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We prove localization estimates for general 2mth-order quasilinear parabolic
equations with boundary data blowing up in finite time, as ¢t — 7"~ . The analysis is
based on energy estimates obtained from a system of functional inequalities
expressing a version of Saint-Venant’s principle from the theory of elasticity. We
consider a special class of parabolic operators including those having fixed orders of
algebraic homogenuity p > 0. This class includes the second-order heat equation and
linear 2mth-order parabolic equations (p = 1), as well as many other higher-order
quasilinear ones with p # 1. Such homogeneous equations can be invariant under a
group of scaling transformations, but the corresponding least-localized regional
blow-up regimes are not group invariant and exhibit typical exponential
singularities ~ 177 L cast — T, with the optimal constant

v=1/[m(p+ 1) —1] > 0. For some particular equations, we study the asymptotic
blow-up behaviour described by perturbed first-order Hamilton-Jacobi equations,
which shows that general estimates of exponential type are sharp.

1. Introduction: statement of the problem, blow-up localization,
Saint-Venant’s principle and energy estimates

Saint-Venant’s principle, formulated in the theory of linear elasticity in the mid-
dle of the nineteenth century, led to the concept of energy estimates, and in the
second half of the twentieth century became a fundamental tool of the general
theory of linear and nonlinear partial differential equations (PDEs). Using such
energy estimates, several important problems on existence, uniqueness and asymp-
totic properties of solutions to different classes of PDEs were solved. The main
feature of the method of Saint-Venant’s principle consists in integral estimates on
solutions over suitable families of subdomains in the space of independent variables.
It is well known that sharp energy estimates are of principal importance in nonlin-
ear equations with singularities and measurable coefficients admitting generalized
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or weak solutions only. In applications, choosing suitable continuous variables or,
if necessary, discrete partitions, the PDE under consideration generates a system
of differential-functional inequalities for energy functionals. The type of duality
between PDEs and corresponding systems of functional inequalities then plays a
key role.

In this paper we present an application of Saint-Venant’s principle to localization
blow-up phenomena for a class of quasilinear 2mth-order parabolic equations. The
study of such singular blow-up processes needs delicate estimates near finite blow-
up time. This leads to new systems of functional inequalities, where special choices
of infinite partitions in the independent variables are necessary.

We begin with the mathematical statement of the basic problem. A mechanical
and physical basement of blow-up singularity formation problems and a survey of
results on energy estimates representing Saint-Venant’s principle will be presented
next.

1.1. Statement of the problem

Without loss of generality, we formulate the basic example posed in a simple
geometry. Let 2 = { x| > 1} be the open complement of the unit ball B = { z| < 1}
in RV, In the cylindrical domain Q = 2 x (0, T), we consider the Cauchy-Dirichlet
problem for a general quasilinear 2mth-order parabolic equation (here, m > 1 is
integer and ¢ > 0 is a fixed exponent),

(Jul* M u)e + Y (-1)™Dfaa(z,t,u,...,DlMu) = 0, (1.1)
|a]=m

u(z,0) = ug(x) € Lgy1(£2) in £2, (1.2)

Di(u—f)=0 ond2 x(0,T) forany |a|] <m — 1. (1.3)

The functions aq(z,t,€) are assumed to be continuous, and the elliptic operator
on the left-hand side satisfies the following growth and coercivity conditions: there
exist positive constants p > ¢ and dy, ds such that

p+1
Z aa(m7t7 g)ga > dl( Z |£B|> ) (14)

la|=m |Bl=m

lag (z,t,€)] < dg( Z |£5|>p for all (z,t,€) € Q x R™™), (1.5)
|Bl=m

where n(m) is the number of distinct multi-indices of the length not exceeding m.
We use the usual notations

a=(a1,...,an),
lal = a1+ +an,
o ol

D'u = {D%u, |a] =m}.
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The function f(z,t) determining the boundary values is a suitable extension from
the lateral boundary 942 x (0,7) into the domain @ such that, for any Tp < T, we

have
S5 1) € C([0,To; Lg41(£2)) N Lyp11.(0, To; Wk, (£2)), (1.6)
Fo(, 1) € L1(0, To; Ly (£2)) N Lo (0, To; Ly (), 1= %. (1.7)

The main feature of the problems under consideration is as follows. We assume
that the boundary function f(-,t) blows up as t — T—. The rate of blow-up is
characterized by the following function defined for ¢ € (0,7T):

= sup (/ |fx7|q+1dx> //|D f(z, )Pt dedr
o<r<t
1/(q+1) q+1
+(/ (/ |f—,—(£E7T)|q+1d£E> dT> —oo ast—T".
0 \Jp

(1.8)

Without loss of generality, we always suppose that the support of f(-,¢) is uniformly
bounded for ¢ € (0,7). Given S C 92, by Wt ,(2,5) we denote, as usual, the
closure in the norm of the Sobolev space W' (£2) of the subset of functions from
C*°(£2) vanishing in a neighbourhood of S. We set W%, (£2,0) = W)t (£2) and by

(-,+) denote the duality product between (W)}, (£2,002))* and W, (§2,0802).

DEFINITION 1.1. A function u(z,t) is said to be a generalized energy solution of
the problem (1.1)«(1.3) if, for any Tp < T, we have

() w—f € Lpa(0, To; W1 (£2,062)) N C([0, To); Lg11(£2));

(11) (|u|q71u)t € L(p+1)/p(0:TO7 (Wﬁl(‘o: 89))*)7

(iii) w satisfies the initial condition (1.2) and the following integral identity,

To
| Gl a

/TD/ Z ao(z,t,u(z,t), ..., Dytu(z,t)) Dy x(z,t) dedt =0, (1.9)
lo|=m

where x(v,t) € Lyy1(0,To; W) 1(82,082)) is an arbitrary function.

A well-known literature is devoted to questions of local existence and uniqueness
of generalized (weak) solutions of the mixed problem for equations (1.1). In the case
g =1, f =0, problem (1.1)«1.3) was studied in detail in the 1960s (see [34] and the
references therein). In the case m = 1 and bounded domains {2, existence of energy
solutions follows from [2] for arbitrary Ty < T by the second inclusions in (1.6),
(1.7). For m > 1 and f = 0, the solvability of the problem under consideration was
established in [12] in the case where (1.1) has a variational structure, in particular,
if aq(z,t,€) = [€4]P71€,. The results admit a natural extension to more general
higher-order equations and boundary conditions.
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1.2. Localization of blow-up

The paper is devoted to the study of the localization of blow-up boundary
regimes.

DEFINITION 1.2. The set of points y € {2 satisfying, for any small € > 0,

t
o ([ Gl ae+ [ f e )P dodr ) = o,
0<t<T \J { z—y|<e)n 2 0 J{z—yl<eln 2

is said to be the singularity or the blow-up subset, denoted by {25 = Q2s(u), of the
energy solution u(x,t) of problem (1.1){1.3). 2r = 2\ {25 is the corresponding
non-singular subset.

Actually, for sufficiently regular solutions, it is expected that u(xg,t) is uniformly
bounded as ¢t — T~ at any interior point xg € g = 2\ 25 and, vise versa, u(xo, t)
is not uniformly bounded as t — T~ for any x¢ € {25. For such regular solutions,
the blow-up set {25 is known as the localization domain of the solution (or of the
boundary blow-up regime). In the one-dimensional case, L = meas {25 is called the
localization length of the blow-up regime (see [45, ch. 3]). We also use the following
terminology [45]. Given bounded initial data, we say that the blow-up regime,
prescribed by the function f(z,t) on 042, is localized (respectively, non-localized)
if meas {25 < oo (respectively, meas s = 00). Localized blow-up regime is called
S-regime if meas {25 € (0,00) (regional blow-up) and LS-regime if meas{2s = 0
(this includes the case of single-point blow-up). A non-localized blow-up regime
with meas {25 = oo is also called HS-regime (global blow-up).

A general treatment of blow-up processes naturally occurred in the 19301950s
in the context of Semenov’s chain reaction theory (1930s), adiabatic explosion and
combustion theory (we mention Frank-Kamenetskii’s equation (1938) admitting
blow-up in the non-stationary version and the first blow-up analysis by Todes (1933)
(see [22,57])). A strong influence was due to blow-up singularities in gas dynam-
ics, the intense-explosion (focusing) problem with second-kind self-similar solutions
considered by Bechert et al. in the 1940s (see [3, p. 127] and [55,56]). Another clas-
sical area of blow-up processes occurring in the 1960s was nonlinear optics. Here,
the main model is the nonlinear (cubic) Schrodinger equation admitting blowing-up
self-focusing solutions (see references in the book [53] and in surveys in [33,35]).

A great interest to blow-up phenomena in the 1960s was also generated by highly
non-stationary and nonlinear problems of controlled thermonuclear fusion (CTF)
and in the inertial confinement fusion. Basov and Krohin [7] proposed the use of
concentrated (focusing) laser beams for the heating of a deuterium-tritium (DT)
pellet to create plasma of super-high temperatures. A remarkable feature of bound-
ary blow-up regimes in CTF problems was revealed numerically by Nuckolls et al.
in [36], showing a principle possibility of the laser blow-up-like compression of a
DT drop to super-high densities without shock waves (these crucial results were
first announced by Teller in Montreal in 1972). Such a compression was expected
to initiate a thermonuclear burning (by the Lawson criterion, the rate of produced
thermonuclear energy at a fixed ion temperature is proportional to the product of
plasma density and confinement time).
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The electron and ion conductivity of fully ionized plasma are known to depend
essentially on the temperature. A simple mathematical model including the heat
propagation only (gas-dynamics phenomena are known to be inertial and, under
certain hypotheses, can be neglected at the purely heat stage) consists of a quasi-
linear second-order heat equation

ug — (k(u)ug), =0 in Ry x (0,7), (1.10)

with given bounded initial data (temperature) u(z,0) = wug(x), and a blow-up
boundary regime at = 0: u(0,t) = f(t) — oo ast — T~ < oo. Here, k(u) > 0 is
the given heat conductivity coefficient satisfying k(u) — oo as u — oo (k(u) ~ u®/?
for the fully ionized plasma) and f(¢) is a prescribed temperature on the surface
of the DT target, which is generated by laser beams and increases in a blowing-up
(peaking) regime.

A first detailed analysis of the striking effect of space localization of blow-up
boundary regime (S-regime of blow-up generated by a blow-up standing wave) in
the quasilinear diffusion equation (1.10) with the power law k(u) = u?, o > 0,
was performed by Samarskii and Sobol” in [43] (such explicit blow-up solutions
were used before as parabolic barriers (see typical references in Kalashnikov’s sur-
vey [24])). In the 1970s, the effect of space localization in {25, where temperature
u(x,t) tends to infinity as ¢t — T, became a popular subject and posed a number
of typical problems for quasilinear parabolic PDEs. In particular, the problem of
localization of blow-up solutions in reaction-diffusion equations was first proposed
by Kurdyumov [30] in 1974 (see ch. 3 and 4 in [45], devoted to localization analysis).
It was shown that, in a quasilinear model, the heat and burning localization arises
in plasma with the electron heat conductivity and heat source due to amalgamation
of DT nuclei [58]. Such a model, as well as different aspects of localization effects,
are discussed in [32]. An extensive list of references on localization of blow-up dis-
sipative structures with the historical review can be found in Kurdyumov’s survey
paper [31]. Main mathematical results on existence and non-existence of localiza-
tion of boundary blow-up and singularity formation for equation (1.10) with rather
arbitrary monotone conductivity coefficients k(u) are summarized in [45, ch. 3] (see
also surveys in [15,21]). A necessary and sufficient condition of localization for the
porous medium equation (1.10) with k(u) = u?, ¢ > 0, was established in [23].
For general N-dimensional quasilinear second-order parabolic equations (m = 1),
localization conditions were obtained in [49,50] by means of the method of energy
estimates we are going to use below for arbitrary higher-order equations.

