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Variation of Mixed Hodge Structures
Associated to an Equisingular
One-dimensional Family of Calabi-Yau
Threefolds

Isidro Nieto-Baños and Pedro Luis del Angel-Rodriguez

Abstract. We study the variations of mixed Hodge structures (VMHS) associated with a pencil X of
equisingular hypersurfaces of degree d in P4 with only ordinary double points as singularities, as well
as the variations ofHodge structures (VHS) associatedwith the desingularization of this family X̃. he
notion of a set of singular points being in homologically good position is introduced, and, by requiring
that the subset of nodes in (algebraic) general position is also in homologically good position, we can
extendGriõths’ description of the F2-term of theHodge ûltration of the desingularization to this case,
where we can also determine the possible limiting mixed Hodge structures (LMHS). he particular
pencilXof quintic hypersurfaceswith 100 singular double pointswith 86 of them in (algebraic) general
position that served as the starting point for this paper is treated with particular attention.

1 Introduction

In 1941 W. V. D. Hodge proved that the complex de Rham cohomology Hk(X ,C) of
every compact Kähler manifold splits as a direct sum of spaces H p .q(≅ Hq(X , Ωp

X
)),

where p + q = k, currently called the Hodge decomposition of Hk(X ,C) (see [17]).
he pair (Hk(X ,Z), {H p ,q}) is called a (pure) Hodge structure of weight k. All va-
rieties will be considered algebraic and deûned over the complex numbers C. Unless
otherwise stated, our notation will be consistent with Deligne’s (see [9]).
Another way of looking at a Hodge structure is to consider the associated Hodge

ûltration

F
j
H

k
(X ,C)

def
= ⊕p≥ jH

p ,q

and the pair (Hk(X ,Z), {F jHk(X ,C)}).
If X ⊂ Pn+1 is a hypersurface, then the only interesting cohomology group is

Hn(X ,C) and because of Lefschetz’ theorem, we only need to consider the so-called
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primitive cohomology PHn(X ,C) = {η ∈ Hn(X ,C) ∣ η ⋅H = 0}, whereH is the class
of a hyperplane section on the corresponding projective space.

Griõths studied the (pure) Hodge structure of smooth projective hypersurfaces X
and gave a description of it in terms of its Jacobian ring (see [11]). More precisely, let
X = V( f ) ⊂ Pn+1 be a smooth hypersurface of degree d and let

(1.1) Hk(X)
def
= {[

PΩ
f k

] ∈ A
n+1
k mod dAn

k−1 ∣ deg(P) = kd − (n + 2)},

where A j

k
denotes the space of rational j-forms on Pn+1 with a pole of order k along

X and Ω = ∑
n+1
i=0 (−1)

ix idx0 ∧ ⋅ ⋅ ⋅ ∧ d̂x i ∧ ⋅ ⋅ ⋅ ∧ dxn+1. hen we have a commutative
diagram

(1.2)
0

��

� � // H1(X)

≅

��

� � // ⋅ ⋅ ⋅ �
� // Hn(X)

≅

��

� � // Hn+1(X)

≅

��
0 �
� // FnPHn(X ,C)

� � // ⋅ ⋅ ⋅ �
� // F 1PHn(X ,C)

� � // F0PHn(X ,C),

where the horizontal arrows in the ûrst line correspond to the natural inclusion
given by multiplication by f . Moreover, if J( f ) is the Jacobian ideal of f and
R f

def
= C[X0 , . . . , Xn]/J( f ) is the Jacobian ring of f , then the above identiûcation

induces isomorphisms between (R f )(k+1)d−n−2 and PHn−k ,k(X ,C).
For singular varieties, Deligne developed in 1971 the theory of mixed Hodge struc-

tures (see [9]), which involves in general the existence of a good desingularization due
to Hironaka.

Griõths and others have tried to give an alternative description for the mixed
Hodge structure of a singular variety in some cases. he most important case for
us is that of a singular projective hypersurface on the projective space with isolated
singularities, the simplest of which is only nodes as singularities. For hypersurfaces
of dimension less than or equal to 3, Griõths [12] (who considers three dimensional
hypersurfaces with one ordinary double point) and later Steenbrik [21] (who consid-
ers surfaces with isolated singularities) gave a description of the relevant cohomology
group of its proper transform under normalization in terms of the Jacobian ring of
the polynomial deûning it. More precisely, let X = V( f ) ⊂ Pn+1 be a hypersurface of
degree d, and assume its singular locus Σ consists of ordinary double points. Let X̃
be its proper transform under normalization. If we deûne theHk as before as well as
the vector space

H 1
2 (X)

def
= {[

PΩ
f 2

]∈A
n+1
2 mod dAn

1 ∣deg(P)= 2d − (n + 2) and P(Q)= 0∀Q ∈Σ},

given by the ûrst adjunction condition on An+1
2 , then if ∣Σ∣ = 1, we get a partial general-

ization of commutative diagramm (1.2) for the n-th cohomology of the primitive part
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VMHS of an Equisingular One-dimensional Family of CY threefolds

of X̃, namely,

(1.3) 0

��

� � // H1(X)

≅

��

� � // H 1
2 (X)

≅

��
0 �
� // FnPHn(X̃ ,C)

� � // Fn−1PHn(X̃ ,C),

where the horizontal map in the arrow below corresponds to the natural map

H1(X) Ð→H 1
2 (X)

given by PΩ
f
↦

f PΩ
f 2

. A direct generalisation of (1.3) for ∣Σ∣ ≥ 2 is not as straightfor-
ward as it may seem, and we show inheorem 3.2(ii) that to assume that all the points
of Σ are in (algebraic) general position is not enough, so further imposing the con-
dition that Σ is a hg set (see Deûnition 3.3) gives the expected generalization, as we
have proved in Corollary 3.5 and in Corollary 3.6.

If we now consider a smooth family π∶ X Ð→ B ⊂ P1, over a Zariski open set B,
then on every ûber Xt , one has a Hodge structure (Hn(Xt ,Z), {F pHn(Xt ,C)}), and
the Hodge ûltration extends to a global ûltration FpHn , whereHn def

= Rnπ∗C⊗OB .
It is well known that the monodromy of the family gives rise to a connection, called
the Gauss–Manin connection (GM)

∇∶Hn
Ð→Hn

⊗ΩB ,

which is compatible with the Hodge ûltration. More explicity, the GM-connection
satisûes the Griõths transversality condition (also called the horizontality condition)

∇∶FpHn
Ð→ Fp−1Hn

⊗ΩB .

Recall that any polarized VHS H of weight k on B induces a map from B to the
classifying space D of polarized Hodge structures of weight k, which can be seen as a
Zariski open set on a projective variety Ď parametrizing �ags F k ⊂ ⋅ ⋅ ⋅ ⊂ F 1 ⊂ VC of
nationality ( f k , . . . , f 1) satisfying the ûrst Riemann–Hodge bilinear relation, where
f j def= dim F j . Since Ď is projective, the map B → D induced by H can be extended
to a map P1 → Ď, in particular to any point p ∈ P1/B we can associate a ûltration
F k(p) ⊂ ⋅ ⋅ ⋅ ⊂ F 1(p) ⊂ VC satisfying the ûrst Riemann-Hodge bilinear relation. here
is no reason for this ûltration to satisfy the second Riemann–Hodge bilinear relation,
and in general, it will not, so a priori, there does not exist a polarized Hodge structure
of weight k at p. However, in a small analytic neighborhood U of p ∈ P1/B, the local
monodromy π1(U , b) ≅ Z regardless of the choice of b ∈ U , and the generator of this
group induces a linear transformation T onHb , compatible with the Hodge ûltration,
called themonodromy operator. T can be thought of as a linear transformation of VC,
and as such, it will be compatible with the ûltration F k(p) ⊂ ⋅ ⋅ ⋅ ⊂ F 1(p) ⊂ VC. If
we write T = Ts ○ Tu , where Ts and Tu are the semisimple and the unipotent part of
T respectively, it can be proved (see [20] Chapter 11 theorem 11.8 (monodromy theo-
rem) and lemma-deûnition 11.9 or [18]—monodromy theorem §9.1) that Tm

s = 1 for
some integer m, and the least l such that (Tu − Id)l = 0 is less than or equal to m + 1.
he triple (W● , F● ,V) (or simply (W● , F●) whenever V is clear from the context),
deûnes a MHS on V , called the limit MHS at p (in the sense of Schmid), whereW●
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is the monodromy weight ûltration on V associated to N = log(Tu) (see [14, p. 255],
[13, pp. 106–107], and Lemma 6.4). Finally, since the GM-connection associated with
the VHS H satisûes Griõths transversality, the nilpotent operator N induces linear
maps N j ∶H

j ,k− j → H j−1,k− j+1, where H j ,k− j def= F j(p)/F j+1(p). he previous discus-
sion is true for the case of PRkπ∗C, the primitive part of the k-th higher direct image
of C.
From now on, unless explicitly stated otherwise, X ⊂ Pn+1 will be a singular hyper-

surface with singular locus Σ; π∶ P̂n+1 → Pn+1 will denote the blow up of Pn+1 along Σ,
and Σ̂ will be the exceptional divisor on P̂n+1; moreover, X̃ will be the strict transform
of X and Σ̃ = Σ̂ ∩ X̃.

