t) = 0, t ∈ R. (3.2)

Clearly, φ ∗Nc(t) =
∫ 0

−∞ φ(t− s)Nc(s) ds � φ(t)
∫ 0

−∞Nc(s) ds = φ(t), t ∈ R, so
that

y(t) = 1 − φ(t) � 1 − φ ∗Nc(t) = y ∗Nc(t), φ(t)
1 + γφ ∗Nc(t) � 1

1 + γ
, t ∈ R.

Using the notation

y′(t) = z(t), r(t) = φ(t)
y ∗Nc(t)

1 + γφ ∗Nc(t) − y ∗Nc(t)
1 + γ

� 0, t ∈ R, (3.3)

we find that

z′(t) = cz(t) +
y ∗Nc(t)

1 + γ
+ r(t), t ∈ R.

Since z(±∞) = 0, we also have

y′(t) = z(t) = −
∫ +∞

t

ec(t−s)
(
y ∗Nc(s)

1 + γ
+ r(s)

)
ds

� −
∫ +∞

t

ec(t−s)
y ∗Nc(s)

1 + γ
ds � −

∫ +∞

t

ec(t−s)
y(s)
1 + γ

ds

= −y(t) 1
c(1 + γ)

, t ∈ R.

Thus

(y(t)et/(c(1+γ)))′ � 0, t ∈ R,

which implies (3.1). �

Lemma 3.3. Let φ(t) be a monotone wavefront to equation (1.3). Then there exist
Pφ, t1, t2 ∈ R and ε > 0 such that

φ(t+ t1) = ez1t((−t)j + jPφ +O(eεt)), t→ −∞,

φ(t+ t2) = 1 − tkeẑt(1 + o(1)), t→ +∞. (3.4)

where j = 0 if c > 2 and j = 1 when c = 2; k ∈ {0, 1, 2, 3} and ẑ = ẑ(φ) is some
negative root of the characteristic equation χ+(z, c, τ) = 0.
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Proof. Asymptotic representation of φ at +∞. Our first step is to establish that
y(t) = 1 − φ(t) has an exponential rate of convergence to 0 at +∞. To prove this,
we will need the next property:

For some ρ > 0 it holds that (y ∗Nc)(t) � ρy(t), t ∈ R. (3.5)

Again, we will distinguish between the two following situations.
Case 1: supp Nc ∩ (0,+∞) 
= ∅. Then there exists m > 0 such that ρ1 :=∫m

0
Nc(s, τ) ds > 0 and

∫
R

y(t− s)Nc(s, τ) ds �
∫ m

0

y(t− s)Nc(s, τ) ds � ρ1y(t), t ∈ R.

Case 2: supp Nc ∩ (0,+∞) = ∅. Then, by lemma 3.2, we have, for t ∈ R,

(y ∗Nc)(t) =
∫ 0

−∞
y(t− s)Nc(s, τ) ds � y(t)

∫ 0

−∞
es/(c(1+γ))Nc(s, τ) ds =: ρ2y(t).

In every case, (3.5) holds with ρ = min{ρ1, ρ2}.
Next, since φ(+∞) = 1, we can indicate T0 sufficiently large to satisfy

φ(t)
1 + γφ ∗Nc(t) > 0.5/(1 + γ), t � T0.

With the positive number

κ =
0.5ρ
1 + γ

,

we can rewrite equation (3.2) as

y′′(t) − cy′(t) − κy(t) = h(t), where h(t) := φ(t)
y ∗Nc(t)

1 + γφ ∗Nc(t) − κy(t), t ∈ R.

Importantly, for t � T0,

h(t) > y ∗Nc(t)
(

0.5
1 + γ

− κ

ρ

)
= 0,

so that, arguing as in [12, lemma 20, Claim I], we conclude that

y(t) � y(s)el(t−s), t � s � T0, where α(φ) � l := 0.5
(
c−

√
c2 + 4κ

)
< 0.

Hence, by remark 2.3, Ic,τ (l) is a finite number. Combining the latter exponen-
tial estimate with results of lemma 3.2 (if supp Nc ∩ (0,+∞) = ∅) or inequality
(2.12) (if supp Nc ∩ (0,+∞) 
= ∅), we conclude that y(t) has an exponential rate of
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convergence at +∞. Moreover, y′(t) has the same property because of the estimates

R(t) := φ(t)
y ∗Nc(t)

1 + γφ ∗Nc(t) � y ∗Nc(t) =
∫ t−T0

−∞
Nc(s, τ)y(t− s) ds

+
∫ +∞

t−T0

Nc(s, τ)y(t− s) ds �
∫ t−T0

−∞
Nc(s, τ)y(T0) el(t−s−T0) ds

+
∫ +∞

t−T0

Nc(s, τ) e−ls els ds � el(t−T0)

∫ t−T0

−∞
Nc(s, τ) e−ls ds

+ el(t−T0)

∫ +∞

t−T0

Nc(s, τ)e−ls ds = el(t−T0)Ic,τ (l)

and

y′(t) = −
∫ +∞

t

ec(t−s)R(s) ds � −Ic,τ (l) e−lT0

∫ +∞

t

ec(t−s) els ds

=
Ic,τ (l) e−lT0

l − c
elt.