In the present analysis, the blow-up singularity is generated on the boundary by
means of a blow-up function. On the other hand, interior blow-up can be generated
by extra source-type lower-order operators if, for instance, we consider the Cauchy
problem for the quasilinear heat equation

uy = V- (k(u)Vu) + Q(u), (1.11)

where @Q(u) = 0 has a superlinear growth as u — oco. Both types of blow-up (bound-
ary and interior) phenomena are essentially related to each other, the localization
terminology stays the same, though blow-up in (1.11) is more delicate (see the book
by Bebernes and Eberly [8], Levine’s survey [33] and ch. 4 in [45] for main results
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and related references). In general, localization problems of interior blow-up for
such higher-order semilinear and quasilinear parabolic equations remain open.

1.3. Main results and plan of the paper

We prove localization of boundary blow-up for general 2mth-order quasilinear
parabolic equations. Higher-order semilinear and quasilinear diffusion operators
occur in several applications, including thin film theory, nonlinear diffusion, lubrica-
tion theory, flame and wave propagation, phase transition at critical Lifschitz points
and bistable systems (e.g. the Kuramoto-Sivashinskii equation and the extended
FisherKolmogorov equation) (see a number of models and a list of references in
the book by Peletier and Troy [42]).

It turns out that, in the special case p = ¢, when the parabolic operators exhibit
some kind of ‘linear’ properties due to coinciding algebraic homogenuities, the
asymptotic behaviour of blow-up solutions is rather ‘nonlinear’ in the sense that,
as it is seen from the theorem below, blow-up estimates do not exhibit any scaling
invariance (see further comments below). The localized blow-up regimes admit the
following description for 2mth-order quasilinear parabolic equations.

THEOREM 1.3. Let p = q¢ > 0. Given a blow-up boundary regime f, let the corre-
sponding function (1.8) satisfy, ast — T,

F(t) < cexp{A(T — t)"V/Imp+h-1+%h, (1.12)

where ¢, A are arbitrary fixed positive constants and the constant & > 0 can be
arbitrarily small. Then, for arbitrary constant 6 > 0, any energy solution u(zx,t) of
the problem (1.1)+(1.3) satisfies

/ lu(z, )P de < C = C(8) < 00 forallt € (0,T). (1.13)
{ z|>1+6}

This means that the singularity set {25 is concentrated on the boundary 02
and f is a localized blow-up LS-regime. The unit ball {2 can be replaced by any
bounded domain with sufficiently smooth boundary and the result says again that
for such boundary blow-up, the singularity set is concentrated on the boundary.
We will present examples (see theorem 3.1 in §3) showing that such exponential
estimates of localized blow-up regimes are sharp and cannot be improved in general.
In a forthcoming paper [16], we prove a general estimate of the singularity blow-up
subsets for the case of the regional blow-up occurring for g = 0 in (1.12). We also
establish the asymptotic estimates of non-localized blow-up regimes, in particular,
corresponding to (1.12) with & € (1 —m(p+ 1),0).

Theorem 1.3 is proved in §§ 4-6 by a modification of the energy estimate method
of the type [41]. We use a version of energy estimates for quasilinear 2mth-order
parabolic equations developed in [1,46]. An important feature of our asymptotic
analysis is that, in order to exhibit the localization of blow-up, we derive an infinite
functional system of inequalities for a series of suitable energy functions by means
of a specifically organized spatial-time partition of the (z,¢)-domain concentrated
near blow-up singularity.
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Before proceeding with proofs of the theorem, in order to anticipate typical fea-
tures of boundary blow-up in the given class of equations, we study some spe-
cial scaling invariant quasilinear and nonlinear second- and higher-order parabolic
equations, which will be proved to admit non-invariant blow-up asymptotics. In §§ 2
(second-order quasilinear equations) and 3 (2mth-order linear parabolic equations),
we give more detailed characteristics of such blow-up singularities, including the
study of the geometric shape of localization domains and the asymptotic behaviour
of blow-up solutions. In particular, we prove that in these two classes of problems,
the exponential blow-up function on the boundary,

1

f(t) =exp{(T—t)"*}, with the critical exponent n, = —————
(t) = exp{(T— )"} TPy

(1.14)

always leads to a localized S-regime with the localization domain of bounded posi-
tive measure, meas {25 € R . Therefore, theorem 1.3 establishes the optimal charac-
terization of LS-regimes. Moreover, we show that an arbitrary negative perturbation
of the critical exponent n, transforms this localized S-regime into the non-localized
HS-regime with the boundary blow-up

f@) =exp{(T — )"}, n <n., (1.15)

where meas {25 = 0o and u(z,t) — oo as t — T~ uniformly on compact subsets.

The class of quasilinear equations with p = ¢ is a special one. It follows from (1.12)
that the main blowing-up regimes are not scaling invariant (though, in examples,
the homogeneous parabolic operators are invariant under a group of scaling trans-
formations). Some approximate scaling invariant asymptotics are obtained by an
extra nonlinear logarithmic transformation v = Inwu. In the next two sections we
show that the asymptotic blow-up behaviour in terms of v(xz,t) is described by
a blow-up similarity solution of a nonlinear equation of Hamilton-Jacobi type, so
that the higher-order parabolic terms form singular perturbations of first-order
equations.

For the linear heat equation with m = 1 and for weakly quasilinear equa-
tions (1.10), N = 1, the above results on the blow-up singularity formation via
Hamilton-Jacobi equations are well known (see first results in [44] and a detailed
analysis in [45, ch. 3]).

It is worth mentioning that the case p > ¢ is simpler in the sense that the main
blow-up asymptotics are given by scaling-invariant self-similar solutions of model
equations [17]. On the other hand, this more nonlinear case generates some specific
mathematical difficulties concerning application of our method.

1.4. Method: Saint-Venant’s principle and energy estimates

Saint-Venant’s principle and problem [4-6] formulated in the 1850s play a fun-
damental role in the linear theory of elastic equilibrium. First rigorous energy esti-
mates on exponential decay of a parametrized strain energy and a strain inequality
for a cylinder with a loaded cross-section on the end were established by Toupin [54]
and by Knowles [25] (in these papers, principle earlier references can be found). In
particular, a detailed analysis in [25] established second-order estimates on smooth
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solutions of the biharmonic (fourth-order elliptic) equation
A’ =0 inR, Y =p;=¢, =0 ondR, (1.16)

where R C R? is a bounded simply domain (the cross-section of the cylinder) with
smooth boundary OR. It is proved that the strain energy

E(z) = //R (92, + 0oy + 202, dady

contained in the subdomain R, = RN {x > 2z} (z > 0 is a parameter) decays
at least exponentially with z. Pointwise derivatives estimates were also proved by
using mean-value theorems for biharmonic functions. Such energy estimates in a
weak form applied to more general second-order elliptic equations [26] and to the
heat (second-order parabolic) equation [27].

Estimates of behaviour of the energy integrals over the families of inner subdo-
mains of diameter r — 0 (i.e. those having the structure of Saint-Venant’s prin-
ciple; we do not mention other important approaches) play an important role in
the study of regularity of generalized solutions of elliptic and parabolic equations.
Such estimates for second-order equations were derived by Campanato [13]. Solon-
nikov [51,52] proposed a method of obtaining such estimates for energy solutions
of quasilinear divergent elliptic higher-order equations, which is based on the use of
Hopf’s cut-off functions. The behaviour of energy integrals for solutions of a gen-
eral class of higher-order elliptic equations near the boundary was studied in [28],
where references to earlier papers of the 1970s on polyharmonic and equations from
elasticity theory can be found.

A systematic extension of ideas of different a priori estimates via introducing a
parameter for classes of PDEs is due to Oleinik and collaborators (see [28,37-41]
and a full list of references in the survey in [41], where, in particular, the uniqueness
in Tikhonov-T acklind classes for linear second- and higher-order parabolic equa-
tions and systems was proved). These were advanced applications of Saint-Venant’s
principle to linear higher-order PDEs. Extra references and further comments on
energy methods for quasilinear higher-order PDEs can be found in § 4 of this paper,
where we also discuss and compare known energy approaches based on differential
and discrete systems of functional inequalities.

2. Second-order parabolic equations

If m = 1, then the maximum principle applies, and for some typical equations we
can study the blow-up behaviour in more detail, including the asymptotic behaviour
and the geometry of localization domains. Let w C RY be a bounded connected
domain with the complement £, = RY \ @. In this section we consider the exterior
problem with m = 1, p > 0, where, for convenience, we set T'=1 (and T" = 0

later on),
N
(JuP u)e = Apu =Y (IVul up,)e, in Q = E, x (0,1), (2.1)
i=1
u(z,t) = f(x,t) on S = 090w x(0,1), u(z,0) =up(x) in E,. (2.2)
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We assume that f(z,t) blows up at ¢ = 1~. Without loss of generality, we suppose
that f > 1 and uo(z) > 1, and hence v > 1 in @ by the maximum principle. Such
quasilinear parabolic equations of the second order are well known in the literature
(see the classical book [34] by Lions, Kalashnikov’s survey [24] and DiBenedetto’s
book [14]). By an energy solution we mean a weak one. Since the operator of
the parabolic equation is not monotone, the uniqueness of such a weak solution
is not straightforward. We then assume that u(z,t) is a unique maximal solution,
which is constructed by monotone smooth approximations. It satisfies the maximum
principle and the usual comparison holds. Such a construction of extended limit
semigroups of extreme (maximal or minimal) solutions is an essential and necessary
feature for nonlinear parabolic equations admitting strong blow-up or extinction-
like finite-time singularities (see [20, § 2] and the references therein).

In order to describe the asymptotic behaviour of main blow-up singularities for
this equation, as in the linear case p = 1 [44] (see details in [45, ch. 3]), we perform
the change of the dependent variable u = e for v > 0, which leads to the quasilinear
equation with a typical Hamilton-Jacobi operator and the diffusion p-Laplacian
term

v = |VolPT 4 p 1 Apu,  u = e’ (2.3)

The main idea is to prove that the asymptotic behaviour of this blow-up singularity
is described by the corresponding Hamilton-Jacobi equation

V, = |VV|PFL (2.4)

More precisely, we will show that the S-regime of boundary blow-up regional local-
ization is given by its separate-variable solution

Vi(x,t) = (1 — )" VP0(x), (2.5)

where 6 > 0 solves the stationary Hamilton-Jacobi equation

|ve Pt — _ 0 in E,. (2.6)
p

2.1. S-regime in one dimension

If N =1and E, = Ry, equation (2.6) becomes a first-order ordinary differential

equation (ODE) of the form
0

0P+ — = =0, (2.7)
p
which gives the following sufficiently smooth compactly supported solution,
2 \P+/p
0= (1——> , xRy, (2.8)
xTo +

where x¢ is the effective localization length,
wo(p) = (p + )p~ P/ @D, (2.9)
of the boundary blow-up S-regime prescribed at the origin = = 0,

v(0,t) = (1 —t)"YP, te(0,1). (2.10)
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On the other hand, it also satisfies the Neumann boundary condition —v,(0,t) =
co(1—1)7? where ¢y = —6'(0) > 0. In what follows, without loss of generality, we
fix the blow-up Dirichlet boundary condition (2.10). The function 6 is sufficiently
smooth, |¢'|PT1 € C', and is Kruzhkov’s entropy (viscosity) solution [29] of the
Hamilton-Jacobi equation (2.4).

We prove that in the parabolic equation (2.3) the elliptic p-Laplacian operator is
negligible on the asymptotic blow-up stage ¢ — 1~ and forms a singular perturba-
tion of the Hamilton-Jacobi equation. We introduce the rescaled function

g(z,7) = (1 —t)/Po(x,t), (2.11)

where 7 = —In(1 — ¢) — co as t — 17 is the new time variable, and arrive at the
perturbed Hamilton-Jacobi equation

gr = |VglPHt —p~lg+ efT/pApg for>0, ¢(0,7)=1. (2.12)
The initial function go(z) > 0 is assumed to be bounded.
THEOREM 2.1.