he paper is organized as follows. In Section 2, we generalize the classical deûni-
tion of adjointness of H 1

2 to isolated singularities of higher order, denoted as
s-adjointness in Deûnition 2.2. he most important result in this section is given by
Proposition 2.4, which is a sheaf theoretic formulation of the notion of s-adjointness
with pole order conditions and a partial description of H k(X̃) in terms of ratio-
nal forms on P4, at least when the singular locus of X consist of ordinary double
points. In Section 3, we deûne the notion of homologically good sets and study its
relations to the notion of points in algebraic general position. he central results are
heorem 3.2, generalizing diagramm (1.3) above, together with Corollaries 3.5 and
3.6. In Section 4, recalling the deûnition of generalized Hodge numbers, the main re-
sult is given by Proposition 4.2, which computes the generalized Euler characteristic
polynomial of X and X̃ using the techniques introduced in [6]. In Section 5, using
the technique of cubical hyperresolutions of [15], themain results are as follows. First,
the computation of the Mixed Hodge structure of a nodal threefold (Proposition 5.1)
applied in example 5.2, where we actually compute the number of points in algebraic
general position. he other important result in this section is given in Proposition 5.4
and Remark 5.5 by ûnding an exact relation between the defect and the failure of
Σ to impose linearly independent conditions on polynomials of degree 2d − 5. In
Section 6, we consider the VHS associated with the Lefschetz pencil of the desin-
gularizations and compute the possible weight ûltrations corresponding to the limit
MHS in heorem 6.5. Another important and natural result is that the VMHS as-
sociated with an equisingular pencil of nodal threefolds is indeed a geometric and
admissible VMHS in the sense of [22], stated and proved in Proposition 6.6.

2 Generalized Adjointness Conditions

Let Ω4
P(kX) be the sheaf on P4 of four-rational forms with a pole of order k along

the hypersurface X or shortly Ω4
P(k). hen it follows that H0(P4 , Ω4

P(k)) = A
4
k
(X).

For a polynomial F, we denote by µp(F) the multiplicity of F in P (see [16]). Given
a subset T ⊂ X, let us denote by Ω4

P(kX , sT) the subsheaf of Ω4
P(k) of four-rational

forms with a pole of order k on X and multiplicity at least s on every point P ∈ T .

Deûnition 2.1 Given f ∈ C[y0 , . . . , yn], the s-adjoint condition on f relative to T

is given by µp( f ) ≥ s for all p ∈ T . Note that s = 1 if and only if T ⊂ V( f ).
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VMHS of an Equisingular One-dimensional Family of CY threefolds

Deûnition 2.2 he space of four-rational forms with poles of order k along X and
s-adjoint to T is deûned as follows:

A
4
k(X , sT) = {ψ ∈ A

4
k(X)∣ψ =

hΩ
f k
, h is s-adjoint relative to T}.

In particular, ifT = Σ = Sing(X), it follows thatH0(P, Ω4
P(kX , sΣ)) = A

4
k
(Xt , sΣ).

Clearly, s ≤ d = deg( f ). We have already deûned the vector space H 1
2 following

Griõths’ [11] notation, and it is clear that H 1
2 = A4

2(Xt , Σ)/dA4
1(X). If Σ consists of

ordinary double points, then trivially dA3
1(X) ⊂ A4

2(X , Σ), but in general, it is not
even possible to compare dA3

k−1(X) with A4
k
(X , (k − 1)Σ). Hence, we can deûne the

following quotient:

H s

k =
A4

k
(X , sΣ)

dA3
k−1 ∩ A

4
k
(X , sΣ)

,

which is the vector space of top rational forms with poles of order k along X and
satisfying the s-adjoint condition relative to Σ, naturally generalising one-adjointness
relative to Σ given by [12].

Remark 2.3 In this sense given G, a ûnite subset of polynomials, one can general-
ize the adjointness condition relative to T if for all h ∈ G, the s-adjoint condition is
satisûed on h.

Let us return to the sheaf theoretic version of formswith pole order and adjointness
conditions.

Note. We will o�en write Ω4
P(k, s) as short hand notation for Ω4

P4(kX , sΣ). Analo-
gously, Ω4

P̂(k) will stand for Ω4
P̂4(kX̃).

Proposition 2.4 With notation as above, if Σ consists of ordinary double points, then
for N = 2k − 3 positive and s ≥ N, we have π∗(Ω4

P(k, s)) ⊂ Ω4
P̂(k).

Proof his is a local straightforward computation. ∎

3 Elementary Results for Nodal Hypersurfaces on P4

Given a projective variety X, we will say that a ûnite set T ⊂ X is a set of points in
algebraic general position or in general position, for short, if they impose ∣T ∣ conditions
on polynomials of degree d passing through all of them, for all d ≥ 1.

Lemma 3.1 For any scheme Y of dimension n > 0, any locally free sheaf H of û-

nite rank and any non-singular subvariety Z ∈ Y, we have H i
Z
(Y ,H) = 0 for all

i < codimY(Z).

Proof It follows by excision, since for any P ∈ Y with smooth closure Z, the local
ring OP is a regular local ring of depth = codimY(Z). ∎

he central result in this section is given by the following theorem.
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heorem 3.2

(i) H1
π
∗
Ð→ H3,0(X̃) is an isomorphism, and

(ii) H 1
2

π
∗
Ð→ F2H3(X̃ ,C) is injective.

Proof It is well known that H3,0(X̃) ≅ H0(P̂4 , Ω4
P̂4(X̃)), as already shown in

[12, theorem 10.8], and the ûrst assertion is equivalent to π∗∶H0(P4 , Ω4
P4(X)) → H0

(P̂4 , Ω4
P̂4(X̃)) being an isomorphism.

Let

U = P4/Σ �
� j // P4 and Û = P̂4/Σ̂ �

� Ĵ // P̂4 .

hen π∣
Û
∶ Û → U is an isomorphism, and, in particular, we have a commutative

diagram

0 // H0
Σ(P

4 , Ω4
P4 (X)) // H0

(P4 , Ω4
P4 (X))

j∗ //

π∗

��

H
0
(U , Ω4

P4 (X)) //

π∗ ∣U
��

H
1
Σ(P

4 , Ω4
P4 (X))

0 // H0
Σ̂(P̂

4 , Ω4
P̂4 (X̃))

// H0
(P̂4 , Ω4

P̂4 (X̃))
Ĵ−1
// H0

(Û , Ω4
P̂4 (X̃))

// H1
Σ̂(P̂

4 , Ω4
P̂4 (X̃)),

where the map π∗∣U is an isomorphism, and the rows are exact.
Since P̂4 is regular in codimension 1 and Σ̂ is a disjoint union of exceptional divisors

EP above the points P ∈ Σ, H0
Σ̂
(P̂4 , Ω4

P̂4(X̃)) ≅ ⊕P∈ΣH
0
EP

(P̂4 , Ω4
P̂4(X̃)) = 0.