The latter representation of y′(t) is deduced from (3.2) which also implies that

y′′(t) − cy′(t) −
(

1
1 + γ

+ ε(t)
)

(y ∗Nc)(t) = 0, t ∈ R, (3.6)

where

ε(t) :=
φ(t)

1 + γφ ∗Nc(t) − 1
1 + γ

=
γy ∗Nc(t) − (1 + γ)y(t)
(1 + γ)(1 + γφ ∗Nc(t)) = O(elt), t→ +∞.

Then, in view of remark 2.3, an application of [28, lemma 22] shows that y(t) =
w0(t)(1 + o(1)), t→ +∞, where w0(t) is a non-zero eigensolution of the equation
w′′(t) − cw′(t) − (w ∗Nc)(t)/(1 + γ) = 0 corresponding to some its negative eigen-
value ẑ. As we have already mentioned, the multiplicity of ẑ is less or equal to 4.
This proves the second representation in (3.4).
Asymptotic representation of φ at −∞. Since the linear equation y′′ − cy′ + y = 0
with c � 2 is exponentially unstable, then so is equation (2.10) with R(−∞) = 0 at
−∞. This assures at least the exponential rate of convergence of φ(t) to 0 at −∞.
On the other hand, φ(t) has no more than exponential rate of decay at −∞, cf.
[27, lemma 6]. Again, an application of [28, lemma 22] shows that y(t) = v0(t)(1 +
O(eεt)), t→ +∞, where v0(t) is a non-zero eigensolution of the equation v′′(t) −
cv′(t) + v(t) = 0 corresponding to one of the positive eigenvalues z1, z2 and ε is
some positive number. Finally, since the function F (u, v) given in (1.7) satisfies
the sub-tangency condition at the zero equilibrium, we conclude that the correct
eigenvalue in our case is precisely z1, see [12, § 7] for the related computations and
further details. �
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Corollary 3.4. Let ψ(t), φ(t) be different monotone wavefronts to equation (1.3).
Then there exist t3, t4, j ∈ {0, 1}, such that ψ(t+ t3) 
= φ(t+ t4) for all t ∈ R

meanwhile φ(t+ t3), ψ(t+ t4) have the same leading asymptotic terms at −∞:

φ(t+ t3) = ez1t((−t)j + jPφ +O(eεt)), ψ(t+ t4)

= ez1t((−t)j + jPψ +O(eεt)), t→ −∞.

Proof. By lemma 3.3, there are t1, t2, t
′
1, t

′
2, q ∈ {0, 1, 2, 3}, such that (3.4) holds

together with

ψ(t+ t′1) = (−t)jez1t(1 + o(1)), t→ −∞,

ψ(t+ t′2) = 1 − tqez
′′t(1 + o(1)), t→ +∞, (3.7)

where z′′ = z′′(ψ) is a negative root of the characteristic equation χ+(z, c, τ) = 0.
After realizing appropriate translations of profiles, without loss of generality, we
can assume that t1 = t′1 = 0.

Suppose that ẑ � z′′, then there is sufficiently large A > 0 such that

ψ(t+A) > φ(t), t ∈ R.

Since ψ(t) is an increasing function, for all a � A,

ψ(t+ a) > φ(t), t ∈ R.

Let A denote the set of all a such that the latter inequality holds. Clearly, A is a
below bounded set and therefore the number a∗ = inf A is finite and

ψ(t+ a∗) � φ(t), t ∈ R.

Observe that, since ψ, φ are different wavefronts, the difference δ(t) = ψ(t+ a∗) −
φ(t) is a non-zero non-negative function satisfying δ(−∞) = δ(+∞) = 0. We claim
that actually δ(t) > 0, t ∈ R, i.e.

ψ(t+ a∗) > φ(t), t ∈ R. (3.8)

Indeed, otherwise there exists some s′ such that δ(s′) = 0. From (2.1), we have that

δ′′(t) − cδ′(t) + δ(t) = H(t),

where

H(t) = (Fψ)(t+ a∗) − (Fφ)(t) � 0, t ∈ R.

Now, similarly to (2.2),

δ(t) =
∫ +∞

0

A(s)H(t+ s) ds.

Since A(s) > 0 for s > 0 and δ(s′) = 0, we get immediately that H(s) = 0 for all
s � s′. Clearly, this means that

ψ(t+ a∗) = φ(t) (i.e. δ(t) = 0), ψ ∗Nc(t+ a∗) = φ ∗Nc(t), t � s′.