(i) We have
glx,7) =60(z)+0(1) asT — oo uniformly. (2.13)

(ii) The effective localization length of u(x,t) is bounded and positive,

L(u) = meas {:E >0: lirzljllp u(z,t) = oo} = zo(p). (2.14)

In the proof, we derive an exact rate of convergence in (2.13) which is different
in the parameter ranges p > 1, p=1and p < 1.

Proof. (i) The main difficulty is that the p-Laplacian is not bounded and is not
well defined on the compactly supported function 6(x) at the interface z = xq.
Therefore, we first compare two solutions o and Vi of the problem posed in the
domain Q1 = (0,2z¢) x (0,1) with the same boundary condition at z = 0 and an
extra symmetric condition on the right-hand lateral boundary:

5(2x0,t) = v(0,t) = (1 — )~/
The corresponding solution of the Hamilton-Jacobi equation
Vi, t) = (1 —t)"P0(z),

where 0(z) = |1 — x/x|®PTD/P is indeed V, reflected relative to z = xy. As we
show, this reflected solution is sufficiently regular for comparison by the maximum
principle, since A,V (z¢,t) makes sense.

If p <1, then f(z) € C?, and we can use simpler straightforward computations.
In any case, for any p > 0 and especially for p > 1, we assume that the solution v
is sufficiently smooth using a standard approximation via a suitable regularization
of the p-Laplacian

Apu s Ay v =V - [(|Vo]> +2)PD/27y], &> 0.
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Consider the difference w = © — V, satisfying the parabolic equation
wy = [0 [PF = (Vo PH 4 p7HAp o (Vi + ).

The right-hand side can be written down in the form w; = Bw + p~tA, . (V.),
where, on regularized solutions, the operator Bw = aw,, + bw, is a differential
second-order one with sufficiently smooth coefficients. Passing to the limit € — 40
relative to the regularizing parameter, we construct a weak plane supersolution
w(t), depending on the variable ¢ only, and satisfying the differential inequality

@' = p~tsup A Vi(x,t) = cp(1 —t)71/P, cp =p tsup A0(x) = [p(p+ 1)1,
x >0

where, as we have seen, the finiteness of the constant ¢, plays a key role in the
regularization argument. Choosing w(0) = Cp > 1, by the maximum principle, we
conclude that, for p # 1, |0(z,t) — Vi(z,t)] < w(t) = Co + (1 — t)P~V/P for any
bounded initial data o(z,0). For p = 1, we get the logarithmic term ¢,|In(1 —¢)| in
the right-hand side (cf. a general approach in [45, p. 379]). Assume now that p # 1.
In particular, this implies that at the end point of the localization domain x = zg
there holds (g, t) < Co + ¢,(1 — )P~ 1/P,

Consider now the solution v(z,t) of the original problem in the half-line {z > 0}.
One can see that v < @ in Qy, so that v < Cy + &,(1 — ¢)P~D/P in (0, z0] x (0, 1).
On the other hand, using standard monotonicity (in ) properties of large solutions
of parabolic equations, we have that, by the maximum principle, for any smalle > 0
ast — 17, v(z,t) < v(xg—e¢,t) for any x > xg. Passing to the limit € — 0, we then
obtain that, for t ~ 17, v(x,t) < Oy + &,(1 — )P~ V/? for z > x.

One can see that Apf > 0, so that the compactly supported function Vi (z,t) is a
subsolution of the parabolic equation and hence the following estimate from below
holds: v(x,t) > —Cs + Vi(x,t). Summing up all the above estimates, we arrive at
the rate of convergence in (2.13).

(ii) The calculations leading to the asymptotic expansion (2.13) mean that, as

t— 17,
u(z,t) = e(l,t)—1/:»9(@60((1,,5)(:0—1)/:»)’ (2.15)
and hence
Cze(lft)’l/w(w) <u(z,t) < CBeO((lft)“””/”)e(lft)’l/’w(w)‘
Forp=1,

C’Qe(lft)ﬂO(w) <uz,t) < Cy(1 — t)fme(lft)’le(w).

Obviously, this implies that L > z¢(p). On the other hand, setting = xo, where
0(zo) = 0, we get u(zo,t) < C3(1 —t)~% ast — 17. Any power-like blow-up on
the boundary «(0,t) = (1 —¢)", with n < 0, is known to correspond to a blow-up
LS-regime with the zero effective localization length. This follows from the general
theorem 1.3 stated in § 1, to be proved later on. On the other hand, it can be proved
by the standard comparison with the corresponding localized self-similar solution

of the form
T

uy(x,t) = (1 —1)"f(n), "= T e
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where f > 0 solves the ODE

(P =+ D)7 ) n+npfP =0, >0, f(0)=1.

The self-similar strictly monotone decreasing C*°-profile f(n) > 0 for all n > 0
satisfies the following asymptotic behaviour: f(n) = C,n"P+t)(1 + o(1)) — 0 as
17— 00 (Cy > 0). Then the solution u, is effectively localized at « = 0 in the sense
that, for any > 0, ast — 17,

Uy (T,1) = us(z,17) = Cox"®tD < o0,

By the usual comparison of two solutions u(z,t) and w.(z — xo,t), which are
assumed to be smooth enough by monotone regularization, this implies that u(x, t)
is also uniformly bounded for any = > x¢, so that L = zg. O

2.2. Non-localized HS-regime in one dimension

We prove that there exist blow-up functions from the same exponential class stay-
ing above the S-regime leading to non-localized HS-regimes (i.e. blow-up regimes
that are ‘higher than S’). We thus consider the blow-up boundary condition

. 1
u(0,t) = e D" with n < —=. (2.16)
p

THEOREM 2.2. Let (2.16) hold. Then u(x,t) blows up as t — 1~ uniformly on the
indefinitely expanding subset

{0 <z <eo(l—1)PY, 6= <0, (2.17)

with a constant co = co(p,n) > 0.

Proof. The new function v = Inw satisfies the boundary condition v(0,t) = (1—¢)™.
The proof is based on comparison from below of the given solution v(x,t) with the
self-similar solution of the Hamilton-Jacobi equation (2.4)

T

Valet) = (L= 0RO, 0= T

(2.18)

where h > 0 solves the first-order ODE |¢/[P*! — Bg'n +ng = 0 for n > 0 with
g(0) = 1. This ODE admits a scaling invariance and reduces to an autonomous
ODE, which is integrated in quadratures (see a similar analysis of the case p = 1
in [45, p. 171]). As the result, we obtain that, for n < —1/p, such a monotone
profile g exists and vanishes at a finite point 179 = meassuppg < oo. We then
set g(n) = 0 for all n > 19, so that g(n) becomes a continuous (but non-smooth)
compactly supported rescaled viscosity solution of the Hamilton-Jacobi equation.
The comparison of v and V, in the domain {x < no(1 —t)"} x (0,1), where both
solutions are sufficiently smooth, is performed as in the case of the S-regime above
(see also [45, p. 382]) and gives uniform blow-up on any unbounded subset (2.17)
with arbitrary ¢y < np. O
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A general stability approach to the asymptotic degeneracy of parabolic flows
into the Hamilton-Jacobi ones was developed in [18,19]. Using these results, it is
not difficult to show that the self-similar solution (2.18) of the Hamilton-Jacobi
equation (2.4) actually describes the asymptotic behaviour of the HS-regime for
the parabolic equation (2.3). This is similar to the behaviour in the linear case
p =1 [45, p. 381].

2.3. S-regime in the N-dimensional geometry

By w C RY we again denote a bounded smooth domain with complement E,,.
Consider the following blow-up condition:

w(z,t) =D Sy ) =1 —1)"Y? onduw,t e (0,1).

The rescaled function g(x, 7) satisfies (2.12) with the boundary condition g(z,7) = 1
on Ow X R4. The corresponding Hamilton-Jacobi stationary profile solves the sta-
tionary exterior problem

|V9|p+1 _ 2 =0 inE,, f(z) =1 on Jw.
p

One can expect that this solution describes the asymptotic behaviour of the para-
bolic equation. Then suppf = {z € E, : 6(z) > 0} is the effective localization
domain of the solution Vi (z,t). We now compare this localization domain for the
Hamilton-Jacobi equation (2.4) and the localization domain

wg(v) = {:E €kE,: lir:lsllpv(:mt) = oo}

of solutions v(x,t) of (2.3) with bounded initial data vg.
THEOREM 2.3. The following hold.
(i) ws(v) is bounded.
(ii) The xo-neighbourhood of w,
Nao (w) = {y € E,, : dist(y, 0w) < x0(p)},
is contained in wg(v).

Proof. (i) Let w, be any convex smooth domain such that w C w.. We use com-
parison with one-dimensional solutions. Fix a point yo € dw, and let I(yp) be
the hyperplane tangent to 02, at y = yo. Denote by z the distance to I(yo).
Consider the one-dimensional solution v1(z,t) of (2.3) with the blow-up function
v1(0,t) = (1 — t)~'/P prescribed on the hyperplane, with sufficiently large initial
data v1(z,0). By theorem 2.3, vi(z,t) is effectively localized in the infinite strip of
the width zo(p) with the outer plane lateral boundary parallel to I(yp). Since v < vy
in the outer half-space {z > 0}, the solution v(z,t) is uniformly bounded at any x
beyond the localization strip. Thus wg(v) is contained in the intersection of all such
tangent strips constructed for all points yy € dw,, which implies boundedness of
the localization domain and some extra estimates to be improved below.
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(ii) In order to prove the second result, we will compare the solutions with the
radially symmetric self-similar solutions Vi, (r,t) = (1 — t)"Y?8(r), r = |z|, of
the Hamilton-Jacobi equation, where 6 solves the same stationary equation (2.6),
which, in the radial geometry, becomes the same ODE (2.7) with a prime denoting
differentiation with respect to r. Then we obtain the same solution (2.8). Fix a
point Yo € w and a small € > 0 such that the ball B.(yp) C w. Consider the radial
solution v.(r,t), r = |x—ypl, of the parabolic equation in the cylinder B, (yg)x (0,1),
ve = (1—1)~Y? on OB,, with bounded radial initial data. Let V, (7, t) be the corre-
sponding approximate self-similar solution described above. The comparison from
below establishes that the domain of localization {e < r < e+xo} of Vi is contained
in the domain of localization of v..

As the last step, we compare v, with the solution v : v > v. in @ by the maximum
principle. Since yy € w and € > 0 are arbitrary, we obtain the result. O

In the case of the convexr domain w, this simple comparison from above with
plane (one-dimensional) self-similar solutions V, and the comparison from below
with the radial ones establish the equality ws(v) = Ny (w). It is not difficult to see
that the equality holds for more general domains w. It is curious that though dw
can be arbitrarily smooth, the boundary of the blow-up set wg(v) is not necessarily
Cl-smooth (see [45, p. 167]).

3. Blow-up localization in linear 2mth-order equations

The linear 2mth-order parabolic equation in one dimension,
ug = (=)™ D2y in Q =R, x (0,1), (3.1)

belongs to the case p = ¢ = 1 of equations with Hamilton-Jacobi blow-up sin-
gularities. These problems can be studied using the convolution representation of
the general solutions. Without loss of generality, we consider the following blow-up
boundary condition,

u(0,t) = f(t) =00, t—17,
(0,8) = f(t) . (3.2)
Uy =---=DI' " u=0, =0, te(0,1),
and take zero initial data. Let b(z,t) be the fundamental self-similar solution
of (3.1),
_1/2m x

b(:L’7t) =1 1/2 F(f), §= W: (33)

where F(£) is a unique symmetric solution of the linear ODE

1 [ee)

(—1)mHLpem 5 (F&) =0 inR, / F(£)de = 1. (3.4)

By the cosine Fourier transform, we have that

F¢) = 1 /OO e cos(s€) ds.
0

™
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The solution of (3.1), (3.2) is given by the convolution potential

u(z,t) = 2(—1)’”/ f(r)D2> " y(x,t — 1) dr

/ J@FEnY |:(t_j)1/2m:|(t_7—)1d7—' (3.5)

For the heat equation, m = 1, classification of boundary blow-up via the potential
is easy (see [45, ch. 3, 6]).