On the other hand, since Ω4
P4 is locally free and every point in Σ is a regular point

in P4, by Lemma 3.1, one also has that H1
Σ(P4 , Ω4

P4(X)) = H0
Σ(P4 , Ω4

P4(X)) = 0, so
the diagram above becomes

0 // H0(P4 , Ω4
P4(X))

j
∗
//

π
∗

��

H0(U , Ω4
P4(X)) //

π
∗
∣U

��

0

0 // H0(P̂4 , Ω4
P̂4(X̃))

Ĵ∗ // H0(Û , Ω4
P̂4(X̃)) // H1

Σ̂
(P̂4 , Ω4

P̂4(X̃)).

Since π∗ ○ j∗ = Ĵ∗ ○ π∗ is an isomorphism, π∗ is injective and Ĵ∗ is surjective. But Ĵ∗

is injective; therefore, Ĵ∗ and π∗ are isomorphisms.
As for (ii), if we denote by d the total diòerential, then we have the following com-

mutative diagram:

(3.1) A3
1(X)

d

��

� � π
∗
1 // A3

1(X̃)

d̃

��
A4

2(X , Σ)

p

��

π
∗
// A4

2(X̃)

q

��
H 1

2 (X)
⌈π

∗
⌉ // H2(X̃),
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where we distinguish the pullback on 3-forms from the pullback on 4-forms through
the subindex 1, and where p and q are the natural quotient maps. Observe that
Coker(d) = H 1

2 and similarly Coker(d̃) = H2(X̃) and the last horizontal arrow
⌈π∗⌉ is induced by the universal property of the quotient.

Claim 1. π∗1 is an isomorphism.

Proof of Claim 1. As before, we have a commutative diagram with exact rows:

0 // H0
Σ(P

4 , Ω3
P4 (X)) // H0

(P4 , Ω3
P4 (X))

j∗ //

π∗1

��

H
0
(U , Ω3

P4 (X)) //

π∗1 ∣U
��

H
1
Σ(P

4 , Ω3
P4 (X))

0 // H0
Σ̂(P̂

4 , Ω3
P̂4 (X̃))

// H0
(P̂4 , Ω3

P̂4 (X̃))
Ĵ∗ // H0

(Û , Ω3
P̂4 (X̃))

// H1
Σ̂(P̂

4 , Ω3
P̂4 (X̃)),

where the map π∗1 ∣U is an isomorphism, and, exactly as before, this diagram becomes

0 // H0(P4 , Ω3
P4(X))

j
∗
//

π
∗
1
��

H0(U , Ω3
P4(X)) //

π
∗
1 ∣U

��

0

0 // H0(P̂4 , Ω3
P̂4(X̃))

Ĵ∗ // H0(Û , Ω3
P̂4(X̃)) // H1

Σ̂
(P̂4 , Ω3

P̂4(X̃)),

and the claim follows.

Claim 2. π∗ is injective.

Proof of Claim 2. Clearly we have a a morphism of sheaves π∗∶Ω4
P4(2, 1) → π∗

Ω4
P̂4(2), and it is enough to show injectivity on the stalk at every point.
If Û is an open set on P̂4 whose intersection with Σ̂ is empty, then π is an isomor-

phism from Û toU = π(Û), and so π∗∶Ω4
P4(2, 1)(U) → π∗Ω4

P̂4(2)(U) = Ω4
P̂4(2)(Û)

is an isomorphism. Now let us consider an open set U ⊂ P4 containing just the point
P ∈ Σ; then any rational 4-form ω on P4 with poles of order 2 along X can be written
in the form F d z

(z ⋅ z)2
, where z = (z1 , z2 , z3 , z4) are local coordinates and z ⋅ z is a local

equation deûning X on U . he form ω satisûes the ûrst adjoint condition relative to
Σ in U if and only if F(P) = 0. But in this case,

π
∗
(ω)(u, v) =

u3F(uv , u) d u d v

u4(1 + v ⋅ v)2 =
F(uv , u) d u d v

u(1 + v ⋅ v)2 .

Since the zero set of a non-constant holomorphic function is a hypersurface on U ,
and π is a birational morphism, π∗(ω) = 0 if and only if π(Û) ⊂ V(F) ∩ U if and
only if F ≡ 0.

Claim 3. ⌈π∗⌉ is monomorphism.

Proof of Claim 3. Assume φ ∈ H 1
2 satisûes ⌈π∗⌉(φ) = 0 and let φ ∈ A4

2(X , Σ) be
any representative of φ. hen π∗(φ) = d h for some h ∈ A3

1(X̃), and by Claim 1, there
exist some β ∈ A3

1(X) such that π∗1 β = h; therefore,

π
∗
(d β) = d (π

∗
1 β) = d h = π

∗
(φ),

and the injectivity of π∗ implies that φ = d β ∈ d A3
1(X), i.e., φ = 0 ∈ H 1

2 .
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he theorem now follows from the fact that H2(X̃)
� � //F2H3(X̃ ,C) as proven

e.g., in [12, proposition 16.3, equation (16.10)]. ∎

Let X ⊂ P4 be a nodal hypersurface of degree d with m nodes and let P be a node
on X. hen in an analytic neighborhoodU of P in P4, we can write X ∩U = V(z ⋅ z),
where z = (z1 , z2 , z3 , z4) ∈ C4 and z i = x i +

√
−1y i for i ∈ {1, 2, 3, 4}. With this

notation, z ⋅ z = x ⋅ x − y ⋅ y + 2
√
−1(x ⋅ y), and following the technique of conti-

nous deformation used in [12] (in particular the notation before equation (15.3)), we
can consider a family Xє of hypersurfaces with m − 1 nodes that degenerate to X,
that is to say that X − U ≅ Xє − U . Note that the three-dimensional real spheres
δє = {x ⋅ x = є, y = 0} are contained in the Xє ∩U = {z ⋅ z = є}, so the family of hyper-
surfaces {Xє} degenerate to X and the latter is a singular hypersurface with m double
points. Observe that there exists a 3-cell θє(P) on U ∩ Xє such that θє(P) ⋅ δє(P) = 1
as shown in [12]. he sphere δ0(P)

def
= limє→0 δє(P) is contractible to a point in X,

while the 3-cell θ0(P)
def
= limє→0 θє(P) gives a non-zero element of H3(X ,Z) ⊗ Q.

However, it can happen that θ0(P) belongs to the subspace of H3(X ,Z) ⊗Q gener-
ated by {θ0(Q) ∣ Q is a node of X ,Q ≠ P}. his motivates the following deûnition.

Deûnition 3.3 Given a nodal hypersurface X ⊂ P4, we will say that a set T of nodes
on X is homologically good (hg) if the corresponding set of three-cells {θ0(P)}P∈T , is
aQ-linearly independent set of elements in H3(X ,Z)⊗Q and T is maximal with this
property. In particular, there will be a vanishing cycle δ0(P) for every node in T .

Remark 3.4 Let X, U , and Xє be as above, let T be a homologically good set of
nodes on X, P ∈ T , and let X̃ be the strict transform of X under the blow-up of X on
P. he strict transform of θ0(P) no longer represents an element in the homology of
X̃, since it is no longer a cycle in X̃, and δ0(P) is contractible to a point already in X;
therefore,

rankH3(X̃ ,Z) ≤ rankH3(Xє ,Z) − 2.

In what follows, we will assume that X ⊂ P4 is a nodal hypersurface of degree
d with m nodes, l ≤ m of which are in general position. Further, let Y ⊂ P4 be a
smooth hypersurface of the same degree and let a = dimH0,3(Y) = dimH3,0(Y)

and b = dimH1,2(Y) = dimH2,1(Y). hen more is true in heorem 3.2(ii).

Corollary 3.5 If X, X̃ and Y are as before, then

a + b − l =
1
2
dimH

3
(Y ,C) − l = dimH2(Y) − l = dimH 1

2 ≤ dim F2
H

3
(X̃ ,C),

and therefore rankH3(X̃ ,Z) ≥ 2a + 2b − 2l .
Since for every point in a hg set T the rank of H3(X̃ ,Z) drops oò by two with respect

to the rank of H3(Y ,Z), the inequality above imposes an upper bound for the number of

nodes in any hg set. In particular, Lemma 3.2 shows that the number of vanishing cycles

is at most l ; i.e., there cannot be more nodes forming an hg set on X than the number of

nodes in general position.
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If the l nodes in general position form an hg set on X, we actually have

dimH 1
2 = dimH2(Y) − l = dim F2

H
3
(Y ,C) − l =

1
2
dimH

3
(Y ,C) − l = a + b − l ,

so that, in this case, heorem 3.2 implies that the map H 1
2 → F2H3(X̃ ,C) is in fact an

isomorphism.

he discussion in Corollary 3.5 also implies the following corollary.