Next, suppose that supp Nc ∩ (0,+∞) 
= ∅ and that [s′,+∞) with s′ ∈ R is
the maximal interval where δ(t) = 0. Then

∫ +∞
s′−s δ(u) du > 0 for every s > 0.
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Furthermore, since∫
R

δ(t− s)Nc(s, τ) ds = δ ∗Nc(t) = 0, t � s′,

we obtain the following contradiction:

0 =
∫ +∞

s′
dt
∫ +∞

0

δ(t− s)Nc(s, τ) ds =
∫ +∞

0

Nc(s, τ) ds
∫ +∞

s′−s
δ(u) du > 0,

Thus s′ = −∞ and ψ(t+ a∗) = φ(t) for all t ∈ R contradicting to our initial
assumption that φ and ψ are different wavefronts. This proves (3.8) when supp
Nc ∩ (0,+∞) 
= ∅.

In what follows, to simplify the notation, we suppose that a∗ = 0. We will use
another method when supp Nc ⊆ (−∞, 0]. In such a case, both functions v1(t) :=
1 − φ(−t) and v2(t) := 1 − ψ(−t) satisfy the initial value problem

v−s′(σ) = 1 − φ(s′ − σ) = 1 − ψ(s′ − σ), σ � 0, v′(−s′) = φ′(s′) = ψ′(s′)

for the following functional differential equation with unbounded delay:

v′′(t) + cv′(t) − (1 − v(t))

( ∫ 0

−∞ v(t+ s)Nc(s, τ) ds

1 + γ − γ
∫ 0

−∞ v(t+ s)Nc(s, τ) ds

)
= 0. (3.9)

Due to the optimal nature of s′, the solutions v1(t) and v2(t) do not coincide on
intervals (−s′,−s′ + ε) for ε > 0. On the other hand, since the function g(x, y) =
(1 − x)y/(1 + γ(1 − y)) is globally Lipschitzian in the square [0, 1]2 ⊆ R

2, we can
use the standard argumentation2 to prove that, for all sufficiently small ε > 0,
v1(t) = v2(t) for t ∈ (−s′,−s′ + ε). Thus again we get a contradiction proving (3.8)
when supp Nc ∩ (0,+∞) = ∅.

Next, clearly,

κ := lim
t→−∞ψ(t)/φ(t) � 1, lim

t→+∞(1 − ψ(t))/(1 − φ(t)) � 1.

If κ = 1, then ψ(t) and φ(t) have the same asymptotic behaviour at −∞ and the
corollary is proved. So, let suppose that κ > 1. Then the optimal nature of a∗ = 0
implies that ψ(t) and φ(t) have the same asymptotic behaviour at +∞. Thus ẑ = z′′,
k = q and

lim
t→+∞ (1 − ψ(t))/(1 − φ(t)) = 1.

But then, for all sufficiently large positive b,

φ(t+ b) > ψ(t), t ∈ R.

We now can argue as before to establish the existence of the minimal positive b∗
such that

φ(t+ b∗) > ψ(t), t ∈ R.

2It suffices to rewrite (3.9) in an equivalent form of a system of integral equations and then,
after some elementary transformations, to apply the Gronwall-Bellman inequality.
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Since b∗ > 0 we have that

lim
t→+∞(1 − φ(t+ b∗))/(1 − ψ(t))) = eẑb∗ < 1.

Then the optimal character of b∗ implies that

lim
t→−∞ψ(t)/φ(t+ b∗) = 1.

This completes the proof of corollary 3.4 (where φ(t+ t3) := φ(t+ b∗) and ψ(t+
t4) := ψ(t) should be taken) in the case κ > 1. �

3.1.1. Proof of theorem 1.7 Suppose that there are two different monotone wave-
fronts, φ(t) and ψ(t) to equation (1.3). By corollary 3.4, without restricting the
generality, we can assume that

w(t) := (ψ(t) − φ(t))e−λt > 0, t ∈ R, c � 2.

Take now some λ ∈ (z1, z2) ∩ (z1, z1 + ε) if c > 2 and λ = z1 = z2 = 1 if c = 2. Then
w(t) is bounded on R and satisfies the following equation for all t ∈ R:

w′′(t) − (c− 2λ)w′(t) + (λ2 − cλ+ 1)w(t) = e−λt ((Fψ)(t) − (Fφ)(t)) . (3.10)

Next, if c > 2, then z1 + ε− λ > 0 and therefore w(−∞) = w(+∞) = 0. This means
that, for some t∗,

w(t∗) = max
s∈R

w(s) > 0, w′′(t∗) � 0, w′(t∗) = 0.

Then, evaluating (3.10) at t∗ and noting that λ2 − cλ+ 1 < 0, (Fψ)(t) > (Fφ)(t),
t ∈ R, we get a contradiction in signs. This proves the uniqueness of all non-critical
wavefronts.

Suppose now that c = 2, then equation (3.10) takes the form

w′′(t) = e−λt((Fψ)(t) − (Fφ)(t)) > 0, t ∈ R.

Clearly, this contradicts the fact that the limits w(−∞) � 0 and w(+∞) = 0 are
finite and w(t) is positive on R. Thus the uniqueness of the minimal wavefront is
also proved.
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