3.1. S-regime of localization, HS-regimes

It follows from (3.5) that, as ¢t — 17, the asymptotic behaviour of the blow-
up boundary regime f(t) essentially depends on the asymptotic behaviour of the
rescaled kernel F(£) as £ — oo. It is well known (and can be easily seen from
the ODE (3.4)) that the rescaled kernel F(£) is oscillatory as £ — oo for m > 1.
A standard asymptotic analysis shows that (3.4) admits the solutions with the
asymptotic behaviour

2m
2m — 1

F(&)~e " ase 00, a= €(1,2), (3.6)

where a € C satisfies the algebraic equation (—1)™(aa)*™~! + 1/2m = 0. It has
2m—1 different roots {ax }, and F(€) for £ > 1 exhibits the behaviour corresponding
to (3.6) with the maximal Reay < 0. The leading asymptotic terms of F' are given
by two linearly independent expressions of the type

~ e cos(bl¢]?)  (or sin(b¢]?)) as € — oo, 57
am = (2m —1)(2m)~ % cos vy, by = (2m — 1)(2m) " “sin vy, .

where v, = m1(m—1)/(2m — 1). These asymptotic estimates are enough to establish
the following S- and HS-regimes of blow-up for the linear parabolic equations.

THEOREM 3.1.

(i) For any m > 1, the blow-up S-regime occurs for the boundary function

B (17t)—1/(2m—1)
e

ft) =

and the effective localization length is given by

ast — 17, (3.8)

L(u) = a; ' > 1y, = 2m(2m — 1)~V (3.9)
(ii) The HS-regime with any exponent n < —1/(2m — 1),
f)=e" ast— 17, (3.10)
is not localized and wg(u) = R.

For m = 1, we have the equality L(u) =1 = 2 (see [45, p. 132]).

https://doi.org/10.1017/5S0308210500002821 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002821

1090 V. A. Galaktionov and A. E. Shishkov

Proof. (i) The localization result follows from potential (3.5), where we use the
above asymptotics of the rescaled kernel. We present an analysis proving (3.9) and
also showing the asymptotic behaviour of the solutions as t — 1~ to be compared
with the Hamilton-Jacobi limits given below. By shifting ¢t — ¢ + 1, the blow-
up moment becomes T = —0 and now ¢ < 0. Using (3.6) in potential (3.5), we
obtain that, for ¢ &~ —0, the main asymptotic expansion terms of solution u(z,t)
are composed from oscillatory integrals of the form

1
2m —1°

t
/ e =A@ (= o by, ¥ (t — 1) V] dT, 4 = (3.11)
Here we omit lower-order terms, which do not affect convergence or divergence of
the integral as ¢t — —0, provided that the main prescribed exponential part stays
dominant. Setting 7 = ut, u > 1, we arrive at the integrals

GO
/ (TG o[ (—t) T (1 — 1) 7] dp, (3.12)

where the function G(p) = p=7 — apma®(p — 1)~7, > 1, has a typical bell-shaped
form with a single maximum at p. = (1 — a},{a:ﬂ)*l forz < L = am' “, where
G(us) = g(z) = (1 — x/L)*. Thus, if < L, by the Cauchy criterion, integrals
of the type (3.11) diverge as t — —0, in view of the strong dominance of the
singular multiplier with fast exponential growth. Using Taylor’s expansion of G(pu)
in a neighbourhood of u = u,, we conclude that, in the first approximation, the
corresponding non-oscillatory part (the envelope of the oscillating functional family)
can be asymptotically estimated by the exponential function

(TG () = o(=)g(x) _ o (3.13)

as t — —0 for any « < L. One can see from (3.12) that, for any fixed z > L, as
t — —0, integrals like (3.11) converge absolutely. The behaviour in the localization
domain z € (0, L) is oscillatory, so that lim sup u(x, t) = oo and lim inf u(z,t) = —oo
as t — —0 (cf. Hamilton-Jacobi limits explained below).

(ii) The proof is similar. The divergence of the integral for any = > 0 is straight-
forward for any n < —1/(2m — 1). A more precise estimate can also be obtained
and it corresponds to the similarity solutions of the Hamilton-Jacobi equation. 0O

3.2. The Hamilton-Jacobi structure of blow-up singularities

Let us show that the above exponential blow-up regimes have a Hamilton-Jacobi
structure. This can be seen directly from the potential. On the other hand, we
can use the same nonlinear transformation v = eV, which leads to the perturbed
complex Hamilton-Jacobi equation for the function v: Q — C,

v = (=1)™ 1 (v,)?™ + Pp(v), (3.14)

where P,, is a quasilinear polynomial 2mth-order operator, which can be computed.
For instance,

PQ(U) = —VUgzzx — 4Uwvwww - 6(’0;3)2’()5353 - S(wa)2'
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The corresponding Hamilton-Jacobi equation composed from the leading operator
of the maximal algebraic homogenuity order,

ve = (1) (vg)*™, (3.15)
admits the solution in separate variables
Vi, t) = (1 — )~V Cm=Dg(g), (3.16)
where 6 : R — C solves the complex ODE
0
(=1)™*L(g')*™ — 5—7 =0 forz>0, 0(0) = 1. (3.17)
For odd m = 1,3,..., this ODE admits a non-negative compactly supported
solution
~ x . 2m
0(z)=(1-=), L = 2m(2m — 1)V, = . 3.18
(=) ( lm>+ m(2m = 1) R Y- (3.18)

The constant [, is the same as that calculated via the potential. For m = 1, where
Iy = 2, function (3.18) actually occurs in the asymptotic behaviour as ¢t — —0
(see [45, ch. 3]). Though, for m > 1, as we have seen above, this non-oscillatory pro-
file does not describe the asymptotic behaviour, 8 correctly explains the behaviour
of the envelope to a family of oscillatory rescaled blow-up profiles. In general, the
ODE (3.17) admits complex-valued solutions with compactly supported real part
describing the oscillatory blow-up behaviour. For any m > 1, problem (3.17) has
the complex solutions 6(z) = (1 — bx)®, where b € C solves the algebraic equation
(—1)m*+(ab)?™ =1/(2m — 1), so that b = %% /1,,,, o = 7(2k +1)/2m for even m,
and b= e'%* /1,,,, 1, = 7k /m for odd m, k = 0,1,...,2m — 1. Then 0(z) = p~e'®¥,
where p?(x) = 1+2% /12, —2z cos py, /1, and tan(x) = —l,xsin g/ (1, — z cospy).
This gives a typical oscillating behaviour of the blowing-up solution

(i) ~ Re V@) = o(1=0779" (@) c0s(@¥ (@) cos[(1—1)~7 p* () sin(ath(z))]. (3.19)
We again observe the exponential envelope to the oscillating family (3.19),
exp{(1 —t) "p%(x) cos(ap(z))} ast—1".

In a similar way, we can construct blow-up HS-regimes with v(0,¢) = (1—¢)"™, where
n < —1/(2m—1). Approximate self-similar solutions satisfying the Hamilton-Jacobi
equation are
x n(2m—1)+1
Vi(z,t) = (1 —t)"h(n), = — S S A
@0 ==, =g B
where h : R — C solves the complex ODE (—1)™*1(n/)?™ — gh/n + nh = 0.
Complex-valued profiles h describe the oscillating character of global blow-up.

<0,
2m

4. Energy estimates and functional systems

We return to the general problem (1.1)<1.3) and present our basic system of func-
tional inequalities, which will be later on compared with other possible energy
estimates of Saint-Venant’s principle types.
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4.1. Energy estimates

Let us introduce families of the subdomains of Q. For any fixed s > 1 and § > 0,
we define

2(s) = z| > s}, 2(s,8) = 2(s) \ Q(s +94), 0 =0(1),
QZ(S,(S) = 9(376) x (a7 ), 0<a<b< QZ(S) = QZ(S,OO).

We will use the interpolation Gagliardo-Nirenberg inequalities for the domains
£2(s,0). For any 0 < j < m, we have

< k697 nr=9)/m9 ||y

I1DJ0]lr,(s,8) < lg.2(5.6) + /92||D;nv||z+179(5,5)||U||;f99(3,5), (4.1)

where v(x) is an arbitrary function from the Sobolev space
Wi 1(£2(s,0)) N Ly(£2(s,9)),
||v||ZQ = [, |v["dz and g > 0, 7 > 1 are fixed exponents. The constant § € [j/m, 1]
is determined by
1 1 1-96
——1:9(——m>+—. (4.2)
roon p+1 n g

Positive constants k; and ks do not depend on v(zx), s and 0. Let no(h) > 0 be a
C™-smooth cut-off function such that

no(h) =0 for h <0,
no(h) =1 forh>1 (4.3)
0<n(h) <1 forheR.

LEMMA 4.1. Let u(z,t) be an arbitrary energy solution of the problem (1.1)-(1.3).
Then, for any 0 < a<b<T,s>1,0 >0 and any € > 0, we have

b
/ lu(z,b)|9T da + / / | D™ u(x, )P dedt
2(s+6) a J2(s+9)

b
<(1+¢) / lu(z, )| 9Tt da + 6P ¢(e) / / lu(x, t)[PT dadt.
2(s) 2(s,6)

(4.4)

The positive constant c(e) — oo as € — 0 depends on parameters of the problem
and is independent of u(x,t), s and 0.

Proof. Let us fix an s1 € (1,s), s > 1, 6 > 0, and introduce the cut-off functions

x| —s

x| — S
77(5”):770( 5 >, 771(5”):770(| |61 1), where §; = s — s1 > 0.

Then nf(z)n(x) = n(z) for every exponent r > 0 and, for any ¢t € (0,7,
<b(u)t: 77U> = <b(u)t: 77(1177U> = <b(771U)ta77U> = <b(771U)ta 77771U> = <b(v)t:nv>:
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where b(u) = |u|?"lu and v = nu. As a consequence, similar to proposition 3.2
in [11], we obtain the formula of integration by parts,

b
(a0 [l ) )
:/ |u(x7b)|q+1n(x)dx—/ lu(z,a)| 9 n(x) dz. (4.5)
17 17

We substitute the test function w(x, t)n(x) into the integral identity (1.9), where u
is the given energy solution. Using (4.5) and the structural conditions (1.4), (1.5),
standard transformations yield

b
/ |u(x7b)|q+1ndx+// | D™ Py daedt
2(s) a J0(s)

< / lu(z, a)|9 n d
2(s)

+ c( / | DM Pt dadt
Qb (5,6)

m-1 | | 1/(p+1)
X (Z/ | Diq|P T DM~ ip P! dxdt) . (4.6)
i=0 b(s,0)

>p/ (p+1)

Let us estimate the second term on the right-hand side by using the interpolation
inequality (4.1) with j =0,1,2,...,m —1,r =p+1 and g = ¢ + 1. We also use
the following obvious property of the cut-off function n(z): |Din| < ¢6—¢ for i > 0.
As aresult, for : =0,1,2,...,m — 1, we have

[ bt ol Dyt ar
2(s,0)

< eg—m=Dp+D) / | Diu(z, )P+ da
2(s,8)

< s~ (M= (p+1) [kllﬂrl(gi(pﬂ) / [Pt da
2(s,0)

i/m (m—i)/m
+ kBT (/ | D™y [P+ dx) (/ u|Pt? dac) }
2(s,8) £2(s,0)

< cbm ) gptl / [P+ da
2(s,0)

i/m (m—i)/m
+ ckbtt (/ | D™y [P+ dm) (5m(P+1) / P dx)
2(s,8) 12(s,0)

< s/ | D ulPt dz + c(e)s P / Ju|PTt de,
2(s,8) 12(s,0)

where, at the last step, we apply Young’s inequality with a parameter € > 0. Sub-
stituting these estimates into (4.6) and using Young’s inequality where necessary,
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we obtain

b
/ |u(x7b)|q+1ndm+// | D™ u(z, t) [Py dedt
2(s) a J02(s)

< / |u(x7a)|q+1ndm+£/ | DT, t) [P dadt
2(s) Q% (s,9)

+ o(e)5—mEHD / lu(z, )P dadt,  (4.7)
Q% (s.0)

where € > 0 can be arbitrarily small and ¢(g) — oo as ¢ — 0.
Consider (4.7) as the relation between the following functions of argument s:

ae = [ e A= [ ol as,
2(s) 2(s)

B(s) = / |u(a, )P+ dzdt, H(s) = / | D™ u(z, )P+ dadt.
Q4 (s) Q5% (s)

It then follows from (4.7) that
Ay(s +0) + H(s + 0) < eH(s) + c(e)6 " ™PHV[B(s) — B(s — 8)] + Aq(s). (4.8)

Since s > 1 and 6 > 0 are arbitrary continuous arguments in (4.8), the following
inequalities hold for any j =1,2,...,

Ab(s+2i> +H( 2j‘51>
aH( ;J)
o ZT 2 e s 2.