Corollary 3.6 If X ⊂ P4 is a nodal hypersurface of degree d, where Σ consist of m
nodes in general position and is an hg set on X, thendimH2,1(X̃)= b−m, dimH3(X̃ ,C)

= rankH3(X̃ ,Z) = 2a+2b−2m. In particular, m ≤ h2,1(Y), where Y ⊂ P4 is a smooth

hypersurface of degree d.

Remark 3.7 In particular, for a quintic hypersurface X on P4, we obtain the nice
bound m ≤ 101 for the number of nodes in general position that also constitute an hg
set. In this case (see [1, 19,23]), this bound is almost sharp. Observe that the maximal
number of nodes for a quintic hypersurface is expected to lie between 130 and 135,
but they do not lie in general position (i.e., they impose less than 130 conditions, il-
lustrating one form of the Cayley–Bacarach theorem). If Σ is a ûnite set of nodes, how
many independent conditions does Σ impose on homogeneous polynomials of degree
d passing through Σ and how many of them form an hg set? his is not the original
formulation of the Cayley–Bacharach theorem but a form of this type of theorem (see
also [10, p. 297]). he exact relation will be given by the defect of X considered in
Proposition 5.4.

With the same techniques, one can prove a similar result for surfaces on P3 and
curves on P2.

4 Generalized Hodge Numbers

Following Danilov and Khovanskǐı (see [6, § 1], in particular Deûnition 1.5,
Proposition 1.8, and Corollaries 1.9 and 1.10), we deûne the generalized Hodge num-
bers:

e
p ,q

= e
p ,q

(X)
def
= ∑

k

(−1)k
h

p ,q
(H

k
c (X))

as well as the generalized Euler characteristic polynomial

e(X; x , x) def
= ∑

p ,q
e
p ,q

(X)x
p
x

q ,

which in the sequel we will simply denote e(X), and coeòe(X)() is the coeõcient of
the term in parenthesis. We summarize some well known results about this polyno-
mial (see [6]) in a single lemma.

Lemma 4.1
● Suppose X is a disjoint union of a ûnite number of locally closed subvarieties X i ,

i ∈ I. hen e(X) = ∑i e(X i).
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● If f ∶X → Y is a bundle with ûber F that is locally trivial in the Zariski topology,

then e(X) = e(Y) × e(F).
● If X is a point, then e(X) = 1.
● e(P1) = 1 + xx.

● e(Pn) = 1 + xx + ⋅ ⋅ ⋅ + (xx)n .

● Let π∶ X̂ → X be the blow up of X along a subvariety Y of codimension r + 1 in X.

hen

e(X̂) = e(X) + e(Y)[xx + ⋅ ⋅ ⋅ + (xx)
r
].

As an application of the above lemma, we will compute the generalized Euler poly-
nomial of X for a projective hypersurface on P4 of degree d with precisely m nodes
(l of which are in general position) as the singular locus Σ. To ûx notation, let P̂4 be
the blow up of P4 along Σ, let X̂ be the inverse image of X on P̂4, and let X̃ be the
strict transform of X and Y a non-singular hypersurface of degree d on P4. Further,
let Σ̂ be the inverse image of Σ and Σ̃ = Σ̂ ∩ X̃.

Outside the singular locus the blow up is an isomorphism; therefore, one has the
following quasi-projective varieties:

X − Σ def
= W ≅ Ŵ

def
= X̂ − Σ̂ ≅ X̃ − Σ̃ def

= W̃ .

Now, we recall Bott’s theorem on the particular situation of Pn ([3, theorems IV
and IV’]):

(4.1) H
p
(Pn , Ωq

) =

⎧⎪⎪
⎨
⎪⎪⎩

0 for p ≠ q,
C for p = q ≤ n,

and in particular for n = 4: e(P4) = 1 + xx + x2x
2
+ x3x

3
+ x4x

4. It follows in-
mediately that Gr j

F
Hn(P4) = H j ,n− j(P4) and the only non-zero graded part is when

coeòe(P4)(x
jx

n− j
) = 1, hence

(4.2) Gr2FH
4
(P4

) = H
2,2

= C.

Also,

e(P̂4
) = e(P4

) + e(Σ)(xx + ⋅ ⋅ ⋅ + (xx)
3
)

using that e(Σ) = m and substituting in the above formula:

(4.3) h
p ,q

(P̂4
) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if p ≠ q,
1 if p = q = 0,
m + 1 if 1 ≤ p = q ≤ 3,
1 if p = q = 4.

It follows that h1,1(P̂4) = h2,2(P̂4) = h3,3(P̂4) = m+1. A�er these basic preliminaries,
the main result in this section is the following proposition.
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Proposition 4.2 Let X , X̃ and Y as above; then

e(X̃) = 1 + (m + 1)xx − ax3
− (b − l)x

2
x − (b − l)xx

2
− ax

3

+ (1 +m)x
2
x

2
+ x

3
x

3 ,

e(X) = 1 + (1 −m)xx − ax
3
− (b − l)x

2
x − (b − l)xx

2
− ax

3

+ x
2
x

2
+ x

3
x

3 ,

where a = h3,0(Y), b = h2,1(Y).

Proof Observe that Σ̂ = ∪x∈ΣEx and by cutting each Ex with X̃, we obtain a quadric
surface Qx , hence e(Σ̃) = Σx e(Qx), but each summand is equal to

e(P1
× P1

) = e(P1
)
2
= 1 + 2xx + x

2
x

2 ,

so

(4.4) e(Σ̃) = m(1 + 2xx + x
2
x

2
).

Moreover, e p ,q(W̃) = e p ,q(X̃) − e p ,q(Σ̃) and

e
p ,q

(X) = e
p ,q

(W) + e
p ,q

(Σ) = e p ,q(W̃) + e
p ,q

(Σ)

= e
p ,q

(X̃) − e
p ,q

(Σ̃) + e p ,q(Σ).

Since h3(X̃) = 2a+2b−2l (see Corollary 3.6), Lefschetz Hyperplaneheorem tell us
that:

e(X̃) = 1 + (m + 1)xx − ax3
− (b − l)x

2
x − (b − l)xx

2
− ax3

+ (1 +m)x
2
x

2
+ x

3
x

3 .

(4.5)

Finally, e(X) = e(X̃) − (m + 2mxx + mx2x
2
) + m. he result follows directly by

substituting the value of e(X̃) in equation (4.5). ∎

Using the Hodge numbers of the total transform P̂4 given by equation (4.3), we
can conclude the following corollary.

Corollary 4.3 In diagram (3.1), d(A3
1(X)) = d̃(A3

1(X̃)) = 0; hence, Coker(d) =

H 1
2 = A4

2(X , Σ) and Coker(d̃) = H2(X̃) = A4
2(X̃).

Proof Since X̃ is smooth, then the hodge numbers e p ,q(X̃) = (−1)p+qhp ,q(X̃), in
particular, h2,0 = h0,2 = 0 by the computation above. his implies that H0(X̃ , Ω̂2

X̃
) ⊂

H0(X̃ , Ω2
X̃
) = 0. Recall the exact sequence of residues in [12, Lemma 10.9(ii)]:

0Ð→ Ω̂q

P̃
Ð→ Ω̂q

P̃
(1) Ð→ Ω̂q−1

X̃
→ 0

and its associated long sequence for q = 3:

0Ð→ H
0
(P̃, Ω̂3

P̃) Ð→ H
0(P̃, Ω̂3

P̃(1)) Ð→ H
0
(X̃ , Ω̂2

X̃
) Ð→ ⋅ ⋅ ⋅ .

Also, H0(P̃, Ω̂3
P̃) ⊂ H0(P̃, Ω3

P̃) = 0 (see equation (4.3)), since the last term for the
above sequence is already zero somust be themiddle term. In particular, d(A3

1(X)) ⊂

d̃(A3
1(X̃)) = 0. ∎
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5 Mixed Hodge Structure of a Nodal 3-fold

Given a singular scheme X deûned over C, Guillen, Navarro, et. al. deûned a cubical
hyperresolution X● of X (see[15, Exposé III, proposition 3.3]), which induces a spectral
sequence

E
p ,q
1 = H

q
(Xp ,C) Ô⇒ H

p+q
(X ,C)

providing a naturalMixedHodge Structure onH p+q(X ,C) (we set Xp

def
= ⊔∣α∣=p+1Xα).