(4.9)

which are derived from (4.8), replacing s — s + /27 and § — 6/27.

Let us construct a process of successive estimates using (4.9). It is similar to
the procedure used in [52]. To this end, consider it for j = 1 and next estimate
H(s+ %6) on the right-hand side by means of the same inequality for j = 2.
Continue this process cyclically for j = 3,4,... Combining all these estimates,
we deduce that

Ay(s+6)+ H(s+0)
conler D3] o) -] a0
2H(s+ > [(%)m(pﬂ[ (s+2%> B(s+6)}
+g(22>m(p+1 [B( > (S+g>:|:|+Aa(8—|—g>+gAa(s+262>
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1
4] 4]
m 1
(2m(p+D) [ (S+W>—B(S+2—k>}
0

’ 5
k
+Zs Aa(s+2k+1>

)
aJH( 2J>

9 m(p+1) J
+ C(E) (3)
k

k=0
5 5\
j o 9 k
<e H(s+ 2j> +Aa(s+ 2j> Zs
k=0
) m(p+1) 5 — ( +1
+c(£)(3> [B(s+ 5) B(s+4¢ } Z_: (2me (4.10)
Setting in this inequality & < g = 2-™@+D-1 and passing to the limit j — oo

yields

mp+ )41 [B(8) = B(s +6)] | Aa(s)
Ay(s+6) + H(s+0) < c(e)2™P oD R g

(4.11)

Here we have used the continuity property of the functions A,(s) and B(s). Inequal-
ity (4.11) is equivalent to (4.4). This completes the proof of lemma 4.1. O

4.2. System of functional inequalities
We introduce an arbitrary strictly monotone sequence
{tj}—> T, Aj:tj—tj,1 >0 forj=1,2,...,t0 € (O,T), (412)

and define two families of energy functions of the energy solution u(x,t) of prob-
lem (1.1)(1.3) for s >1,j > 1,

t
(s) = / / lu(z,t)[PT dzdt,
ti_1 .Q(S)

hils) = sup / fua, D] da,
2(s)

te(tj—1.t5)

to
(s) —/ / u(z, t)[PT dadt,
£2(s)

ho(s) = /Q( : lu(z, to) |77 da.

(4.13)

LEMMA 4.2. Given an arbitrary energy solution of (1.1)-(1.3), for any s > 1 and
d > 0, functions (4.13) satisfy the following system of functional inequalities,

hi(s+0) < (1+2;)hy1(s) + c( )fnipil)) ALi(s) = I;(s) — (s +0), (4.14)
(s 1+v
I;j(s49) < clA}fel [(1 +e5)hj—1(s) + C(fj)% , j=1,2,..., (4.15)
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where ¢; > 0 is a constant,

= np — g) ,_ =0 -6)
"= np—q)+m(p+1)(¢g+1) g+ 1 ) (4.16)

{ej > 0} is an arbitrary sequence and positive constants c¢(e;) — oo ase; — 0.
Proof. Setting in (4.4) a = tj_1 and b = ¢, where t € (t;_1,t;] is arbitrary, we

obtain (4.14). In order to prove (4.15), we write down the interpolation inequal-
ity (4.1) with § =00, 5 =0,r =p+1, g = ¢+ 1 and, replacing s — s + 4,

/ lu|PTt dz
2(s+9)

0 (1=-60) (p+1)/(a+1)
< K5 (/ | Du|P T dx) (/ Juf et dac) ;
2(s+9) 2(s+9)

where 6; is taken from (4.16). Integrating this inequality in ¢ and using esti-
mates (4.14) and (4.4), we get

171 01
Ii(s+9) < e (/ / | D™y [P+ dxdt)
ti_1 .Q(S+ts)

(p+1)/(g+1) 1-6:
X [ ( |91 dac) dt}
tj 1 .Q(Sths)

1 [R; (5,07 AL Ry (s, 8)) D00 (0t

= clA}fel [Rj(s,5)]1+(p7q)(1*91)/(q+1), (4.17)
where AL(s)
i(s
Rj(s,é) = (1 + 6j)hj,1(s) + C(Ej)m.
Inequality (4.17) gives (4.15). O

4.3. From differential to functional systems of inequalities

There exist various types of energy approaches to nonlinear higher-order para-
bolic PDEs, developed in the last three decades, which are based on distinct (some-
times simpler than (4.14), (4.15)) differential or discrete systems of functional
inequalities.

The method of introducing parameters [41] dealt with fully discretized (in both s
and t variables) systems of functional inequalities and allowed sharp descriptions
of solutions to linear higher-order parabolic PDEs to be obtained in the case of
an initial singularity posed at ¢ = 0 (for unbounded initial data from Tikhonov—
Tacklind classes). This initial singularity demanded an infinite-time partition near
t = 0. Extensions of this approach to divergent quasilinear parabolic equations are
given in [1,46]. In [41], an abstract scheme of the method and a survey on such
methods of introducing a parameter can be found.

Later on, in applications to localization and finite propagation to quasilinear
higher-order elliptic and parabolic equations, the energy methods leading to elegant
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differential inequalities with respect to the spatial variable s were proposed in [9,
11]. In [47,48], the phenomenon of finite speed of propagation was studied via
differential-functional inequalities in s. In these problems, the time-behaviour of
energy solutions was not highly non-stationary and any multi-step time-discreti-
zation was not necessary (in fact, a one-time-step approximation was sufficient).

Localization blow-up phenomena present another type of eventual singularity
occurring at finite blow-up time ¢t = T, essentially depending on both nonlinear
properties of the equations and the blow-up boundary regime. We face new types
of evolution singularity in nonlinear dynamical systems. In the analysis of the evo-
lution singularities, the type of partitions is not known a priori, and, in fact, should
be chosen according to unknown asymptotic properties of the unbounded blow-up
solutions.

We now discuss our basic system of functional inequalities given in lemma 4.2.
In order to explain key properties of solutions of system (4.14), (4.15) to be stud-
ied, we present a derivation of a hierarchy of simpler differential-discrete systems
originating the system under consideration.

Consider the simplest second-order model problem (2.1), (2.2). For any energy
solution u(z,t), we introduce the corresponding two energy functions,

H(s,t):/ lu(z, )Pt dz  and E(s,t):/ |Dyu(x, t)[PTdz.  (4.18)
£2(s) £2(s)

Assuming some additional regularity of u(z,t), by straightforward computations,
multiplying equation (2.1) by w, integrating over (2(s), using integration by parts
and the corresponding interpolation inequalities, one obtains the following partial
differential inequality (PDI),

Hy + E < ¢(B) Pt/ gt/(e+2) iy Q* = {s > 1, t € (0,T)}, (4.19)
where the functions are estimated from above on the boundary s = 1
H(1,t) < cFo(t) and E(1,t) < cFy(t) fort € (0,T)

by the corresponding blow-up data,
Fo(t) :/ (If @ O + Dy f (2, )P dar,
{s>1}

which is directly related to (1.8). It is important that the PDI (4.19) contains two
unknown functions (4.18), and therefore one needs an extra relation between them.
We do not know if there exists a natural way to study the asymptotics of this
‘undetermined’ PDI of the first order.

On the other hand, introducing suitable partitions in ¢, integrating (4.19) over
each time-interval and using imbeddings as a relation between H and F makes it
possible to obtain an infinite differential (in s) discrete (in t) functional system,
which can be studied (see [49]).

It is not difficult to see that, for any 2m equations with m > 1, using such a
procedure, it is impossible to derive a PDI like (4.19). More precisely, the spatial
derivatives in s can be obtained by using a special weighted energy functional [10,

https://doi.org/10.1017/5S0308210500002821 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002821

1098 V. A. Galaktionov and A. E. Shishkov

11], but the time-derivative in ¢, which is of crucial importance for essentially non-
stationary solutions, cannot be preserved. Moreover, as far as we know, partitions
in both independent variables {s, ¢} leading to systems in lemma 4.2 is the only
possible way to derive a functional relation for a single energy; we mean the iterative
procedure that led from the inequality (4.6) for two energy functionals to (4.11),
where the second higher-order energy H is not available on the right-hand side.

Let us focus on an extra advantage of the fully discretized functional system
of the type (4.14), (4.15) concerning the precise asymptotic blow-up behaviour.
As it was shown in §§ 2 and 3, the asymptotic behaviour of exponential blow-up
regimes like (3.8) (cf. (1.12)) is described by similarity solutions of the associated
first-order Hamilton-Jacobi equations. Theorem 1.3 establishes sharp estimates of
such similarity types with the optimal limit exponent n = —1/[m(p + 1) — 1], so
that our system of functional inequalities, at least, partly contains this delicate
HamiltonJacobi asymptotics. It is worth mentioning, returning to the PDI (4.19)
for m = 1, that we did not succeed in a formal derivation of such asymptotics. For
instance, making a natural assumption that

E(s,t) = H(s,t) ast—T",
we formally arrive at the Hamilton-Jacobi inequality:
H,+ H K C(HS)(P+1)/(p+2)H1/(p+2)'

The corresponding first-order equation does not admit any approximate similarity
solutions with necessary correct asymptotic blow-up properties.

4.4. Preliminary estimates

COROLLARY 4.3. For equation (1.1) with p = q, the main functional system (4.14),
(4.15) reads as follows. For any s > 1 and 6 > 0,

AI;(s)

hj(s +0) < (L +ez)hj-1(s) + elej) sy

(4.20)

Ij(S =+ (5) < Clﬂj(l +Ej)hj,1(8) + Clc(Ej)Ajm,

j=1,2,... (4.21)

Fixing an arbitrary strictly monotone decreasing sequence {«; > 0}, we define
the normalized energy functions H;(s) = a;h;(s) and J;(s) = o;I;(s). In terms of
them, system (4.20), (4.21) takes the form

AJ;(s) _ (I+ej)oy
Hj(S + (5) < ,Bjijl(S) + C(Ej)m, ,Bj = ﬁ, Hj = ajhj, (422)
AJ;
Jj(s + (5) < ClﬂjAjHj,1 (8) + Clc(aj)AjéT;Ersl))’ Jj = Ozjfj. (423)

The main reason for the introduction of weights {c;} is that we can now guarantee

that the iteration coefficients {/3;} on the right-hand sides is strictly less than 1.
We now iterate this system. Namely, we estimate H;_;(s) on the right-hand side

of (4.23) by means of (4.22) replacing j — j—1. Assuming now that § = ¢; in (4.22)
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and (4.23) depends on j and denoting, for convenience, d; = 67m(p+1)

Jj(8+5j +(5j,1) < Cl,BJA HJ 1(84—(5] 1)+C1C(6J)A YAWE (8+(5J 1)

< Clﬂ]ﬂjflA]H‘]72( )
+c1fe(ef)AjdjAdj(s +0j-1) + clej—1)A;8;dj—1ATj-1(s)].

, we obtain

We again estimate H;_5(s) on the right-hand side by means of (4.22) with j — j—2,
Ji(s+6;+ 01+ 0j_2)
< c1BiBj-18j—24;H;_3(s)
+ee(e;)A;d; AT (s + 651+ 6-2)
+c(gj-1)A;Bidj1 ATj_1(s + 6j_2)
+ c(ej-2)A;8iBj-1dj—2ATj-2(s)].

Repeating the same procedure, we arrive at

J
Jj (s + Z&') < By Pl Ho(s + do)
=0 ;

J k—1
+cy Z c(er)A;B5 -+ Briadi Ay (s + Z 51.),

k=1 =0

or, replacing s + ZLO 5; by s,

j
Jj(s) < 1By~ -prd;Ho (S -> 5z‘> + c1c(g;)Ajd;[ (s — 05) — J;(s)]
=1
j—1

J
+Clzc(€k)Ajﬂj'"ﬂk+1dkjk(s_ E (51')’
k=1

i=k
where d; = 6;m(p+1). Collecting like terms together, we derive the following result.

LEMMA 4.4. For p = ¢, normalized energy functions J;(s), j = 1,2,..., given
by (4.13), (4.23), satisfy the following functional system:

U

Ji(s) < -y Ji(s = 6;)
- J
cler) Az - ﬂkHJk( Za)a’”(p“
k i=k
c1
o BAHy s — Y 6 ), 4.24
T, ﬂl]o(s ;) (424
with ‘
J
s> 1+ Zéi, vj = c1c(e;)Az6; me+l)
i=1

We now establish a global bound on u(z,t) via the boundary function F'.
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LEMMA 4.5. For any energy solution u(x,t) of the problem (1.1)~(1.8) with p = q,
the following global a priori estimate holds:

t
/|u|p+1dx+/ / Dt dedr < C(lluol}t! )+ F(®), ¢ € (0.T). (4.25)
0 0o Jo P

Proof. Using conditions (1.6), (1.7) and the definition of solution u(z,t), it is easy
to extend the proof of the integration-by-parts formula [2] to arbitrary m > 1. Then

|l e s
0

p
=001 Q(|U(5U7t)|ijl — Ju(z, 0)[P*) da

—|—/O /Q(|u(x77)|p1u(x77)—|u(m70)|p1u(x70))fT(:E7T)dde
—/Q(|u(x7t)|p1u(x7t)— lu(z,0)P~tu(x,0)) f(z,t) da. (4.26)

Substituting the test function x(z,t) = wu(x,t) — f(x,t) into the integral iden-
tity (1.9) and using (4.26) and the structural conditions (1.4), (1.5), we conclude

that
" 1/ u(z, )Pt dx+d1/ / |D™u|P T dedr

<d2/0 /Q|D;”u(x77)|p|D;”f(:E7T)|dxdT
+/Q(|u(m7t)|P*1u(x7t) — |u(z,0)[P " u(z,0)) f(z,t) dz
—/t/[|u(:ﬂ77)|p1u(m77)—|u(m70)|p1u(m70)]fT(:E7T)dde
/ lu(x,0)[Pt dz, (4.27)

p+1

where d; is taken from (1.4). By Young’s inequality, we derive the following straight-
forward estimates of the terms given on the right-hand side of (4.27):

t
//|D;nu(£L'7T)|p|D;nf(iL'7T)|diEdT
0 Jo
<€1//|Dm iET)|p+1d£EdT+C61//|Dm (z,7) [P dadr,

(4.28)

/Q lue, P (e, £) — fulz, 0)P~ u(z, )] |f (x. £)] da

< erlluC O, o + I O )] + cae)IF DI e (4:29)
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t
/0 /n|“(5”70)|p|fr(%7)|dmd7 <erlluolly), @) + esE)f (N 0,620 ()
(4.30)

t
| [ e myplse o)l dadr
070 t 1/(p+1)
< sup ||U(-’T)||ip+l(9)\/0 (/Q|fr(w77)|p“dm> dr

7€(0,t)

<er sup DI o) + sl iGN gy (43D

Combining (4.28)«(4.31) and substituting them into (4.27), we arrive at (4.25). O

5. First step: proof of localization of ‘flat’ LS-regime

The proof of theorem 1.3 consists of two steps. In this section we perform the first
step and consider the case of ‘flat’ (lower than the optimal one in (1.12)) boundary
blow-up regime, meaning that function F in (1.8) satisfies

F(t) < cexp{A(T — t)~VImp+D+&ly 4 € (0, T), (5.1)

where ¢ and A are fixed positive constants. The constant £ > 0 can be arbitrarily
small.

Localization estimate (1.13) is derived obtaining a uniform boundedness with
respect to j of the energy Zle I;(s0) for any fixed so > 1. In the present case of
the flat boundary regime (5.1), this uses the functional system (4.20), (4.21) with
the following choice of its free parameters.

(i) Fix a small § > 0 (6 — 0 later on), and define a sequence of displacements
(spatial partition) §; = 275 for i > 1, §p = 0.

(ii) Choose unit normalized multipliers a;; = 1 for ¢ > 1.

(iii) All the parameters €;, ¢ > 1, in the system (4.20), (4.21) and in (4.24) are

constants,
0<e =e¢, suchthat (1+¢e)rg=(14¢)27™mCTD =p <1, (5.2)
(iv) The time displacements for j = 1,2,... (time partition) are
A= o =r7lA Ay = (cre(e) (o) HD (5.3)
T ee(e) o = ! ! 2 ’ '

where ¢; and c(e) are the constants from (4.24). Then v; = 1 for all j > 1
and the functional system (4.24) takes the form

Jj—1 J
1 -
Ii(s) < §Ii(s = dj) +5 > "I (s - Z@»)
k=1 i=k

J J
+%C1T‘{1A1h0(s—zgi>, j=1, s> 1+Z§1
i=1 i=1

(5.4)
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From (5.3), we calculate the value tg corresponding to displacements {A;, ¢ > 1},

A=A gmip+1)
—to = —
0 Z 1 ZT 1 —ro  c1c(e)2mPtD (1 — rg)’

so that tg = T — 6™P*Y /e¢(e)2mPH) (1 — rg) = T~ as § — 0 or e — 0.

Assume that s satisfies the additional restriction s —&; — >_7_, §; > 1. Then the
first term on the right-hand side of (5.4) can be estimated from above by means of
the same inequality with the shifted argument s — s — §;. This yields

Ij(s) < 27I;(s — 24;)

j—1 J j—1 J
+272 Zr{fklk (s —0; — Z (5j> +271 Zr{fklk (s — Z 6j>
k=1 i=k k=1

i=k
J J
+C17"1 A1|: 1h0(S—Z(5Z‘> +22h0(8—6j—2(5i>:|.
i=1 i=1

If we now assume that s satisfies s — 24, — Zle d; = 1, then the first term on the
right-hand side is estimated by (5.4) with s — s — 2§;. After similar [ steps, we
obtain, for j > 1,

Ii(s) < 27'Ii(s — 16)

jfl
’“quks—za 81— —0k)

k=

+er]” Alz2 "ho(s —i0j — 0j_1 — -+ - —61), s—lé—Zé
i=1

(5.5)
Observe that the restriction on s in (5.5) holds provided that s = sp = 14 26 and
I =1y = 27. Indeed, for any j > 1,
j—1 j—1
so—10;— Y 0i=1+20—-210;—5) 27 =1+27 15> 1
i=1 i=1
From (5.5), we then derive the first main inequality

Ij(SO) < 27l1Ij(80 - 11(5]‘)

Jj—1 11
+ ) Y 2T I (s — a0y — G — - =0k,
ki1=1 i1=1
. ll .
+ C17”‘1771A1 Z 27“h0(80 — i1(5j — (5]‘,1 — —(51)
i1=1
=AW 4 4P 4+ AP (5.6)
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Let us transform A§2) into the form

I
A§2) =17 Z 27" j,1(80 — i1(5j — (5]‘,1)

=1
j—2 I1
- » _
+ Y T Y 27 (s0 — i1 8y — Gjm1 — - —0k,)
k=1 i1=1

_ 42 2
= AR+ A%
In order to estimate the terms of Aﬁ, we use (5.5) with j — j — 1,

Ij,1(80 - i1(5j - (5]‘,1)
< 27l2Ij,1(80 — i1(5j — (5]‘,1 — 12(5]‘,1)

j—2 la
+ Y TRy 27 L (50 — i1 — Gjo1 —iadj_1 — 0jp — - -+ —0k,)
ko=1 io=1
. l2 .
+ Clr‘{izAl Z 2712h0(80 - i1(5j - (5]‘,1 - igéj,l - (5]‘,2 — —(51).
i2=1
(5.7)

The restriction from above for 5 now takes the form
j—2

So — i1(5j - (5]‘,1 - 12(5]‘,1 - Z(L 2 1,
i=1

and hence
j—1

12(5]‘,1 < So — 1-— i1(5j — Zéz =6— iléj +(5j,1.
=1

Substituting estimate (5.7) into the expression for Aﬁ, after some manipulations
in the right-hand side of (5.6), we arrive at

Iy(s0) < AL + AP + A,

where

5

i1=1
ll j72 l2
(2) (2) —1 i—1—k .
AP = AT + D2 Yy TR Yy
i1=1 ka=1 io=1
X Iy (89 — 1105 — 051 —i20j_1 — dj_9 — =+ —0p,)
j—2 I lo

SPIPIPI TR
ko=111=112=0
X Ik2 (80 — i1(5j — igéj,l — (5]‘,1 — (5]‘,2 — _6k2)
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and

1 l2

AS’) = AgB) + it A Z Z 9~ (1 +i2)

i1=112=1
X ho(So - i1(5j - igéj,l - (5]‘,1 - (5]‘,2 — —(51)
l1 l2
= 017”‘1771A1 Z Z 27(i1+i2)h0(80 - i1(5j - igéj,l - (5]‘,1 - (5]‘,2 — —(51).
i1=112=0

We separate the terms in Aéz) with ko = 7 — 2 in the first term and write down the
representation

AP~ A2+ A3,
We estimate terms from Ag% by means of (5.5) with
j '—>j —2 and s~ So — 116] - igdj,l - (5]‘,1 - (5]‘,2.

By manipulations similar to those at the previous step, we obtain a new form of
estimate (5.6),

Ii(s0) < ASY + AP + AD).
Performing these cyclic estimates j — 1 times, we arrive at

Ii(so) < AN, + AP, + A9 (5.8)

where
Agljl = 27llfj(80 — lléj)

5
+ 7 Z 27(“+l2)]’j,1(80 — i1(5j — (5]‘,1 — 12(5‘7;1)

11=1
4
l1 12 In
+ril E E L. E 27(i1+'"+ih+lh+1)
11=112=0 in=0
j—1
x Ii_p (So — 4105 =+ —ip0j_py1 — lhy105-p — E 5z'>
i=j—h
4
l1 l2 lj—2
_|_7n{*2 E E E 9= (i Fij_2tlj—1)
i1=1i2=0  i;_p=0
j—1
X Ig (SO - i1(5j ———— ij,2(53 - lj,1(52 - E (51‘>,
=2
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I
A§231 = r{*l ﬁ: i . z:l 27(i1+»..+1‘j71)

i1=112=0 ij—1=0
j—1
X Il (So—il(sj ———— ij,1(52— E 61‘);
i=1
I 12

lj_1
Afi)l = C17"{71A1 Z Z ce Z 9= (i1t-tij_1)

i1=1d2=0  i;_1=0

X ho(So—il(sj ———— ij162—26i>.

i=1
The values [j, satisfy the following restrictions from above:

7j—1

S — 4105 — 1201 — -+ —lp—10j—kt2 — Kj—k+1 — Z 5 =1
i=1

= 0105 + 401+ - F ik—10j—pt2 + lkj_py1
1+25—1—Za

=25—-6(1-2" J“)
:(54-(5]‘,1, k=1,2,...,5—1.
(5.9)

Our next goal is to estabhsh appropriate estimates from above on AJ 1 A§231
and A . We begin with A ) . Let us write it down in the form

j—2
AD =N ", (5.10)
h=0

where

PO = 27l1.[j(8 - lléj),

5
= Z 27(“+l2)]’j,1(80 — i1(5j — 12(5‘7;2 — (5]‘,1)

i1=1

and, for h > 2

P, = zl: 22: Z 9—(i1t+-+intlni1)

11 112_0 Zh =0

X Ii_p (So — 4105 — - =0 _pg1 — lhyp10j_p — Z 51'),

i=j—h
By condition (5.9) on the number of iteration, the following estimate on Pj, holds:

1 l2

Z Z Z g=(inttintlien) < j 9 (5.11)

11=112=0 15 =0
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According to (5.9), we also conclude that I, satisfies
1105 + 42051 + - -+ in0j—nt1 + 10— <O+ 05-1.
Hence, by the definition of sequence {0}, we have
0;(i1 + 2ig + 2%z + - -+ 2" iy + 270, 11) < 6;(20 + 2).
Therefore,
Iy <2770 —27M(iy + 2ip + 2%i5 + -+ -4 2071y, 421,
so that we can set
Ihp1 = [2770 = 27h (i 4 g + - - -4 20 Li) + 2171,
where [] denotes the integer part. Obviously, we have
hr = 29710 — 270y 4 209 + -+ -+ 207 1y) — 1.