In our situation, a cubical hyperresolution can be constructed from the following
pullback diagram

Σ ×X X̃

��

// X̃

π

��
Σ // X .

Since Σ×X X̃ ≅ Σ̃, the projection to the ûrst factor gets identiûedwith π∣, the restriction
of π to Σ̃, while the projection to the second factor gets identiûed with the natural
inclusion i∶ Σ̃ ↪ X̃, yielding the cubical hyperresolution

X1
i //
π∣
// X0 // X ,

where X1 = Σ̃ and X0 = X̃ ⊔ Σ. herefore, E0,q
1 = Hq(X0 ,C), E1,q

1 = Hq(X1 ,C) and
E

p ,q
1 = 0 for all p ≥ 2. Clearly this spectral sequence degenerates at E2, so we have

0→ E
1,2
2 Ð→ H

3
(X ,C) Ð→ E

0,3
2 → 0,

where

E
0,3
2 = Ker(H3(X0 ,C)

π
∗
∣ −i

∗
// H3(X1 ,C))

and

E
1,2
2 = H

2
(X1 ,C)/( Im(H2(X0 ,C)

π
∗
∣ −i

∗
// H2(X1 ,C)).

Since H3(X0 ,C) = H3(X̃ ,C) and H3(X1 ,C) = 0, then E0,3
2 = H3(X̃ ,C) is a pure

Hodge structure of weight 3.
Similarly, H2(X0 ,C) = H2(X̃ ,C) ≅ Cm and H2(X1 ,C) = H2(Σ̃,C) ≅ C2m , so

E
1,2
2 ≅ Cm is a pureHodge structure of weight 2, andwe recover theClemens–Schmidt
exact sequence

(5.1) 0Ð→W2H
3
(X ,C) Ð→ H

3
(X ,C) Ð→ H

3
(X̃ ,C) Ð→ 0

withW2H
3(X ,C) = E1,2

2 ≅ Cm , which is to be expected for a cubical hyperresolution,
as pointed out in [20, Corollary 5.42].

Remember that, by virtue ofheorem 4.2, if Σ consists ofm nodes, where precisely
l of them are in general position (and assuming they are also in homologically good
position), one has

(a) dimH3(X̃ ,C) = 2a + 2b − 2l
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(b) H3(X̃ ,C) ≅ ⊕H̃ i , j , where dim H̃0,3 = dim H̃3,0 = a and dim H̃1,2 = dim H̃2,1 =

b − l .
(c) dimH3(X ,C) = 2a + 2b − 2l +m.
Moreover, in this situation we have the following proposition.

Proposition 5.1

GrF k
H

3
(X ,C) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Ca if k = 0, 3,
Cb−l+m if k = 1,
Cb−l if k = 2 .

Observe that m − l is precisely the failure of Σ to impose independent conditions on

homogeneous polynomials of degree 5 (see Remark 3.7).

Example 5.2 Let X be the quintic threefold on P5 deûned by the equations p1 = 0
and 4p5 − 15p2p3 = 0, where pk = ∑

5
0 x

k
i is the k-th power symmetric function. hen

the singular locus of X consists of precisely 100 nodes that are the orbits of (1 ∶ −1 ∶ 1 ∶
−1 ∶ 1 ∶ −1) and of (1 ∶ −1 ∶ 1 ∶ −1 ∶ z ∶ −z) under the symmetric group on six letters S6,
where 7z2 + 16 = 0. For this quintic threefold, using the kernel extension PLURAL of
SINGULAR 2-0-6 (see [7]), we have written a program that allows us to conclude that
the 100 nodes impose only 86 conditions on the space of quintics passing through
them, so in this case, l = 86 < 100 = m. It is not diõcult to see that this quintic
threefold is actually a singular Calabi–Yau threefold on H = V(p1) ≅ P4.
As Candelas, de laOssa, ét al. have shown in [4], dimH3(Y ,C) = 204 for a smooth

quintic threefold on P4, and if, additionally, the nodes in general position form an hg
set, then Corollary 5.1 can be written as:

GrF k
H

3
(X ,C) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

C if k = 0, 3,
C115 if k = 1,
C15 if k = 2.

and dimW2H
3(X ,C) = 100.

Recall that we have a commutative diagram of long exact sequences with compact
support:

. . . // H i
c(U) //

π
∗≅

��

H i(X) //

π
∗

��

H i(Σ) //

π
∗

��

H i+1
c (U) //

π
∗≅

��

. . .

. . . // H i
c(Ũ) // H i(X̃) // H i(Σ̃) // H i+1

c (Ũ) // . . . .

Since Σ is zero dimensional, H i(Σ) = 0 for all i > 0. In particular,

0 // H4
c (U)

≅ //

π
∗≅

��

H4(X) //

π
∗

��

0 //

π
∗

��

H5
c(U)

≅ //

π
∗≅

��

H5(X) //

π
∗

��

0

0 // H4
c (Ũ) // H4(X̃) // H4(Σ̃) // H5

c(Ũ) // H5(X̃) // 0
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is exact and commutative. From the generalized Hodge numbers, equations (4.4) and
(4.5), we have H i(Σ̃) = 0 for i > 4, H3(Σ̃) = 0, H4(Σ̃) ≅ Cm , H4(X̃) ≅ Cm+1, and
H5(X̃) = 0. herefore, the second row of the above diagram simpliûes to:

0Ð→ Cβ
Ð→ Cm+1

Ð→ Cm
Ð→ Cr

→ 0,

where β is the fourth Betti number of X. Applying the Euler characteristic to this exact
sequence: β−(m+1)+m−r = 0 hence r = β−1. It follows thatH5(X) ≅ H5

c(Ũ) ≅ Cβ−1

for some β ≤ m + 1.
On the other hand, Clemens [5] and later Werner [24] introduced the following

Mayer–Vietoris type exact sequence:

0 // H4(Y) // H4(X)
k // R

b // H3(Y)
γ // H3(X) // 0,

where Y is a smooth threefold of the same degree as X and R is a free Z-module of
rank m = ∣Σ∣. his allows us to compute the defect of X as δ def

= rank(Im(k)). As a
consequence of their deûnition, they show that β2(X) = 1 and δ = β − 1.

Corollary 5.3 If the l double points are in general position (resp. form a hg set), then

δ ≥ 2(m − l) (resp. δ = 2(m − l)). In particular, l ≥ m

2 .

Proof If the l points are in general position, then dimH3(X̃) ≥ 2(a + b − l), and by
equation (5.1), dimH3(X) = m + dimH3(X̃) ≥ 2(a + b − l) +m, but rank(Im(b)) =

h3(Y)− h3(X) = 2(a+ b)− h3(X) ≤ 2(a+ b)− 2(a+ b− l)−m = 2l −m (inequality
is an equality if all the double points form a hg set). Hence, δ = rank(Ker(k)) =

m − rank(Im(b)) ≥ m − (2l −m) = 2(m − l) and m + 1 ≥ β = δ + 1 ≥ 2(m − l) + 1.
herefore, m ≤ 2l . ∎

In order to ûnd an exact relation between δ and the failure of Σ to impose linearly
independent conditions on polinomials of degre 2d − 5 (compare with Remark 3.7),
we will use and prove the following proposition.

Proposition 5.4 If the l double points are in (algebraic) general position and form an

hg set, then

δ = m − l + a + b − (
2d − 1

4
).