Extending estimate (5.11), we obtain

<205 Z Z Zz Riviznin), (5.12)

11=112=0 1h=0

where
R(iyig, ... ip) =2 " +i(1—27") +iy(1 — 27Dy g (1 —27Y).
It then follows from (5.12) that

< 2L Z 9—(1-27")ix H(i 2(12(hl+1))il>22jh

i1=1 =2 ;=0

] h
<2227 () [ b,
=1

where b; = (1 — 2*(1*24))*1. In order to estimate constants b;, we observe that,

for arbitrarily small ;1 > 0, there exists a number ko = ko(u) such that

b; <2+ p foranyi> k. (5.13)

Hence we have

>

[ <@+wFoghe forh>1,
=1

K3
where gg = \/_/ V2 - 1). Extending the above estimate on P, we obtain

Py <22 ()27 2+ ) ogpe. (5.14)

We now estimate I;_; (1) from above. By the a priori estimate (4.25), from lemma

4.5, it follows by assumption (5.1) that

1

Lin(1) S cF(tj-n) = csexp{A(T — ;) "}, B= py P
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By definition (5.3) of {4}, we have

> > A= A=)
_ L i—1 _ 170 _ 1
Toa= Y A= Y st = AT TT
i=j—h+1 i=j—h+1

Hence inequality (5.15) provides us with the estimate

1-— To A (1
Li_p(1) < cs exp{A[A—} 9(F—=h)( 506)}.
1

Substituting this estimate into (5.14), we get
P < e52? (24 )" TRgl? exp{— 277" M(j — b, €0,0)), (5.16)

where the function M (v, &, d) has the form

_ 3
M(v,fo,é):hﬂ—A(l 7"0>

Aq 2980
_ (1 —7r)erc(e)2mP+D) B
:ln2—A[ ST e . (5.17)

Here, the constants ¢; and c(¢) are given in (4.24), (5.3), € > 0 satisfies (5.2) and
is from (5.15). We need some properties of the functions M (v, &y, d). For arbitrarily
small values of 6 > 0 and & > 0, there exists finite vg = v(£p,0) > 0 such
that M (v,&,6) > 31n2 for any v > vo. Hence estimate (5.16) can be extended as
follows:

3227 (2 4 p)h—ko gko exp{—29=hL1n 2 if h <j— v,
X < { 3 ( ) 0 { 2 } 0 (518)

322" (2+ u)h*koggo exp{2tvo Bs—m(p+1BY if b > j — .

The constant B = A[(1 — 79)c1c(e)]? is independent of h, j and other constants
in (5.18). We have ko = ko(u) — o0 as p — 0 and vo(&,d) — oo as & — 0 or
60— 0.

We now estimate Ag»ljl. In view of (5.18), it follows from (5.10) that

Jj—vo

A§1,)1 < Z c32® " gholr (2 + )] (2 + p) R exp{- 27~ 11n2}
h=0

j—2
Y 2 G @ )] 24 ) expl2! e B D)
h:j7v0+1

_ 1 1
=40+ Al

We recall that, by (5.2),71 = (14 €)7o = (1 + £)27™P*+Y_ Therefore, for any m > 1
and p > 0, we can choose small fixed ¢ > 0 and the p > 0 from (5.13) such that
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(24 p)ry = (24 p)(1 +¢)/2m@P+) = \; < 1. Then we deduce the estimates

J—vo
A§13171 < 2e398° (2 4 p) ko Z A exp{— 237}‘% In2}

h=0
Jj—vo

< e Z exp{— (3 1n2)27~ MG —h)In AT

< 4N By, (5.19)
By = Bi(\)

—Zexp{ 11n2 )28 +iln AT}

= const.7 (5.20)
cq = 2c3g80 (2 + p) R, (5.21)
j—2
1
AD L <By Y N
h:j7v0+1
< BoA Tt (1 — A (5.22)
By = cyexp{21tvoBs—m oY (5.23)

Let us estimate the term A§231' We have

D ) ST DERCEEUNG

i1=1i=0  i;_;=0
=7 ' (1)2 72
=1(2r ) (1),
It follows that 2ry < A1 < 1, and hence

AP <2 L (). (5.24)
Finally, consider A§ 13
A(j Clr hO VA1 Z Z Z g—(irFizt+-+ij_1)
11=112=0 ij—1=0
< %C1(2T1)j71A1h0(1)
< %ClA‘{ilﬂlho(l). (525)
Thus we obtain from (5.8), due to (5.19)«(5.25), that I;(so) = I;(1 + 26) < Y
for any j = 1,2,..., where ¢ = ¢(9) is independent of j and 6 > 0 can be chosen

arbitrarily small, and hence

3 j—1 .
I (s0) =Y L(1+28) <Y A < 1—C>\1’ j=1,2,...
=1 i=0
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This uniform-in-j estimate completes the proof of theorem 1.3 under the additional
restriction (5.1).

6. End of the proof of theorem 1.3: ‘steep’ LS-regime

We now consider optimal blow-up LS-regimes. Namely, according to theorem 1.3,
the boundary blow-up function satisfies, for ¢ € (0,7,

1

F(t) < cop{A(T =)™}, where ¢ = oy

and & >0. (6.1)

We begin with the functional system (4.24), but unlike the previous section, we use
a different choice of free parameters in partitions. In the case of ‘steep’ boundary
regimes (6.1), the optimal choice of the partition {A;} has to depend on the spatial
variable s; more precisely, on the a priori unknown profile of solution u(z,t) under
consideration,

10 (s) = / lu(z, t)[PT dedt for t ~ T, s> 1.
2(s)x(0,1)

Therefore, we need to arrange an iteration procedure. In the first step, we perform
estimates of functions I;(s) corresponding to the partition {A;} connected with the
initial boundary regime (6.1). In the next steps, the corresponding partitions will
be chosen by means of ‘fictitious, more flat’ regimes obtained from energy estimates
of solution in the previous step. Let us perform such a construction.

STEP 1. Fix ¢; = €9 = const., ¢ > 1, where ¢ is sufficiently small.

STEP 2. Fix a positive constant 73 < 1 and define the sequence {c;} of normalized
multipliers in (4.22), (4.23) as follows:

o173

P= 1. .2
1+e B; =13 < (6.2)

O = Q112 =

STEP 3. Let us fix a large constant K > 0 (in what follows, we pass to the limit
K — o0) and define the partitions
i = (K +4) 1=8/ml) A, — (K 4 4) mD=8 > (6.3)

(we set 69 = 0), where the constant & = &1(£) > 0 will be determined below.
Under the above definitions, the functional system (4.24) takes the form

j—1 J J
A )
JJ(S) < >\1Jj(8—6j)+>\1 Z A_JT% ka (S—Z (51> +027"‘§AJ‘H0 (S—Z (51‘), (64)
k=1 7k i=k i=1
where
c1¢(eo) c1
AM=———""—<1 d =
T+ c1e(eg) and =9 + c1e(eg)

Recall that ‘
Jj(s) = Ij(s)r} = I;(s) exp{~ Inry 'j}.
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System (6.4) looks similar to (5.4) for the flat LS-regime and we apply the same
iteration procedure, which beforehand led (5.4) to (5.5). Then we obtain, for j > 1,

j*l l j—1
Jj(s) < M J;(s — 16)) ZA—J kZAQJk(s—i(sj - Zah>
i=1 h=Ek
l —
+ C27"‘§Aj Z )\ZiilHO (S - 15] - Z 6h>
i=1 h=1
=AY+ AP W)+ AP (). (6.5)

Let us comment on a possible number of iterations ! in (6.5). Denote
§=0(K, &)= Z = Z K + i)~ 1-&/mp+D), (6.6)
We have

/OO 26 /met) 0 < 5 < /OO g6 /mepH) g
K+1 K

and consequently
& imlp + 1)(K +1)78/m0H) CG(K, &) <& hmp + DK 8/m@HD 1 (6.7)
so that, for any fixed & > 0, §(K,&;) — 0 as K — oco. Denote
so =14 20(K, &) (6.8)

and determine the following number of iterations at the fist step, {1 = 11 (j) = [§/6;]
for j > 1. Then

J J J
80—11(5]‘—2(51‘:1+2(5—ll(5]‘—z{51‘21+2(5—(5—Z(51‘
i=1 i=1 i=1
=1+ io:(5i>1.

i=j+1

Hence (6.5) holds with [ = ;. We again decompose Agz) in a manner similar to that
in the previous section to get

AP = 73 Z AP Jjo1(so —i165 — 0;-1)
71=1
Jj=2 ) Jj—1
+ Z _-7 —k1 Z )\thl( iléj _ Z 5h>
k1:1 i1=1 h=k1
=403 + AY";. (6.9)
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We estimate the terms in Aﬂ by using (6.5) similarly to (5.7),
Ji—1(so —416; — d;-1)
< AP Jj,l(so — 0105 — 0j—1 — 126;_1)

+Z Ak2 e ksz2Jk2( 105 — 01 — 12051 — Z5h>

kzl 121 hkz

l2
+ Cgréilﬂjfl Z )\izilHo (SO - i1(5j (5 -1 — 12(5J 1 — Z 6h> 6 10

i2=1

Substituting estimate (6.10) into the expression for A1 1, by some obvious manip-
ulations with the terms on the right-hand side in (6.5), we obtain

Jj(s0) < A+ AP + AP

with Aél), Aéz) and Aég) corresponding to Aél), Aéz) and Aég) introduced in §5.
After j — 1 steps of such calculations, similar to the previous section, we deduce
that

Jj(SO) < Agljl + 1452 A(3

P S (6.11)

Agljl = )\111 Jj(SO — lléj)

l1
A .
z r3 Z )\leJrlzJj,l(SO - i1(5j - 12(5]‘,1 - (5]‘,1)

+
Ajil 11=1
1 l2
j E E )\11+12+l3
11=1122=0
X Jj,g(SO - 116]» - igéj,l - l36j,2 - (5]‘,1 - (5]‘,2)
+ -
1 l2
_j -1 E E E : )\11+12+ A2+l
11=112=0 ij_2=0
j—1
ng(so—iléj ———— ij,253—lj,1(52— E (5h>,
h=2
l1 l2
i@ _ 4; s i1tiate i1
AP =LYy § Al
Aq
11=112=0 ij—1=0
XJl (So—il(sj ———— ij,1(52— E (5h>,
h=1
l1 l2
A 1—C27”‘7A>\ E:E: §:>\11+12+ Fij1
11=112=0 ij_1=0
XHo(SO—il(sj ———— ij,1(52— E 6h>
h=1

https://doi.org/10.1017/5S0308210500002821 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500002821