Proof By [24, Satz Kap. IV p. 27], δ = m−(
2d−1

4 )+dim(A4
2(X , Σ)). By Corollary 4.3,

the last term A4
2(X , Σ) = H 1

2 and by the assumption on Σ, the dimension of the latter
is equal to a + b − l . ∎

Remark 5.5 he signiûcance of the last corollary is that the diòerence between the
defect and the failure of Σ to impose conditions on polynomials of degree 2d − 5 is
equal to a + b − (

2d−1
4 ), which depends only on the degree of X and the dimensions

h3,0 , h2,1 of a smooth Y of the same degree as X.
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6 Equisingular Families

Let
X
� � //

f ""

P4 × P1

��
P1

be a Lefschetz pencil of hypersurfaces onP4, where the vertical arrow is the projection
on the second factor, and assume that there is a maximal non-empty open subset
B ⊂ P1 over which the family

X = f −1(B)
� � //

f

��

X

f̃

��
B
� � // P1

is real analytically trivial and such that the singular locus Σt of every ûber Xt consists
of exactly m nodes. hen the higher direct image H = R3 f∗C is a local system, with
ûber H3(Xt ,C) admitting a MHS.
For a ûxed t ∈ B, let P̂4 be the blow up of P4 along Σt and X̃t be the strict trans-

form of Xt . Further, let Σ̂t be the inverse image of Σt (i.e., the disjoint union of the
exceptional divisors along the m nodes) and Σ̃t = Σ̂t ∩ X̃t . Since the multiplicity of
every point in Σt is 2, X̃t is a projective, non-singular variety, and we have a diagram

Σt
� � // Xt

� � // P4

Σ̃t

OO

� � // X̃t
//

π

OO

� � // P̂4

π

OO

Let X̃
f̃

→ B be the smooth family formed by the union of X̃t along B (also a
Lefschetz pencil). hen the higher direct image H̃ = R3 f̃∗C is a VHS on B, in partic-
ular we have a GM-connection

∇̃
GM

∶ H̃3
Ð→ H̃3

⊗Ω1
B ,

where H̃3 def
= R3 f̃∗C⊗OB . As seen in the introduction, at every point p ∈ P1/B, there

exists a limit MHS (W● , F●), as well as an extension of the monodromy operator T ,
inducing the weight ûltrationW●, and such that the corresponding nilpotent operator
N = log(Tu) has nilpotence degree ≤ 4.

Example 6.1 It is not diõcult to see, using the above description and the notation
of Proposition 5.1, that for a smooth quintic threefold X ⊂ P4, one has a = 1 and
b = 101 (see [4]). Moreover, if Xt is the smooth family of quintic threefolds in P4

given by x5 + y5 + z5 +w5 + u5 − 5tx yzwu, it has been shown by Candelas ét. al. that
the GM-connection induces a maximal unipotent map on H3(Xt ,C), for any t,
whose nilpotent part N satisûes N(H p ,3−p) ⊂ H p−1,3−p+1 for 0 ≤ p ≤ 3 with N3 ≠ 0
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but N4 = 0. In particular, one has a splitting of the Hodge structure:

H
3
(Xt ,C) = J ⊕

100
i=1 Vi(−1),

where J is a Hodge structure of weight 3 and type (1, 1, 1, 1), and each Vi(−1) is a
Hodge structure of weight 3 and type (0, 1, 1, 0), associated with a Hodge structure
Vi of weight one and type (1, 1) (see also [4] for the quintic family of threefolds in
connection with mirror symmetry). Here, as usual, Vi(−1) = Vi ⊗ Z(−1) and Z(−1)
is the Tate-Hodge structure of weight 2.

Example 6.2 More generally, for a pencil of Calabi–Yau threefolds on P4, we have

dim(H̃
0,3

) = dim(H̃
3,0

) = 1 and k = dim(H̃
1,2

) = dim(H̃
2,1

),

hence H̃ ≅ C2k+2.
In the same spirit as the example given in [4] and Example 5.2, keeping the notation

there, for the case n = 5, consider the pencil of quintic hypersurfaces in H = P4

deûned by

f(α ,β) = αp5 −
5(α + β)

6
p2p3 .

Let M ⊂ H × P1 be the corresponding incidence family. Clearly, for each (α ∶ β),
we have a quinticM(α∶β) ⊂ P4. his family has already been introduced and studied
by Van Straten [23]. In loc.cit (see heorem 2), he shows that M(α∶β) is a singular
variety for a general value of (α ∶ β) = ( α

β
∶ 1), except for the quintics associated with

q1 = 25, q2 = 1, q3 = −3, q4 = 0, q5 = −2, q6 = ∞.

For t ∈ P1 − {q1 , . . . , q6}, the singular locus, Σt = Sing(Mt) consist of 100 nodes
(compare with the bound m ≤ 101 computed in Remark 3.7). In Example 5.2, we
have seen that only 86 of these nodes are in general position; therefore, for a general
member of this family, we have dimH3(Xt) = 132 and

Gr
k
FH

3
(Xt ,C) ≅

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

C if k = 0, 3,
C115 if k = 1,
C15 if k = 2,

while dimH3(X̃t) = 32 and

rank H̃
k ,3−k

=

⎧⎪⎪
⎨
⎪⎪⎩

1 if k = 0, 3,
15 if k = 1, 2.

Before we study the LMHS of the VPHS given by X̃→ B, we introduce a very well
known inductive method to calculate the monodromy weight ûltration and advise
the reader interested in the main result to skip to Proposition 6.5. For that, let m be
an integer, HQ be a Q-vector space and N ∶HQ → HQ be a nilpotent endomorphism
such that Nm+1 = 0 but Nm ≠ 0. Following Donagi (see [13, remark, p. 69]), we can
introduce the following Q-spaces for r, s positive integers satisfying r ≤ m, s ≤ m + 1:
Mr ,s = KerNm−r ∩ ImN s . hese spaces satisfy the following relations: M0,s ⊃ M1,s ⊃

⋅ ⋅ ⋅ ⊃ Mm ,s = 0, and similarly, Mr ,0 ⊃ Mr ,1 ⊃ ⋅ ⋅ ⋅ ⊃ Mr ,m+1 = 0. Observe that the
nilpotent operator N admits a natural extension to N ∶HC → HC.
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Consider an increasing ûltration on HQ given by theQ-vector spaces:

Wq

def
= < Σ2m−q−1=r+sMr ,s >,

for 0 ≤ q ≤ 2m − 1, whileW2m
def
= HQ.

Example 6.3 Since the sum in the formula is internal, one need not compute all
terms in the formula above, and many redundant terms occur. If one represents the
lattice of subspaces Mr ,s as integral points in the plane, observe ûrst that Mm , j = 0
and M j ,m+1 = 0 for all j, since N0 = id (the identity) and Nm+1 = 0; therefore, the
relevant terms lie in the integral points of a ûnite array of (m − 1) ×m. Moreover, if
s − r ≥ 1, then Nm−r+s = 0, i.e., ImN s ⊂ KerNm−r and Mr ,s = ImN s .

he subspace Wq is the sum of the subspaces represented by the integral points
lying on the line Lq

def
= {(r, s)∣r + s = 2m − q − 1}, and we want to know which of the

corresponding subspaces Mr ,s actually contribute to the sum:

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

∆

●

●

L7

●

●

L2

●

●

● ●

● ●ImN
4 ● ●ImN

4

●

11 ●

●2 ●

●3 ●

●4 ●

●5 ●

●0 ● ●1

●

●2

●

●3

●

●4

●

●5

If q = 2b for some integer b, then the intersection of the diagonal ∆ def
= {(r, s)

∣ r = s}, and Lq is not an integral point, but (m − b − 1,m − b) ∈ Lq . As observed
above, since m − b − (m − b − 1) = 1, Mm−b−1,m−b = ImNm−b . Moreover, all points
(r, s) ∈ Lq lying above the diagonal ∆ satisfy s ≥ m − b > m − b − 1 ≥ r; therefore,
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s − r ≥ 1 and Mr ,s = ImN s ⊂ ImNm−b = Mm−b−1,m−b for all such points (r, s) ∈ Lq ;
in particular, the corresponding Mr ,s do not contribute anything new to Wq .

If q is odd, then 2m − q − 1 is even and Lq intersects the diagonal ∆ at the integral
point (m − (q + 1)/2,m − (q + 1)/2). In this case, all points (r, s) ∈ Lq above the
diagonal ∆ satisfy s > m − (q + 1)/2 > r and again s − r ≥ 1, so Mr ,s = ImN s ⊂

ImNm−(q+1)/2. Since s+(q+ 1)/2 > m for all such points, one has N(q+1)/2+s = 0, i.e.,
ImN s ⊂ kerN(q+1)/2 as well; therefore, Mr ,s ⊂ Mm−(q+1)/2,m−(q+1)/2, and these Mr ,s
do not contribute anything new to Wq .

We can summmarize these calculations saying that the only subspaces Wr ,s that
contribute something new to Wq are those subspaces for which (r, s) ∈ Lq lies below
∆, on Lq ∩∆ (if q is odd) or inmediatly above ∆ (if q is even). For instance, for m = 3,
one has

W0 = ⟨N
3,0

⟩, W1 = ⟨N
2,2

⟩, W2 = ⟨N
1,2
+ N

2,1
⟩,

W3 = ⟨N
0.2
+ N

1,1
⟩, W4 = ⟨N

1,0
+ N

0,1
⟩, W5 = ⟨N

0,0
⟩.

As one can see, at most 9 diòerent summands contribute to Wq ’s in this case. More
generally, denoting by Nm the maximal number of diòerent summands contributing
to theWq ’s, an elementary counting argument shows that for arbitrarym, this number
equals the number of points Im in the isosceles triangle of height m − 1 and base
m − 1 bounded below by the diagonal, plus the number of odd integers in the set
{1, 2, . . . , 2m − 3} plus one, giving Nm =

m(m+3)
2 . In particular, for m ≥ 1,

Im =
(m − 1)2

2
≤ Nm ≤ m

2 .

his is already true for m = 3, as seen above. Also, N4 = 14,N5 = 20.

Lemma 6.4 he ûltration deûned above satisûes Morrison’s characterization of the

weight ûltration on HQ associated with N.
1
(see [13, pp. 106–107]):

(i) N(Wk) ⊂Wk−2,

(ii) Wm−t/Wm−t−1 = Im(N t ∣Wm+t/Wm−t−1),

(iii) Wm+t−1/Wm−t−1 = Ker(N t ∣Wm+t/Wm−t−1).

Proof It is helpful to visualize the action of N t on the Lattice formed by the Mr ,s as
follows:

M j−1,m−t− j

N
t

$$ $$

⊃ ⋅ ⋅ ⋅ ⊃ Mt+ j−1,m−t− j

∪ ∪

⋮ ⋮

∪ ∪

M j−1,m− j ⊃ ⋅ ⋅ ⋅ ⊃ Mt+ j−1,m− j

(i) Obviously N(Ma ,b) = N(KerNm−a ∩ Im Nb) ⊂ KerNm−(a+1) ∩ Im Nb+1 =

Ma+1,b+1 .
1he formula for Wk given in [13, p. 69] is incomplete. he procedure there described is correct; how-

ever, the formula has amisprint. Here, we include amore accurate formula in both cases for lack of another
suitable reference.
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(ii) Observe that Wm−t = Mt−1,m + ⋅ ⋅ ⋅ + Mm ,t−1, since Nm+1 ≡ 0 and KerN0 = 0.
We claim that N t(Mr ,s) = Mr+t ,s+t . Indeed, the ûrst inclusion is the content of the
proof above for (i). For the equality, let x ∈ KerNm−r−t and x = Im(N s+t(y)). Let z =
N s(y); therefore, N t(z) = N s+t(y) = x and 0 = Nm−r−t(x) = Nm−r−t(N s+t(y)) =

Nm−r(N s(y)) = Nm−r(z), i.e., z ∈ Mr ,s . It follows that N t(Wm+t) =Wm−t .
(iii) From (ii) it follows that Wm+t−1/Wm−t−1 ⊂ Ker(N t ∣Wm+t/Wm−t−1). For the other

inclusion, it is enough to prove that (N t)−1(Wm−t−1) ∩Wm+t ⊂Wm+t−1.
Indeed, sinceWm−t−1 = ∑a Mm+t−a ,a with 0 ≤ m+ t− a ≤ m, it is enough to prove

that (N t)−1(Mm+t−a ,a)∩Wm+t ⊂Wm+t−1. Observe that 0 ≤ m+ t− a ≤ m if and only
if a −m ≤ t ≤ a.

If z ∈ (N t)−1(Mm+t−a ,a) ∩Wm+t , then

N
t
(z) ∈ KerNm−(m+t−a)

∩ ImN
a
= KerN a−t

∩ ImN
a .

Hence, N t(z) = N a(w) or N t(z − N a−t(w)) = 0 for some w, i.e.,

z ∈ KerN t
+ ImN

a−t .

But N t(z) ∈ KerN a−t ; then 0 = N a−t(N t(z)) = N a(z), i.e., z ∈ KerN a . herefore,

z ∈ (KerN t
+ ImN

a−t
) ∩KerN a

= KerN t
+KerN a

∩ ImN
a−t ;

hence, z ∈ Mm−t ,0 +Mm−a ,a−t ⊂Wm+t−1. ∎

In order to compute the limitHodge structure for theVPHS H̃3 at a point p ∈ P1/B,
we apply the formula obtained in Example 6.3 and the fact that N r ∶ GrWn+r ≃ GrWn−r for
all r for the weight ûltration centered at n (we say it is symmetric at n ). Let us deûne
n i

def
= dim(ImN i) and m i

def
= dim(KerN i) for i ∈ {1, 2, 3}. To simplify the notation

of the proof of the following proposition, we omit the tildes in the components H i , j

of the local system H̃3.

Proposition 6.5 he limit Hodge ûltration (W. , F ⋅∞) for the family X̃ can be described

as follows, where N i , j
def
= N i ○ N j and o

def
= dim(M2,1):

(i) N = 0 and it is pure of weight three.

(ii) N ≠ 0,N2 = 0 there are two cases:

(a) N1 ≠ 0,N3 ≠ 0 such that N2,1 = N3,2 = 0,
(b) N1 = N3 = 0 with N2 ≠ 0.
For these cases, the weight ûltration centered at three is:

GrWi (HQ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 0, 1, 5, 6
Cn2+2 i = 2, 4 (a),
Cn2 i = 2, 4 (b),
C2(m2−1) i = 3 (a),
C2(m2+1) i = 3 (b).
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(iii) N2 ≠ 0,N3 = 0.

GrWi (HQ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 0, 6
C2 i = 1, 5
Co−2 i = 2, 4
C2(k+1−o) i = 3.

Proof (i) N = 0; the weight ûltration centered at three is:Wi = 0 for i ∈ {0, 1, 2},
and otherwise,Wj = HQ. herefore, Gr3(HQ) = HQ.

(ii) Assume that N ≠ 0,N2 = 0. We have the following general decompositions
for {KerN i , ImN i}i=1,2:

KerN = ⊕
3
i=1 KerN i ⊕H

0,3 , ImN = ⊕
3
i=1 ImN i ,

KerN2
= KerN2,1 ⊕KerN3,2 ⊕H

1,2
⊕H

0,3 , ImN
2
= ImN2,1 ⊕ ImN3,2 ,

and in both cases the weight ûltration is given as

W0 =W1 = 0, W2 = ImN , W3 = KerN ,

W4 = KerN2
=W5 =W6 = HQ .

In particular we get GrWi HQ = 0 for i ∈ {0, 1, 5, 6} in both cases, as stated.
For the other graded groups, we have
(a) N1 ≠ 0 (and hence N3 ≠ 0 since the polarization is non-degenerate and the

GM-connection is compatible with the metric induced by it) with N2,1 = N3,2 = 0.
Hence the weight ûltration simpliûes further to:

0 =W0 =W1 ⊂ ImN ⊂ KerN ⊂W4 =W5 =W6 = HQ

(b) N1 = N3 = 0 with N2 ≠ 0. In this case:

ImN2 = ImN ⊂ KerN = H
3,0
⊕H

0,3
⊕H

1,2
⊕KerN2 .

hen for both cases above,

W3 = KerN =

⎧⎪⎪
⎨
⎪⎪⎩

KerN2 ⊕KerN3 ⊕H0,3 (a),
H3,0 ⊕H0,3 ⊕H1,2 ⊕KerN2 (b).

W2 = GrW2 HQ = ImN =

⎧⎪⎪
⎨
⎪⎪⎩

⊕3
i=1 ImN i = C⊕Cn2 ⊕C (a),

ImN2 = Cn2 (b).

Trivially,

KerN2/ ImN1 ≃ Cm2−1
≃ KerN3/ ImN2 , H

1,2
/ ImN2 ≃ Cm2 .