1112 V. A. Galaktionov and A. E. Shishkov

Note that the values of I, = ly(i1,d2,...,ix_1), Kk =1,2,...,j — 1, are determined
from (5.9), where now sq is given in (6.8) and {4;} are defined in (6.3). Thus

Jj—2

_ A .
AV =% - it P, (6.12)
h=0 T —h

where the P, are similar to P, from (5.10). In particular, the following estimate
holds:

I lo In
Py < Jion(1)Y0 ST DTt 5, (6.13)

i1=14i2=0  i,=0
Using (5.9) again, we derive the condition determining possible values of 1541,

0 — iléj — ig(sjfg — —ih(sj,thl

Ihy1 < =a.

di—n
Hence we can set lp4+1 = [a] and then
iyt io i+l
) . ( 4, . 01 . Oj—ht1
+ip(1— =< >+z (1— - >+"'+Zh(1—]— - 1.
Sin 5in)  P\0 6 5i—n

Therefore, the following estimates on Py, hold,

2

> )
P, < )xlleh(l)exp{—ln)\ll }
(5‘7‘,}1

« Z )\glféj/éj,h)il Z )\glfisjfl/(sj‘fh)lé . _Z )\glftsj—hi»l/[sj—h)ih

i1=1 i2=0 ip=0

5
< /\11th(1)exp{—1m11 5 }Hh, (6.14)
j—h

where
I, = )\1*(1*53‘—1/5;‘—0 . _)\1*(1*5;7;#1/5;7;1)()\;(175;'/5;7;1) _ 1)—1
.. _()\1*(1*5;‘—;#1/5;‘—;1) _ 1)71' (6.15)

To estimate ITj, from above we need bounds on the last factors. By Lagrange’s
formula,

—(1—6. . dj_ dj—
A1 (1=05-x/85-n) _q exp{ln)\l1 (1 - J—k>} —1>InA7! (1 - J—k>
5, 5,

Therefore, equation (6.15) implies that, for any h > 1,
h—1 5 -1
Iy, < Ay ) [05) [(111/\11)h 11 (1 - —J’“ﬂ . (6.16)
k=0 Oj=h
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It follows from (6.3) that

1— (5]‘,]C - (1 B h—k >1+51/m(;0+1) N h—k
Sj-n K+j—k K+ -k
and
ﬁ(l_%k>>"l—f hok WK i =R o
Pl dj—h /k:OK+j_k (K +7)! K+j)

where the binomial coefficient satisfies (C’I’QH)*1 > 27 (K+J)_ Therefore, we have
My, < Aot ol pr= M nATH) ™
X g - .

Substituting this into (6.14) yields

Py < >\§§j71+5j—2+"'+6j7h+1)/6jfhﬂflLCIf2+ij7h(1) exp{— In )\;1

}. (6.17)

Let us estimate the last two factors on the right-hand side. By (6.7) and by the
definition of §; in (6.3), we have

3in

) S m(p+ 1) (K + j — h)1H&/me+1)
Si—n £1(K +1)&/mp+D)

(6.18a)

and

4 0 ln)flm(p +1)(K+j— h)1+€1/m(p+1)
— 1_ < — 1
exp{ In A 5jh} < exp{ 6 (K 1 )8 /mGeD . (6.18d)

We now estimate J;_p,(1). By the a priori estimate (4.25), it follows from lemma 4.5,
condition (6.1) on the boundary blow-up regime, definition (4.23) of J;(s) and
from (6.2) that

(W)= "L, () < TPCF () < Oy exp{A(T — t;,) 7%}, (6.19)

where 7o = r3/(1 + £¢). Let us derive an estimate on T — ¢; for any i > 1,

k=i+1 k=K+i+1
Hence - -
/ p MmO+l g < T — ¢, < / glmt+al g
K+it+1 K+i
so that, for ¢ > 1,
1
PL(E+i+1) "V < (T—t;) < py (K+i) "V, ¢y = (6.20)

mp+1)—1+&°

Therefore, equation (6.19) implies that

Ji-n(1) < Crd " exp{ Ay (K + j — h+ 1)/}, (6.21)
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1114
where A} = A¢f¢. We now choose &§; = &1(&) > 0 such that
2m(p+1)

m(p+1)_1+£1:1+£—1 = §1=§0m(p+1)+1_£o’

(ZS pr—
o1 mp+1)—1+& 2m(p+1)
(6.22)
and, in particular, for any &, > 0,
2m(p+1)
> , = > 1. 6.23
& > 780, 70 o+ D+ (6.23)
Then estimate (6.21) for h > 1 takes the form
Thexp{A(K+j—h+1)"}, =1+ __& >1. (6.24)
2m(p+1)

Ji—n(1) < Cr

Substituting estimates (6.18) and (6.24) into (6.17), we obtain

R U AY(K +5—h+ 1)}, (6.25)

Py < Oph2" )™ expl= Ay (K +j —
(p+1)In A1 /& (K 4 121D We need some extra simple manip-

where Ay = m
ulations. Let us write down the exponential term in the right-hand side of (6.25) in

the form
— A1+ (K+j—h)"H"}

IN=—(K+j—h)"{Ay(K +j—h)"!
Consider the auxiliary function

FQ(U) = AQ(K + U)V171
One can see that there exists vg = vo(Ae, A1, K, &) such that I'x(v) > 1 for all

71]1/1 .

- A1+ (K +v)

v > vg. Denote

F(O) (AQaAlaK &) = max | (v)].

By the definition of I's(v), we have It < —(K + j — h)" if j — h > vy and
I < FQ(O)(K + o)t if j — h < vg. Thus, from (6.25), we derive the following esti-
mate:
. Cpl2B+ipd =M expf (K + j — h)» h<j—w,
Ph<{ N;K 2 P <(0) = hm 7= (6.26)
Cup28tirl ™" exp{Iy"/ (K +vo)"'}, h>j— .
Let us come back to the estimate on A§71 from (6.11), (6.12). Hence, by (6.26), we

have
j—vo
A
L]l exp{— (K +j — h)"'}

A‘gl,)l < C2K+J Z A r3Ts
h=0

j—h
i2 A .
Lorlird ™"l exp{IS” (K + o)}

+ C2K+ Z VA
h=j—wvot1 T h
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J'UO

)"l exp{— (K +j — h)"'}

j—2
+ C25+iy] Z

h=j—vot1 —Ih

(1 + 0)pia]" exp{ TS (K + v0)**}

j—vo j—2
<O N T AL ek 25 Y A, (6.27)
h=0 h=j—vo+1

where C is as given in (4.25), K1 = exp{FQ(O)(K—i-vo)”l}, Ay = (14 eo)p1 and
p1 = (A InA;H) "1 As a natural continuation of (6.27), we finally obtain

1415131 < C2K+j7”§K1/1{71(/11 - 1)71 = 01(27"2A1)ja J 2 1. (6~28)

Here and later on, constants C1, Cs,... depend on the known parameters and, in
particular, are independent of j. Next, we have

A(Q) < % Z )\11 Z )\12 . Z )\17 1

71=1 12=0 ij—1=0
<7 (1 + go)jfle(erl)Jr&(K _,_j)*M(erl)*ﬁl A )\1)7(3‘71)
< 02[r2(1 +e0)(1— M) (6.29)

Hence

AP < earf A Ho(1) S A YAz 3 Ay

i1=1 i2=0 i5-1=0
< ear (14 20)! (K + )@= Hy (DA (1 = Ay) =0
< CB[(l + 60)7"2(1 — )\1)71]]" (6.30)

By (6.11) and (6.28)+6.30), we have
Ji(50) < Card[241 +2(1 + £0) (1 — M)~ = Cyr) A,
Recalling the definition of the normalized functions J;(s) in (4.23) and (6.2), we

obtain I;(so) < Cy4 A}, and hence, for any j > 1,

1% (s0) = Z Ii(s0) < Cy4 Z Ay < Cs A} = Csexp{jIn Ay} (6.31)

By estimate (6.20),
K+i <o (T —t;)~% fori>1.
Substituting into (6.31), we get

I(tj)(so) < C’5 exp{Ag(T — tj)7¢1}a
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where A3 = qul InAy. Since (T —t;)/(T — tj—1) — 1 as j — oo monotone, this
‘discrete’ estimate implies the ‘continuous’ one for anyt > ¢y,

b1
- tl} . (6.32)

I(t)(SO) < g exp{/l4 (T — t) ¢ }, Ay = A3 |:

T -1t
Let us note that, by the a priori estimate (4.25) and condition (6.1), we have the
‘initial estimate’

1
mp+1)—1+&'
(6.33)
Comparing estimates (6.32) and (6.33) shows that we essentially reduce the singu-
larity order at s = sq relative to that at s = 1, since, by the construction, & > vo€o,
where o > 1.

We now start the next computational cycle by taking estimate (6.32) as the
initial one instead of (6.33). Namely, for s > sg, we introduce a sequence of new
energy functions I;(s), keeping for convenience all the previous notations, so that,
fori>1,

IMA) < CF(t) < Cexpl{A(T —)~%}, te (ty,T), ¢=

Aj = Ai(&) = (K + i) mPH =8y, 0; = 0i(&a) = (K )1~ %/mpHD),
where dp = 0 by implication and & is determined from the equality similar to (6.22),

m(P+1)—1+§2: &2
mp+1)—14+& m(p+1)

2m(p+1)
m(p+ 1) + 1 —51

&2 =61 > v0é1,

(6.34)
where 79 > 1 is as in (6.23). The new energy functions are

t;
I;(s) :/ / lu(z, t)[PT dedt, s>s9, 7> 1.
ti_1 .Q(S)

Here, {t;} is the new time partition of the interval (0,7) corresponding to {A;}
defined above. Instead of § = (K, &) in (6.6), we set

§=0(K,&) = 251‘(52),
i=1

so that, similar to (6.7), we have
m(p + )& YK 4 1)78%/mPHD) 5K, &) < mp + 1)&5 LK /™D (6.35)

We also define the new value s1 = sg+ 20 = 1+ 26(K, &1) + 20(K, &2). We perform
calculations similar to those that led us from the initial estimate (6.33) to (6.32),
but now with (6.32) as the initial one. We then obtain, for any ¢t < T,

IV (s1) < Crexp{As(T — )=}, P2 = .

ST (6.36)
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Using (6.36) as the initial estimate for the next cycle of calculations, etc., after a
number [ of such cycles, we arrive at the estimate

IW(s11) < Cgexp{Ae(T —1)""'}, ¢ = —— 1)1_ e Ag = Aq(1),
(6.37)

where & > v &0, Y0 > 1, 5121 = 1+ 25(K, &) + - -+ 26(K, &) and §(K, €) satis-
fies (6.35). Choosing I = Iy such that §, =1+ v, v > 0, then

R [(ln(l +v) +ln£01)}
In~o

As a consequence, we deduce that

lo lD .
151 < 1 + 2 Z (5(K, gl) < 1+ 2m(p + 1) ZgoflpyofiK*€078/m(P+1)
i=1 =1
<14 2m(p+1)€5 (o — 1) LK —Soe/mp+1) (6.38)

Thus, performing [y cycles, we obtain the estimate
I (s1,_1) < Coexp{A7(T — t)”"VImp+D I 4 o7y >0, (6.39)

We now choose the value of K. Given an arbitrarily small number g > 0, let
K = K(p) be such that 2m(p + 1)&, (70 — 1)~ K —¢/m@+h) — |, Then, in view
of (6.38), estimate (6.39) yields

ID(1 4 p) < Cyexp{A(T — t)"V/MmEPHD+HIY for ¢ € (0,T).

The constants Cy and A7 do not depend on t. Therefore, we arrive at a flat blow-up
LS-regime posed on the lateral boundary of the domain { x| > 1+ u}x (0,7). By
the results from §5, the blow-up set is contained in {{ 2| <14 u}. Since u > 0 can
be chosen arbitrarily small, theorem 1.3 follows.
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