Hence,

GrW3 HQ =

⎧⎪⎪
⎨
⎪⎪⎩

KerN2/ ImN1 ⊕KerN3/ ImN2 ≃ C2(m2−1) (a),
H3,0 ⊕H0,3 ⊕H1,2/ ImN2 ⊕KerN2 ≃ C2(m2+1) (b).
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(iii) N2 ≠ 0,N3 = 0 with N2,1 ≠ 0,N3,2 ≠ 0. he weight ûltration is explicitly:

W0 = 0,

W1 = ImN2,1 +H
0,3

≃ C2 ,
W2 = ImN ∩KerN ≃ Co

(note ∶ M1,2 ⊂ M2,1),

W3 = ImN +KerN ≃ C2k+2−o ,

W4 = KerN2
= KerN3,2 +H

1,2
+H

3,0
= Ck−1

⊕Ck
⊕C1

= C2k ,
W5 =W6 = HQ .

From which

GrWk HQ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for k = 0,
C2 for k = 1,
Co−2 for k = 2,
C2(k+1−o) for k = 3. ∎

We return to the study of the VMHS for the family X over B considered in the
introduction.
By assumption, the family

X
f

Ð→ B ⊂ P1

is real analytically trivial, i.e., the sheaf R3 f∗C is a local system on B. Additionally, by

the RH-correspondence, there exists a GM-connection H3 ∇
GM
// H3 ⊗Ω1

B
. More-

over, the weight ûltration on the ûbers ûts together to form a subbundleW2R
3 f∗Q ⊂

R3 f∗Q, and we have a short exact sequence (see also equation (5.1)):

0Ð→W2R
3
f∗QÐ→ R

3
f∗Q

π
∗
Ð→ R

3
f̃∗QÐ→ 0.

A trivialization for R3 f∗C induces a trivialization for W2R
3 f∗C, and so the action

of the monodromy on R3 f∗C is compatible with the action of the monodromy on
W2R

3 f∗C; in particular, the GM-connection on W2R
3 f∗C⊗OB =W2H

3 is just the
restriction of ∇GM on H3 to W2H

3, and by passing to the quotient, the short exact
sequence above induces a connection ∇GM on H̃3 with �at sections R3 f̃∗C. By the
uniqueness of the GM-connection (see [8, proposition 2.16]), this connection is none
other than ∇̃ on H̃3, i.e., we have a short exact sequence that is compatible with the
GM-connection:

(6.1) 0 // W2H
3

∇
GM

��

// H3

∇
GM

��

π̃
∗

// H̃3

∇̃

��

// 0

0 // W2H
3 ⊗Ω1

B
// H3 ⊗Ω1

B

π̃
∗
⊗id // H̃3 ⊗Ω1

B
// 0

Proposition 6.6 (H3 ,∇GM) is a VMHS.
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Proof Observe that the Hodge ûltrations are compatible, so we have a commutative
diagram with exact arrows

0 // 0 // F3H3
� _

��

π̃
∗
// F3H̃3
� _

��

// 0

0 // 0 � _

��

// F2H3
� _

��

π̃
∗
// F2H̃3
� _

��

// 0

0 // F1W2H
3 // F1H3

� _

��

π̃
∗
// F1H̃3
� _

��

// 0

0 // W2H
3 // H3 π̃

∗
// H̃3 // 0,

where all the rows are exact. In particular, ∇GM(FpH3) ⊂ Fp−1H3 ⊗ Ω1
B
by the

commutativity of diagram (6.1); hence, it becomes a VMHS. ∎

Since f is quasi-projective, this VMHS is in fact graded-polarizable; indeed, this
is a geometric variation of mixed Hodge structure.

We claim the following corollary.

Corollary 6.7 We have that f is a geometric VMHS and an admissible variation of

Hodge structure in the sense of Steenbrink–Zucker (see [20, heorem 14.51] and [22]).

A desingularization of the family produces a VPHS H̃3 whose limit MHS can be
described as in Proposition 6.5.
Denote by Ml(C) the set of l by l matrices over C and denote by J(l) ∈ Ml(C)

the Jordan matrix with entries

J(l)r ,s =

⎧⎪⎪
⎨
⎪⎪⎩

1 for r = s + 1,
0 otherwise.

hen rankKer(J(l)i) = i for i ≤ l , rankKer(J(l)i+1) − rankKer(J(l)i) = 1 ∀i < l .
he Jordan form J(A) of a nilpotent matrix A ∈ Mn(C) is written as a direct sum of
the corresponding Jordan block matrices. We call such a direct sum of Jordan block
matrices simply a Jordan matrix of a Jordan form. If a Jordan block matrix J(m)

appears with multiplicity r, we denote it by J(m)r .
Assume we have a VHS of type (1, k, k, 1). Keeping the notation above for T , Tu

and N , if N ≠ 0 and k ≥ 2, then the Jordan matrix of N is one of the following types:
● Type (1): J(4) ⊕ J(2)s with s ≤ k − 1,
● Type (2): J(3)2 ⊕ J(2)s with s ≤ k − 2,
● Type (3): J(2)s where s ≤ k + 1,
● Type (4): J(3) ⊕ J(2)s with s ≤ [ 2k−1

2 ].

Proposition 6.8 he Jordan canonical form of N is of type (1), (2), or (3).
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Proof (1) A type (3) Jordan matrix decomposition implies that there are at most
k + 1 two by two blocks. his implies that N2 = 0.

(2) A type (1) Jordanmatrix decomposition corresponds to themaximal unipotent
case, which is known to occur for instance for the family of [4].

(3) If N3 = 0 but N2 ≠ 0, we know from linear algebra that all Jordan blocks are
of size 3, 2, or 1, which correspond to either type (2) or type (4).
A type (4) JordanMatrix decomposition is not possible. For that, recall the abstract

situation of Example 6.2, namely, we have the following lemma.

Lemma 6.9 Recall the notation of Proposition 6.5:

H
3,0 N1
Ð→ H

2,1 N2
Ð→ H

1,2 N3
Ð→ H

0,3 ,

where H3,0 ≃ H0,3 ≃ C,H2,1 ≃ H1,2 ≃ Ck ; then N1 is one-to-one⇔ N3 is surjective.

Proof of the lemma. he polarization Q is �at with respect to the connection N . ∎

(4) Assume N3 ≡ 0 but there exist a three-dimensional N-cyclic space

W0 =< w ,N(w),N2
(w) > .

Without loss of generality, assume either w ∈ H3,0 or w ∈ H2,1. Indeed, write w =

v0 + v1 + v2 + v3 with v j ∈ Hk− j , j . hen

N(w) = N(v0) + N(v1) + N(v2),

N
2
(w) = N

2
(v0) + N

2
(v1),

since N(v3) = N2(v2) = 0.
If N2(v0) ≠ 0, then < v0 ,N(v0),N2(v0) > is a three-dimensional N-cyclic space.

On the other hand, if N2(v1) ≠ 0, < v1 ,N(v1),N2(v1) > is a three-dimensional
N-cyclic space.

(a) If w = v0 ∈ H3,0, since Q is non-degenerate there exist a u ∈ H2,1/{0} such
that Q(u,N2(w)) = 1 and because of Q-�atness of the VHS with respect to ∇GM :

Q(N(u),N(w)) + Q(u,N2
(w)) = 0;

therefore, Q(N(u),N(w)) = −Q(u,N2(w)) = −1 thus N(u) ≠ 0.
Similarly, Q(N2(u),w) = −Q(N(u),N(w)) = 1 and N2(u) ≠ 0 either; therefore,
W1 ∶=< u,N(u),N2(u) > is a another three-dimensional N-cyclic space and W0 ∩

W1 = 0.
(b) If w = v1 ∈ H2,1, then N2(w) ∈ H0,3/{0}, and because of the non-singularity

of Q, there exist a u ∈ H3,0/{0} such that Q(u,N2w) = 1. As before, we will have

Q(N(u),N(w)) + Q(u,N2
(w)) = 0;

therefore,Q(N(u),N(w)) = −Q(u,N2(w))=−1 thusN(u)≠0 and again,Q(N2(u),
w) = −Q(N(u),N(w)) = 1 andN2(u)≠0 either; therefore,W1 ∶= <u,N(u),N2(u)>

is a another three-dimensional N-cyclic space andW0 ∩W1 = 0. ∎
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